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Abstract

We consider the problem of (re)allocating the total endowment of an in-
¯nitely divisible commodity among agents with single-peaked preferences
and initial endowments. We propose an extension of the so-called uni-
form rule and show that it is the unique rule satisfying strategy-proofness,
Pareto optimality, and an equal-treatment condition. This last condition
is implied by the combination of anonymity and translation invariance,
which fact is used to obtain a second characterization. The resulting rule
turns out to be peaks-only and individually rational: the allocation as-
signed by the rule depends only on the peaks of the preferences, and no
agent is worse o® than at his initial endowment.
Journal of Economic Literature Classi¯cation Numbers: D63, D71.

1 Introduction

Consider the problem of allocating teaching hours among the members of a

university department. It is reasonable to assume that preferences for teaching

are single-peaked: each individual has an optimally preferred number of teach-

ing hours, below which and above which preference is decreasing. The existing

distribution of teaching hours may be unsatisfactory, for instance because pref-

erences have changed over time. Then the question arises how to reallocate

teaching hours.

The special instance of this problem in which only the total endowment

plays a role (and, consequently, initial endowments are not modeled), has been

studied extensively in economic literature. The allocation rule featuring pre-

eminently in this literature is the so-called \uniform rule". This rule was already

described as a strategy-proof rationing scheme by Benassy (1982). Sprumont

(1991) showed that it is the unique Pareto optimal, anonymous, and strategy-

proof rule. As usual, strategy-proofness means that no agent can gain by mis-

representing his preferences. Anonymity implies that only the preferences and

not the names of the agents matter. Ching (1994) weakens anonymity to a con-

dition called equal treatment of equals. Other characterizations of the uniform
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rule were obtained by Thomson (1991, 1994a, 1994b), using monotonicity and

consistency properties, Otten et al. (1995), applying conditions from bargain-

ing theory, and Angeles de Frutos and Masso (1994), using a condition called

Lorenz maximality.

In this paper we consider the more general setting where initial endowments

do play a role (not just through the total endowment). There are several ways

in which initial endowments may in°uence the allocation. An agent who, at

the reallocation assigned by the rule to be used, is worse o® than at his initial

endowment, might refuse to participate in the reallocation operation if he has

the chance; indeed, just applying the uniform rule in a problem with initial

endowments may lead to non-individually rational allocations. Likewise, an

agent's net demand, i.e., the di®erence between his reported preference peak

and his initial endowment, may be considered relevant, rather than his mere

preference or preference peak. We will formalize this latter consideration as an

equal-treatment condition. Besides, we impose Pareto optimality and strategy-

proofness with respect to the reported preferences|the initial endowments are

assumed to be publicly known|to obtain what will be called the \uniform

reallocation rule". This rule turns out to be individually rational as well.

Furthermore, we show that the equal-treatment condition may be replaced by

anonymity and translation invariance.

Besides in situations as the one at the beginning of this introduction, the

uniform reallocation rule can be used in exchange economies with two goods

and ¯xed prices, where rationing of one of the goods entails an allocation of the

other good, in view of ¯xed prices and budgets. For more than two goods, one

needs a multi-dimensional rule.

The uniform reallocation rule can be seen as an extension of the uniform

rule for problems without initial endowments, by starting from equal division

of the amount to be divided in such problems. The proof of our main charac-

terization is structured in a similar way as Ching's (1994) elegant proof for the

uniform rule. We also show that Pareto optimality and strategy-proofness im-

ply own-peak monotonicity and uncompromisingness. The ¯rst property means

that increasing the peak of an agent while leaving the endowments unchanged,

does not decrease the amount allocated to that agent. The second condition

implies that the allocation of an agent does not change if the peak of that agent

remains at the same side of the allocation. Ching's result and ours are, how-

ever, logically independent, and|except for the global structure|the proofs

are rather di®erent.

The organization of the paper is as follows. In Section 2 we formulate the

model and the uniform reallocation rule with its main properties. In Section 3

we state and prove the main characterization of the uniform reallocation rule.

Section 4 is devoted to a variation on this characterization, and to showing

independence of the axiom systems.
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2 The uniform reallocation rule

Let N = f1; 2; : : : ; ng denote the set of agents. Each agent i 2 N has a single-

peaked preference on IR, i.e. a complete and transitive binary relation Ri on

IR for which there exists a point pi 2 IR+ with1 the following property: for

all ®;¯ 2 IR with ¯ < ® · pi or ¯ > ® ¸ pi we have ®Pi¯, where Pi is the

asymmetric part of Ri. As usual, ®Ri¯ is interpreted as \® is weakly preferred

to ¯", and ®Pi¯ as \® is strictly preferred to ¯". The symmetric part of Ri is

denoted by Ii: ®Ii¯ means that individual i is indi®erent between ® and ¯. The

point pi is called the peak of Ri and will also be denoted by p(Ri). By R we

denote the class of all single-peaked preferences. An element R = (R1; : : : ;Rn)

of RN is called a preference pro¯le. Furthermore, each agent i has an initial

endowment ei 2 IR+. A division problem (or brie°y: problem) is a pair (e;R)

where e = (e1; : : : ; en) is a vector of initial endowments and R 2 RN is a

preference pro¯le.

For i 2 N , a preference Ri 2 R and a number ¿ 2 IR such that p(Ri)+¿ ¸ 0,

we de¯ne the preference Ri + ¿ by: for all ®;¯ 2 IR

®(Ri + ¿)¯ if (®¡ ¿)Ri(¯ ¡ ¿):

For a problem (e;R), a (feasible) allocation is a vector x 2 IRN
+ withPn

i=1 xi =
Pn

i=1 ei. A rule is a map assigning to every problem a feasible

allocation.

Let ' be a rule. We are interested in the following possible properties of '.

Pareto optimality For every problem (e;R) there is no (feasible) allocation

x with xiRi'i(e;R) for all i 2 N and xiPi'i(e;R) for at least one i 2 N .

Strategy-proofness For all j 2 N and all problems (e;R); (e0;R0) with e = e0

and Ri = R0
i for all i 6= j, we have 'j(e;R)Rj'j(e

0;R0).

Equal-treatment For all i; j 2 N , every ¿ 2 IR, and every problem (e;R)

with Rj = Ri + ¿ and ej = ei + ¿ we have

'j(e;R)Ij'i(e;R) + ¿:

Pareto optimality needs no further explanation. Strategy-proofness ensures

that, if preferences are private information, in the game where each agent re-

ports his preference it is a (weakly) dominant strategy to reveal one's true

preference. Equal-treatment requires that, if the initial endowments and pref-

erences of two agents are equal up to a translation, then each agent should be

indi®erent between his own allocation and the translated allocation of the other

agent2.

1The choice of IR+ is not essential; IR or some interval could be chosen as well.
2The uniform reallocation rule de¯ned below actually satis¯es the stronger version where

we would have equality instead of indi®erence.
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A well-known rule, satisfying strategy-proofness and Pareto optimality|see

Sprumont (1991) or Ching (1994), is the uniform rule U de¯ned3 by

Uj(e;R) :=

(
minfp(Rj); ¸g if

Pn
i=1 p(Ri) >

Pn
i=1 ei

maxfp(Rj); ¸g if
Pn

i=1 p(Ri) ·
Pn

i=1 ei

for every j 2 N , where ¸ solves
Pn

i=1 Ui(e; R) =
Pn

i=1 ei. The uniform rule does

not take the individual initial distribution of the total endowment into account;

for instance, it does not satisfy equal-treatment. As an alternative, we propose

the uniform reallocation rule U r de¯ned by

U r
j (e;R) :=

(
minfp(Rj); ej + ¸g if

Pn
i=1 p(Ri) >

Pn
i=1 ei

maxfp(Rj); ej ¡ ¸g if
Pn

i=1 p(Ri) ·
Pn

i=1 ei

for every j 2 N , where ¸ ¸ 0 and ¸ solves
Pn

i=1U
r
i (e;R) =

Pn
i=1 ei. Observe

that the uniform reallocation rule is well de¯ned: it assigns a feasible allocation

to every division problem. It can be seen as an extension of the uniform rule in

a sense speci¯ed by the following lemma.

Lemma 1 For every problem (e; R)

U(e; R) = U r(¹e;R)

where ¹e = (E
n
; : : : ; E

n
), E :=

Pn
i=1 ei.

In words: applying the uniform rule gives the same result as applying the

uniform reallocation rule from equal initial endowments.

Proof. Let (e; R) be a division problem. Assume that
Pn

i=1 p(Ri) >Pn
i=1 ei =: E, the other case is similar. For agents i 2 N such that p(Ri) ·

E
n

we have U r
i (¹e;R) = p(Ri) = Ui(e;R). If i 2N with p(Ri) >

E
n
, then U r

i (¹e;R) =

minfp(Ri);
E
n
+ ¸g where ¸ solves

Pn
i=1 U

r
i (¹e;R) = E. Let ¸0 := E

n
+ ¸. Then,

U r
i (¹e;R) = minfp(Ri); ¸

0g where ¸0 solves
Pn

i=1U
r
i (¹e;R) = E =

Pn
i=1 Ui(e;R).

Hence, U r
i (¹e;R) = Ui(e;R).

Let ' be a rule with, for every problem (e;R), either 'i(e;R) · p(Ri) for all

i 2 N or 'i(e;R) ¸ p(Ri) for all i 2 N . We call such a rule same-sided.

By single-peakedness of the preferences, it is easy to show that a same-sided

rule is Pareto optimal, and that, conversely, every Pareto optimal rule must

be same-sided. (Sprumont (1991) actually uses same-sidedness as de¯nition of

Pareto optimality.) For later reference, we state this observation as a lemma.

Lemma 2 A rule ' is Pareto optimal if and only if it is same-sided.

3This de¯nition is adapted to our context. In the original literature only the total endow-

ment is speci¯ed and no initial endowments.
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3 Main characterization

This section is entirely devoted to the following characterization of the uniform

reallocation rule.

Theorem 3 The uniform reallocation rule is the unique rule satisfying Pareto

optimality, strategy-proofness, and equal-treatment.

In what follows it is useful to distinguish between suppliers and demanders

in a division problem (e;R). The set of suppliers is de¯ned as S(e; R) := fi 2

N jp(Ri) · eig and the set of demanders as D(e; R) := fi 2 N jp(Ri) > eig. If
it is clear which division problem is meant, also the notations S(p) and D(p)

will be used, where p is the vector of peaks4.

We start by showing that the uniform reallocation rule has all the properties

mentioned in the theorem.

Proposition 4 The uniform reallocation rule is Pareto optimal, strategy-proof,

and satis¯es equal-treatment.

Proof. Pareto optimality of U r follows immediately from same-sidedness,

see Lemma 2.

In order to show strategy-proofness of U r, let j 2 N and let (e;R) and

(e;R0) be division problems with Ri = R0
i for all i 6= j. We have to prove that

U r
j (e;R)RjU

r
j (e;R

0): (1)

For all agents i write pi := p(Ri), p
0
i := p(R0

i), E :=
P

n
i=1 ei. We assume thatPn

i=1 pi > E, the other case is similar. Then, U r
j (e;R) = minfpj ; ej +¸g where

¸ ¸ 0 solves
Pn

i=1U
r
i (e;R) = E. If U r

j (e;R) = pj , then (1) holds because pj is

the peak of Rj ; so we are done. Otherwise, U
r
j (e;R) = ej + ¸, i.e., agent j is a

demander. We distinguish two cases.

Case 1 p0j > ej + ¸

Observe that in the pro¯le R0 agent j is still a demander. Consequently,

D(e;R0) = D(e; R) and by feasibility and same-sidednessX
i2D(e;R0)

p0i ¡ ei = p0j ¡ ej +
X

i2D(e;R);i 6=j

pi ¡ ei

> ¸+
X

i2D(e;R);i 6=j

U r
i (e;R)¡ ei

=
X

i2D(e;R)

U r
i (e; R)¡ ei

=
X

i2S(e;R)

ei ¡ pi

=
X

i2S(e;R0)

ei ¡ p0i:

4The inclusion of agents with peaks equal to their initial endowments among the suppliers
is arbitrary, but convenient for what follows.
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Hence,
Pn

i=1 p
0
i > E. Therefore, U r

j (e; R
0) = minfp0j ; ej + ¸0g where ¸0 ¸ 0

solves
Pn

i=1U
r
i (e;R

0) = E. Because p0j > ej + ¸ and p0i = pi for i 6 =j it follows
that ¸0 = ¸. Hence, U r

j (e;R
0) = ej + ¸ = U r

j (e;R), and (1) follows.

Case 2 p0j · ej + ¸

If
Pn

i=1 p
0
i > E, then U r

j (e;R
0) = minfp0j ; ej + ¸0g · ej + ¸ = U r

j (e;R) · pj . IfPn
i=1 p

0
i · E, then U r

j (e;R
0) = maxfp0j ; ej ¡ ¸0g · ej + ¸ = U r

j (e;R) · pj . So

in both cases (1) holds.

The proof of equal-treatment of U r is straightforward and left to the reader.

In order to prove the converse direction of Theorem 3 we introduce the following

two possible properties of a rule '.

Own-peak monotonicity For every j 2 N and all problems (e;R) and

(e0; R0) with e = e0, Ri = R0
i for all i 6= j and p(R0

j) · p(Rj):

'j(e
0;R0) · 'j(e; R):

Uncompromisingness For every j 2 N and all problems (e;R) and (e0;R0)

with e = e0, Ri = R0
i for all i 6= j: if p(Rj) < 'j(e;R) and p(R

0
j) · 'j(e;R) or

if p(Rj) > 'j(e;R) and p(R
0
j) ¸ 'j(e;R) then 'j(e;R) = 'j(e

0;R0).

Own-peak monotonicity says that an agent's allocation can never move in the

opposite direction of a movement of his peak. Uncompromisingness states that,

if an agent's peak di®ers from his allocation assigned by the rule and is moved

without crossing that allocation, then that allocation does not change. Own-

peak monotonicity was introduced by Ching (1994). Uncompromisingness is

a well-known property in connection with strategy-proofness (see for instance

Border and Jordan (1983) in the context of public goods). Both properties

are convenient to work with because they only use information concerning the

peaks of the preferences. In the following two lemmas it is shown that both

properties are implied by Pareto optimality and strategy-proofness.

Lemma 5 Let ' be a Pareto optimal and strategy-proof rule. Then ' is own-

peak monotonic.

Proof. Let j 2 N and let (e;R) and (e;R0) be division problems withRi = R0
i

for all i 6= j, and p(R0
j) · p(Rj). We wish to show that 'j(e;R

0) · 'j(e;R).

For all agents i write pi := p(Ri), p
0
i := p(R0

i), E :=
P

n
i=1 ei. We distinguish

two cases.

Case 1
Pn

i=1 pi > E

If
Pn

i=1 p
0
i ¸ E, then feasibility and same-sidedness (see Lemma 2) imply

'i(e;R
0) · p0i and 'i(e;R) · pi for all i 2 N . Hence 'j(e;R

0) · pj and

'j(e;R) · pj . Because 'j(e;R)Rj'j(e; R
0) by strategy-proofness, it follows

that 'j(e; R
0) · 'j(e;R).
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If
Pn

i=1 p
0
i < E, then by same-sidedness and feasibility p0i · 'i(e;R

0) and

pi ¸ 'i(e;R) for all i 2 N . Therefore p0j · 'j(e;R
0). Now

p0j < E ¡
nX

i=1;i 6=j

pi =
nX

i=1;i 6=j

('i(e;R)¡ pi) + 'j(e;R) · 'j(e;R):

Because 'j(e; R
0)R0

j'j(e; R) by strategy-proofness, it follows that 'j(e;R
0) ·

'j(e;R).

Case 2
Pn

i=1 pi · E

In this case we have
Pn

i=1 p
0
i · E. By feasibility and same-sidedness we have

p0j · 'j(e;R
0) and pj · 'j(e;R). So p

0
j · 'j(e; R).

Because 'j(e; R
0)R0

j'j(e; R) by strategy-proofness, it follows that 'j(e;R
0) ·

'j(e;R).

An immediate but important consequence of own-peak monotonicity of a rule

' is individual peak-onliness, i.e., for every j 2 N , 'j(e;R) = 'j(e
0;R0)

whenever e = e0, Ri = R0
i for all i 6= j, and p(Rj) = p(R0

j).

We proceed with the result concerning uncompromisingness.

Lemma 6 Let ' be a Pareto optimal and strategy-proof rule. Then ' is un-

compromising.

Proof. Let j 2 N and let (e;R), (e;R0) be division problems with Ri = R0
i

for all i 6= j, p(Rj) > 'j(e;R), and p(R
0
j) ¸ 'j(e;R) (the other case is similar).

We wish to prove that 'j(e; R) = 'j(e;R
0). For all agents i write pi := p(Ri),

p0i := p(R0
i), E :=

Pn
i=1 ei.

If 'j(e;R
0) < 'j(e; R) then 'j(e;R)P

0
j'j(e;R

0), violating strategy-proof-

ness. Therefore, 'j(e;R
0) ¸ 'j(e; R).

Assume that Rj is a preference which is symmetric around its peak: because

' is own-peak monotonic by Lemma 5 and therefore individually peak-only, this

is without loss of generality. If 'j(e;R
0) > 'j(e; R) then 'j(e;R

0) ¸ 2pj ¡

'j(e;R) because otherwise 'j(e;R
0)Pj'j(e;R), violating strategy-proofness.

By Pareto optimality this implies p0j ¸ 'j(e;R
0) ¸ 2pj¡'j(e;R). Hence, as long

as p0j < 2pj¡'j(e;R) we have 'j(e; R
0) = 'j(e;R). By repeating this argument,

each time shifting agent's j's peak to the right, we obtain 'j(e;R
0) = 'j(e;R)

for any location of p0j .

Remark 1 The repetition argument in the proof of Lemma 6 can be avoided

by taking a su±ciently asymmetric preference Rj instead (cf. Ching, 1994,

Lemma 2). We deliberately used the above argument to be able to conclude

later (see Remark 3) that Theorem 3 remains valid if only symmetric preferences

are allowed.

Our next task is to prove the converse of Proposition 4.

Proposition 7 Let ' be a rule satisfying Pareto optimality, strategy-proofness,

and equal-treatment. Then ' is the uniform reallocation rule U r.
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Proof. We assume that ' 6= U r and derive a contradiction. Let (e;R) be

a division problem with '(e;R) 6= U r(e;R). Assume that
Pn

i=1 p(Ri) > E :=Pn
i=1 ei (the other case can be handled in a similar way).

By Lemmas 5 and 6 both ' and U r are own-peak monotonic and uncom-

promising.

Letm 2 argmaxfp(Ri)¡eiji 2D(e;R)g, and letM(e;R) := fi 2 D(e;R)jRi =

Rm+¿i; g, where ¿i := ei¡em. In words, agent m is an arbitrary but ¯xed agent

with maximal demand, andM(e; R) is the set of maximal demanders that have

the same preferences as agent m up to a translation; so M(e;R) contains at

least m.

We say that ¡(e;R) holds if the following two conditions are satis¯ed:

(i) For all i 2 S(e;R): 'i(e;R) = p(Ri).

(ii) D(e; R) =M(e;R).

Suppose ¡(e;R) holds. Then, by de¯nition, for all i 2 S(e; R): U r
i (e;R) =

p(Ri). With (i) and feasibility this impliesX
i2D(e;R)

U r
i (e;R) =

X
i2D(e;R)

'i(e;R):

By (ii) and equal-treatment therefore U r
i (e;R) = 'i(e;R) for all i 2 D(e;R).

Hence, U r(e;R) = '(e;R), violating the assumption '(e;R) 6= U r(e;R). This

contradiction completes the proof for the case that ¡(e;R) holds. Otherwise,

we have the following claim:

Claim If ¡(e;R) does not hold, then there is a problem (e;R0) satisfying the

following two conditions:

(iii) M(e;R0) ¾M(e; R), M(e;R0) 6=M(e;R).

(iv) '(e;R0) 6= U r(e;R0).

We will prove this claim below. First observe that for (e;R0) as in the claim

¡(e;R0) cannot be true, because otherwise (iv) would be violated. Hence, by

repeated application of the claim we can ¯nd an in¯nite sequence of division

problems satisfying (iii) and (iv) but not both (i) and (ii). By (iii), however,

the number of maximal demanders with the same preferences as m up to a

translation increases at every step, an obvious impossibility since N is ¯nite.

So we have a contradiction.

We are left to prove the Claim. Suppose that ¡(e;R) does not hold. We

distinguish two cases.

Case 1 There exists a k 2 S(e;R) with 'k(e; R) 6= p(Rk). Then, by same-

sidedness and feasibility, 'k(e;R) < p(Rk). De¯ne R
0
i := Ri for all i 6= k and

R0
k := Rm + ¿k . In other words, we turn agent k into an agent in M(e; R0), so

that the number of maximal demanders that up to a translation have the same

preferences as m, is increased. By uncompromisingness, 'k(e;R
0) = 'k(e;R),

hence 'k(e;R
0) < ek · U r

k (e;R
0). So also '(e;R0) 6= U r(e;R0).
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Case 2 For all k 2 S(e;R): 'k(e;R) = p(Rk). Because ¡(e;R) does not

hold, we have M(e;R) 6= D(e; R). Note that A := fi 2 D(e; R)j'i(e; R) >
U r
i (e;R)g 6= ;. We distinguish two subcases.

In the ¯rst subcase, there is a j 2 A with j 6 2M(e;R), i.e., Rj 6= Rm + ¿j .

De¯ne R0 by R0
i := Ri for all i 6= j and R0

j := Rm + ¿j . Then p(R0
j) ¸

p(Rj), so that by own-peak monotonicity 'j(e;R
0) ¸ 'j(e;R) > U r

j (e;R). By

uncompromisingness, U r
j (e;R

0) = U r
j (e; R). Hence, 'j(e;R

0) > U r
j (e;R

0), and

in particular, '(e;R0) 6= U r(e;R0).

In the second subcase, A ½ M(e;R), i.e., there is no j 2 A with Rj 6=
Rm + ¿j . By feasibility:

X
i2D(e;R)

U r
i (e;R) = E ¡

X
i2S(e;R)

p(Ri) =
X

i2D(e;R)

'i(e;R):

Hence, there exists a j 2 D(e;R)nM(e;R) such that p(Rj) ¸ U r
j (e; R) >

'j(e;R). Again, de¯ne R0 by R0
i := Ri for all i 6= j and R0

j := Rm + ¿j .

Uncompromisingness of ' implies 'j(e;R
0) = 'j(e;R). Own-peak monotonic-

ity of U r implies U r
j (e; R) · U r

j (e; R
0). Hence, U r

j (e; R
0) > 'j(e;R

0), and in

particular, '(e;R0) 6= U r(e;R0).

In both subcases, (e;R0) satis¯es conditions (iii) and (iv). This completes

the proof of the claim, and therefore of the proposition.

Proof of Theorem 3 Theorem 3 follows from Propositions 4 and 7.

Remark 2 Theorem 3 shows that Pareto optimality, strategy-proofness, and

equal-treatment together imply peak-onliness, i.e., '(e;R) = '(e0;R0) when-

ever e = e0 and p(Ri) = p(R0
i) for all i 2 N .

4 Another characterization, and independence of the

axioms

In this section we ¯rst present an alternative characterization of the uniform

reallocation rule U r: equal-treatment can be replaced by anonymity and trans-

lation invariance. Second, we show logical independence of the axioms in both

characterizations. Third, we will make an observation concerning the domain

of preferences.

For a permutation ¾ of N , a vector x 2 IRN
+ and a pro¯le R 2 RN , let

¾(x) := (x¾(1); : : : ; x¾(n)) and ¾(R) := (R¾(1); : : : ; R¾(n)). The following prop-

erty of a rule ' implies that an assigned allocation does not depend on the

names of the agents.

Anonymity5 For every permutation ¾ of N and every division problem (e;R)

'¾(i)(e;R) = 'i(¾(e); ¾(R)) for all i 2 N:

5This condition is di®erent from the anonymity condition in Sprumont (1991), which refers

only to the preferences.
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For a preference pro¯le R 2 RN and a vector t 2 IRN such that p(Ri) + ti ¸ 0

for all i, we de¯ne the preference pro¯le R+t by: for all i 2 N , (R+t)i := Ri+ti.

Translation invariance For every division problem (e;R) and every t 2 IRN

with e+ t; p(R) + t; '(e;R) + t 2 IRN
+ :

'(e+ t;R+ t) = '(e;R) + t:

Observe that a notion of translation invariance is already present in the equal-

treatment condition. Moreover we have the following lemma.

Lemma 8 Let the rule ' be anonymous and translation invariant. Then '

satis¯es equal-treatment.

Proof. Let i; j 2 N , ® 2 IR, and let problem (e;R) satisfy Rj = Ri + ® and

ej = ei + ®. We have to prove

'j(e;R)Ij'i(e;R) + ®:

De¯ne the translation vector t by ti := ® and tk = 0 for k 6= i. Let e0 := e + t

and R0 := R+ t. By translation invariance

'i(e
0;R0) = 'i(e;R) + ti = 'i(e;R) + ®

and

'j(e
0; R0) = 'j(e;R) + tj = 'j(e;R):

Let ¾ be a permutation of N with ¾(i) = j, ¾(j) = i and ¾(k) = k for k 6= i; j.

By anonymity

'¾(i)(e
0;R0) = 'i(¾(e

0); ¾(R0)) = 'j(e
0; R0):

Hence, 'j(e;R) = 'i(e;R) + ®, in particular 'j(e;R)Ij'i(e;R) + ®.

With anonymity and translation invariance we obtain an alternative character-

ization of the uniform reallocation rule in the following theorem.

Theorem 9 The uniform reallocation rule is the unique rule satisfying strat-

egy-proofness, Pareto optimality, anonymity, and translation invariance.

Proof. We leave veri¯cation of anonymity and translation invariance of U r

to the reader; for the other properties, see Theorem 3.

The converse direction follows from Theorem 3 and Lemma 8.

Next, we discuss logical independence of the axiom systems in Theorems 3

and 9. In this discussion we include consideration of the following property of

a rule '.

Individual rationality For every problem (e;R) and every i 2 N

'i(e;R)Riei:

10



In words, no individual should be worse o® than at his initial endowment. All

examples below will be individually rational; this indicates that, in general,

individual rationality cannot replace any of the axioms used in Theorems 3

and 9.

Example 1 The following rule ' is Pareto optimal and strategy-proof, but

does not satisfy equal-treatment. It is anonymous, but not translation invariant.

It is also individually rational. It is de¯ned as follows. For a division problem

(e;R) with vector of peaks p:

² if
P

n
i=1 pi >

P
n
i=1 ei then 'i(e;R) := pi if i 2 S(e;R); allocate S :=P

i2S(e;R) ei ¡ pi uniformly among the agent(s) in D(e; R) with lowest

initial endowment; if there is something left, allocate this uniformly among

the agent(s) in D(e; R) with second lowest endowment, etc.

² if
Pn

i=1 pi ·
Pn

i=1 ei then apply the uniform reallocation rule.

Example 2 The following rule ' is Pareto optimal and satis¯es equal-treatment,

but is not strategy-proof. It is anonymous and translation invariant. It is also

individually rational. It is de¯ned as follows. For a division problem (e;R) with

vector of peaks p:

² if
P

n
i=1 pi >

P
n
i=1 ei then 'i(e;R) := pi if i 2 S(e;R); allocate S :=P

i2S(e;R) ei ¡ pi among the agents in D(e;R) by giving each agent i 2

D(e; R) the amount ¿ei + (1 ¡ ¿)pi, where 0 · ¿ · 1 is determined by

feasibility.

² if
Pn

i=1 pi ·
Pn

i=1 ei then apply the uniform reallocation rule.

Example 3 The following rule ' satis¯es equal-treatment and strategy-proofness

but not Pareto optimality. It is anonymous, translation invariant, and individ-

ually rational. It is de¯ned as follows. For every division problem (e;R)

'(e;R) = e:

Example 4 The following rule ' satis¯es Pareto optimality, strategy-proof-

ness, translation invariance, but not anonymity (nor equal-treatment). It is

also individually rational. It is de¯ned as follows. For a division problem (e;R)

with vector of peaks p:

² if
Pn

i=1 pi >
Pn

i=1 ei then 'i(e;R) := pi if i 2 S(e;R); allocate S :=P
i2S(e;R) ei ¡ pi among the agents in D(e; R) as follows. If 1 2 D(e;R)

then '1(e;R) := minfp1; e1 + Sg and distribute what remains of S uni-

formly among the other agents in D(e;R). Otherwise, apply the uniform

reallocation rule.

² if
P

n
i=1 pi ·

P
n
i=1 ei then apply the uniform reallocation rule.

We conclude with a remark concerning the domain of preferences.
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Remark 3 By going over the proofs|see also Remark 1|the reader may ver-

ify that our results, in particular Theorems 3 and 9, remain valid if the domain

of single-peaked preferences is replaced by the much smaller domain of all single-

peaked preferences that are symmetric around their peaks. Such preferences

are completely described by their peaks. Consequently, on this domain a rule

is peak-only by de¯nition.
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