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Abstract

Most empirical evidence suggest that the Fisher effect, stating that

inflation and nominal interest rates should cointegrate with a unit slope

on inflation, does not hold, a finding at odds with many theoretical models.

This paper argues that these results can be attributed in part to the low

power of univariate tests, and that the use of panel data can generate more

powerful tests. For this purpose, we propose two new panel cointegration

tests that can be applied under very general conditions, and that are

shown by simulation to be more powerful than other existing tests. These

tests are applied to a panel of quarterly data covering 20 OECD countries

between 1980 and 2004. The evidence suggest that the Fisher effect cannot

be rejected once the panel evidence on cointegration has been taken into

account.

JEL Classification: C12; C22; C23; E40.
Keywords: Fisher Effect; Panel Cointegration Test; Cross-Sectional De-

pendence.

1 Introduction

The extent to which movements in nominal interest rates reflect movements
in the expected rate of inflation has been one of the most researched areas
in economics ever since Fisher (1930) first theorized that, over the long term,
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efficient capital markets should compensate for changes in the purchasing power
of money. In its strictest form with no taxes and rational expectations, this
theory, known as the Fisher effect, posits the existence of a constant real rate
of interest, being determined largely by the time preference of economic agents
and by the technological constraints that define the return on real investment.
These factors are believed to be roughly constant over time, and therefore a
fully perceived change in the purchasing power of money, as measured by the
inverse of the rate of inflation, should be accompanied by a one-for-one change
in the nominal interest rate.

Despite the wide acceptance of the Fisher effect in theory, the postulated
long-run one-for-one relationship between inflation and nominal interest rates
has proven very difficult to verify empirically, in spite of the recent advances in
econometric methodology for testing long-run relationships using cointegration
techniques. In fact, most studies tend to reject the Fisher effect as a long-run
cointegrating relationship, see for example Rose (1988), MacDonald and Murphy
(1989), Bonham (1991), and King and Watson (1997). Other studies, including
Mishkin (1992), Crowder and Hoffman (1992), and Evans and Lewis (1995), do
not reject cointegration, but with an estimated slope on inflation significantly
different from one.

Findings of this sort are very puzzling since they imply that the ex ante
real interest rate should be nonstationary. As pointed out by Rose (1988), this
is inconsistent with standard consumption based asset pricing models insofar
these predict that consumption growth rates should also be nonstationary, a
hypothesis typically rejected by the data. Furthermore, assuming that inflation
is primarily driven be monetary growth, superneutrality fails since changes in
the rate of monetary growth affect inflationary expectations and subsequently
real rates.

Most attempts to reconcile these contradictory results have taken the empir-
ical evidence more or less at face value and have then modified the theoretical
arguments. For example, Mundell (1963) and Tobin (1965) argue that inflation
and nominal interest rates may be negatively correlated, and that this can be
one explanation for why the estimated slope is sometimes less than one. Sim-
ilarly, Darby (1975) points out that the presence of taxes can explain for why
the estimated slope is sometimes larger than one. A popular argument for why
cointegration has been so hard to establish is that replacing expected with ac-
tual inflation may cause serial correlation patterns in the residuals that are akin
to those of a random walk, see Evans and Lewis (1995).

In this paper, we will take the alternative route and focus instead on the
econometric cointegration based methodology used for testing the Fisher effect.
We argue that the existing empirical evidence concerning the Fisher effect is
flawed in at least two respects, and that this may well at least partially explain
the contradictory results previously obtained. It therefore seems reasonable to
investigate these problems before embarking on further revisions of economic
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theory.
One problem is that most studies employ methods that are designed to test

the null hypothesis of no cointegration, and these are known to suffer from low
power when the equilibrium errors are highly persistent under the alternative
of cointegration. Thus, low power in the tests could be one explanation for why
cointegration has been so difficult to find.

Another related problem is that most, if not all, studies have employed
relatively small data sets, typically no more than 50 annual observations for
a single country. Moreover, a majority of studies have been concerned with
United States, and only a few attempts have been made to test the Fisher
effect internationally. Besides leading to tests with low power, this makes cross-
country comparisons difficult.

Two examples of studies that have looked at more than one country are
Ghazali and Ramlee (2003) and Koustas and Serletis (1999). Ghazali and Ram-
lee (2003) employ monthly data from January 1974 to June 1996 on the G7
countries, and cannot reject the null hypothesis of no cointegration between
the nominal interest rate and inflation. Similarly, using quarterly data covering
roughly the period 1957 to 1995 for 11 OECD countries, Koustas and Serletis
(1999) find no evidence of cointegration for any of the countries except Japan.
Both studies therefore reject the Fisher effect, which is indicative of its poor
support internationally.

The problem with these two studies is that they use a country-by-country
approach, in which conventional cointegration tests are applied to each country
separately. Although this certainly makes the results comparable across coun-
tries, it does not really bring any more information into the analysis, since the
information contained in the cross-sectional dimension is essentially disregarded.
What is needed here is a testing approach that takes full account of the panel
structure of the data. Such a strategy is likely to be more powerful, and thus
more successful in detecting deviations from the no cointegration null.

In this paper, we make an attempt in this direction by proposing a panel
testing approach, drawing upon a panel of 20 OECD countries between the first
quarter of 1980 and the fourth quarter of 2004. In so doing, we pay special
attention to the many features that characterize this type of macroeconomic
data. For example, given the high degree of integration that exist within the
OECD community, dependence across countries is likely to be the rule rather
than the exception. Another important feature that needs to be addressed is
that inflation may not be strictly nonstationary, and the testing procedure must
thus permit the regressors to be stationary, see Ng and Perron (1997).

Unfortunately, these considerations invalidate the use of most existing panel
cointegration tests, which rely critically on the assumptions of nonstationary
regressors and independence between the cross-sectional units. We therefore
develop two new panel cointegration tests of the null hypothesis of no coin-
tegration that can be applied under very general conditions. These tests are
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based on the Durbin-Hausman principle, whereby two estimators of a unit root
in the residuals of an estimated regression are compared. To correct for factors
that are common across units, the new tests are based on defactored residuals.
The asymptotic distributions of the tests are derived and shown to be normal.
Results from a small Monte Carlo study suggest that the tests have small size
distortions and greater power than other popular panel cointegration tests.

In the empirical part of the paper, we show that a failure to reject the null
of no cointegration for an individual country need not be taken as firm evi-
dence against the Fisher effect, and that the use of panel data produces more
accurate results. We do this by first showing that the null of no cointegration
cannot be rejected at conventional significance levels when using data on indi-
vidual countries, and that this can in part be attributed to the low power of
the methodology being used. We then show that the same null can be safely
rejected when using our panel data tests. We also provide evidence to suggest
that the hypothesis of a unit slope on inflation cannot be rejected for any of the
countries nor for the panel as a whole.

The paper proceeds as follows. Section 2 provides a brief presentation of the
Fisher effect. Section 3 introduces the Durbin-Hausman tests, while Section 4
is concerned with their empirical implementation in testing the Fisher effect.
Section 5 concludes.

2 The Fisher effect

In this section, we begin with a brief account of the economic theory underlying
the Fisher effect, and then we go on to discuss the empirical methods that has
been used to test it.

2.1 Theoretical underpinnings

The Fisher effect states that, over the longer term, real interest rates across
countries should be approximately constant with movements in nominal interest
rates reflecting movements in the rate of inflation in a one-for-one manner.
Formally, the Fisher identity can be stated as

iit = πit + rit, (1)

where πit is the actual rate of inflation observed at time period t for country
i, iit is the ex post nominal interest rate on a nominal bond and rit is the
corresponding ex ante real interest rate.1 Note that this identity implicitly
assumes that the tax rate on nominal returns is zero. We will discuss the

1Equation (1) is sometimes made more specific by indexing the variables by the time period
of the bond to maturity. Since the Fisher theory applies to all maturities, however, we do not
bother with this distinction.
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impact of a nonzero tax rate later. By taking expectations conditional on all
information available at time t, equation (1) becomes

Et(iit) = Et(πit) + Et(rit). (2)

For bonds that are held to maturity, the nominal rate of interest is contracted
in advance, suggesting that (2) can be written as

iit = Et(πit) + Et(rit). (3)

Combining (1) and (3) yields

rit − Et(rit) = − (πit − Et(πit)).

Thus, according to this theory, unanticipated movements in the real interest
rate reflect unanticipated movements in inflation one-for-one.

Moreover, if expectations are formed rationally, then

πit = Et(πit) + εit,

where εit is a mean zero stationary forecast error that is orthogonal to any
information known at time t. By inserting this equation into (3), it is seen that
the following relationship must hold

iit − πit = Et(rit)− εit. (4)

Since both iit and πit are observable, this equation provides a natural basis for
an empirical framework, in which the Fisher effect can be tested. In fact, it is
readily seen that the following regression can be used

iit = αi + βiπit + zit. (5)

In this regression, zit can be thought of as a composite error term, comprised
of an unexplained regression error plus another term −βiεit, which is the error
from using πit instead of Et(πit) as regressor. Furthermore, it is convenient to
think of the intercept αi as representing the mean of the ex ante real interest
rate, which is typically assumed to be constant over time, see MacDonald and
Murphy (1989). This seems reasonable given that the ex ante rate should not
change much if the Fisher effect it true. The parameter of greatest interest,
however, is βi, which measures the extent to which the Fisher effect can be
regarded as true. Under the conditions laid out in the above, the Fisher effect
implies that βi should be equal to one.

The paradox of the Fisher effect is that, despite its wide acceptance in theory,
most empirical evidence seem to be inconsistent with the hypothesized one-for-
one relationship between inflation and nominal interest rates. This anomaly was
noted by Fisher (1930) himself, who attributed it to some kind of money illusion,
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in which economic agents do not take full account of the effect of inflation on
their nominal return.

Money illusion is one explanation for observing βi less than one. However,
this would imply that economic agents are irrational. A more popular explana-
tion for why βi may be less than one is provided by Mundell (1963) and Tobin
(1965), who argue that inflation and nominal interest rates may be inversely
related. The idea is that higher inflation may cause a substitution away from
money balances towards bonds and real assets, which would then put downward
pressure on the real interest rate, as the required return on bonds and marginal
productivity of capital would tend to fall. Carmichael and Stebbing (1983) go
even further and argue a perfect inverse relationship, sometimes known as the
inverted Fisher effect.

Darby (1975), on the other hand, considers the case when nominal interest
income is taxed, and argues that this may explain why βi can sometimes be
larger than one. To see this, consider the following tax-adjusted Fisher equation

iit =
(

1
1− τi

)
πit +

(
1

1− τi

)
Et(rit)− εit,

where τi is the average marginal tax rate on the nominal interest income of
country i. Note that in this scenario, a 1% increase in πit raises the pre-tax
nominal rate by 1/(1 − τi), so that the post-tax real rate of return given by
iit − (1− τi)πit remain unaffected. If we compare the above equation with our
regression model, we see that βi must be equal to 1/(1− τi) if the Fisher effect
holds. Thus, a positive tax rate can cause βi to become greater than one.

2.2 Tests based on cointegration

Fisher (1930) emphasized that the adjustment towards the hypothesized rela-
tionship between the nominal interest and inflation rates could potentially take
very long time. Consistent with this view, there has been increasing recog-
nition that the Fisher equation should be interpreted as a long-run relation,
which, as pointed out by MacDonald and Murphy (1989), is best tested using
cointegration analysis.

Consider therefore the regression in (5), and assume that iit and πit are non-
stationary. This regression is cointegrated if zit is stationary and it is spurious
if zit is nonstationary. The Fisher effect posits that changes in Et(πit) should
be reflected fully in subsequent movements of iit over time, which, in terms of
our test regression, implies that the inflation and nominal interest rates should
cointegrate with a unit slope on inflation. In keeping with the notational con-
vention introduced by Owen (1993), we shall henceforth refer to this as the full
Fisher effect.2

2Note that, although cointegration with a unit slope on inflation is typically referred to as
the full Fisher effect, as alluded in the introduction, this is actually only a necessary condition
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Interestingly, as pointed out by Mishkin (1992), given rational expectations,
testing the full Fisher effect is equivalent to testing the stationarity of the ex
ante real interest rate. To see this, note that (4) and (5) can be rewritten as

Et(rit) = αi − (1− βi)πit + zit + εit. (6)

Suppose now that the inflation and nominal interest rates are cointegrated.
In this case, zit must be stationary, so the integratedness of the ex ante rate
depends only on the integratedness of the term (1 − βi)πit, as the forecast
error εit must be stationary under our assumption of rational expectations. If
βi = 1, then (1 − βi)πit vanishes so variations in the ex ante real rate reflect
only temporary deviations from its mean value αi. Intuitively, since the nominal
interest rate moves one-for-one with the rate of inflation in the long run, their
unit root components cancel out leaving the ex ante real rate unaffected, in
which case the full Fisher effect holds.

On the other hand, if βi is different from one, either larger than one as
argued by Darby (1975) or less than one as argued by Mundell (1963) and
Tobin (1965), then (1− βi)πit will not vanish, which suggests that the ex ante
real interest rate must contain the same unit root component as inflation. Of
course, the inflation and nominal interest rates may still be cointegrated even
though the ex ante real rate is nonstationary. But since βi is not one, there is
said to be only a partial Fisher effect (Owen, 1993). If inflation and nominal
interest do not cointegrate, then zit has a unit root and there can be no Fisher
effect. It follows that cointegration is a necessary condition for the Fisher effect
to hold in the long run.

The conventional way in which earlier studies have been trying to test the
partial version of Fisher effect involves first estimating (5) by ordinary least
squares (OLS) and then testing whether the residuals from that equation can
be regarded as stationary or not by using any conventional cointegration test.3

This test is then repeated for every country in the sample, each time using
only the sample information for that particular country. Studies based on this
approach are generally unable to reject the null hypothesis of no cointegration,
which is seen to imply that the Fisher effect should be rejected. In this paper,
we argue that this result should not be taken at face value as a failure to reject
the null can be due to low power.

for the Fisher effect to hold. Hence, the finding of cointegration with a unit slope is by itself
not enough to conclude that the Fisher effect holds, as it is consistent with any theory that
implies a stationary real rate. For the current paper, however, this is not a critical aspect, as
we are mainly interested in examining whether low power could be one explanation for why
the full Fisher effect is usually rejected.

3Since nominal interest rates and inflation are variables that are simultaneously determined
within a wider economic system, some authors, most recently Garratt et al. (2003), have gone
from analyzing the Fisher equation in isolation to a more general approach where the Fisher
effect is analyzed as a part of a larger macroeconometric model. Our approach is more
parsimonious and is robust against such simultaneity.
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In fact, it is well known that tests that take no cointegration as the null hy-
pothesis can have very little power against nearly cointegrated alternatives. As
pointed out by Evans and Lewis (1995), this critique is likely to be particularly
important when testing the Fisher effect, as the forecast error of inflation can
be highly persistent in because of anticipated process shifts. But if εit is nearly
nonstationary then so is zit suggesting that tests based on the residuals from (5)
will tend to be biased towards accepting the no cointegration null. In addition
to this, we have the classical mechanism of hypothesis testing, which guarantees
that the null hypothesis will not be rejected unless there is very strong evidence
against it.

In a situation like this, it is essential to device tests with increased power.
A natural approach to this end would be to combine the sample information
from the time series dimension with that from the cross-sectional. This not
only increases the power by taking the total number of observations and their
variation into account, but also increases the precision of the test by effectively
reducing the noise coming from the individual time series regressions. Therefore,
one way to augment the power of univariate tests would be to subject the
residuals from (5) to a panel data cointegration test.

Unfortunately, most existing tests of this kind rely critically on assuming
that the cross-sectional units are independent of each other, see Pedroni (2004)
and Westerlund (2005) among others.4 As O’Connell (1998) has shown, when
this assumption is violated, tests that are based upon it become invalid. In
our case, there are at least two reasons for believing that the data may not
be independent cross-sectionally. First, inflation rates may be correlated across
countries because of common oil price shocks. Second, interest rates may be
correlated across countries due to strong intra-economy linkages in the financial
markets.

A theoretically very appealing interpretation of this latter dependence is
that it reflects in part the presence of a world real interest rate, see Lee (2002).
To illustrate this, consider the following decomposition of the ex ante real rate

Et(rit) = λirt + eit,

where rt is the world rate, λi is the loading associated with rt and eit is an
idiosyncratic disturbance reflecting country specific variations. Note that since
rt is common for all countries, this makes the ex ante real rate cross-sectionally
correlated, which in turn induces a similar dependence in the ex post rate.

Another problem with existing tests for cointegration in panel data is that
they assume that both the inflation and nominal interest rates are strictly non-
stationary, and their asymptotic properties become suspect when this condition

4It has become common practice to use data that has been demeaned with respect to a
common time effect, which permits for some cross-sectional dependence. Unfortunately, this
approach is not enough to get rid of the dependence in general when the pair-wise cross-
sectional correlations are permitted to differ.
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is not satisfied. This issue has been analyzed to some extent by Ng and Perron
(1997), who argue that cointegration tests of the Fisher effect are likely to be
biased in sofar inflation can be expected to be only weakly nonstationary.

This discussion suggests that a first crucial step in testing the Fisher effect
using panel data is to construct tests that allow the cross-sectional units to be
correlated, and that do not rely to such a large extent on a priori knowledge
regarding the integratedness of the variables.

3 The Durbin-Hausman tests

The previous section suggests that testing for cointegration in cross-sectionally
dependent data with weak unit roots is key in inferring the Fisher effect. This
section therefore proposes two new panel cointegration tests that allow for such
features, and that are shown by simulation to be more powerful than other panel
data tests.

3.1 Model and assumptions

We begin by assuming that the Fisher equation (5) holds so that

iit = αi + βiπit + zit. (7)

πit = δiπit−1 + wit, (8)

We have argued above that, although the nominal interest rate can in general be
viewed as nonstationary, it seems reasonable to permit inflation to be stationary.
In this section, therefore, we do not impose any a priori restrictions on the value
taken by δi. If δi = 1, then inflation is nonstationary, whereas if δi < 1, inflation
is stationary.

The disturbance zit is assumed to obey the following set of equations that
permit for cross-sectional dependence through the use of common factors

zit = λ′iFt + eit, (9)

Fjt = ρjFjt−1 + ujt, (10)

eit = φieit−1 + vit, (11)

where Ft is a k dimensional vector of common factors Fjt with j = 1, ..., k,
and λi is a conformable vector of factor loadings. By assuming that ρj <

1 for all j, we ensure that Ft is strictly stationary, which implies that the
order of integration of the composite regression error zit depend only on the
integratedness of the idiosyncratic disturbance eit. Thus, in this data generating
process, the relationship in (7) is cointegrated if φi < 1 and it is spurious if
φi = 1. Note that, since iit is assumed to be nonstationary, φi < 1 implies both
that πit is nonstationary and that it is cointegrated with iit, see Section 3.3 for
a more thorough discussion.
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Next, we lay out the key assumptions needed for developing the new tests.

Assumption 1. (Error process.)

(a) vit and wit are mean zero for all i and t;

(b) E(vitvkj) = 0 and E(witwkj) = 0 for all i 6= k, t and j;

(c) E(vitwkj) = 0 for all i, k, t and j;

(d) var(vit) = ω2
i < ∞ and var(wit) = Ωi is positive definite.

For the asymptotic theory, the following condition is also required.

Assumption 2. (Invariance principle.) The partial sum processes of vit and
wit satisfy an invariance principle. In particular, T−1/2

∑[rT ]
t=1 vit ⇒ ωiWi(r) as

T →∞ for each i, where ⇒ denotes weak convergence and Wi(r) is a standard
Brownian motion defined on the unit interval r ∈ [0, 1].

Finally, to be able to handle the common factors, the following conditions
are assumed to hold.

Assumption 3. (Common factors.)

(a) E(ut) = 0 and var(ut) < ∞;

(b) ut is independent of vit and wit for all i and t;

(c) 1
N

∑N
i=1 λiλ

′
i → Σ as N →∞, where Σ is positive definite;

(d) ρj < 1 for all j.

Assumptions 1 (a) and (b) state that vit and wit are mean zero processes, and
that they are cross-sectionally independent, which implies that any dependence
across units is restricted to the common factors. The extent of this dependence
is determined by λi, as can be seen by writing E(zitzjt) = λ′iE(FtF

′
t)λj for all

i 6= j. Thus, the factors make the units correlated through zit. In terms of the
discussion of the previous section, it is convenient to think of Ft as comprised
of the world real interest rate and possibly also other factors that are common
across the members of the panel.

Assumption 1 (c) states that vit and wit are independent as groups, which
is satisfied if the regressor is strictly exogenous. Although somewhat restrictive,
this assumption can be readily relaxed to accommodate non-strict exogeneity
by conditioning (7) on the lags and leads of wit. Assumption 1 (d) states that
Ωi is positive definite, which means that πit cannot be cointegrated in case we
have multiple regressors. Although not strictly necessary, as argued in Section
3.3, in this paper we retain this condition to simplify the interpretation of the
test outcome.

Assumption 2 states that an invariance principle applies to the partial sum
processes constructed from vit and wit as T grows for a given i. Apart from
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some mild regulatory conditions on the existence of higher order moments, this
assumption places little restriction on the temporal dependencies of vit and wit,
and encompasses for example the broad class of all stationary autoregressive
moving average models.5 It also allows the asymptotic covariance structure
absorbed in ω2

i and Ωi to differ between the cross-sectional units.
Assumptions 3 (a) and (b) ensure the consistency of the principal compo-

nents estimates of the common factors. They also ensure that an invariance
principle holds for the partial sum process of ut, and that this disturbance is
independent of the idiosyncratic one. These assumptions are standard in com-
mon factor analysis. Assumption 1 (c) ensures that the common factors have
a nontrivial contribution to the variation of zit, which in turn ensures that the
factor model is identified.

Finally, although the Assumption 3 (d) requires the factors to be stationary,
recent results by Bai and Ng (2004) indicate that this might not be strictly
necessary. Specifically, in order to allow for deviations from Assumption 3 (d),
Bai and Ng (2004) propose using a unit root pretesting scheme to determine the
integratedness of the common component. In the current context, if some of the
factors are found to be nonstationary, then one concludes that the spuriousness
of (7) is due to the common component, and proceed no further. However, if
the factors are found to be stationary, as assumed here, then one may proceed
exactly as will be described later in this section, by testing the idiosyncratic
component for a unit root. The asymptotic justification for using this procedure
follows from the consistency of the estimated factors, as shown in the appendix.

3.2 Test construction

Our objective is to test whether iit and πit are cointegrated or not by inferring
whether eit is stationary or not. A natural approach to do this is to employ the
Bai and Ng (2004) approach, which amounts to first estimating (7) in its first
difference form by OLS and then to estimate the common factors by applying
the method of principal components to the resulting residuals. A test of the
null hypothesis of no cointegration can then be implemented as a unit root test
of the recumulated sum of the defactored and first differentiated residuals.6

We begin by taking first differences, in which case (9) becomes

∆zit = λ′i∆Ft + ∆eit.

Thus, had ∆zit been known, we could have estimated λi and ∆Ft directly by
the method of principal components. However, ∆zit is not known, and we must
therefore apply principal components to its OLS estimate instead, which can be

5See Bai and Ng (2004) for a more thorough discussion regarding the technical moment
conditions required.

6See Banerjee and Carrion-i-Silvestre (2006) and Gengenbach et al. (2006) for a similar
approaches.
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written as
∆ẑit = ∆iit − β̂i∆πit, (12)

where β̂i is obtained by regressing ∆iit on ∆πit. Let λ, ∆F and ∆ẑ be K ×N ,
(T − 1) × K and (T − 1) × N matrices of stacked observations on λi, ∆Ft

and ∆ẑit, respectively. The principal components estimator ∆F̂ of ∆F can be
obtained by computing

√
T − 1 times the eigenvectors corresponding to the K

largest eigenvalues of the (T − 1)× (T − 1) matrix ∆ẑ∆ẑ′. The corresponding
matrix of estimated factor loadings is given by λ̂ = ∆F̂ ′∆ẑ/(T − 1). Given λ̂i

and ∆F̂t, the defactored and first differentiated residuals can be recovered as

∆êit = ∆ẑit − λ̂′i∆F̂t,

which can be recumulated to obtain

êit =
t∑

j=2

∆êij .

As shown in the appendix, êit is a consistent estimate of eit, which suggests
that the cointegration test can be implemented using (11) with êit in place of eit.
In other words, testing the null hypothesis of no cointegration is asymptotically
equivalent to testing whether φi = 1 in the following autoregression

êit = φiêit−1 + error. (13)

In what follows, we shall propose two new panel cointegration tests that are
based on applying the Durbin-Hausman principle to (13), see Choi (1994). The
first, the panel test, is constructed under the maintained assumption that φi = φ

for all i, while the second, the group mean test, is not. Both tests are composed
of two estimators of φi that have different probability limits under the alternative
hypothesis of cointegration but share the property of consistency under the null
of no cointegration. In particular, let φ̂i denote the OLS estimator of φi in
(13), and let φ̂ denote its pooled counterpart. The corresponding individual
and pooled instrumental variables (IV) estimators of φi, denoted φ̃i and φ̃,
respectively, are obtained by simply instrumenting êit−1 with êit.

As shown by Choi (1994), the IV estimators are consistent under the null
hypothesis but are inconsistent under the alternative. On the other hand, the
OLS estimators are consistent both under the null and alternative hypotheses,
see Phillips and Ouliaris (1990). The IV and OLS estimators can thus be used
to construct the Durbin-Hausman tests.

In so doing, consider the following kernel estimator

ω̂2
i =

1
T − 1

Mi∑

j=−Mi

(
1− j

Mi + 1

) T∑

t=j+1

v̂itv̂it−j ,
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where v̂it is the OLS residual obtained from (13) and Mi is a bandwidth param-
eter that determines how many autocovariances of v̂it to estimate in the kernel.7

As indicated in the appendix, the quantity ω̂2
i is a consistent estimate of ω2

i , the
long-run variance of vit. The corresponding contemporaneous variance estimate
is denoted by σ̂2

i . Given these estimates, we can construct the two variance
ratios Ŝi = ω̂2

i /σ̂4
i and ŜN = ω̂2

N/(σ̂2
N )2, where

ω̂2
N =

1
N

N∑

i=1

ω̂2
i and σ̂2

N =
1
N

N∑

i=1

σ̂2
i .

The Durbin-Hausman test statistics can now be obtained as

DHg =
N∑

i=1

Ŝi(φ̃i − φ̂i)2
T∑

t=2

ê2
it−1 and DHp = ŜN (φ̃− φ̂)2

N∑

i=1

T∑
t=2

ê2
it−1.

Note that while the panel statistic, denoted DHp, is constructed by sum-
ming the N individual terms before multiplying them together, the group mean
statistic, denoted DHg, is constructed by first multiplying the various terms
and then summing. The importance of this distinction lies in the formulation
of the alternative hypothesis. For the panel test, the null and alternative hy-
potheses is formulated as H0 : φi = 1 for all i versus Hp

1 : φi = φ and φ < 1
for all i. Hence, in this case, we are in effect presuming a common value for the
autoregressive parameter both under the null and alternative hypotheses. Thus,
if this assumption holds, a rejection of the null should be taken as evidence in
favor of cointegration for the entire panel.8

By contrast, for the group mean test, H0 is tested versus the alternative
that H1 : φi < 1 for at least some i. Thus, in this case, we are not presum-
ing a common value for the autoregressive parameter and, as a consequence, a
rejection of the null cannot be taken to suggest that the entire panel is cointe-
grated. Instead, a rejection should be interpreted as providing evidence in favor
of rejecting the null hypothesis for at least some of the cross-sectional units.

Note also that both tests employ a multiplicative correction to account for
the effects of serial correlation. This makes them computationally convenient
in comparison to the popular residual-based tests of Pedroni (2004), in which
the corrections enter both multiplicatively and additively. Also, in view of
the panel test, note that, although the autoregressive parameters are presumed
equal, both the variances and the cointegration vectors themselves are allowed
to vary between the individual cross-sections.

7For consistency of the tests, it is necessary that the bandwidth Mi does not increase too
fast relative to T . The rate o(

√
T ) is sufficient, see Phillips and Ouliaris (1990).

8Researchers should be aware though that despite this difference in the way the alternative
hypothesis is viewed, both tests have power against both types of the alternatives. Thus,
when the null hypothesis is rejected, without testing the homogeneity of the autoregressive
parameters, one can generally only conclude that at least some of the panel members are
cointegrated, even when DHp is used and so the null is tested against Hp

1 .
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3.3 Asymptotic distribution

Pooling the data is valid when the asymptotic distribution of the test does not
contain any terms that are common across i. The problem is that if the data
admit to a common factor structure, as assumed here, conventional tests, such
as those of Pedroni (2004) and Westerlund (2005), which are based on the com-
posite error term zit, will not satisfy this condition due to the presence of the
common factors. By contrast, the Durbin-Hausman tests are based on the esti-
mated idiosyncratic error term êit, and are therefore asymptotically independent
of these factors.

In particular, as shown in the appendix, under the null and Assumptions 1
through 3, then each of the individual group mean statistics converges to

Bi =
(∫ 1

0

Wi(r)2dr

)−1

as N, T →∞.

The fact that Bi does not depend on the common factors is a direct consequence
of the defactoring, which asymptotically removes the common component from
the limiting distribution of the individual tests. Because of this, we can use
standard central limit theory to obtain a limiting normal distribution for

√
N

times cross-sectional average of these tests. Let Ci be the inverse of Bi. The
following theorem shows that the effect of the common factors is asymptotically
negligible, and that DHg and DHp are indeed asymptotically normal.

Theorem 1. (Asymptotic distributions.) Under the null hypothesis H0 and
Assumptions 1 through 3, for δi = 1 or δi < 1, as N, T →∞ with N/T → 0

N−1/2DHg −
√

NE(Bi) ⇒ N(0, var(Bi)),

N−1/2DHp −
√

NE(Ci)−1 ⇒ N(0, E(Ci)−4var(Ci)).

Remark 1. The proof of Theorem 1 is outlined in the appendix but it is
constructive to consider briefly why it holds. The proof begins by showing that

T−1/2êit = T−1/2eit + op(1).

This suggests that a test based on êit is asymptotically equivalent to a test
based on eit. This is important for at least two reasons. First, since eit does not
depend on πit, the Durbin-Hausman tests have the unusual property that their
limiting distributions are unaffected by the presence of the regressor. Second,
since eit is cross-sectionally independent, the distributions do not contain any
elements that are common across i. Asymptotic normality of DHg and DHp

therefore follows directly by conventional central limit theorem arguments.

Remark 2. The moments of the tests are obtained by simulation methods.
That is, the elements of the Brownian motion functionals Bi and Ci are ap-
proximated by functions of sums of partial sums of T independent draws from
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the standard normal distribution. Specifically, we generate 100, 000 samples
of length T = 1, 000, which are then used to obtain numerical values of the
moments in Theorem 1. The simulated values of E(Bi), var(Bi), E(Ci) and
var(Ci) using this method are 5.5464, 36.7673, 0.5005 and 0.3348, respectively.
Also, since each of the standardized statistics diverges to positive infinity un-
der the alternative hypothesis, the computed value should be compared to the
right tail of the normal distribution. If the computed value is greater than the
appropriate right tail critical value, we reject the null hypothesis.

Remark 3. The fact that the asymptotic distributions of the tests are inde-
pendent of the regressor is stronger than one might first realize. To take one
example, there is only one set of critical values, even if we have multiple re-
gressors, which is of course a great operational advantage. Moreover, because
the estimation of βi is done using the first differences rather than the levels of
the data, the only unit root in the system under the null is that of the errors
obtained when recumulating ∆êit. This stands in stark contrast to existing
methods, which are based on estimating βi from (7) directly, and it is expected
to produce more powerful tests. The reason for this is that having to estimate
all unit roots in the system under the null leads to tests that are inefficient
under the alternative of a single common unit root. Thus, the power of tests
that depend on estimating βi from the level data is expected to decrease with
the number of regressors in a way that the power of the new tests is not, see
Westerlund and Edgerton (2006).9

Remark 4. Yet another advantage with the new tests is that they can be
easily extended to incorporate a priori knowledge about βi, which is particularly
relevant in our application where the full Fisher effect postulates a unit slope
on inflation. In fact, all one has to do is to replace ∆ẑit, the estimated residual
in (12), with its true value

∆zit = ∆iit − βi∆πit.

The test can then be implemented exactly as described earlier. The advantage
with doing the testing in this way is that it produces more powerful tests without
affecting their asymptotic null distributions. The disadvantage is of course that
the presumed cointegrating slope must be equal to the true slope. Otherwise
the test will be unable to reject the no cointegration null even though there is
cointegration but with a different slope. It is nevertheless interesting to note
that there is generally no simple way to modify other cointegration tests to
incorporate a priori information of this kind.

9Of course, since the new tests are based on estimating βi from (7) in first differences, the
resulting OLS estimator is not an estimate of the cointegration vector under the alternative
hypothesis, which could be argued to cause a reduction in power. However, this is incorrect
as the asymptotic power of the tests is determined only by the speed of divergence of the
estimate of φi in (13), which, as shown in the appendix, is unaltered.
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Remark 5. All results reported so far are based on the implicit assumption
that k, the number of common factors, is known. When it is unknown, a natural
approach is to treat the estimation problem as a model selection issue, and to
estimate k by minimizing an information criterion. The particular estimator
opted for this paper is given as follows

k̂ = arg min
0≤k≤kmax

log(σ̂2) + k log
(

NT

N + T

)
N + T

NT
,

where σ̂2 = 1
NT

∑N
i=1

∑T
t=2(∆êit)2 and kmax is an bounded integer not smaller

than k. The use of this estimator is motivated in part by its popularity in studies
such as Bai and Ng (2004), in part by its good performance in the simulations.

We have already pointed to several advantages with the new tests. There
is, however, another very appealing feature that we have not mentioned yet,
which is that the regressor need not be nonstationary. In fact, as pointed out
earlier, the only requirement is that the dependent variable is nonstationary,
which is tantamount to requiring that there is at least one unit root in the
system. This condition is necessary to ensure the consistency of the tests, so
that a rejection of the no cointegration null is not confused with a completely
stationary regression. Similarly, the assumption of no regressor cointegration
precludes the cases when there is cointegration under the null hypothesis, and
when there is more than one cointegrating relationship under the alternative.

As pointed out by Cluver and Papell (1997), because there is considerable
doubt concerning the integratedness of inflation, permitting the regressor to
be stationary seems particularly relevant when testing the Fisher effect. Ng
and Perron (1997) investigate this issue and find that the presence of nearly
stationary regressors can have serious consequences for cointegration tests that
are based on estimating βi from a level regression. By contrast, the new tests are
based on estimating βi from a regression in first differences, and are therefore
robust in this sense.

The fact that the regressor may be stationary suggest a very simple test
procedure that does not involve any unit root pretesting, which is expected to
reduce the overall uncertainty of the test. In this regard, the Durbin-Hausman
tests are actually very similar to the bounds testing approach developed by
Pesaran et al. (2001), which do not require any a priori knowledge about the
integratedness of the data.

The procedure that we propose begins by applying the Durbin-Hausman
tests. If the no cointegration null is not rejected, we conclude that the variables
are non-cointegrated, and proceed no further. If the null is rejected, however, the
testing proceeds by applying a panel unit root test to the dependent variable.
If the unit root null is not rejected, we conclude that there is cointegration,
while, if it is rejected, we conclude that there is no cointegration, and that the
variables are stationary in their levels.
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3.4 Simulation results

In this section, we evaluate the small-sample properties of the Durbin-Hausman
tests. For this purpose, a small set of simulation experiments were conducted
using (7) through (11) to generate the data.

For simplicity, the errors wit, ut and vit are all drawn from N(0, 1), and
we assume that βi = 1, φi = φ and δi = δ for all i while αi ∼ N(0, 1). Also,
different values of ρj did not affect the results much, and we therefore set ρj to
zero for all j. The data is generated for 1, 000 panels with T + 50 time series
observations, where the first 50 is disregarded to reduce the effect of the initial
values, which are all set equal to zero.

In implementing the Durbin-Hausman tests, we must determine kmax, the
maximum for the estimation of the number of common factors. Different choices
did not alter the results so we set kmax to five. We must also determine the
appropriate kernel bandwidth Mi to handle the serial correlation. Although
this can in principle be done using a data dependent rule, such as the automatic
procedure of Newey and West (1994), in this section we chose Mi as a function
of T , which is computationally less demanding.10 In particular, since there is
no obvious choice, we chose Mi to the largest integer less than 4(T/100)2/9.

For comparison, the tests of Pedroni (2004) are also simulated, which is
interesting because these are the tests that are most likely to be used by other
researchers.11 To this effect, we shall use Z̃t and Z̃ρ to denote his group mean
t-ratio and coefficient type tests. The corresponding panel tests are denoted
Zt and Zρ, respectively. Pedroni (2004) also develops a panel variance ratio
test, which we will denote by Zv. As with DHp and DHg, the panel and
group mean tests of Pedroni (2004) differ in that while the former presumes
a common autoregressive root under the alternative, the latter does not. For
brevity, we report only the size and size-adjusted power on the nominal 5%
level. Computational work was performed in GAUSS.

Consider first the results in Table 1 on the size and power of the tests when
δ = 1, so the regressor is nonstationary, and the slope is not predetermined.
In large samples, all tests should have a rejection frequency of 5% when φ =
1 and the null is true. The table reveals that the new tests appear to be
reasonably sized for all values of λi, which corroborate the asymptotic theory
that these tests should be independent of the common component. As expected,
the size accuracy increases as both N and T grow. The Pedroni (2004) tests
are also reasonably sized when λi = 0, but can be severely distorted when λi is
nonzero. In fact, setting λi ∼ N(1, 1) almost uniformly results in the size going

10In Section 4, we show how to implement the tests based on the Newey and West (1994)
procedure.

11Another interesting comparison would be to consider defactored versions of the Pedroni
(2004) tests. Such an approach was recently taken by Gengenbach et al. (2006), who propose
using a two-step Bai and Ng (2004) type procedure in order to make the Pedroni (2004) tests
robust against cross-section dependence. Their results suggest that the tests generally perform
well in small-samples.
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to unity. In addition, we see that there is a strong tendency for the distortions
to accumulate and to get very serious as N increases.12

As for the power of the tests, Table 1 shows that there can be large ad-
vantages to using the Durbin-Hausman tests. These advantages appear to be
particularly striking when φ lies in the vicinity of unity. This leads us to the
conclusion that the new tests should be very well suited for testing the Fisher
effect, which, as argued in Section 2, is likely to involve errors that are nonsta-
tionary under the null and highly persistent under the alternative. We also see
that the power advantage appears to be larger when N and T are small, as is
usually the case in applications.

As in most other studies, all results reported so far are for the typical cointe-
gration test setting with a nonstationary regressor and a slope that is estimated.
This makes it interesting to also consider deviations from this classical setting.
Table 2 contains some simulation results for the scenario when δ < 1, so the
regressor is stationary. Because it is no longer meaningful to talk about power
when the regressor is stationary, we only simulate the size of the tests.

As expected, the Durbin-Hausman tests continues to perform well with good
size accuracy in most experiments. By contrast, for the Pedroni (2004) tests,
which are not equipped to deal with stationary regressors, we see that there is
a strong tendency to underreject the null. Thus, the presence of a stationary
regressor makes these these tests more conservative. The results for the scenario
with a predetermined slope are reported in Table 3. It is seen that while the
tests tend to perform well when the slope is correctly specified, the power falls
markedly if it is misspecified, which is to be expected. Another expected result
is that the power with a correctly specified slope is higher than when the slope
is estimated, as seen by comparing Tables 1 and 3.

The results on the estimated number of common factors are not reported
but we briefly describe them. Consistent with the results documented by Bai
and Ng (2004), we find that the true number of factors is chosen with high
probability under both the null and alternative hypotheses. In fact, only in a
hand full of cases is this probability less than one.

In summary, we find that the Durbin-Hausman tests show higher power than
the other tests considered and, at the same time, maintain the nominal size well
in small samples.13 Since the power advantage is particularly striking in small
panels with highly autoregressive errors, this leads us to the conclusion that the
new tests should be particularly well suited for testing the Fisher effect. This
conclusion is further strengthened by the fact that the tests seem to perform

12Pedroni (2004) suggests demeaning the data with respect to a common time effect to
permit for at least some cross-sectional dependence. In accordance with the results reported
by Westerlund (2005), however, this did not seem to work very well, and we therefore only
report the results with no common time effect.

13It should be noted that, although we have used the tests of Pedroni (2004) for our com-
parison, similar results are expected for all panel cointegration tests that do not permit for
cross-section dependence or stationary regressors.
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well even in the presence of cross-sectional dependence, stationary regressors
and a predetermined cointegration vector.

4 Empirical results

In this section, we employ the Durbin-Hausman tests to obtain new empirical
evidence on the Fisher effect. For this purpose, data covering 20 OECD countries
between the first quarter of 1980 and the fourth quarter of 2004 are obtained
from the OECD data bases Economic Outlook and Main Economic Indicators.14

The data is quarterly and include for each country a short-term nominal interest
rate and the consumer price index. Both variables are measured at annual rates
in percentages.

We begin by presenting the evidence on the partial Fisher effect, which
involves testing whether the nominal interest and inflation rates are indeed
nonstationary and cointegrated. In so doing, with the possibility of inflation
being stationary, we begin by testing for cointegration, as described earlier. If
the null of no cointegration is not rejected, we conclude that there is no Fisher
effect and proceed no further, while if it is rejected, we go on by testing for unit
roots. If the null of a unit root in the nominal interest rate is not rejected, the
variables are deemed cointegrated, in which case the partial Fisher effect holds.
Having presented the evidence on the partial Fisher effect, we then go on to
discuss the evidence on the full effect, which, in addition to the partial effect,
requires testing whether the estimated relationship is in fact one-for-one.

4.1 The partial Fisher effect

As argued in Section 2, in the presence of unit roots, the Fisher effect necessitates
that the nominal interest rate and inflation be cointegrated. The first step in
our empirical analysis is therefore to test for cointegration.

We begin by considering some evidence on the individual country level. To
this end, we employ the well-known ADF and P̂u tests developed by Phillips
and Ouliaris (1990), which both take no cointegration as the null hypothesis.
Consistent with our specification of the Fisher equation, the estimated test re-
gression is fitted with a constant term only. As with the Durbin-Hausman tests,
ADF and P̂u needs to be corrected to account for the effects serial correlation,
which requires the choice of a bandwidth or a lag length parameter. For the P̂u

test, which is based on a semiparametric kernel correction, we use the Newey and
West (1994) automatic bandwidth selection procedure, while for the ADF test,
which uses a parametric correction, we use the Campbell and Perron (1991) lag
length selection procedure with a maximum of 10 lags. These procedures will be
used throughout this section whenever a bandwidth or a lag length parameter
needs to be chosen, and will not be discussed any further.

14See Table 1 for a complete list of the countries considered.
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The results for the individual ADF and P̂u tests are presented in Table 4. In
agreement with the results of Strauss and Terrell (1995), Koustas and Serletis
(1999), Ghazali and Ramlee (2003) and Atkins and Serletis (2003), to mention
a few, we see that the null hypothesis of no cointegration cannot be rejected
for any of the countries on any conventional level of significance. Thus, these
results strongly suggest that we should reject the Fisher effect.

As pointed out in Section 2, however, time series tests of this sort are likely
to suffer from deficient power as the regression errors in the Fisher equation are
expected to be highly persistent under the alternative hypothesis of cointegra-
tion. For this reason, we now provide some evidence based on panel data. We
begin by considering some preliminary results obtained by using the Pedroni
(2004) tests analyzed earlier in the simulations. These are presented in Table 5.
Except for Zv, which results in a nonrejection on the 5% level, we see that the
null of no cointegration can be safely rejected on all conventional significance
levels. Although indicative of a partial Fisher effect, we know from Section 3
that inference based on these tests can be severely deceptive unless the data is
cross-sectionally independent.

To get a feeling of the size of this problem in the OECD data, we computed
the long-run cross-sectional correlation matrix of the OLS residuals obtained
from the estimated Fisher equation. The results, which are not reported for
space considerations, point to clear violations of the cross-sectional indepen-
dence assumption. In fact, the pairwise correlations are never smaller than 0.24
with an overall average of 0.71. As expected, the largest correlations are ob-
served among the European countries. United States stands out as having the
smallest correlations.

These results suggest that the assumption of cross-sectional independence is
likely to be violated, and that there is a need to allow for dependence among
the cross-sectional units. Therefore, we now employ the Durbin-Hausman tests.
The results reported in Table 5 suggest that we are able to strongly reject the
null hypothesis on all conventional significance levels, which corroborates our
preliminary evidence based on the Pedroni (2004) tests.15 Even though these
results can only be taken as evidence in favor of a partial Fisher effect, we
also see that the no cointegration null is rejected even if the cointegrating slope
is fixed at unity as postulated by the Fisher effect. Thus, we also have some
evidence of the full Fisher effect.

Of course, since the integratedness of the variables is not yet known, these
results should be interpreted with caution as the possibility remains that the
estimated regression is stationary. In order to shed some light on this, we now
proceed by testing the variables for unit roots. As in the cointegration analysis,
we begin by considering the evidence on the individual country level.

15To guard against possible violations of strict exogeneity, some test results based on (7)
augmented with lags and leads of ∆πit were also obtained. However, since the conclusions
were not altered, these results are not reported.
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The two tests that we use are both based on the augmented Dickey and
Fuller (1979) principle, and therefore take a unit root as the null hypothesis.
The first test, denoted τµ, is based on using conventional OLS demeaning, while
the second, denoted τ̃µ, is based on generalized OLS demeaning, as suggested
by Elliott et al. (1996). The reason for using two tests is that τµ may be biased
in small samples when the series is local to unity. As pointed out earlier, this is
likely to be particularly relevant when testing the Fisher effect as the unit root
component of inflation can sometimes be weak. To account for this, we also
employ the τ̃µ test.

The results on the individual unit root tests are reported in Table 4. The
results suggest that the null of a unit root cannot be rejected for any of the
countries on any conventional significance level when using the τ̃µ test. Although
the τµ test generally results in more significant values, the overall picture is that
there is little evidence against the unit root null, which coincide largely with
most unit root evidence on the OECD countries. For example, Koustas and
Serletis (1999) use quarterly data on 11 OECD countries covering approximately
the period 1957 to 1995. Consistent with our results, they are unable to reject
unit root null for any of the countries. Similar results have been reported by
for example Engsted (1995), Strauss and Terrell (1995) and Atkins and Serletis
(2003).

The unit root results on the individual country level provide strong evidence
to suggest that the nominal interest rate and inflation are nonstationary, as
required for the Fisher effect. However, it is well known that time series tests
of this sort can have low power against plausible stationary alternatives unless
the time series is very long. Furthermore, the way in which classical hypothesis
testing is carried out ensures that the null hypothesis will not be rejected unless
there is very strong evidence against it. Thus, a failure to reject the unit root
null does not definitely establish the presence of a unit root.

A natural way to increase power is to exploit the cross-sectional information
on the unit root hypothesis by using tests that are based on panel data. In
a recent study, Smith et al. (2004) develop several panel data unit root tests
that are based on the sieve bootstrap approach, which uses the fact that the
time series dependence of the data can be approximated by means of a finite
ordered autoregressive model. To also preserve the cross-sectional dependence,
the bootstrap innovations are drawn from the joint cross-sectional distribution
on the estimated residuals. The tests that we consider are denoted t, LM,
max and min. These are all group mean type tests of the null hypothesis of a
unit root, which permit the individual autoregressive roots to differ under the
alternative hypothesis.

The results based on 5, 000 bootstrap replications are reported in Table 6.
It is seen that the null can be rejected at the 1% level for all tests, which corrob-
orates the results on the individual country level. We therefore conclude that
the variables appear to be nonstationary, which, together with our cointegration
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test results, implies that partial Fisher effect cannot be rejected.
The next step in our empirical analysis is to infer the full version of the

Fisher effect by testing whether the long-run relationship between the inflation
and nominal interest rates is indeed one-for-one.

4.2 The full Fisher effect

It is well known that the OLS estimator is consistent under fairly general con-
ditions when applied to the cointegrated regression in (7). If vit and wit are
correlated, however, then this induces nuisance parameters in the asymptotic
distribution of the OLS estimator, which then falls outside the local asymptotic
mixture of normals family. To account for both of these features, we employ
the dynamic OLS (DOLS) estimator of Saikkonen (1991) and the fully modified
OLS (FMOLS) estimator of Phillips and Hansen (1990).

Both estimators are asymptotically equivalent and fully efficient in the pres-
ence of serially correlated errors and endogenous regressors. The difference
between them lies in the methods undertaken in order to ensure efficiency of
the cointegration parameters. Specifically, while DOLS employs a parametric
correction whereby lags and leads of wit are introduced, FMOLS adjusts for the
temporal dependencies of the data by directly estimating the various nuisance
parameters semiparametrically. We use two lags and leads of wit to construct
the DOLS, whereas the FMOLS is based on the same Bartlett kernel used for
the unit root and cointegration tests.

The results on the estimated slope parameters are reported in Table 7 to-
gether with the double-sided p-values for the unit slope hypothesis. We begin by
considering the results on the individual country level, in which case we see that
the estimated slopes generally lie close to their hypothesized value of one. The
range of the estimated slopes is 0.324 to 1.204 for the OLS, 0.601 to 1.771 for
the DOLS and 0.544 to 1.475 for the FMOLS. The closeness of these estimates
to their expected value based on the Fisher effect is supported by the p-values.
Indeed, by looking at the p-values based on the normal distribution, we see that
the null hypothesis of a unit slope is rarely rejected at the 1% level. In fact, the
null is rejected five times for the OLS, three times for the DOLS and only one
time for the FMOLS.

These results give a strong overall support for the full Fisher effect, and are
consistent with much of the recent evidence in the literature. Take for example
the study of Berument and Jelassi (2002), who examine a panel of monthly data
spanning roughly the period 1957 to 1998 across 26 countries. Among the 12
OECD member countries considered, the authors can only reject the hypothesis
of a unit slope on the 5% level on three occasions, for France, Korea and United
Kingdom. Similarly, Engsted (1995) uses a panel of quarterly data covering 12
OECD countries between 1962 and 1993. He is unable to reject the unit slope
hypothesis for any of the countries at the 1% level.

Consider next the panel estimation results reported at the bottom of Table 7.
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There are two types of estimators, which we will describe here briefly. For more
details, we make reference to Pedroni (2000, 2001). The within estimators are
based on the panel principle, and are appropriate for testing the null hypothesis
that βi = 1 for all i against the alternative hypothesis that βi = β and β 6= 1
for all i. The between estimators, on the other hand, are based on the group
mean principle and are designed to test the null that βi = 1 for all i versus
the alternative that βi 6= 1 for some i. Accordingly, the between estimators
provide a consistent test of the common unit slope hypothesis against slope
values that need not be common under the alternative hypothesis, while the
within estimators do not.

In our case, since there is no reason to believe that the slopes will take on
some other arbitrary common value if they are not equal to one, the between
estimators stand out as the most natural choice. Furthermore, if the true slopes
are not equal, the between estimators provide consistent estimates of the sample
mean of the individual slopes, while the within estimators do not.

Consistent with the individual country regressions, we see that the pooled
slopes are close to one and that the null of a unit slope cannot be rejected on the
5% level when using the normal distribution for any of the estimators. To test
whether the imposed homogeneity restriction is in fact consistent with the data,
we conduct a series of Wald tests on the estimated cointegration vectors. The
results, which are presented in the bottom row of Table 7, suggest that the null
hypothesis of equal slopes must be rejected for all three estimators when using
the asymptotic chi-squared p-value. This suggests that, although the between
estimates are still interpretable in an average sense, the within estimates should
be taken with some caution.

In agreement with the results of for example Mishkin (1992), Crowder and
Hoffman (1992) and Evans and Lewis (1995), we observe some cases where the
estimated slope is significantly less than one. This corroborates the Mundell
(1963) and Tobin (1965) story that higher inflation encourages economic agents
to substitute money balances for interest bearing assets, which drives asset prices
up and real interest rates down, thus preventing nominal rates from raising
enough to compensate for the increased inflation.

This is important because it implies that the ex ante real interest rate is
nonstationary, which is inconsistent with the full Fisher effect. To appreciate
this, note from (5) that the unit root component of the ex post real rate is
−(1 − βi) times inflation. Thus, a unit positive permanent shock to inflation
translate into a permanent shock in the ex post real rate of magnitude −(1−βi).
Since βi is negative in this case, a positive shock to inflation correspond to a
negative shock to the ex post real rate. From (4) we see that the ex ante rate
can be decomposed into the ex post rate plus the regression error from (5). It
follows that if ex post rate is nonstationary, then so is the ex ante rate.

Consequently, an estimated slope significantly less than one is not compatible
with the full Fisher effect. Hence, based on the p-values from the asymptotic
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normal distribution, the full Fisher effect must be rejected at the 1% level for
eight of the 20 countries, for Belgium, Canada, Switzerland, Germany, United
Kingdom, Ireland, Japan and Portugal. As argued by Crowder and Hoffman
(1996) and Caporale and Pittis (2004), however, a less than unit slope may not
reflect the actual data generating process but rather a downward endogeneity
bias on the part of the estimators employed. If this is the case, inference based
on the normal distribution could be misleading.

To investigate this possibility, we engage in a small simulation exercise where
the data generating process is chosen to mimic the endogeneity structure of the
data. For simplicity, we disregard any endogeneity that may run between the
individual regressions, and focus instead on capturing the effect within each
regression. As in Section 3.4, the data is generated according to (7) through
(11). This time, however, we make the assumption that the vector (vit, wit)′

has a joint distribution, which will enable us to model the endogeneity through
the correlation between vit and wit. In particular, following Caporale and Pittis
(2004), we shall assume that (vit, wit)′ follows the first order vector autoregres-
sion normally distributed innovations. For simplicity, we assume that inflation
is strictly nonstationary and that there are no common factors.

The first step in the simulations is to use the observed OECD data to es-
timate the parameters of the data generating mechanism. These estimates are
then used to generate simulated data according to (7) through (11) while impos-
ing the null hypothesis of a unit slope. In particular, we obtain 1, 000 panels of
the same size as ours, which are then used to compute the size of a double-sided
5% level t-test of the hypothesis of a unit slope as well as the bias and root mean
squared error of the estimated slopes themselves. The mean of the t-statistics
is also reported.

The results are reported in Table 8. There are two important results that we
would like to point out. First, all three estimators are severely downwards biased
with the OLS estimator being the most biased. Second, the distributions of the
t-ratios are highly non-central and shifted to the left. Notably, the averages of
the t-ratios are −3.964 for the OLS, −2.827 for the DOLS and −3.204 for the
FMOLS, which is indicative of large size distortions. Indeed, the averages of the
individual rejection frequencies based on the 5% critical value from the normal
distribution are 0.78 for the OLS, 0.64 for the DOLS and 0.655 for the FMOLS.
Thus, inference based on the asymptotic normal p-values reported in Table 7 is
likely to be highly deceptive.

Valkanov (2003) suggests another reason as to why inference based on the
normal distribution is likely to be inappropriate when testing the unit slope
hypothesis. He argues that the use of time aggregated data, as is the case with
compounded interest rate series, may alter the convergence rate of routinely
computed t-ratios with massive size distortions as a result.

One possible solution to these problems is to employ the bootstrap, which
makes inference possible by using the empirical distribution of the t-statistics.
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The particular bootstrap opted for this section is taken from Chang et al. (2006),
who propose a sieve resampling scheme that preserves the serial correlation
properties of the errors, and that can be generalized along the lines of Smith et
al. (2004) to also accommodate cross-sectional dependency.

We apply this bootstrap approach to the OECD data using 5, 000 bootstrap
replications. The bootstrapped p-values are presented in Table 7. In contrast
to our earlier conclusion using inference based on the p-values obtained from
the asymptotic normal distribution, we are now unable to reject the unit slope
hypothesis for any of the countries on the 1% level. We also see that the null
hypothesis of a common cointegrating slope cannot be rejected for any of the
estimators when using the bootstrapped p-values for the Wald tests, and that
the panel estimates in turn are not significantly different from one. Hence, we
cannot reject the full Fisher effect for any of the countries nor for the panel as
a whole.

To test the robustness of this conclusion, we repeated the empirical analysis
based on both monthly and annual OECD data. Some additional estimates were
also obtained using the yield on long-term government bonds as interest rate.
For brevity, however, we do not report these results but we briefly describe them.
Regardless of sample frequency, the null of no cointegration is still rejected
when using the panel tests. The full Fisher effect is also supported using the
bootstrapped p-values. The results obtained using long-term interest rates are
qualitatively similar.

5 Conclusions

Recent empirical studies suggest that the Fisher effect, stating that inflation
and nominal interest rates should cointegrate with a unit slope parameter on
inflation, do not hold, a finding at odds with many theoretical models. This
paper argues that these results can be explained in part by the low power
inherent in univariate cointegration tests and that the use of panel data should
generate more powerful tests. The importance of using panel data rather than
single time series stems from the fact that the Fisher equation is likely to involve
errors that are highly persistent even though we have cointegration. If this is
the case, then the information content of a single time series may be insufficient
to reject that cointegration is absent.

In this paper we investigate the Fisher effect using a panel of quarterly data
covering the period 1980 to 2004 on 20 OECD countries. Preliminary results
suggest that both inflation and interest rates exhibit features that are common
across countries and that there is a need to allow for cross-sectional dependence.
However, this allowance invalidates inference based on most existing panel coin-
tegration tests, which rely critically on assuming that the cross-sectional units
are independent of each other.

The approach used in this paper is to model this dependence using a small
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number of common factors. Conditional on these factors, the cross-sectional
units are assumed to be independent, though the remaining idiosyncratic error
term may be serially correlated. With these assumptions in mind, we derive
two tests based on the Durbin-Hausman principle that are designed to test
the null hypothesis of no cointegration against the alternative hypothesis of
cointegration. The limiting distributions of our tests are shown to be normal
and therefore no special table of critical values is required. Results from a small
Monte Carlo study suggest that the tests have small size distortions and greater
power than other popular panel cointegration tests.

Another advantage with the new tests is that they are robust against the
presence of stationary regressors, which is highly relevant in our application as
there is considerable doubt as to the integratedness of inflation. Yet another
advantage is that the tests can be readily implemented using a predetermined
cointegration vector without affecting the asymptotic null distributions. This is
important because if the Fisher effect holds, then a test for cointegration with
a unit slope imposed will be more efficient than a test based on an estimated
slope.

The aim of the empirical part of the paper is to show that a failure to reject
the absence of cointegration for an individual country need not be taken as
evidence against the Fisher effect, and that the use of panel data can lead to
more accurate tests. The way we do this is to first show that the null of no
cointegration cannot be rejected at conventional significance levels when using
data on individual countries, and that this can in part be attributed to the low
power of the methodology used. We then show that the same null can be safely
rejected when using our panel data approach. As a final touch, we also provide
bootstrap evidence to suggest that the hypothesis of a unit slope on inflation
cannot be rejected for any of the individual countries nor for the panel as a
whole.

Of course, although our results show that an absence of cointegration on the
individual country level need not be taken as evidence against the Fisher effect,
one should be careful in generalizing these too broadly. In particular, a non-
rejection of the Fisher effect does not necessarily imply that the Fisher effect
holds. Nevertheless, the results clearly illustrate the need for more powerful
tests when analyzing the extent of the Fisher effect using cointegration based
methods.
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Appendix: Mathematical proofs

In this appendix, we prove asymptotic null distributions of Durbin-Hausman
test statistics. For convenience, we will make frequent use of the notation (xit)p

to indicate the projection of xit onto ∆πit. Thus, (xit)p = ∆πitbi, where bi is
the estimated projection parameter. Also, since the common factor Ft can only
be identified up to a scale matrix H, say, we consider the rotation HFt of Ft,
see Bai and Ng (2004). Throughout, we assume that the necessary regulatory
conditions for the relevant asymptotic theory to apply are satisfied.

Lemma A.1. Under Assumptions 1 through 3, for φi = 1 or φi < 1 and δi = 1,
as T →∞
(a) T−1/2

∑t
j=2 ∆πij = Op(1);

(b) T−1/2
∑T

t=2 ∆πit∆Ft = Op(1);

(c) T−1/2
∑T

t=2 ∆πit∆eit = Op(1);

(d) T−1
∑T

t=2(∆πit)2 = Op(1).

Proof of Lemma A.1

Because ∆πit = wit if δi = 1, (a) is a direct consequence of Assumption 2. For
parts (b) and (c), we use Assumptions 1 (c) and 3 (b), which ensure that ut,
wit and vit are mutually independent so that T−1/2

∑T
t=2 ∆πit∆Ft = Op(1) and

T−1/2
∑T

t=2 ∆πit∆eit = Op(1) as T → ∞. Finally, to prove (d), we make use
of Assumption 1 (d), from which it follows that T−1

∑T
t=2(∆πit)2 →p Ωi as

T →∞. ¥

Lemma A.2. Under the conditions of Lemma A.1, with δi < 1, as T →∞
(a)

∑t
j=2 ∆πij = Op(1);

(b) T−1/2
∑T

t=2 ∆πit∆Ft = Op(1);

(c) T−1/2
∑T

t=2 ∆πit∆eit = Op(1);

(d) T−1
∑T

t=2(∆πit)2 = Op(1).

Proof of Lemma A.2

With δi < 1,
∑t

j=2 ∆πij = δt
iπi0 +

∑t−1
j=0 δj

i wit−j , which has mean zero and
variance Ωi/(1− δ2

i ). Thus,
∑t

j=2 ∆πij = Op(1) as required for (a). The proof
for parts (b), (c) and (d) are identical to that of Lemma A.1. ¥
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Lemma A.3. Let CNT = min{√T ,
√

N} and DNT = min{√T , N}. Under
the conditions of Lemma A.1, with δi = 1 or δi < 1, as N, T →∞
(a) T−1/2F̂t = T−1/2HFt + Op(C−1

NT );

(b) T−1/2êit = T−1/2eit + Op(C−1
NT );

(c) T−1
∑T

t=2(∆êit)2 = T−1
∑T

t=2(∆eit)2 + Op(C−2
NT );

(d) T−1
∑T

t=2 êit−1∆êit = T−1
∑T

t=2 eit−1∆eit + Op(C−2
NT );

(e) T−2
∑T

t=2 ê2
it = T−1

∑T
t=2 e2

it + Op(D−1
NT ).

Proof of Lemma A.3

We begin with (a). Let ∆F̂t = H∆Ft + vt for some vt. Hence, since F̂1 = 0 by
definition, it follows that

T−1/2F̂t = T−1/2
t∑

j=2

∆F̂j

= T−1/2
t∑

j=2

H∆Fj + T−1/2
t∑

j=2

vj . (A1)

But F1 = Op(1) so the first term on the right-hand side is

T−1/2
t∑

j=2

∆Fj = T−1/2(Ft − F1) = T−1/2Ft + Op(T−1/2).

The second term is Op(C−1
NT ) by equation (A.3) of Bai and Ng (2004). This

implies (a) as can be seen by writing

T−1/2F̂t = T−1/2HFt + Op(C−1
NT ).

Consider (b). From the text, we have that the defactored and first differen-
tiated residuals can be written as

∆êit = ∆ẑit − λ̂′i∆F̂t, (A2)

where

∆ẑit = ∆iit − β̂i∆πit = ∆iit − (∆iit)p = ∆zit − (∆zit)p

= λ′i∆Ft + ∆eit − (λ′i∆Ft + ∆eit)p.

Thus, (A2) can be written

∆êit = λ′i∆Ft + ∆eit − (λ′i∆Ft + ∆eit)p − λ̂′i∆F̂t. (A3)
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By using some algebra, this expression can be restated as

∆êit = ∆eit − (λ′i∆Ft + ∆eit)p + λ′iH
−1H∆Ft − λ′iH

−1∆F̂t

+ ∆λ′iH
−1F̂t − λ̂′i∆F̂t

= ∆eit − (λ′i∆Ft + ∆eit)p − λ′iH
−1(∆F̂t −H∆Ft)

− (λ̂i −H−1′λi)′∆F̂t

= ∆eit − (λ′i∆Ft + ∆eit)p − λ′iH
−1vt − d′i∆F̂t, (A4)

where di = λ̂i −H−1′λi. By taking partial sums, and by using that êi1 = 0 by
definition, we get

T−1/2êit = T−1/2
t∑

j=2

∆êij

= T−1/2
t∑

j=2

∆eij − T−1/2
t∑

j=2

(λ′i∆Ft + ∆eit)p − λ′iH
−1T−1/2Vt

− d′i

(
T−1/2

t∑

j=2

∆F̂j

)

= T−1/2
t∑

j=2

∆eij − I − II − III, say. (A5)

Here Vt is the partial sum of vt, which is such that

F̂t = HFt −HF1 +
t∑

j=2

vj = HFt −HF1 + Vt.

Moreover, making use of (A.3) in Bai and Ng (2004), part II must be
Op(C−1

NT ). For part III, we use (a), which implies that

T−1/2
t∑

j=2

∆F̂j = T−1/2
t∑

j=2

H∆Fj + Op(C−1
NT ) = Op(1).

But di = Op(D−1
NT ) by Lemma 1 (c) of Bai and Ng (2004) so III is Op(D−1

NT ).
For the remaining term, part I, we have

I = T−1/2

(
T−1/2

t∑

j=2

∆πij

) (
T−1

T∑
t=2

(∆πit)2
)−1

·
(

λ′iT
−1/2

T∑
t=2

∆πit∆Ft + T−1/2
T∑

t=2

∆πit∆eit

)

= T−1/2Op(1)Op(1)Op(1),
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where the second equality follows from Lemmas A.1 and A.2.
Putting everything together, since

∑t
j=2 ∆eij = eit − ei1 and ei1 = Op(1),

(A5) reduces to

T−1/2êit = T−1/2
t∑

j=2

∆eij + Op(C−1
NT ) + Op(T−1/2)

= T−1/2eit + Op(C−1
NT ).

This establishes (b).
Next, consider (c). Let ait = λ′iH

−1vt − d′i∆F̂t and bit = (λ′i∆Ft + ∆eit)p,
so that (A4) becomes ∆êit = ∆eit − bit − ait. This implies

T−1
T∑

t=2

(∆êit)2 = T−1
T∑

t=2

(∆eit − bit − ait)2

= T−1
T∑

t=2

(∆eit)2 + T−1
T∑

t=2

b2
it + T−1

T∑
t=2

a2
it

− 2T−1
T∑

t=2

∆eitbit − 2T−1
T∑

t=2

∆eitait

− 2T−1
T∑

t=2

aitbit

= T−1
T∑

t=2

(∆eit)2 + I + II − III − IV − V, say. (A6)

By using the same arguments as in Lemma B.1 of Bai and Ng (2004), part II

is Op(C−2
NT ). Consider part III. By Lemmas A.1 and A.2, we have

III = 2T−1

(
T−1/2

T∑
t=2

∆eit∆πij

)(
T−1

T∑
t=2

(∆πit)2
)−1

·
(

λ′iT
−1/2

T∑
t=2

∆πit∆Ft + T−1/2
T∑

t=2

∆πit∆eit

)

= T−1Op(1)Op(1)Op(1),

Hence, part III is Op(T−1) and, by similar arguments, so is I. For V , we use
the Cauchy-Schwarz inequality, which implies

V = 2T−1
T∑

t=2

aitbit ≤ 2

(
T−1

T∑
t=2

a2
it

)1/2 (
T−1

T∑
t=2

b2
it

)1/2

= Op(C−1
NT )Op(T−1/2).
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Finally, consider IV . This part might be written as

IV = 2λ′iH
−1T−1

T∑
t=2

∆eitvt − 2d′iT
−1

T∑
t=2

∆eit∆F̂t

= 2d′iT
−1

T∑
t=2

∆eit∆F̂t + Op(C−2
NT )

= 2d′iT
−1

T∑
t=2

∆eit(∆F̂t −H∆Ft) + 2d′iHT−1
T∑

t=2

∆eit∆Ft + Op(C−2
NT ),

where the second equality follows by Lemma B.1 of Bai (2003). Let ||a|| denote
the Euclidean norm (tr(a′a))1/2 of the matrix a. By applying ||ab|| ≤ ||a||||b||
and the triangle inequality to the above expression, we get

|IV | ≤ 2||d′i||T−1
T∑

t=2

||∆eit(∆F̂t −H∆Ft)||

+ 2||d′iH||T−1
T∑

t=2

||∆eit∆Ft||+ Op(C−2
NT ),

which, by applying the Cauchy-Schwarz inequality to the first term on the right-
hand side, reduces to

|IV | ≤ 2||d′i||
(

T−1
T∑

t=2

(∆eit)2
)1/2 (

T−1
T∑

t=2

||∆F̂t −H∆Ft||2
)1/2

+ 2||d′iH||T−1/2

(
T−1/2

T∑
t=2

||∆eit∆Ft||
)

+ Op(C−2
NT )

= Op(D−1
NT )Op(1)Op(C−1

NT ) + T−1/2Op(D−1
NT )Op(1) + Op(C−2

NT ).

Here we have made use of the fact that ||H|| = Op(1) by construction, and
Lemma A.1 of Bai (2003) from which it follows that

T−1
T∑

t=2

||∆F̂t −H∆Ft||2 = Op(C−2
NT ).

This implies that IV is Op(C−2
NT ).

Combining the results, it is clear that (A6) reduces to

T−1
T∑

t=2

(∆êit)2 = T−1
T∑

t=2

(∆eit)2 + Op(C−2
NT ).

This proves (c).
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In order to prove (d) we use that ê2
it may be written as ê2

it = (êit−1+∆êit)2 =
ê2
it−1 + (∆êit)2 + 2êit−1∆êit, from which it follows that

T−1
T∑

t=2

êit−1∆êit = 2T−1
T∑

t=2

(ê2
it − ê2

it−1 − (∆êit)2)

= 2T−1ê2
iT − 2T−1ê2

i1 − 2T−1
T∑

t=2

(∆êit)2. (A7)

Similarly, by applying the same trick to e2
it, we have

T−1
T∑

t=2

eit−1∆eit = 2T−1e2
iT − 2T−1e2

i1 − 2T−1
T∑

t=2

(∆eit)2. (A8)

Now, it is clear from (b) that T−1ê2
iT = T−1e2

iT +Op(T−1/2C−1
NT ), while êi1 = 0

and ei1 = Op(1) by assumption. Moreover, since the difference between the
third terms on the right-hand side of (A7) and (A8) is Op(C−2

NT ) by (c), we can
show that

T−1
T∑

t=2

êit−1∆êit = T−1
T∑

t=2

eit−1∆eit + Op(C−2
NT ).

This establishes part (d).
Finally, consider (e). Let êit = eit − ei1 − Bit − Ait, where Bit and Ait are

the cumulative sums of bit and ait, respectively. This implies that

T−2
T∑

t=2

ê2
it = T−2

T∑
t=2

(eit − ei1 −Bit −Ait)2

= T−2
T∑

t=2

e2
it + T−2e2

i1 + T−2
T∑

t=2

B2
it + T−2

T∑
t=2

A2
it

− 2T−2
T∑

t=2

eitBit − 2T−2
T∑

t=2

eitAit − 2T−2
T∑

t=2

AitBit

− 2ei1

(
T−2

T∑
t=2

eit + T−2
T∑

t=2

Bit + T−2
T∑

t=2

Ait

)

= T−1
T∑

t=2

e2
it + I + II + III − IV − V − V I − V II, say. (A9)
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Now, I is obviously Op(T−2). Part II can be written as

II = T−1

(
T−2

T∑
t=2

π2
it

)(
T−1

T∑
t=2

(∆πit)2
)−2

·
(

λ′iT
−1/2

T∑
t=2

∆πit∆Ft + T−1/2
T∑

t=2

∆πit∆eit

)2

= T−1Op(1)Op(1)Op(1).

It follows that II is Op(T−1), which is also true for part IV .
The next step is to show that III is Op(C−2

NT ). In so doing, by first applying
the triangle inequality and then (a + b)2 ≤ 2(a2 + b2), we obtain

|III| = T−2
∣∣∣
∣∣∣

T∑
t=2

(λ′iH
−1Vt − d′iF̂t)2

∣∣∣
∣∣∣

≤ 2T−1||λ′iH−1||2
(

T−1
T∑

t=2

||Vt||2
)

+ 2||di||2
(

T−2
T∑

t=2

||F̂ 2
t ||2

)

= T−1Op(T/N) + Op(D−2
NT )Op(1),

where we have used equation (A.4) in Bai and Ng (2004), which says that

T−1
T∑

t=2

||Vt||2 = Op(T/N).

Also, by their Lemma C.1, we have

T−2
T∑

t=2

||F̂ 2
t ||2 = Op(1).

Furthermore, by using II, III and the Cauchy-Schwarz inequality, part V I

is Op((
√

TCNT )−1), as can be seen by writing

V I ≤ 2

(
T−2

T∑
t=2

A2
it

)1/2 (
T−2

T∑
t=2

B2
it

)1/2

= Op(C−1
NT )Op(T−1/2).

33



For part V , if we let BNT = min{√NT, T 3/4}, then we have

V = 2λ′iH
−1T−2

T∑
t=2

eitVt − 2d′iT
−2

T∑
t=2

eitF̂t

= 2λ′iH
−1T−2

T∑
t=2

eitVt − 2d′iT
−2

T∑
t=2

eit(F̂t −HFt)

+ 2d′iHT−1

(
T−1

T∑
t=2

eitFt

)

= Op(T−1/2) + Op(D−1
NT )Op(B−1

NT ) + Op(D−1
NT )T−1Op(1),

where the order of the last term follows from the fact that Ft is stationary and
independent of eit. The evaluation of the second term on the right-hand side
involves some very tedious, although relatively straightforward, algebra and is
therefore omitted. But it can be shown that

T−2
T∑

t=2

eit(F̂t −HFt) = Op(B−1
NT ),

which implies

T−2
T∑

t=2

eitVt = T−2
T∑

t=2

eit(F̂t −HFt) + HF1T
−1/2

(
T−3/2

T∑
t=2

eit

)

= Op(B−1
NT ) + T−1/2Op(1),

where we have used that Vt = F̂t −HFt + HF1 and F1 = Op(1).
Finally, consider part V II. The first two terms within the parenthesis are

Op(T−1/2) and Op(T−1), respectively. For the last term, we have

T−2
T∑

t=2

Ait = λ′iH
−1T−2

T∑
t=2

Vt − d′iT
−2

T∑
t=2

F̂t

= λ′iH
−1T−2

T∑
t=2

Vt − d′iT
−2

T∑
t=2

(F̂t −HFt)

+ d′iHT−1

(
T−1

T∑
t=2

Ft

)

= Op(N−1) + Op(D−1
NT )Op(N−1) + Op(D−1

NT )T−1Op(1),

where ||Vt|| = Op(T/N) as shown by Bai and Ng (2004). Thus, by collecting all
the terms, we can show that (A9) reduces to

T−2
T∑

t=2

ê2
it = T−2

T∑
t=2

e2
it + Op(D−1

NT ).

This establishes (e) and thus the proof of Lemma A.3 is complete.
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Proof of Theorem 1

Consider first the DHg statistic. Under the null hypothesis that φi = 1 for all
i, φ̂i may be written as

T φ̂i = T

(
T∑

t=2

ê2
it−1

)−1 T∑
t=2

êit−1êit

= T +

(
T−2

T∑
t=2

ê2
it−1

)−1

T−1
T∑

t=2

êit−1∆êit. (A10)

Similarly, for the IV estimator, we have

T φ̃i = T

(
T∑

t=2

êit−1êit

)−1 T∑
t=2

ê2
it

= T +

(
T−2

T∑
t=2

êit−1êit

)−1

T−1
T∑

t=2

êit∆êit. (A11)

Now, making use of Lemma A.3, it is possible to show that the following
results hold as N, T →∞

T−2
T∑

t=2

ê2
it = T−2

T∑
t=2

e2
it + Op(D−1

NT ) ⇒ ω2
i

∫ 1

0

Wi(r)2dr, (A12)

T−2
T∑

t=2

ê2
it−1 = T−2

T∑
t=2

e2
it−1 + Op(D−1

NT ) ⇒ ω2
i

∫ 1

0

Wi(r)2dr, (A13)

T−1
T∑

t=2

êit−1∆êit = T−1
T∑

t=2

eit−1∆eit + Op(C−2
NT )

⇒ ω2
i

∫ 1

0

Wi(r)dWi(r) + γi, (A14)

T−1
T∑

t=2

(∆êit)2 = T−1
T∑

t=2

(∆eit)2 + Op(C−2
NT ) →p σ2

i , (A15)

where γi = (ω2
i − σ2

i )/2 is the onesided long-run variance of zit. By using that
êit = êit−1 + ∆êit, (A12) through (A15) imply that as N, T →∞

T−2
T∑

t=2

êit−1êit = T−2
T∑

t=2

ê2
it + T−1

(
T−1

T∑
t=2

êit−1∆êit

)

= T−2
T∑

t=2

e2
it + Op(D−1

NT ) + T−1Op(C−2
NT )

⇒ ω2
i

∫ 1

0

Wi(r)2dr. (A16)
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By similar arguments, we get

T−1
T∑

t=2

êit∆êit = T−1
T∑

t=2

êit−1∆êit + T−1
T∑

t=2

(∆êit)2

= T−1
T∑

t=2

eit−1∆eit + T−1
T∑

t=2

(∆eit)2 + Op(C−2
NT )

⇒ ω2
i

∫ 1

0

Wi(r)dWi(r) + σ2
i + γi. (A17)

By combining (A10) through (A17), some algebra, and then discarding all rest
terms of higher order than Op(D−1

NT ), we get

T (φ̃i − φ̂i) =

(
T−2

T∑
t=2

êit−1êit

)−1

T−1
T∑

t=2

êit∆êit −
(

T−2
T∑

t=2

ê2
it−1

)−1

· T−1
T∑

t=2

êit−1∆êit

=

(
T−2

T∑
t=2

e2
it−1

)−1

T−1
T∑

t=2

(∆eit)2 + Op(D−1
NT )

⇒ σ2
i

(
ω2

i

∫ 1

0

Wi(r)2dr

)−1

. (A18)

Next, we prove the consistency of σ̂2
i and ω̂2

i . Consider σ̂2
i , which can be

written as σ̂2
i = T−1

∑T
t=1 v̂2

it, where v̂it = êit − φ̂iêit−1 = ∆êit − (φ̂i − 1)êit−1.
It follows that

σ̂2
i = T−1

T∑
t=2

(∆êit − (φ̂i − 1)êit−1)2

= T−1
T∑

t=2

(∆êit)2 − 2(φ̂i − 1)

(
T−1

T∑
t=2

êit−1∆êit

)

+ T (φ̂i − 1)2
(

T−2
T∑

t=2

ê2
it

)

= T−1
T∑

t=2

(∆êit)2 + Op(T−1)Op(1) + TOp(T−2)Op(1)

= T−1
T∑

t=2

(∆eit)2 + Op(C−2
NT )

→p σ2
i , (A19)

where the third equality follows by using (A12) and (A14), and the fact that
(φ̂i − 1) = Op(T−1) under the null. The fourth equality is a direct consequence
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of Lemma A.3 (c). Thus, σ̂2
i is consistent. Moreover, suppose that T, Mi →∞

with Mi/T → 0, then the consistency of ω̂2
i is an immediate consequence of the

fact that êit is consistent for eit as shown in Lemma A.3 (b).
Equations (A13) and (A18), together with the consistency of σ̂2

i and ω̂2
i ,

suggest that the following result holds as N, T →∞

Êi = Ŝi(φ̃i − φ̂i)2
T∑

t=2

ê2
it−1

= Ŝi

(
T (φ̃i − φ̂i)

)2
(

T−2
T∑

t=2

ê2
it−1

)

= Si

(
T−2

T∑
t=2

e2
it−1

)−1 (
T−1

T∑
t=2

(∆eit)2
)2

+ Op(D−1
NT )

= ω2
i

(
T−2

T∑
t=2

e2
it−1

)−1

+ Op(D−1
NT ). (A20)

This expression can be written as

Êi = Ei + Op(D−1
NT ),

where Ei is implicitly defined as the first term on the right-hand side of (A20).
By using (A13) it is clear that Ei converges weakly to Bi as N, T →∞. Hence,
by using Theorem 1 of Phillips and Moon (1999), we can now show that

N−1DHg =
1
N

N∑

i=1

Êi =
1
N

N∑

i=1

(
Ei + Op(D−1

NT )
)

=
1
N

N∑

i=1

Ei + Op(D−1
NT ) →p E(Bi).

The joint limit distribution of DHg can be obtained by writing

N−1/2DHg −
√

NE(Bi) =
√

N

(
1
N

N∑

i=1

Êi − E(Bi)

)

=
√

N

(
1
N

N∑

i=1

Ei + Op(D−1
NT )− E(Bi)

)

=
√

N

(
1
N

N∑

i=1

Ei − E(Bi)

)
+
√

NOp(D−1
NT ),

where the last term on the right-hand side is
√

NOp(D−1
NT ) = Op(

√
NT−1/2) + Op(N−1/2),
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which vanishes under the condition that N/T → 0 as N, T →∞. Moreover, by
using Theorem 3 of Phillips and Moon (1999), since Ei is independent across
i, the first term on the right-hand side converges to a standard normal variate.
From these results it follows that

N−1/2DHg −
√

NE(Bi) ⇒ N(0, var(Bi)).

This establishes the first part of the proof.
Consider next the limiting distribution of the DHp statistic. The expression

for φ̂ is given by

φ̂ =

(
N∑

i=1

T∑
t=2

ê2
it−1

)−1 N∑

i=1

T∑
t=2

êit−1êit.

Similarly, φ̃ can be written as

φ̃ =

(
N∑

i=1

T∑
t=2

êit−1êit

)−1 N∑

i=1

T∑
t=2

ê2
it.

As in (A18), φ̃ and φ̂ can be combined to obtain

T (φ̃− φ̂) =

(
T−2

N∑

i=1

T∑
t=2

êit−1êit

)−1

T−1
N∑

i=1

T∑
t=2

êit∆êit

−
(

T−2
N∑

i=1

T∑
t=2

ê2
it−1

)−1

T−1
N∑

i=1

T∑
t=2

êit−1∆êit

=

(
1

NT 2

N∑

i=1

T∑
t=2

e2
it−1

)−1

1
NT

N∑

i=1

T∑
t=2

(∆eit)2 + Op(D−1
NT ).

Let σ2
N denote the cross-sectional average of σ2

i . Given that the limit σ2
N →

σ2 < ∞ as N →∞ exist, since σ̂2
i is consistent for σ2

i as N, T →∞, we have

1
NT

N∑

i=1

T∑
t=2

(∆eit)2 →p σ2.

Moreover, by (A13) and Corollary 1 of Phillips and Moon (1999), we obtain

1
NT 2

N∑

i=1

T∑
t=2

e2
it−1 →p ω2E(Ci),

where ω2
N , the average ω2

i across i, is assumed to satisfy ω2
N → ω2 < ∞ while

passing N →∞.
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Now, similar to (A20), it is possible to show that

DHp = ŜN (φ̃− φ̂)2
(

N∑

i=1

T∑
t=2

ê2
it−1

)−1

= ŜN

(
T (φ̃− φ̂)

)2
(

T−2
N∑

i=1

T∑
t=2

ê2
it−1

)−1

= SN

(
T−2

N∑

i=1

T∑
t=2

e2
it−1

)−1 (
T−1

N∑

i=1

T∑
t=2

(∆eit)2
)2

+ Op(D−1
NT ).

Thus, making use of the above convergence results, it follows that

N−1DHp = SN

(
1

NT 2

N∑

i=1

T∑
t=2

e2
it−1

)−1 (
1

NT

N∑

i=1

T∑
t=2

(∆eit)2
)2

+ Op(D−1
NT )

= ω2
N

(
1

NT 2

N∑

i=1

T∑
t=2

e2
it−1

)−1

+ Op(D−1
NT )

→p ω2
(
ω2E(Ci)

)−1

. (A21)

Therefore, N−1DHp converges in probability to E(Ci)−1 as N, T → ∞. To
obtain the joint limit of DHp, write

N−1/2DHp −
√

NE(Ci)−1 =
√

N
(
N−1DHp − E(Ci)−1

)

=
√

N
(
EN + Op(D−1

NT )− E(Ci)−1
)

=
√

N
(
EN − E(Ci)−1

)
+
√

NOp(D−1
NT ),

where EN is implicitly defined in (A21) as

EN = ω2
N

(
1

NT 2

N∑

i=1

T∑
t=2

e2
it−1

)−1

.

Note that the second term vanishes under the condition that N/T → ∞ as
N, T →∞. Therefore, by using the Delta method and the independence of eit

across i, we get
√

N
(
N−1DHp − E(Ci)−1

) ⇒ N(0, E(Ci)−4var(Ci)).

This establishes the second part of the proof. ¥

39



Table 1: Size and power at the 5% level for the tests with a nonstationary
regressor and estimated slope.

φ Case T N DHg Z̃t Z̃ρ DHp Zt Zρ Zv

1 1 100 10 11.3 10.4 7.8 12.2 7.4 8.0 9.0

20 12.6 13.8 8.4 10.1 7.8 5.5 5.9

200 10 11.1 8.5 8.6 11.4 6.6 8.2 9.5

20 8.6 10.5 8.8 7.7 6.8 7.0 6.3

2 100 10 12.0 82.0 84.6 10.5 80.5 88.0 75.1

20 12.1 95.5 96.7 7.8 92.9 97.6 90.3

200 10 8.7 74.3 80.3 12.3 79.3 89.2 70.7

20 8.7 92.9 94.9 8.8 93.4 98.7 87.9

3 100 10 10.4 96.3 96.6 9.4 70.9 98.9 94.0

20 10.9 99.8 99.9 7.2 76.9 100.0 99.5

200 10 9.5 93.7 95.1 11.1 68.4 98.9 92.1

20 10.8 99.6 99.9 8.3 79.1 100.0 99.4

0.98 1 100 10 39.4 14.7 19.6 73.4 13.9 21.0 51.1

20 68.1 21.7 31.4 97.9 22.9 37.0 83.6

200 10 84.7 27.9 38.0 99.6 30.1 50.7 90.1

20 99.3 52.0 69.6 100.0 56.6 80.7 99.9

2 100 10 39.6 18.1 17.2 78.2 15.3 24.4 31.4

20 64.2 20.3 19.7 98.8 23.2 31.9 49.7

200 10 91.2 38.0 29.4 99.7 28.7 45.3 66.4

20 99.9 53.3 46.1 100.0 41.4 73.1 91.3

3 100 10 34.3 12.0 11.4 74.8 13.5 15.1 23.4

20 69.5 21.3 20.5 96.3 27.2 34.0 41.1

200 10 88.2 37.8 34.6 99.5 32.4 43.7 57.5

20 99.4 49.6 44.8 100.0 62.0 71.4 86.5

0.95 1 100 10 95.0 50.2 63.7 100.0 48.9 71.0 97.8

20 100.0 74.5 88.1 100.0 80.2 96.4 100.0

200 10 100.0 97.9 98.8 100.0 99.0 99.9 100.0

20 100.0 100.0 100.0 100.0 100.0 100.0 100.0

2 100 10 94.9 44.9 40.6 99.9 30.6 56.0 72.5

20 100.0 58.0 52.2 100.0 51.0 74.0 94.9

200 10 100.0 89.8 79.3 100.0 68.9 92.1 99.8

20 100.0 99.0 96.6 100.0 86.6 100.0 100.0

3 100 10 90.1 35.1 33.8 99.4 37.2 46.3 63.3

20 100.0 55.5 52.5 99.9 67.5 75.5 88.3

200 10 100.0 83.5 76.0 100.0 80.8 87.0 95.9

20 100.0 97.7 96.5 100.0 99.5 99.5 100.0

Notes: The value φ refers to the autoregressive parameter in the idiosyncratic error

term. In Case 1, λi = 0, in Case 2, λi ∼ N(0, 1) and in Case 3, λi ∼ N(1, 1), where

λi is the loading of the common factor.
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Table 2: Size at the 5% level for the tests with a stationary regressor and
estimated slope.

δ Case T N DHg Z̃t Z̃ρ DHp Zt Zρ Zv

0.9 1 100 10 10.6 3.5 1.3 10.9 3.4 2.4 0.9

20 14.4 2.4 0.9 7.4 3.0 1.5 0.0

200 10 9.2 0.9 0.6 11.0 1.9 1.9 0.2

20 8.3 0.7 0.7 8.0 1.1 1.0 0.7

2 100 10 11.1 63.1 66.8 12.2 67.5 75.6 46.7

20 10.5 79.6 81.9 8.4 81.3 88.4 57.6

200 10 9.1 46.5 55.3 11.6 64.2 74.3 31.9

20 8.5 62.4 71.9 8.8 81.9 89.7 42.8

3 100 10 13.1 90.1 92.0 12.5 50.3 96.4 80.1

20 14.9 98.1 98.9 9.2 53.4 99.4 94.1

200 10 9.9 80.9 85.3 12.0 46.2 95.8 70.5

20 10.6 95.6 97.9 9.5 47.7 99.4 87.0

0.5 1 100 10 11.1 0.5 0.2 9.6 0.5 0.7 0.2

20 11.6 0.0 0.0 8.8 0.5 0.1 0.0

200 10 9.9 0.3 0.1 13.9 0.5 0.6 0.8

20 9.8 0.0 0.0 7.5 0.2 0.2 0.2

2 100 10 10.9 40.4 47.2 11.8 57.5 62.1 36.2

20 12.2 56.0 63.9 8.6 71.6 80.2 44.1

200 10 9.2 31.5 39.8 11.0 54.9 64.1 28.4

20 7.9 37.5 52.8 8.6 71.3 83.2 32.6

3 100 10 13.0 80.5 84.2 12.4 38.3 93.0 75.6

20 14.1 93.5 95.7 9.3 37.5 98.9 90.2

200 10 8.9 72.1 79.2 10.0 41.3 94.7 69.3

20 9.8 85.3 92.4 9.5 35.6 99.7 82.0

Notes: The value δ refers to the autoregressive parameter of the regressor. See

Table 1 for an explanation of the remaining features of the table.
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Table 3: Size and power at the 5% level for the tests with a nonstationary
regressor and predetermined slope.

φ = 1 φ = 0.98 φ = 0.95

b T N DHg DHp DHg DHp DHg DHp

1 100 10 12.6 12.5 39.1 71.7 97.6 100.0

20 9.7 9.1 74.5 98.3 100.0 100.0

200 10 11.5 11.1 91.5 99.6 100.0 100.0

20 9.7 7.7 100.0 100.0 100.0 100.0

1.5 100 10 13.1 12.9 19.7 37.7 52.3 76.9

20 12.8 8.6 40.2 80.5 85.2 99.0

200 10 8.2 11.6 49.5 78.0 85.7 94.1

20 10.0 8.3 76.0 98.5 97.9 100.0

3 100 10 11.2 12.1 6.7 9.2 8.2 8.9

20 12.8 9.8 9.1 10.1 11.1 13.8

200 10 7.5 10.9 10.5 9.1 12.5 10.2

20 9.2 10.3 9.7 10.8 14.6 14.6

Notes: The value b refers to the predetermined slope. The true slope is equal

to one. See Table 1 for an explanation of the remaining features of the table.
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Table 5: Panel cointegration tests.

Estimated βi Predetermined βa
i

Study Test Value p-value Value p-value

This study DHg 10.588 0.000 137.523 0.000

DHp 24.582 0.000 129.318 0.000

Pedroni (2004) Z̃t −12.212 0.000 − −
Z̃ρ −16.944 0.000 − −
Zt −8.167 0.000 − −
Zρ −21.333 0.000 − −
Zv 1.523 0.064 − −

Notes: All tests are based on an intercept and the Newey and West (1994)

procedure for selecting the bandwidth order. The p-values are based on the

asymptotic normal distribution.
aThe predetermined βi is set equal to one.

Table 6: Panel unit root tests.

Inflation Interest rate

Test Value p-value Value p-value

t −4.619 0.011 1.872 1.000

LM 4.166 0.013 −2.990 1.000

max 4.113 1.000 1.534 1.000

min −1.977 1.000 −2.549 1.000

Notes: All tests are based on an intercept and the Campbell

and Perron (1991) lag selection procedure. The p-values are

based on the Smith et al. (2004) boostrap scheme.
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