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Abstract

The class of bargaining solutions that are defined on the domain of finite sets of alterna-
tives and satisfy Weak Pareto Optimality (WPO), Independence of Irrelevant Alternatives
(IIA) and Covariance (COV), is characterized. These solutions select from the set of max-
imizers of a nonsymmetric Nash product – i.e., from a nonsymmetric (multi-valued) Nash
bargaining solution – according to a specific decomposition of the indifference curves of this
Nash product. We use this characterization in two ways. First, we derive consequences
on this domain and on larger domains of compact (non-convex) bargaining problems, and
show that most results in the literature are special cases and consequences of our central
results – in particular by adding continuity or symmetry axioms. Second, since the conti-
nuity axiom prevents nontrivial selections from the Nash bargaining solutions, we use the
Axiom of Choice to construct for example non-single-valued discontinuous WPO, IIA and
COV bargaining solutions. It is conjectured that, in the case of two-person bargaining
problems, the existence of such discontinuous bargaining solutions cannot be shown from
the Zermelo-Fraenkel axioms for set theory without using the Axiom of Choice.

JEL Codes. C72, D44.

Keywords. Nash bargaining solutions, non-convex bargaining problems, axiomatic charac-

terization

1 Introduction

In his classical paper [8], Nash characterized the two-person Nash bargaining solution on the

domain of convex bargaining problems by four axioms: weak Pareto optimality (WPO), sym-

metry (SYM), (scale) covariance (COV), and independence of irrelevant alternatives (IIA).

Nash’s paper has generated a large literature on different axiomatizations, different solutions

and their axiomatizations, and different domains.

In the present paper we drop the convexity assumption and – for the larger part of the paper

– consider finite n-person bargaining problems. We study multi-valued bargaining solutions
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satisfying WPO, IIA, and COV. The first two conditions retain their usual interpretation.

WPO is a normative condition: an outcome should not be considered a good compromise if

all bargainers can improve on it. IIA is a consistent choice condition: an outcome that is

considered a best compromise should be considered a best compromise also within a smaller

set. COV, however, should be interpreted with some care, since its usual justification based

on expected utility is somewhat at odds with the lack of convexity. Here, we just assume that

the preferences of the bargainers are represented uniquely up to choice of scale.

Before going into more details we note, first, that practically everything that is known thus far

in the relevant literature follows from our characterization of this class of solutions: see below

and see Section 8.3 for a comprehensive overview. Second, not including SYM or continuity

beforehand opens the possibility of making nontrivial selections from the characterized multi-

valued (Nash) bargaining solutions.

The first main result of the paper (Theorem 3.3 and Corollary 3.4) is that an n-person bar-

gaining solution satisfies these three axioms on the domain of all finite problems if and only

if there is a nonnegative n-dimensional weight vector such that the solution selects a subset

of the set of maximizers of the associated generalized Nash product. The second main result

(Theorems 4.1 and 4.2) characterizes these selections in a precise manner: from each pair of

Nash product maximizers, it tells us which element(s) is (are) chosen by the solution. Formally,

this is described by a specific decomposition of the set of Nash product maximizers viewed as

an Abelian multiplicative group.

These results are quite basic and have a large number of applications, both in the domain of

finite bargaining problems and in larger domains. In the domain of finite problems, adding

a continuity condition (CON) almost immediately implies the special case where all feasible

maximizers of the Nash product are chosen by the solution: such solutions are called Nash

solutions (Theorem 5.1). Thus, CON excludes any specific refinement of a Nash solution.

This, and the fact that CON is a mathematical condition without very strong normative of

behavioral appeal, are important reasons not to impose it from the outset. Adding SYM

(a symmetry condition) has a similar effect: it implies that the solution is the symmetric

n-person Nash bargaining solution, hence, it chooses all maximizers of the symmetric Nash

product (Theorem 5.2). This practically implies a result by Mariotti [5], who characterizes the

two-person symmetric Nash bargaining solution on the domain of finite bargaining problems.

Still in the finite case, we show in Section 5.2 that there is a plethora of discontinuous solutions



Bargaining 2

that can be constructed by using the Axiom of Choice (or Zorn’s Lemma). This is considered in

detail for the two-player case in Section 6. We cannot prove but conjecture that the existence

of non-single-valued discontinuous WPO, COV and IIA bargaining solutions cannot be derived

without the Axiom of Choice.

In Section 7 we consider the consequences of our main results for bargaining solutions defined on

larger domains of compact bargaining problems, containing the domain of finite problems. The

latter condition is less restrictive than it might seem, since it would also be sufficient to assume

that the comprehensive hulls of finite sets are in the domain, if one wants to exclude finite or

disconnected sets. Since most of the existing literature is on compact and often comprehensive

bargaining problems, this enables a comparison with results on Nash-like bargaining solutions

defined on non-convex sets.

Our first result here is the observation that on any compact domain containing the finite do-

main, the conditions of WPO, IIA, COV, and CON again characterize the family of (nonsym-

metric) Nash bargaining solutions (Theorem 7.1). This implies Kaneko’s [4] characterization

of the symmetric Nash bargaining correspondence as a special case. By adding SYM instead of

CON, we obtain a straightforward generalization of Theorem 5.2, namely a characterization of

the symmetric Nash bargaining solution on any compact domain containing the finite domain

(Theorem 7.2). This result was recently obtained also by Xu and Yoshihara [11].

Further results are stated for the domain of all compact bargaining problems. This is for

convenience: it is easy to see that smaller domains can be assumed as well. We show that

on this domain specific discontinuous bargaining solutions are excluded (Theorem 7.3). A

surprising consequence is that in the two-person case, dropping continuity adds only single-

valued solutions, namely those that either always pick the most left or always the most right

point from the (nonsymmetric) Nash bargaining solution (Theorem 7.4). This result sheds

special light on the main result in Zhou [12], which states that under a similar set of conditions

plus single-valuedness, a solution selects from the maximizers of a Nash product. Theorem 7.4

shows that, at least in the two-person case, such single-valued solutions are limited to be of a

very special kind. We conjecture that a similar restriction may hold in the n-person case but

we do not yet have a complete characterization.

Some loose ends are tied in Section 8, which also includes a brief discussion of further related

literature. Some auxiliary lemmas are collected in an appendix.
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2 Preliminaries

For x, y ∈ Rn, x ≤ y means that xi ≤ yi for all i, and x < y means that xi < yi for all i. The

vector in Rn whose coordinates are all zero is denoted by 0. Rn
+ denotes the set of vectors x

in Rn with x ≥ 0 and Rn
++ denotes the set of vectors x in Rn with x > 0. For a, x ∈ Rn

++,

ax := (a1x1, . . . , anxn) and x
a

:= (x1

a1
, . . . , xn

an
). For a ∈ Rn and S ⊂ Rn, aS := {ax | x ∈ S}.

We use the notation S ⊂ T to indicate that S is a subset of T , so S = T is allowed.

A bargaining problem is a closed and non-empty set B ⊂ Rn
++. (We implicitly assume the

disagreement point to be the origin.) A non-empty set D of bargaining problems is called a

domain. In this paper we mainly consider the domain

F := {F ⊂ Rn
++ | F is finite and not empty}

of all finite n-person bargaining problems. All other domains we consider are subsets of the

domain C of all compact bargaining n-person bargaining problems.

A correspondence ϕ:D ։ Rn is called a (bargaining) solution when φ 6= ϕ(B) ⊂ B holds for

all B ∈ D. When specific elements, say x and y or x1, x2 and x3 of Rn
++ are involved, we

typically write ϕ(x, y) and ϕ(x1, x2, x3) instead of ϕ({x, y}) and ϕ({x1, x2, x3}).
We define several properties that a bargaining solution ϕ may (or may not) satisfy.

PO (Pareto Optimality)

For every B ∈ D and all x, y ∈ B, x ≤ y and x 6= y implies that x /∈ ϕ(B).

WPO (Weak Pareto Optimality)

For every B ∈ D and all x, y ∈ B, x < y implies that x /∈ ϕ(B).

IIA (Independence of Irrelevant Alternatives)

For all B,C ∈ D with C ⊂ B and C ∩ ϕ(B) 6= φ we have ϕ(C) = C ∩ ϕ(B).

COV (Covariance)

For all a ∈ Rn
++ and all B ∈ D such that aB ∈ D, ϕ(aB) = aϕ(B).

CON (Continuity)

Let xk, yk ∈ Rn
++ for all k ∈ N, xk → x ∈ Rn

++ and yk → y ∈ Rn
++. If {xk, yk}, {x, y} ∈ D

and xk ∈ ϕ(xk, yk) for all k ∈ N, then x ∈ ϕ(x, y).

SYM (Symmetry)

Let B ∈ D be symmetric, i.e., B is invariant under any permutation of coordinates. If

x ∈ ϕ(B) and y ∈ B can be obtained from x by permuting its coordinates, then y ∈ ϕ(B).
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The properties of WPO, IIA, COV, and SYM were introduced by Nash [8] for single-valued

solutions.1

Let D be a domain with F ⊂ D. A solution ϕ:D ։ Rn
++ is called transitive if, for all

x1, x2, x3 ∈ Rn
++, from x2 ∈ ϕ(x1, x2) and x3 ∈ ϕ(x2, x3) it follows that x3 ∈ ϕ(x1, x3). We

shall frequently use the following observation.

Lemma 2.1 Any solution ϕ:D ։ Rn
++ that satisfies IIA is transitive.

Proof. Suppose that ϕ satisfies IIA, that x2 ∈ ϕ(x1, x2), and that x3 ∈ ϕ(x2, x3). Suppose

that ϕ(x1, x2, x3) does not contain x3. Then, because x3 ∈ ϕ(x2, x3), it does also not contain

x2 by IIA. Consequently, because x2 ∈ ϕ(x1, x2), it does also not contain x1 by IIA. This

contradicts the assumption that ϕ(x1, x2, x3) is not empty. Hence, ϕ(x1, x2, x3) contains x3.

A well-known class of bargaining solutions is the class of (asymmetric) Nash bargaining solu-

tions. Let D be a domain with D ⊂ C 2. For a non-zero vector α = (αi)i∈N ∈ Rn
+ the α-Nash

bargaining solution Nα is defined by, for all B ∈ D,

Nα(B) = {x ∈ B |
∏

i

xαi

i ≥
∏

i

yαi

i for all y ∈ B}.

A function of the form x 7→ ∏

i xαi

i is called a Nash product. A solution ϕ is called a Nash

bargaining solution if there exists a vector α such that ϕ = Nα. All Nash bargaining solutions

satisfy WPO, IIA, COV and CON. If α ∈ Rn
++, then Nα even satisfies PO. Further, notice

that Nα = Nλα for any positive real number λ. Thus we may assume w.l.o.g. that
∑

i αi = 1.

3 WPO, COV and IIA bargaining solutions

In this and the next section we deal exclusively with the domain F of all finite bargaining

problems. On this domain we study the set of all WPO, COV and IIA bargaining solutions.

In this section we introduce the notion of a generalized indifference curve of a WPO, COV and

IIA bargaining solution, and show that a generalized indifference curve necessarily coincides

with the indifference curve of a Nash bargaining solution. Consequently, each WPO, COV and

IIA bargaining solution is a refinement of a Nash bargaining solution.

Let ϕ:F ։ Rn
++ be a bargaining solution that satisfies WPO, COV and IIA. Take x ∈ Rn

++.

Define for y ∈ Rn
++,

λ(x, y) := inf{λ > 0 | λy ∈ ϕ(x, λy)}.
1For the IIA-axiom see Shubik [10], p. 421, who attributes it to an informal note of Nash.
2We merely use compactness to guarantee non-emptiness of the Nash bargaining solutions.
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By Lemma A.1 this is a sound definition and λ(x, y) > 0. 3 Further define

Iϕ(x) := {λ(x, y)y | y ∈ Rn
++}.

The set Iϕ(x) is a subset of Rn
++. It is called the generalized indifference curve through x. We

briefly discuss the reason for this name. As we will see, Iϕ(x) is indeed the indifference curve

through x whenever ϕ satisfies CON, in the sense that Iϕ(x) equals the set of points y ∈ Rn
++

with ϕ(x, y) = {x, y} in that case. However, in general we only have the following fact.

Lemma 3.1 For every x, y ∈ Rn
++, if λ < λ(x, y) then ϕ(x, λy) = {x}, and if λ > λ(x, y) then

ϕ(x, λy) = {λy}.

Proof. We only show the first statement. Let λ < λ(x, y) and suppose that λy ∈ ϕ(x, λy).

Take a µ with λ < µ < λ(x, y). Notice that ϕ(λy, µy) = {µy} by WPO and the non-emptiness

of ϕ(λy, µy). Thus, µy ∈ ϕ(x, µy) by transitivity of ϕ, which contradicts the definition of

λ(x, y). Hence, λy /∈ ϕ(x, λy) and then ϕ(x, λy) = {x} by non-emptiness.

Thus, when ϕ does not (necessarily) satisfy CON, the point λ(x, y)y is exactly the point of

the form λy on the ray emanating from the origin through y where we switch from choosing

ϕ(x, λy) = {λy} when λ > λ(x, y) to choosing ϕ(x, λy) = {x} when λ < λ(x, y). The choice

for ϕ(x, λ(x, y)y) itself is left unspecified.4

We can say this somewhat differently. Notice that Iϕ(x) = {y ∈ Rn
++ | λ(x, y) = 1}. Thus

Iϕ(x) is the set of points y ∈ Rn
++ where we switch from choosing ϕ(x, λy) = {λy} when λ > 1

to choosing ϕ(x, λy) = {x} when λ < 1. Again, the choice for ϕ(x, y) itself is left unspecified.

It can be either {x}, or {y}, or {x, y} (although this choice cannot be made entirely arbitrarily

as we will see in the next section).

We show that the generalized indifference curve Iϕ(x) is in fact the indifference curve of an

α-Nash bargaining solution for some α. In order to show this, define e ∈ Rn
++ by ei := 1 for

all i, and for x ∈ Rn
++, define λ(x) := λ(e, x). Next, define aj ∈ Rn

++ by

aj
i :=

{

1
2 if i = j
1 else.

Define the vector α = (α1, . . . , αn) by

αj := 2log λ(aj).

3In fact λ(x, y) depends on the solution ϕ and we should write for example λϕ(x, y). Usually, however, it is
clear which solution ϕ is meant and we simply write λ(x, y).

4The construction bears similarity to the classical construction of a utility function representing a binary
relation (e.g., [2]). Note, however, that we do not require continuity.
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Notice that e ≥ aj . Hence, λ(aj) ≥ 1, and therefore αj ≥ 0. Moreover, we have the following

lemma.

Lemma 3.2
∑

i αi = 1.

Proof. We show
∏

j λ(aj) = 2 in two steps.

A. Take j ∈ N . Take λ > λ(aj). Then ϕ(e, λaj) = {λaj} by Lemma 3.1. Define dj ∈ Rn
++

by

dj
i :=

{

1 if i = j
1
2 else.

Notice that
(

2
λ
dj

) (

λaj
)

= e. So, by COV,

ϕ(
2

λ
dj , e) = ϕ(

(

2

λ
dj

)

e,

(

2

λ
dj

)

(

λaj
)

) = {
(

2

λ
dj

)

(

λaj
)

} = {e}.

So, 2
λ
≤ λ(dj) for all λ > λ(aj), and hence 2 ≤ λ(dj) ·λ(aj). Conversely, take λ < λ(aj). Then

ϕ(e, λaj) = {e} by Lemma 3.1. So, by COV,

ϕ(
2

λ
dj , e) = ϕ(

(

2

λ
dj

)

e,

(

2

λ
dj

)

(

λaj
)

) = {
(

2

λ
dj

)

e} = { 2

λ
dj}.

So, 2
λ
≥ λ(dj) for all λ < λ(aj), and thus 2 ≥ λ(dj) · λ(aj). Hence, λ(dj) · λ(aj) = 2.

B. Now notice that dj =
∏

i6=j ai. Hence, we are done if we can show that λ(x) ·λ(y) = λ(xy)

for any x, y ∈ Rn
++. Take x, y ∈ Rn

++. Take λ > λ(x) and µ > λ(y). Then ϕ(λx, e) = {λx}
and ϕ(µy, e) = {µy} by Lemma 3.1. So, by COV and transitivity, ϕ(λµxy, e) = {λµxy} and

λµ ≥ λ(xy). Hence, λ(x) · λ(y) ≥ λ(xy). Conversely, take λ < λ(x) and µ < λ(y). Then

ϕ(λx, e) = {e} and ϕ(µy, e) = {e} by Lemma 3.1. So, by COV and transitivity, ϕ(λµxy, e) =

{e} and λµ ≤ λ(xy). Hence, λ(x) · λ(y) ≤ λ(xy). Altogether λ(x) · λ(y) = λ(xy).

Now we can show the main result of this section, namely that the generalized indifference curve

Iϕ(x) equals the indifference curve through x of the α-Nash bargaining solution.

Theorem 3.3 For all x, y ∈ Rn
++ we have y ∈ Iϕ(x) if and only if

∏

i

xαi

i =
∏

i

yαi

i .

Proof. Define H as the set of vectors y ∈ Rn
++ with

∏

i yαi

i = 1. By COV it suffices to show

that Iϕ(e) = H. We prove this as follows. Write bj := λ(aj)aj . Let B be the collection of

vectors in Rn
++ that can be written as

n
∏

j=1

(bj)µj



Bargaining 7

with µ1, . . . , µn ∈ R. First we show that B = H. Then we show that B ⊂ Iϕ(e). Finally we

argue that Iϕ(e) = H.

A1. Take b =
∏n

j=1(b
j)µj ∈ B. Then

∏

i

bαi

i =
∏

i

(

∏

j

(bj
i )

µj

)αi

=
∏

i

(

∏

j

(λ(aj) · aj
i )

µj

)αi

=
∏

i

∏

j

(λ(aj) · aj
i )

αiµj

=
∏

j

∏

i

λ(aj)αiµj ·
∏

i

∏

j

(aj
i )

αiµj

=
∏

j

λ(aj)µj

∑

i
αi ·

∏

i

(ai
i)

αiµi

=
∏

j

λ(aj)µj ·
∏

i

(1

2

)αiµi

=
∏

j

λ(aj)µj ·
∏

i

(1

2

)µi·
2log λ(ai)

=
∏

j

λ(aj)µj ·
(

∏

i

λ(ai)µi

)−1

= 1,

where the 5th equality follows from the definition of aj , while the 6th equality follows from

both the definition of aj and Lemma 3.2. Hence, b ∈ H.

A2. Conversely, let y ∈ H. So, y ∈ Rn
++ and

∏

i yαi

i = 1. We show that there are

µ1, . . . , µn ∈ R such that for all i

yi =
n

∏

j=1

(bj
i )

µj . (1)

Write zi := 2log yi. Since bj
i = λ(aj)aj

i by definition, we have bj
i = λ(aj) for all j 6= i and

bi
i = 1

2λ(ai). Thus, taking base 2 logarithms in (1) shows that we have to find µ1, . . . , µn ∈ R

such that for all i

zi = −µi +
∑

j

αjµj .

Write

A =









α1 − 1 α2 · · · αn

α1 α2 − 1 · · · αn

...
...

. . .
...

α1 α2 · · · αn − 1









, µ =







µ1
...

µn






and z =





z1
...

zn





We show that z = Aµ has a solution. Let Z be the set of vectors x ∈ Rn with
∑

i αixi = 0.

Since
∑

i αi = 1, we have dim(Z) = n−1. Further, from A1, each vector of the form
∏n

j=1(b
j)µj
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is an element of H. Taking base 2 logarithms this implies that each vector of the form Aµ is

an element of Z. Thus, Im(A) is a subspace of Z. However, subtracting the first row of A from

its other rows yields the matrix

B =













α1 − 1 α2 α3 · · · αn

−1 −1 0 · · · 0
−1 0 −1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · −1













.

So, dim(Im(A)) = rank(A) = rank(B) ≥ n − 1, and Im(A) = Z. However, since
∏

i yαi

i = 1,

we have
∑

i αizi = 0 and z is an element of Z. Hence, the system z = Aµ of linear equations

has a solution.

B. We show that B ⊂ Iϕ(e). Take q1, . . . , qn ∈ Q. First we show that
∏k

j=1 b(j)qj ∈ Iϕ(e) for

k ≤ n. For k = 1 this follows immediately from Lemma A.5. Now suppose that
∏k

j=1 b(j)qj ∈
Iϕ(e). Then, by Lemmas A.2, A.4 and A.5,

∏k+1
j=1 b(j)qj ∈ Iϕ(b(k + 1)qk+1) = Iϕ(e). Hence,

since Iϕ(e) is closed by Lemma A.3, we obtain B ⊂ Iϕ(e).

C. From A and B we conclude H ⊂ Iϕ(e). However, since each ray in Rn
++ emanating from

the origin clearly intersects H exactly once, and also intersects Iϕ(e) exactly once by Lemma

A.1, necessarily Iϕ(e) = H.

Let ϕ:F ։ Rn
++ and ψ:F ։ Rn

++ be two bargaining solutions. We say that ϕ is a refinement

of ψ when ϕ(F ) ⊂ ψ(F ) for all F ∈ F . We have:

Corollary 3.4 Any bargaining solution that satisfies WPO, IIA and COV is a refinement of

a (uniquely determined) Nash bargaining solution.

Proof. Let ϕ be a bargaining solution that satisfies WPO, IIA and COV. Let α = (α1, . . . , αn)

be as defined before. Take F ∈ F and x ∈ ϕ(F ). Suppose that x /∈ Nα(F ). Then there is a

y ∈ F with
∏

i

xαi

i <
∏

i

yαi

i .

Thus, λ(x, y) < 1 by Theorem 3.3. Consequently ϕ(x, y) = {y} by Lemma 3.1, which violates

IIA. Hence, x ∈ Nα(F ).

Thus we can view every WPO, IIA and COV bargaining solution as arising from a Nash bar-

gaining solution, with the additional proviso that ties, or indifferences, within the indifference

curve of the Nash bargaining solution may be broken one way or the other. How exactly ties

can be broken is the topic of the next section.
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4 LDR decomposition of the generalized indifference

curve

In this section we show that for a WPO, IIA and COV bargaining solution, ties within the

indifference curve of the enveloping Nash bargaining solution can only be broken in a specific

way, namely only in a way that respects the covariance requirement together with transitivity.

We give a precise description of the consequences of this observation.

Let ϕ:F ։ Rn
++ be a WPO, IIA and COV bargaining solution. Consider the generalized indif-

ference curve Iϕ := Iϕ(e) through the unit vector e. Notice that Iϕ is an Abelian multiplicative

group under the operation defined by (xy)i := xi · yi. Indeed, if x, y ∈ Iϕ, then xy ∈ Iϕ and

e
x
∈ Iϕ by Theorem 3.3. Define the subsets Lϕ, Dϕ and Rϕ of Iϕ by

Lϕ := {x ∈ Iϕ | ϕ(x, e) = {x}, x 6= e}

Dϕ := {x ∈ Iϕ | ϕ(x, e) = {x, e}}

Rϕ := {x ∈ Iϕ | ϕ(x, e) = {e}, x 6= e}.

Now let I be an arbitrary Abelian multiplicative group. An LDR decomposition of I is a

partition of I into sets L, D and R such that L, D and R are closed under multiplication, D

is not empty, λ ∈ R and µ ∈ D imply that λµ ∈ R, and λ ∈ L and µ ∈ D imply that λµ ∈ L.

Automatically we have e ∈ D (where e denotes the neutral element of I), and if x ∈ L then

e
x
∈ R (where e

x
denotes the inverse of x).

Theorem 4.1 The sets Lϕ, Dϕ and Rϕ form an LDR decomposition of the Abelian multi-

plicative group Iϕ.

Proof. Clearly Lϕ, Dϕ and Rϕ partition Iϕ. Further, since ϕ is transitive and satisfies COV,

Lϕ, Dϕ and Rϕ are closed under multiplication. Dϕ is not empty because it contains e.

Now take an x ∈ Rϕ and y ∈ Dϕ. So, using COV, e ∈ ϕ(x, e) and x ∈ ϕ(xy, x). Hence, by

transitivity, e ∈ ϕ(xy, e). However, also xy /∈ ϕ(xy, y) and e ∈ ϕ(y, e). Hence, by transitivity,

xy /∈ ϕ(xy, e). Thus, ϕ(xy, e) = {e} and xy ∈ Rϕ.

Similarly it can be shown that x ∈ Lϕ and y ∈ Dϕ imply xy ∈ Lϕ. Hence, Lϕ, Dϕ and Rϕ

form an LDR decomposition of Iϕ.

Thus, each WPO, IIA and COV bargaining solution ϕ determines a quadruple

(α,Lϕ,Dϕ, Rϕ)
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where α ≥ 0 is such that the set

Iα := {x ∈ Rn
++ |

∏

i

xαi

i = 1}

equals Iϕ, and Lϕ, Dϕ and Rϕ constitute an LDR decomposition of Iα. We show in this section

that this quadruple characterizes the solution ϕ in the following sense. Not only does each

WPO, IIA and COV bargaining solution determine a unique quadruple, but conversely also

each such a quadruple uniquely determines a WPO, IIA and COV bargaining solution.

In order to prove this, let α = (α1, . . . , αn) be a non-negative vector with
∑

i αi = 1. It is

easy to check that Iα is an Abelian multiplicative group. Let Lα, Dα and Rα form an LDR

decomposition of Iα.

Theorem 4.2 There exists a unique WPO, COV and IIA solution ϕ:F ։ Rn
++ such that

Iϕ = Iα, Lϕ = Lα, Dϕ = Dα and Rϕ = Rα.

Proof. First take an arbitrary set {x, y} ∈ F . Take λ > 0 such that λx
y
∈ Iα. Define µ(x, y)

by

µ(x, y) :=























{x} if λ < 1
{x} if λ = 1 and x

y
∈ Lα

{x, y} if λ = 1 and x
y
∈ Dα

{y} if λ = 1 and x
y
∈ Rα

{y} if λ > 1.

Observe that µ(x, y) is defined in accordance with what the LDR decomposition Lα, Dα, Rα

of Iα prescribes for the set {x
y
, e}. By COV, this also implies how to make the choice for {x, y}.

We argue that µ is transitive. Take x1, x2, x3 ∈ Rn
++. Suppose that x2 ∈ µ(x1, x2) and

x3 ∈ µ(x2, x3). Let λ1 > 0 and λ2 > 0 be such that λ1
x1

x2 ∈ Iα and λ2
x2

x3 ∈ Iα. Then, since Iα

is a multiplicative group, λ1λ2
x1

x3 ∈ Iα. Moreover, since x2 ∈ µ(x1, x2) and x3 ∈ µ(x2, x3), we

have that λ1 ≥ 1 and λ2 ≥ 1. Therefore also λ1λ2 ≥ 1. We distinguish two cases.

(a) λ1λ2 > 1. In this case µ(x1, x3) = {x3} by definition.

(b) λ1λ2 = 1. In this case λ1 = λ2 = 1. So, by definition of µ, x1

x2 ∈ Rα ∪ Dα and

x2

x3 ∈ Rα ∪Dα. Then, because Lα, Dα, Rα is an LDR decomposition of Iα, also x1

x3 ∈ Rα ∪Dα,

and hence x3 ∈ µ(x1, x3).

Next define ϕ:F ։ Rn
++ by, for all F ∈ F ,

ϕ(F ) := {x ∈ F | x ∈ µ(x, y) for all y ∈ F}.

We show that ϕ is the unique WPO, IIA and COV bargaining solution ϕ:F ։ Rn
++ such that

ϕ(x, y) = µ(x, y) for all x, y ∈ Rn
++.
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A. From the definition of ϕ it follows immediately that ϕ(x, y) = µ(x, y) for all x, y ∈ Rn
++.

From this it follows that Iϕ = Iα, Lϕ = Lα, Dϕ = Dα and Rϕ = Rα (once we established that

ϕ is a bargaining solution and that it satisfies WPO, IIA, and COV), since all these sets are

defined by considering pairs of elements in Rn
++.

B. Take F ∈ F . We claim that ϕ(F ) is not empty. Suppose it were empty. Take a point

x1 ∈ F . Since x1 /∈ ϕ(F ) there is an x2 ∈ F with x1 /∈ µ(x1, x2). Since µ(x1, x2) is not empty,

necessarily {x2} = µ(x1, x2). In the same way we find an x3 ∈ F with x2 /∈ µ(x2, x3). Iterating

this procedure yields a sequence x1, x2, x3, . . . in F with xk /∈ µ(xk, xk+1) for all k ≥ 1. Since

F is finite, we have xr = xt for some r, t with r < t. This violates the transitivity of µ.

C. The solution ϕ satisfies IIA. Take F,G ∈ F with G ⊂ F and G ∩ ϕ(F ) 6= φ. We show

that ϕ(G) = G ∩ ϕ(F ).

C1. Take an x ∈ ϕ(G). Clearly x ∈ G. In order to show that x ∈ ϕ(F ), take y ∈ F . If

x ∈ µ(x, y) we are done. Since G∩ϕ(F ) 6= φ, we can take z ∈ G∩ϕ(F ). Since x ∈ µ(x, z) and

z ∈ µ(y, z), we have x ∈ µ(x, y) by the transitivity of µ.

C2. Take an x ∈ G ∩ ϕ(F ). Take a y ∈ G. Then x ∈ µ(x, y) since x ∈ ϕ(F ). Hence

x ∈ ϕ(G).

D. Next we show that ϕ satisfies WPO. Take F ∈ F and x, y ∈ F with x < y. Then x
y

< e.

So, for λ > 0 with λx
y
∈ Iα we have λ > 1. Hence, µ(x, y) = {y} and therefore x /∈ ϕ(F ) by

the definition of ϕ.

E. We show that ϕ satisfies COV. Take a ∈ Rn
++, take F ∈ F and take x ∈ ϕ(F ). It suffices

to show that ax ∈ ϕ(aF ). Take an arbitrary y ∈ aF . Then y
a
∈ F . So, x ∈ µ(x, y

a
). Hence,

ax ∈ µ(ax, y) by the definition of µ.

F. Finally we prove uniqueness. Let ψ be an arbitrary WPO, IIA and COV bargaining

solution such that ψ(x, y) = µ(x, y) for all x, y ∈ Rn
++. Take F ∈ F . We prove that ψ(F ) =

{x ∈ F | x ∈ µ(x, y) for all y ∈ F}.

F1. Take an x ∈ ψ(F ). Take a y ∈ F . Then, from IIA and the fact that ψ(x, y) = µ(x, y),

it follows that x ∈ µ(x, y).

F2. Take an x ∈ F with x ∈ µ(x, y) for all y ∈ F . Since ψ(F ) is not empty, we can take

z ∈ ψ(F ). Then x ∈ µ(x, z) = ψ(x, z), and hence x ∈ ψ(F ) by IIA.
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5 Applications

In this section we discuss a few implications of our characterization. First we show that the

class of Nash bargaining solutions is characterized by WPO, IIA, COV and CON, and that the

symmetric Nash bargaining solution results if CON is replaced by SYM. Then we show how

our characterization can be used to construct new bargaining solutions that satisfy WPO, IIA

and COV.

5.1 An axiomatization of Nash bargaining solutions

As a direct application of our results we can now easily prove that the class of Nash bargaining

solutions is fully characterized by WPO, IIA, COV and CON. Notice that the α-Nash bargain-

ing solution corresponds to the choice Dα = Iα and Lα = Rα = φ. Using this observation it is

easy to prove the following theorem.

Theorem 5.1 A solution ϕ on F is a Nash bargaining solution if and only if ϕ satisfies WPO,

IIA, COV and CON.

Proof. Let ϕ be a bargaining solution that satisfies WPO, IIA, COV and CON. We show

that Dϕ = Iϕ. Take an x ∈ Iϕ. Then, for any positive λ < 1, ϕ(λx, e) = {e} by Lemma

3.1. Hence, by CON, e ∈ ϕ(x, e). Conversely, for any λ > 1, ϕ(λx, e) = {λx} by Lemma 3.1.

Hence, by CON, x ∈ ϕ(x, e).

Imposing SYM instead of CON singles out the symmetric Nash bargaining solution Nα with

αi = 1/n for every i.

Theorem 5.2 A solution ϕ on F is the symmetric Nash bargaining solution if and only if ϕ

satisfies WPO, IIA, COV and SYM.

Proof. We only prove the if-direction. Let ϕ be a bargaining solution with these properties.

Obviously, αi = 1/n for all i. Take x ∈ Iϕ. It is sufficient to prove that x ∈ Dϕ. It is not

difficult (cf. Xu and Yoshihara [11]) to find an a ∈ Rn
++ such that a = ae can be obtained from

ax by a permutation of coordinates. Consider the finite bargaining problem B consisting of

ax and all vectors obtainable from ax by a permutation of coordinates. By SYM, ϕ(B) = B.

In particular, a, ax ∈ ϕ(B). By COV and IIA, ϕ(x, e) = {x, e}, hence x ∈ Dϕ.

5.2 Discontinuous bargaining solutions

In this subsection we use the characterization in Theorems 4.1 and 4.2 to construct discon-

tinuous WPO, IIA and COV bargaining solutions. Take a non-negative vector α ∈ Rn with
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∑

i αi = 1. Since the choice Dα = Iα and Lα = Rα = φ corresponds to the α-Nash solution

Nα, by Theorem 5.1 any other choice of Dα necessarily induces a bargaining solution that is

discontinuous. We discuss two techniques to construct such discontinuous WPO, IIA and COV

bargaining solutions.

TECHNIQUE I We construct the sets Lα, Dα and Rα as follows. For 1 ≤ k ≤ n, write

Gk := {x ∈ Iα | xi = 1 for all i < k, and xk > 1}

and Sk := {x ∈ Iα | xi = 1 for all i < k, and xk < 1}.

Notice that Iα is the disjoint union of {e} and the sets Gk and Sk. Define, for l ≤ n,

Lα :=

l
⋃

k=1

Lk and Rα :=

l
⋃

k=1

Rk and Dα := {e} ∪
n
⋃

k=l+1

(Gk ∪ Sk)

where for each k ≤ l the sets Lk and Rk are chosen from {Gk, Sk} in such a way that {Lk, Rk} =

{Gk, Sk}. In other words, Lα is constructed by choosing for each k ≤ l exactly one of the sets

Gk and Sk and taking the union of these choices. Rα consists of the union of the complementary

sets, while Dα consists of the remaining sets for k > l, together with the vector e.

As an extreme example of the class of bargaining solutions thus constructed, notice that the

choice Dα = {e} corresponds to the class of single-valued WPO, IIA and COV bargaining

solutions, since all ties within Iα get broken, either in favor of x ∈ Iα (when x ∈ Lα) or in

favor of e (when x ∈ Rα). In other words, in this case for any x ∈ Iα, either ϕ(x, e) = {x} or

ϕ(x, e) = {e}. If for example Lk = Gk for all k, then the bargaining solution induced by α,

Dα = {e} and Lα and Rα is the single-valued solution that, for a bargaining problem F ∈ F ,

results from first maximizing the Nash product
∏

i xαi

i over F , and within the remaining set

consecutively maximizing x1, x2, . . . , xn until only one point remains.

More generally, the solutions constructed here are in fact those solutions that result by first

maximizing a Nash product over the initial bargaining problem F , and then consecutively

maximizing or minimizing l coordinates. We could generalize the construction presented here

even further to include iterated maximization of arbitrary Nash products. For ease of exposition

we restricted ourselves to consecutive maximization (or minimization) of single coordinates (a

special type of Nash product that corresponds to the choice where α is a unit vector).

TECHNIQUE II The second technique to construct WPO, IIA and COV bargaining solutions
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is more general. First, let Hα ⊂ Rn be defined by

Hα := {x ∈ Rn |
∑

i

αixi = 0}.

Any additive functional f :Hα → R defines an LDR decomposition as follows. Note that the

operation ρ: Iα → Hα defined by

ρ(x1, . . . , xn) := (ln(x1), . . . , ln(xn))

is an isomorphism w.r.t. addition on Hα and multiplication on Iα. Define

Lf := {x ∈ Iα | (f ◦ ρ)(x) < 0}

Df := {x ∈ Iα | (f ◦ ρ)(x) = 0}

Rf := {x ∈ Iα | (f ◦ ρ)(x) > 0}.

It is easy to check that Lf , Df and Rf form an LDR decomposition of Iα. Thus, every additive

functional f induces a WPO, IIA and COV bargaining solution ϕ(f), and two such functionals

f and g induce different solutions ϕ(f) and ϕ(g) as soon as Lf , Df , Rf is a different LDR

decomposition than Lg, Dg, Rg. Also notice that Df = Iα precisely when f ≡ 0 on Hα.

Consequently, any non-zero additive functional induces a discontinuous WPO, IIA and COV

bargaining solution.

Now we use the above observation to construct a plethora of WPO, IIA and COV bargaining

solutions as follows. Of course every linear functional f :Hα → R induces a solution ϕ(f).

However, using Zorn’s Lemma, we can construct many, many more different additive function-

als, and hence many, many more different WPO, IIA and COV bargaining solutions. First

we need some notation. Let X be a non-empty set and let ¹ be a binary relation on X that

satisfies

[1] (reflexivity) for all x ∈ X we have x ¹ x, and

[2] (transitivity) for all x, y, z ∈ X we have x ¹ z whenever both x ¹ y and y ¹ z.

We say that ¹ is a partial order on X. A subset C of X is called a chain if for any two elements

x and y of C we have at least one of the two inequalities x ¹ y and y ¹ x. A chain C of X is

said to have an upper bound if there exists an element a of X such that x ¹ a for all x in C.

An element a of X is called maximal if for any x in X the inequality a ¹ x only holds if x ¹ a

holds as well.
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Lemma 5.3 (Zorn) Suppose that every chain of X has an upper bound. Then X has a

maximal element.

Using Zorn’s lemma we can easily prove the following result, due to Hamel.

Theorem 5.4 Rn has a basis over Q. Consequently, also Hα has a basis over Q.

Proof. Let X be the set of Q-independent sets in Rn, ordered by set inclusion. Let C be a

chain in X. Then ∪B∈CB is an upper bound of C. Hence, by Zorn’s Lemma, X has a maximal

element, say B. It is straightforward to prove that B is a basis of Rn over Q. The second part

of the theorem follows from the observation that Hα is linearly isomorphic to Rn−1.

We construct a multitude of WPO, IIA and COV bargaining solutions as follows. Let B be

a basis of Hα over Q. An assignment for B is a function f :B → R. It is clear that every

assignment f :B → R uniquely extends to an additive functional f :Hα → R.5 Thus, there are

as many additive functionals on Hα as there are assignments on B. We already observed that

each additive functional induces a WPO, IIA and COV bargaining solution. Hence, we have

the following theorem.

Theorem 5.5 For every assignment f for B there exists a unique WPO, IIA and COV bar-

gaining solution ϕ(f) such that Lf = Lϕ(f), Df = Dϕ(f) and Rf = Rϕ(f). Consequently, for

any two assignments f and g, ϕ(f) 6= ϕ(g) precisely when (Lf ,Df , Rf ) 6= (Lg,Dg, Rg).

Note that ϕ(f) might still be equal to ϕ(g), even when f 6= g (for example, when g = 2f).

Nevertheless, the qualification ‘plethora’ still applies for the following reason. Notice that B is

uncountable. Further, (Lf ,Df , Rf ) is a different LDR decomposition of Iα than (Lg,Dg, Rg)

at least when there is a b ∈ B for which for example f(b) > 0 and g(b) ≤ 0 (because in that

case ρ−1(b) ∈ Rf while ρ−1(b) /∈ Rg). Thus the number of different LDR decompositions that

can be constructed this way is still at least as large as the cardinality of 3B .

6 Two player bargaining problems

The characterization of WPO, IIA and COV bargaining solutions works particularly elegant

in the case of two player bargaining problems. For any vector (α, 1−α) with 0 ≤ α ≤ 1, either

Dα = Iα, or Dα = {e}, or Dα is a strict subset of Iα. In the latter case, however, it is easy to

show, using COV and transitivity, that Dα is dense in Iα.

5Formally we should use a different symbol to indicate the additive function, but we chose to use a slight
abuse of notation here.
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The option Dα = Iα corresponds again to the α-Nash bargaining solution. For the option

Dα = {e}, we have at least the following two possibilities.

In the first possibility we let

Lα =

{

{(x1, x2) ∈ Iα | x2 < 1} if α > 0
{(x1, x2) ∈ Iα | x1 > 1} if α = 0

and Rα =

{

{(x1, x2) ∈ Iα | x2 > 1} if α > 0
{(x1, x2) ∈ Iα | x1 < 1} if α = 0.

This choice corresponds to the single-valued bargaining solution, denoted Nα,R, which for

α > 0 and a bargaining problem F ⊂ R2
++, results from first maximizing the function xα

1 x1−α
2

over F , and subsequently minimizing the second coordinate over the remaining alternatives.

For α = 0, the solution results from first maximizing the second coordinate and, subsequently,

maximizing the first coordinate.

The second possibility is to interchange the definitions of Lα and Rα in the above display. This

choice corresponds to the single-valued bargaining solution, denoted Nα,L, which for α < 1

and a bargaining problem F ⊂ R2
++, results from first maximizing the function xα

1 x1−α
2 over F ,

and subsequently minimizing the first coordinate over the remaining alternatives. For α = 1,

the solution results from first maximizing the first coordinate and, subsequently, maximizing

the second coordinate.

As discussed in the previous section, there are many more possible solutions once we use

the Axiom of Choice (AoC). The above-mentioned bargaining solutions, however, are to our

knowledge all solutions one can construct using classical tools, i.e., the Zermelo-Fraenkel axioms

of set theory (ZF). In particular, we conjecture that solutions ϕ with {e} ( Dϕ ( Iϕ cannot

be constructed without AoC. We discuss the reasons for this conjecture in somewhat more

detail. Analogous to the notion of an LDR decomposition in the multiplicative case, a PZN

decomposition of R is a partition of R into sets P , Z and N such that P , Z and N are closed

under addition, Z is not empty, x ∈ N and y ∈ Z implies that x + y ∈ N , and x ∈ P and

y ∈ Z implies that x + y ∈ P .

Theorem 6.1 There exists a WPO, IIA and COV bargaining solution ϕ:F ։ R2
++ with

{e} ( Dϕ ( Iα if and only if there exists a PZN decomposition P , Z and N of R with

{0} ( Z ( R.

Proof. If α < 1, the map π: Iα → R defined by

π(x1, x
−α
1−α

1 ) := log x1

is an isomorphism that maps LDR decompositions of Iα to PZN decompositions of R and vice

versa. In case α = 1, we can take π(1, x2) := log x2 to be the isomorphism.
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The existence of a PZN decomposition of R is conjectured to be independent of the ZF axioms

without AoC. It is for example implied by, but perhaps weaker than, the existence of a dis-

continuous additive function on R, which in turn is implied by, but perhaps weaker than, the

existence of a basis for R over Q as in Theorem 5.4. To our knowledge, Theorem 5.4 has thus

far only been proved using AoC, and it has not been shown to be an independent statement6.

Thus, in connection with the case where {e} ( Dα ( Iα, for two-person bargaining problems

we conjecture that the statement

There exists a non-single-valued and discontinuous WPO, COV and IIA bargaining solution

is independent of the ZF axioms of set theory without AoC.

7 Larger domains

So far we have only considered the domain of all n-person finite bargaining problems. In this

section we show that the characterization of the class of Nash bargaining solutions (Theorem

5.1) by WPO, COV, IIA and CON extends directly to larger domains of compact bargaining

problems (Theorem 7.1). Replacing CON by SYM results in a characterization of the symmetric

Nash bargaining solution (Theorem 7.2). We also show that for certain domains, in particular

the domain of all compact bargaining problems, the characterization of all WPO, COV and

IIA bargaining solutions does not entirely go through (Theorem 7.3). This has particular

consequences for the two-person case (Theorem 7.4).

7.1 Nash bargaining solutions

We show that the class of Nash bargaining solutions is characterized by WPO, COV, IIA and

CON on any domain D containing the domain of finite bargaining problems.7

Theorem 7.1 Let F ⊂ D ⊂ C and let ϕ:D ։ Rn
++ be a bargaining solution. Then ϕ satisfies

WPO, COV, IIA and CON if and only if ϕ is a Nash bargaining solution.

Proof. We only prove the only-if direction. Let ϕ satisfy the axioms in the theorem. Let

ϕF :F ։ Rn
++ denote the restriction of ϕ to F . Obviously ϕF also satisfies WPO, COV, IIA

and CON. Thus, by Theorem 5.1 there exists a non-zero vector α ∈ Rn
+ such that ϕ(F ) =

Nα(F ) for all F ∈ F . Take a B ∈ D. We show that ϕ(B) = Nα(B).

6It is known is that the statement ‘Every vector space has a basis’ is equivalent to AoC, and hence an
independent statement. This does not exclude that bases for specific vector spaces, such as R

n over R, can be
constructed without using AoC.

7With some slight modifications this assumption can easily be relaxed, e.g., by assuming that D contains
all finitely generated comprehensive problems.
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Take an x ∈ ϕ(B). Suppose that x /∈ Nα(B). Then there is a y ∈ B with
∏

i xαi

i <
∏

i yαi

i .

So, ϕ(x, y) = ϕF (x, y) = {y}, which contradicts IIA. Hence, x ∈ Nα(B).

Conversely, suppose that x ∈ Nα(B). Since ϕ(B) is not empty, we can take y ∈ ϕ(B). Then

also y ∈ Nα(B) by the previous argument. So
∏

i xαi

i =
∏

i yαi

i , and then ϕ(x, y) = ϕF (x, y) =

{x, y}. Hence, x ∈ ϕ(B) by IIA.

By an analogous proof based on Theorem 5.2, we obtain a characterization of the symmetric

Nash bargaining solution.

Theorem 7.2 Let F ⊂ D ⊂ C and let ϕ:D ։ Rn
++ be a bargaining solution. Then ϕ satisfies

WPO, COV, IIA and SYM if and only if ϕ is the symmetric Nash bargaining solution.

7.2 WPO, COV and IIA bargaining solutions

More surprisingly, the characterization of all WPO, COV and IIA bargaining solutions in terms

of a non-zero vector α ∈ Rn
++ and an LDR decomposition of Iϕ does not extend straightfor-

wardly. It is still true that each WPO, COV and IIA bargaining solution on a domain D
induces a non-zero vector α ∈ Rn

++ and an LDR decomposition of Iϕ. The converse, however,

no longer holds in general.

We study the question which WPO, COV and IIA bargaining solutions on F can be extended

to the domain C of all compact bargaining problems. We take C for convenience of presentation:

it is not hard to check that the results below also hold for specific smaller domains. Moreover,

C is the domain of not necessarily convex bargaining problems that is usually considered.

In order to answer this question we need the following observation. Take a non-zero vector

α ∈ Rn
+ and let Lα, Dα and Rα be an LDR decomposition of Iα.

Theorem 7.3 Suppose that Lα is dense in Iα. Then there does not exist a WPO, COV and

IIA bargaining solution ϕ: C ։ Rn
++ such that Iϕ = Iα, Lϕ = Lα, Dϕ = Dα and Rϕ = Rα.

Proof. For x, y ∈ Rn, let d(x, y) denote the Euclidean distance between x and y. For ease

of exposition we use the isomorphism ρ: Iα → Hα defined in subsection 5.2. Since Lα is dense

in Iα, it follows in particular that Rα is not empty. Take an r ∈ Rα. Since Lα is dense in Iα

we can take an l1 ∈ Lα with d(ρ(r), ρ(l1)) < 1
2 . Iteratively suppose for m ∈ N, m ≥ 2 that

l1, . . . , lm−1 have been chosen. Since r
m−1
∏

k=1

l−1
k is an element of Iα, we can take an lm ∈ Lα

such that

d

(

ρ

(

r
m−1
∏

k=1

l−1
k

)

, ρ(lm)

)

<

(

1

2

)m

.
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Write Lm :=
∏m

k=1 lm for each m ∈ N. Then, by translation invariance and preservation of

group structure by ρ,

d(ρ(r), ρ(Lm)) = d

(

ρ(r),

m
∑

k=1

ρ(lk)

)

= d

(

ρ(r) −
m−1
∑

k=1

ρ(lk), ρ(lm)

)

= d

(

ρ

(

r
m−1
∏

k=1

l−1
k

)

, ρ(lm)

)

<

(

1

2

)m

.

In particular

B := {e, r, L1, L2, . . .}

is a compact set. Thus, B ∈ C and B ⊂ Iα.

Now let ϕ: C ։ Rn
++ be a WPO, COV and IIA bargaining solution. We argue that the

assumptions Iϕ = Iα, Lϕ = Lα, Dϕ = Dα and Rϕ = Rα contradict the non-emptiness of

ϕ(B). Firstly notice that ϕ(e, L1) = {L1} because L1 = l1 is an element of Lα = Lϕ. Hence,

e /∈ ϕ(B) by IIA. Secondly notice that ϕ(e, r) = {e} because r is an element of Rα = Rϕ.

Hence, r /∈ ϕ(B) by IIA. Thirdly, for any m ∈ N, by COV we have

ϕ(Lm, Lm+1) = Lm · ϕ(e, lm+1) = Lm · {lm+1} = {Lm+1}

because lm+1 is an element of Lα = Lϕ. Hence, for any m ∈ N, Lm /∈ ϕ(B) by IIA.

Thus, none of the elements of B can be an element of ϕ(B), which contradicts the non-emptiness

of ϕ(B).

For two-person bargaining problems Theorem 7.3 results in a complete description of all WPO,

COV and IIA bargaining solutions.

Theorem 7.4 Let ϕ: C ։ R2
++ be a WPO, COV and IIA two-person bargaining solution.

Then there exists a non-zero vector α ∈ R2
+ such that ϕ either equals Nα, or ϕ is single-valued

and ϕ either equals Nα,L or Nα,R.

Proof. By Corollary 3.4 there exists a non-zero vector α ∈ R2
+ such that ϕ is a refinement

of Nα.

Suppose ϕ 6= Nα. Then Dϕ 6= Iϕ. First we show that ϕ is single-valued. Suppose, to the

contrary, that also {e} 6= Dϕ. Since n = 2, by COV and transitivity this is easily seen to imply
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that Dϕ is dense in Iϕ. Since Lϕ 6= φ, we can take l ∈ Lϕ. Then l Dϕ is a subset of Lϕ that is

dense in Iϕ. Hence, Lϕ itself is dense in Iϕ. This contradicts Theorem 7.3.

So, ϕ is single-valued, and Dϕ = {e}. Take an (x1, x2) ∈ Lϕ. Suppose α1 > 0. W.l.o.g.

x2 < 1. We show that Lϕ = {(x1, x2) ∈ Iα | x2 < 1}. If this is not the case, then there is

a (y1, y2) ∈ Lϕ with y2 > 1. But then, by COV and transitivity, Lϕ is dense in Iϕ. This

contradicts Theorem 7.3. If α1 = 0, a similar argument applies.

For n ≥ 3 the answer is less clear-cut. Using the techniques of Section 5.2, for an arbitrary

Iα ⊂ Rn
++ we shall construct an LDR decomposition which is not associated with any WPO,

COV and IIA bargaining solution on the domain of all n-person compact bargaining problems.

Let 0 6= α ∈ Rn
+ and let B be a basis of Hα (cf. Theorem 5.4). Take a fixed b∗ ∈ B. Define

the assignment f :B → R by, for all b ∈ B, f(b) = 1 if b = b∗ and f(b) = 0 otherwise. We also

write f :Hα → R for the induced additive functional.

Lemma 7.5 Df 6= Iα and Df is a dense subset of Iα.

Proof. Since ρ−1(b∗) /∈ Df , it follows that Df 6= Iα. We show that Df is dense in Iα. It

suffices to show that ker(f) := {x ∈ Hα | f(x) = 0} is dense in Hα. To this end, write the

vector
√

2b∗ ∈ Hα in terms of the basis B. So, we have a finite subset E of B such that

√
2b∗ =

∑

b∈E

q(b)b

where all coefficients q(b) are non-zero elements of Q. By rewriting if necessary (namely in case

that b∗ ∈ E), we find that there is an irrational (and hence in particular non-zero) number λ

and a finite subset F of B that does not contain b∗ and rational coefficients q(b) for each b ∈ F

such that

λb∗ =
∑

b∈F

q(b)b.

Now take an arbitrary x ∈ Hα. We show that x is an element of the closure of ker(f). Write

x =
∑

b∈G

q(x, b)b

where G is a finite subset of B and all q(x, b) are non-zero rational numbers. If G does not

contain b∗, then x ∈ ker(f) and we are done. If b∗ is an element of G, then take a q∗ ∈ Q such

that the Euclidean distance between q∗λb∗ and b∗ is smaller than ε. Then

∑

b∈G\b∗

q(x, b)b + q(x, b∗) · q∗λb∗ =
∑

b∈G\b∗

q(x, b)b + q(x, b∗) · q∗ ·
∑

b∈F

q(b)b
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is an element in ker(f) whose distance to x is smaller than q(x, b∗) · ε.

Combining Theorem 7.3 and Lemma 7.5 we obtain the following negative result.

Corollary 7.6 There does not exist a WPO, COV and IIA bargaining solution ϕ: C ։ Rn
++

such that Iϕ = Iα, Lϕ = Lf , Dϕ = Df and Rϕ = Rf .

Proof. By Lemma 7.5, Df 6= Iα and Df is dense in Iα. Therefore Lf is dense in Iα. The

result now follows from Theorem 7.3.

On the positive side we mention that for any linear functional f on Hα the associated WPO,

COV and IIA bargaining solution on F does extend to C, since the solution is obtained by

maximizing a Nash product over Iα. To obtain a full characterization of all WPO, COV and

IIA solutions on the domain C remains an open problem.

8 Further discussions

In this final section we discuss (1) the independence of the axioms, (2) the cardinality of the

set of WPO, COV and IIA solutions (3) related literature; (4) concludes.

8.1 Independence of the axioms

We show the independence of the axioms used in this paper.

Not WPO The bargaining solution ϕ:F ։ Rn
++ defined by ϕ(F ) := F for all F ∈ F

satisfies IIA, COV and CON, but not WPO.

Not IIA The bargaining solution WPO:F ։ Rn
++ defined by, for all F ∈ F ,

WPO(F ) := {x ∈ F | x < y implies that y /∈ F}

satisfies WPO, COV and CON, but not IIA.

Not COV The bargaining solution ϕ:F ։ Rn
++ defined by, for all F ∈ F ,

ϕ(F ) := {x ∈ F |
∑

i

xi ≥
∑

i

yi for all y ∈ F}

satisfies WPO, IIA and CON, but not COV.

Not CON Any bargaining solution discussed in subsection 5.2 falls in this category.

Note that the first three counterexamples can be extended to any domain D with F ⊂ D ⊂ C.

As for the continuity axiom, at least the bargaining solutions arising from technique I, as well
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as the ones arising from technique II for a linear functional, allow extension to such a domain.

Hence, the independence of the axioms holds for any domain D with F ⊂ D ⊂ C.

8.2 The number of WPO, COV and IIA solutions

One might think that, on the domain F , every WPO, COV and IIA bargaining solution can

be written as an iterated maximization of Nash products, similar to technique I in subsection

5.2. This, however, cannot be true, since the cardinality of the set of all WPO, COV and IIA

bargaining solutions is, as we have seen, at least as large as the cardinality of 3B , where B is a

basis of Rn over Q, while the set of all bargaining solutions that are an iterated maximization

of Nash products has the cardinality of Rn. Now, B necessarily has the cardinality of Rn,

while, by the Cantor argument, 3B has a higher cardinality than B.

Finally, it may still be true that bargaining solutions that are an iterated maximization or

minimization of Nash products are indeed the only bargaining solutions that allow an extension

to the class C of all compact bargaining solutions.

8.3 Related literature

Most of the results in the literature concerning Nash bargaining solutions on non-convex bar-

gaining problems follow from our basic results (Theorem 3.3, Corollary 3.4, Theorems 4.1 and

4.2) and their applications in Sections 5, 6, and 7.

Kaneko [4] characterizes the symmetric Nash (multi-valued) bargaining solution on the domain

of all compact n-person bargaining problems by the axioms PO, IIA, COV, SYM, and CON. A

recent improvement of this result is obtained by Xu and Yoshihara [11], who are able to drop

CON from this set of axioms. Both results follow from our Theorem 7.2, which, in turn, is a

relatively straightforward consequence of the results in Sections 3 and 4.

Mariotti [5] characterizes the two-person symmetric Nash bargaining solution on the domain of

finite bargaining problems by WPO, COV, SYM, and an axiom called ‘Pareto monotonicity’,

which is implied by WPO and IIA. Hence, this characterization follows from Theorem 5.2.

Theorem 4.3 in [5] about the symmetric two-person Nash bargaining solution on a larger

domain follows from our Theorem 7.2. Observation 5.3.1 in [5] about the nonexistence of a

two-person symmetric single-valued solution with the usual properties on a domain of compact

connected problems is a particular consequence of Theorem 7.4.

Zhou [12] shows that, on the domain of compact n-person bargaining problems, any single-

valued solution satisfying COV, IIA, and strict individual rationality refines some Nash bar-
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gaining solution. As in Roth [9] it can be shown that these conditions imply WPO, and thus

Zhou’s result follows from our basic results in Section 3. Moreover, for the two-person case

Theorem 7.4 shows that such single-valued selections are restricted to taking either the most

left of the most right point within the Nash bargaining solution. Also for n > 2 the choice of

selection is most likely rather restricted, although it is not yet clear how exactly.

To our knowledge the papers mentioned so far are the ones that are most directly related

to our work. Herrero [3] and Maschler et al. [7] consider the symmetric Nash bargaining

solution on domains of compact bargaining problems from a more geometrical point of view,

and complement it by a noncooperative game ([3]) or by a dynamic system ([7]). Conley and

Wilkie [1] and Mariotti [6] study a different single-valued extension of the symmetric Nash

bargaining solution to non-convex bargaining problems.

8.4 Conclusion

This paper has investigated the consequences of WPO, COV and IIA for bargaining solutions

on the domain of finite bargaining problems and on larger domains. A few open problems

remain, such as (1) an exact description of all solutions on the domain of compact bargaining

problems for n > 2, and (2) the necessity of the Axiom of Choice to derive (most of the)

discontinuous solutions. Nevertheless, the results obtained are quite comprehensive and – to

our knowledge – imply most of what is known in the literature.

A Appendix: basic facts for the generalized indifference

curve

Throughout, let ϕ:F → Rn
++ be a bargaining solution that satisfies WPO, IIA and COV.

Clearly, by WPO, x itself is an element of Iϕ(x) and each ray emanating from the origin into

Rn
++ intersects the generalized indifference curve at most once. We show that each ray also

intersects this curve at least once.

Lemma A.1 Let x, y ∈ Rn
++. Then 0 < λ(x, y) < ∞.

Proof. Because all coordinates of x are strictly positive, by WPO and the non-emptiness of

ϕ(x, λy) there exists a µ > 0 such that ϕ(x, λy) = {x} for all 0 < λ < µ. Hence, λ(x, y) > 0.

Similarly, because all coordinates of y are positive, there is a λ > 0 such that ϕ(x, λy) = {λy}.
Hence λ(x, y) < ∞.
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We need a few more facts about the generalized indifference curve. First, generalized indiffer-

ence curves partition Rn
++. Another way of saying this is that generalized indifference curves

are the equivalence classes of an equivalence relation.

Lemma A.2 Let x, y ∈ Rn
++ such that y ∈ Iϕ(x). Then Iϕ(x) = Iϕ(y).

Proof. (a) Suppose that z ∈ Iϕ(y). We show that z ∈ Iϕ(x). Take λ > 0.

(a1) Suppose λ > 1. Then ϕ(y,
√

λz) = {
√

λz} by Lemma 3.1. So, by COV, ϕ(
√

λy, λz) =

{λz}. However, since y ∈ Iϕ(x), ϕ(x,
√

λy) = {
√

λy}. Hence, ϕ(x, λz) = {λz} by transitivity.

(a2) Suppose λ < 1. Thenϕ(y,
√

λz) = {y} by Lemma 3.1. So, by COV, ϕ(
√

λy, λz) =

{
√

λy}. However, since y ∈ Iϕ(x), ϕ(x,
√

λy) = {x}. Hence, ϕ(x, λz) = {x} by transitivity.

(b) By (a1) and (a2), λ(x, z) = 1 and hence Iϕ(y) ⊂ Iϕ(x). We show that x ∈ Iϕ(y). Take

λ > 0.

(b1) Suppose λ > 1. Then, since y ∈ Iϕ(x), ϕ( 1
λ
y, x) = {x}. Hence, ϕ(y, λx) = {λx} by

COV.

(b2) Suppose λ < 1. Then, since y ∈ Iϕ(x), ϕ( 1
λ
y, x) = { 1

λ
y}. Hence, ϕ(y, λx) = {y} by

COV.

By (b1) and (b2), λ(y, x) = 1 and x ∈ Iϕ(y).

Lemma A.3 For every x ∈ Rn
++, Iϕ(x) is closed.

Proof. Let (ym)m∈N be a sequence in Iϕ(x) that converges to y.

(a) Take λ > 1. Since ym → y there must be a k ∈ N such that yk < λy. Then there exists

µ > 1 such that µyk < λy also holds. Now, since ϕ(x, µyk) = {µyk} and ϕ(µyk, λy) = {λy},
we have ϕ(x, λy) = {λy} by transitivity.

(b) Take λ < 1. Since ym → y there must be a k ∈ N such that yk > λy. Then there exists

µ < 1 such that µyk > λy also holds. Now, since ϕ(x, µyk) = {x} and ϕ(µyk, λy) = {µyk}, we

have ϕ(x, λy) = {x} by transitivity.

From (a) and (b) it follows that λ(x, y) = 1 and hence y ∈ Iϕ(x).

Lemma A.4 Let a ∈ Rn
++ and y ∈ Iϕ(x). Then ay ∈ Iϕ(ax).

Proof. Follows immediately from COV.

Lemma A.5 Let a ∈ Rn
++. Suppose that ax ∈ Iϕ(x). Then aqx ∈ Iϕ(x) for all q ∈ Q.
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Proof. Take a ∈ Rn
++ and q ∈ Q. Suppose that ax ∈ Iϕ(x).

(a) First we show that akx ∈ Iϕ(x) for all k ∈ N. Since x, ax ∈ Iϕ(x), we know that this is

true for k = 0, 1. Suppose akx ∈ Iϕ(x) for 0 ≤ k ≤ l. Since Iϕ(ax) = Iϕ(x) by Lemma A.2, we

have

al+1x = a · alx ∈ Iϕ(ax) = Iϕ(x).

by Lemma A.4. Hence, akx ∈ I(x) for all k ∈ N.

(b) Next, take a k ∈ N, k 6= 0. We show that a
1
k x ∈ Iϕ(x).

(b1) Take λ > 1. Suppose that x ∈ ϕ(x, λa
1
k x). Then, because of COV, multiplication by

λla
l
k shows that

λla
l
k x ∈ ϕ(λla

l
k x, λl+1a

l+1

k x)

for all 0 ≤ l ≤ k − 1. So, iterated application of transitivity yields that x ∈ ϕ(x, λkax). This

contradicts the assumption that ax ∈ Iϕ(x). Hence, ϕ(x, λa
1
k x) = {λa

1
k x}.

(b2) Take λ < 1. Suppose that λa
1
k x ∈ ϕ(x, λa

1
k x). Then, because of COV, multiplication by

λla
l
k shows that

λl+1a
l+1

k x ∈ ϕ(λla
l
k x, λl+1a

l+1

k x)

for all 0 ≤ l ≤ k − 1. So, λkax ∈ ϕ(x, λkax) by transitivity. This contradicts the assumption

that ax ∈ Iϕ(x). Hence, ϕ(x, λa
1
k x) = {x}.

From (b1) and (b2) it follows that a
1
k x ∈ Iϕ(x).

(c) Since ax ∈ Iϕ(x), we know that x ∈ Iϕ(ax) by Lemma A.2 . Hence, by Lemma A.4, also

a−1x ∈ Iϕ(a−1ax) = Iϕ(x).

From (a), (b) and (c) it follows that aqx ∈ Iϕ(x).
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