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Abstract

Within a formal epistemic model for simultaneous-move games, we present the following
conditions: (1) belief in the opponents’ rationality (BOR), stating that a player should believe
that every opponent chooses an optimal strategy, (2) self-referential beliefs (SRB), stating
that a player believes that his opponents hold correct beliefs about his own beliefs, (3)
projective beliefs (PB), stating that i believes that j’s belief about k’s choice is the same
as i’s belief about k’s choice, and (4) conditionally independent beliefs (CIB), stating that a
player believes that opponents’ types choose their strategies independently. We show that,
if a player satisfies BOR, SRB and CIB, and believes that every opponent satisfies BOR,
SRB, PB and CIB, then he will choose a Nash equilibrium strategy (that is, a strategy that
is optimal in some Nash equilibrium). We thus provide a set of sufficient conditions for
Nash equilibrium strategy choice. We also show that none of these seven conditions can be
dropped.
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1. Introduction

Since its introduction by John Nash (1951), the concept of Nash equilibrium has played an essen-
tial role in game theory and its various applications. It is therefore natural to look for reasonable
conditions under which players may be expected to choose according to Nash equilibrium. Such
conditions have been provided in many different settings. In learning theory one assumes that
players play the game repeatedly, and one can find reasonable classes of learning rules that even-
tually lead players to choose according to some Nash equilibrium. Similarly, evolutionary game
theory studies classes of replicator dynamics in the repeated game that converge to (special types
of) Nash equilibria in the long run. If the game is to be played only once, one could think of a
situation in which a mediator publicly announces the mixed strategy profile to the players, and
recommends each player to play his strategy in this profile. Then, players may only be expected
to follow their recommendation if the mixed strategy profile is a Nash equilibrium. One can also
formulate sufficient conditions for Nash equilibrium in a static setting without mediators. See,
for instance, Brandenburger and Dekel (1987), Aumann and Brandenburger (1995) and Asheim
(2006). A key condition in each of these papers is that a player knows, or has a correct belief
about, his opponents’ beliefs about the other players’ strategy choices.

A common feature of each of the models above is that it requires, either explicitly or im-
plicitly, some sort of communication between players. In the learning models and evolutionary
models players communicate by the actions they choose in the repeated game. It is this type
of communication that allows them to converge to a Nash equilibrium in the long run. In the
static models where players are assumed to have correct beliefs about the other players’ beliefs,
there seems to be a need for ex-ante communication between players in which they report their
beliefs to others. Otherwise, there is no reason to expect that players should be right about the
opponents’ beliefs, even if common belief in rationality is imposed.

In this paper, we investigate whether we can find reasonable sufficient conditions for Nash
equilibrium in static settings where there is no communication between players. In such a setting,
a player can base his strategy choice solely upon his own beliefs about the opponents’ choices
and his own beliefs about the opponents’ beliefs, since before making his decision he receives no
information about what opponents do or believe. It thus makes sense to analyze the game from
a single player’s perspective, and see whether we can impose sensible conditions on this player’s
beliefs that lead to Nash equilibrium behavior.

As an illustration of our objective, consider the game in Figure 1, which is taken from
Myerson (1991, page 94). Suppose that the game is played only once, and that player 1 (the row
player) and player 2 (the column player) cannot communicate to each other. We will analyze this
game completely from player 1’s perspective. It can be shown that common belief in rationality
does not exclude any of player 1’s strategies, but that Nash equilibrium singles out strategy b.
Consider, namely, a scenario in which

1. player 1 believes that player 2 chooses d,
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d e f

a 3, 0 0, 2 0, 3

b 2, 0 1, 1 2, 0

c 0, 3 0, 2 3, 0

Figure 1: Rationalizability versus Nash equilibrium

2. player 1 believes that player 2 believes that player 1 chooses c,

3. player 1 believes that player 2 believes that player 1 believes that player 2 chooses f,

4. player 1 believes that player 2 believes that player 1 believes that player 2 believes that
player 1 chooses a,

5. player 1 believes that player 2 believes that player 1 believes that player 2 believes that
player 1 believes that player 2 chooses d,

and so on. Then, player 1 respects common belief in rationality, since he believes that player
2 chooses rationally, believes that player 2 believes that player 1 chooses rationally, and so on.
Since in this scenario it is rational for player 1 to choose a, we must allow for the strategy a if
we only impose common belief in rationality. Since strategies a and c play similar roles in this
game, one can construct a similar scenario that leads to strategy choice c. Finally, strategy b
can be justified by a much simpler scenario in which

1. player 1 believes that player 2 chooses e,

2. player 1 believes that player 2 believes that player 1 chooses b,

3. player 1 believes that player 2 believes that player 1 believes that player 2 chooses e,

and so on. Summarizing, every strategy for player 1 can be justified by a belief hierarchy for
player 1 that respects common belief in rationality. More generally, Tan andWerlang (1988) have
shown that the strategies which can be chosen rationally in two-player games when imposing only
common belief in rationality are exactly the rationalizable strategies in the sense of Bernheim
(1984) and Pearce (1984). 1

On the other hand, it can be shown that Nash equilibrium uniquely selects the strategy b
for player 1. In order to see this, it is helpful to consider Figure 2 which depicts the players’
best reponse correspondences in this game. The first triangle should be read as follows. Every
point in the triangle represents a probabilistic belief of player 1 about player 2’s strategies. The

1For more than two players, one needs to impose that beliefs about different opponents be stochastically
independent in order to obtain the equivalence with rationalizability.
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Figure 2: Best reponse correspondences for the game in Figure 1

three areas in this triangle represent the sets of beliefs for which the strategies a, b and c are
optimal, respectively. Similarly for the second triangle. Consider a Nash equilibrium (µ1, µ2)
of the game, where µi is a probability distribution over i’s strategies for i = 1, 2. We show that
µ1 must assign probability 1 to b, and µ2 must assign probability 1 to e. Suppose, contrary
to what we want to show, that µ1 assigns positive probability to a. Then, since (µ1, µ2) is a
Nash equilibrium, a must be optimal for player 1 against µ2. By Figure 2, µ2 must then assign
positive probability to d, and hence d must be optimal against µ1. By Figure 2, µ1 must then
assign positive probability to c, and hence c must be optimal against µ2. So, both a and c should
be optimal against µ2. However, from the first triangle it is clear that a and c cannot both be
optimal against µ2, and hence we have a contradiction. By symmetry, one can similarly prove
that µ1 cannot assign positive probability to c, and that µ2 cannot assign positive probability to
d or f. Hence, the only strategy that can rationally be chosen by player 1 in a Nash equilibrium
is b.

Now, let us compare the scenario above which led to the non-Nash equilibrium choice a
with the simpler scenario that led to the Nash equilibrium choice b. One fundamental difference
between both scenarios is that the first assumes that player 1 believes that player 2 is wrong
about 1’s belief, whereas the second scenario assumes that player 1 believes that player 2 is right
about 1’s belief. Namely, in the first scenario player 1 believes that player 2 chooses d, but he
believes that player 2 believes that he believes that player 2 chooses f, and not d.

Even stronger, the choice a can only be justified by scenarios in which player 1 believes that
player 2 is wrong about 1’s belief. In order to see this, assume that strategy a would be optimal
for player 1. Then, player 1 must believe with positive probability that player 2 chooses d. In
turn, player 2 can only rationally choose d if he believes with positive probability that player
1 chooses c. Hence, player 1 must believe with positive probability that player 2 believes with
positive probability that player 1 chooses c. However, there is no belief for player 1 for which
both a and c are rational, and hence player 1 must believe with positive probability that player
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2 believes with positive probability that player 1’s belief is different from his true belief.
Say that a belief hierarchy βi for player i has self-referential beliefs if βi believes that every

opponent j believes that i’s belief hierarchy is βi. For the example in Figure 1, we may thus
conclude that the difference between Nash equilibrium choices and rationalizable non-Nash equi-
librium choices is that the former can be justified by a self-referential belief hierarchy, whereas
the latter cannot. The question is whether this is true generally. In Theorem 4.5 we show that
this is true for the class of two-player games. More precisely, we show in Theorem 4.5 that in
every two-player game, a player who (1) believes in the opponent’s rationality (BOR), (2) has
self-referential beliefs (SRB), (3) believes that his opponent BOR, and (4) believes that his op-
ponent has SRB, must choose a Nash equilibrium strategy. Here, by a Nash equilibrium strategy
we mean a strategy that is optimal in some Nash equilibrium. Be careful: every strategy that is
assigned positive probability in some Nash equilibrium is a Nash equilibrium strategy, but not
vice versa. There are Nash equilibrium strategies that are not assigned positive probability in
any Nash equilibrium (see the example in Figure 3).

The four conditions above are no longer enough if we turn to more than two players. Sim-
ilarly to other foundations for Nash equilibrium in the literature, we encounter the following
two problems for more than two players: (a) We must guarantee that player i’s belief about
opponent j’s strategy choice should be stochastically independent from i’s belief about opponent
k’s strategy choice, and (b) we must guarantee that player i believes that opponents j and k
hold the same belief about player l’s strategy choice. In this paper, we guarantee these events
by imposing conditionally independent beliefs and projective beliefs. Conditionally independent
beliefs (CIB) is taken from Brandenburger and Friedenberg (2006), and says that for any given
profile of belief hierarchies for i’s opponents, player i’s belief about his opponents’ strategy
choices conditional on this profile of belief hierarchies should be uncorrelated. In other words,
any correlation in i’s belief about his opponents’ strategy choices should be due to correlation in
his belief about the opponents’ belief hierarchies. The idea behind this condition is that players
with fixed belief hierarchies are assumed to choose their strategies independently. Projective
beliefs (PB), in turn, states that player i believes that j’s belief about player k is the same as his
own belief about player k. That is, player i projects his own belief about player k on player j.
In Theorem 4.5 we show that for three players or more, a player who (1) BOR, (2) has SRB, (3)
believes that his opponents BOR, (4) believes that his opponents have SRB, and, in addition, (5)
has CIB, (6) believes that his opponents have PB, and (7) believes that his opponents have CIB,
must choose a Nash equilibrium strategy. At this stage, one may wonder why we did not impose
that the player himself has PB. The reason is that this property follows from the assumptions
that the player has SRB and believes that every opponent has PB (see Lemma 4.2).

The outline of this paper is as follows: In Section 2 we present our epistemic model. Section
3 formally introduces the notions of BOR, SRB, PB and CIB. In Section 4 we show that every
player who satisfies the conditions (1) - (7) above must choose a Nash equilibrium strategy. In
Theorem 4.6 we prove the converse of this result, namely that every Nash equilibrium strategy
can rationally be chosen by a player who satisfies these conditions (1) - (7). In Section 5 we
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prove that none of these seven conditions can be dropped in Theorem 4.5. In particular, this
implies that the seven conditions are logically independent. In Section 6 we compare our result
with other foundations of Nash equilibrium provided in Aumann and Brandenburger (1995),
Asheim (2006) and Brandenburger and Dekel (1987).

2. Epistemic Model

Let I be a finite set of players. A finite game is a tuple Γ = (Si, ui)i∈I , where Si is the finite
set of strategies for player i, and ui : ×j∈ISj → R is player i’s utility function. We shall assume
throughout that a player believes that the utility functions are as specified by Γ, that a player
believes that all players believe this, and so on. For every finite set X, let ∆(X) denote the set
of probability distributions on X.

Definition 2.1. (Epistemic model) A finite epistemic model for the game Γ is a tuple

M = (Ti, βi)i∈I

where, for every player i, Ti is a finite set of types, and βi is a one-to-one function from Ti to
∆(S−i × T−i).

Here, S−i is a short way to write ×j 6=iSj , and similarly for T−i. The interpretation of βi is
that for every type ti ∈ Ti, the image βi(ti) denotes ti’s probabilistic belief about the opponents’
strategy choices and types. For every event E ⊆ S−i × T−i for player i and every number
p ∈ [0, 1], we say that type ti believes the event E with probability p if βi(ti)(E) = p. We say
that ti believes E if βi(ti)(E) = 1. For instance, we say that ti believes that player j has type tj
if ti assigns probability 1 to the set of strategy-type profiles in S−i × T−i where player j’s type
is tj .

3. Restrictions on Beliefs

In this section we discuss four conditions that one may impose on a player’s beliefs: belief in the
opponents’ rationality, self-referential beliefs, projective beliefs and conditionally independent
beliefs. We first need some additional terminology. For every type ti and strategy profile
s−i ∈ S−i, we denote by βi(ti)(s−i) the probability that the belief βi(ti) assigns to the set
{s−i} × T−i. For every strategy si ∈ Si, we denote by

ui(si, ti) :=
X

s−i∈S−i

βi(ti)(s−i) ui(si, s−i)

the expected utility for type ti of choosing strategy si. We say that strategy si is rational for
type ti if ui(si, ti) ≥ ui(s

0
i, ti) for every s

0
i ∈ Si.

6



Definition 3.1. (Belief in the opponents’ rationality) Type ti is said to believe in the opponents’
rationality if for every opponent j, and every strategy-type pair (sj , tj) ∈ Sj × Tj to which ti
assigns positive probability, the strategy sj is rational for type tj .

Definition 3.2. (Self-referential beliefs) Type ti is said to have self-referential beliefs if for every
p ∈ [0, 1] and every event E ⊆ S−i × T−i which ti believes with probability p, type ti believes
that all opponents believe that player i believes E with probability p.

Hence, a player with self-referential beliefs thinks that his opponents hold correct beliefs
about his own beliefs. Now, let j be an opponent of i, and let Ej ⊆ Sj × Tj be an event about
player j. We say that ti believes Ej with probability p if ti assigns probability p to the event

Ej × (×k 6=i,j(Sk × Tk)).

Definition 3.3. (Projective beliefs) Type ti is said to have projective beliefs if for every pair of
opponents j, k and every event Ek ⊆ Sk × Tk about player k: if ti believes Ek with probability
p, then ti believes that j believes Ek with probability p.

Intuitively, a player with projective beliefs projects his belief about an opponent on his
other opponents. Of course, this condition only imposes restrictions if there are at least three
players. Our last condition, conditionally independent beliefs, is taken from Brandenburger
and Friedenberg (2006). It states that for every given profile t−i of opponents’ types which is
deemed possible by type ti, his belief about the opponents’ strategies conditional on t−i should
be uncorrelated. In other words, any correlation in ti’s belief about the opponents’ strategy
choices should come from correlation in his belief about the opponents’ types. The idea behind
this condition is that types are assumed to choose their strategies independently since pre-play
communication is not allowed. However, player i’s belief about j’s choice may still be dependent
on his belief about k’s choice if his belief about j’s type is dependent on his belief about k’s
type. To formalize this condition, we need some terminology. Let t−i be a profile of opponents’
types to which ti assigns positive probability, and let s−i be a profile of opponents’ strategies.
By

βi(ti)(s−i|t−i) :=
βi(ti)(s−i, t−i)

βi(ti)(t−i)

we denote the probability that ti assigns to the strategy profile s−i, conditional on the event that
the opponents’ types are given by t−i. Here, βi(ti)(t−i) denotes the probability that ti assigns
to the event that the opponents’ types are t−i. Similarly, for every opponent j, every type tj to
which ti assigns positive probability, and every strategy sj ∈ Sj , we denote by

βi(ti)(sj |tj) :=
βi(ti)(sj , tj)

βi(ti)(tj)
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the probability that ti assigns to strategy choice sj , conditional on the event that j’s type is tj .
Here, βi(ti)(sj , tj) denotes the probability that ti assigns to the event that j chooses sj and has
type tj , whereas βi(ti)(tj) is the probability that ti assigns to the event that j has type tj .

Definition 3.4. (Conditionally independent beliefs) Type ti is said to have conditionally inde-
pendent beliefs if for every t−i ∈ T−i with βi(ti)(t−i) > 0, and every s−i ∈ S−i:

βi(ti)(s−i|t−i) =
Q

j 6=i βi(ti)(sj |tj).

In fact, this condition combines the restrictions of conditional independence and sufficiency
in Brandenburger and Friedenberg (2006). In their model, sufficiency states that player i’s belief
about player j’s strategy choice should be independent of his belief about some other opponent’s
type. Obviously, our notion of conditionally independent beliefs satisfies this additional require-
ment. It should be clear that conditionally independent beliefs only imposes restrictions if there
are at least three players.

As an abbreviation, we denote by BOR, SRB, PB and CIB the events that types believe in the
opponents’ rationality, have self-referential beliefs, have projective beliefs, and have conditionally
independent beliefs, respectively. We say that type ti believes that every opponent satisfies BOR
if βi(ti) only assigns positive probability to opponents’ types that satisfy BOR. Similarly, we
define the events that ti believes that every opponent satisfies SRB, PB and CIB.

4. Relation with Nash Equilibrium

In this section we show that every type which satisfies BOR, SRB, and CIB, believes that
every opponent satisfies BOR, SRB, PB and CIB, and chooses rationally, must choose a Nash
equilibrium strategy. A profile (µi)i∈I of probability distributions µi ∈ ∆(Si) is called a Nash
equilibrium for the game Γ if, for every player i, µi(si) > 0 only if ui(si, µ−i) ≥ ui(s

0
i, µ−i) for

every s0i ∈ Si. Here,
ui(si, µ−i) :=

X
s−i∈S−i

Y
j 6=i

µj(sj) ui(si, s−i)

denotes the expected utility for player i of choosing si if his belief about the opponents’ strategies
is given by µ−i. A strategy si is called a Nash equilibrium strategy for Γ if there is a Nash
equilibrium (µi)i∈I for Γ such that ui(si, µ−i) ≥ ui(s

0
i, µ−i) for every s0i ∈ Si. Note that every

strategy that is assigned positive probability in some Nash equilibrium is also a Nash equilibrium
strategy, but the converse is not true. Consider, for instance, the game in Figure 3. In this game,
(b, 12c +

1
2d) is a Nash equilibrium. Since a is optimal against

1
2c +

1
2d, it follows that a is a

Nash equilibrium strategy. However, there is no Nash equilibrium (µ1, µ2) in which µ1 assigns
positive probability to a.

Before we prove our theorem on the relation with Nash equilibrium strategies, we first derive
some implications of SRB, PB, CIB, and belief in these events. In each of these lemmas, we
assume thatM = (Ti, βi)i∈I is a finite epistemic model for a finite game Γ.
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c d

a 2, 0 0, 2

b 1, 1 1, 1

Figure 3: Not every Nash equilibrium strategy is assigned positive probability in a Nash
equilibrium

Lemma 4.1. Let ti ∈ Ti be a type with SRB. Then, ti believes that every opponent believes
that i’s type is ti.

Proof. Choose an arbitrary event E ⊆ S−i × T−i for player i, and assume that ti believes
E with probability p. By SRB, ti believes that every opponent believes that i believes E with
probability p. Since this holds for every E, and since the function βi : Ti → ∆(S−i×T−i) in the
epistemic model is one-to-one, ti believes that every opponent believes that i’s type is ti. ¥

Lemma 4.2. Let ti ∈ Ti be a type with SRB which believes that every opponent has PB. Then,
ti has PB.

Proof. Suppose that j and k are two different opponents of player i. Let Ek ⊆ Sk × Tk be an
event which ti believes with probability p, and let tj ∈ Tj be a type to which ti assigns positive
probability. We show that tj believes Ek with probability p as well. Since ti has SRB, we know
from Lemma 4.1 that tj believes that i’s type is ti. Since ti believes that j has PB, it must be
the case that tj has PB, and hence tj ’s belief about player k must be the same as ti’s belief
about player k. Consequently, tj must believe Ek with probability p.We may thus conclude that
ti has PB. ¥

Lemma 4.3. Let ti be a type with SRB which believes that every opponent has PB and SRB.
Then, for every opponent j there is some type tj ∈ Tj such that (1) ti believes for every j 6= i
that j’s type is tj , (2) for every j 6= i, type tj believes that i’s type is ti, and (3) for every
j, k 6= i, type tj believes that k’s type is tk.

Proof. Suppose that j 6= i, and that ti assigns positive probability to type tj ∈ Tj . By Lemma
4.1 we know that ti believes that j believes that i’s type is ti. Hence, tj must believe that i’s
type is ti. Since ti believes that j has SRB, type tj must have SRB. By applying Lemma 4.1 to
tj , we may conclude that tj believes that i believes that j’s type is tj . Since we have seen that
tj believes that i’s type is ti, it follows that ti must believe that j’s type is tj . Hence, we have
shown properties (1) and (2). It remains to show (3). By Lemma 4.2 we know that ti has PB.
Suppose that j, k 6= i. Since ti believes that k’s type is tk, and since ti has PB, it follows that ti
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believes that j believes that k’s type is tk. Since ti believes that j’s type is tj , type tj believes
that k’s type is tk. This completes the proof. ¥

Lemma 4.4. Let ti ∈ Ti be a type that has SRB and CIB, and believes that every opponent has
SRB, PB and CIB. Then, there is a probability distribution µi ∈ ∆(Si), and for every opponent
j a probability distribution µj ∈ ∆(Sj) such that (1) ti believes that every opponents’ strategy
profile (sj)j 6=i is chosen with probability

Q
j 6=i µj(sj), (2) for every j 6= i, type ti believes that j

believes that every opponents’ strategy profile (sk)k 6=j is chosen with probability
Q

k 6=j µk(sk),
and (3) for every j 6= i, type ti believes that j believes that i believes that every opponents’
strategy profile (sj)j 6=i is chosen with probability

Q
j 6=i µj(sj).

Proof. By Lemma 4.3, there is for every opponent j some type tj ∈ Tj such that (1) ti believes
for every j 6= i that j’s type is tj , (2) for every j 6= i, type tj believes that i’s type is ti, and
(3) for every j, k 6= i, type tj believes that k’s type is tk. Let t−i = (tj)j 6=i. Since ti has CIB, it
holds that

βi(ti)(s−i|t−i) =
Q

j 6=i βi(ti)(sj |tj) (4.1)

for every s−i ∈ S−i. Now, define µj(sj) := βi(ti)(sj |tj) for every j 6= i and every sj ∈ Sj . Then,
by (4.1) and the fact that ti believes that every opponent j has type tj , type ti believes that
every opponents’ strategy profile s−i is chosen with probability

Q
j 6=i µj(sj).We have thus shown

property (1) of this lemma.
Now, choose some fixed opponent j 6= i. Since ti believes that j has CIB, and ti believes that

j’s type is tj , type tj has CIB. Hence,

βj(tj)(s−j |t−j) =
Q

k 6=j βj(tj)(sk|tk) (4.2)

for every opponents’ strategy profile s−j . Choose some arbitrary player k /∈ {i, j}. Since, by
Lemma 4.2, ti has PB and believes that j’s type is tj , type ti’s belief about k’s strategy choice
must be equal to tj ’s belief about k’s strategy choice, and hence βj(tj)(sk|tk) = βi(ti)(sk|tk) =
µk(sk) for every sk ∈ Sk. Define µi(si) := βj(tj)(si|ti) for every si ∈ Si. Together with (4.2),
we may then conclude that tj believes that every opponents’ strategy profile s−j is chosen with
probability

Q
k 6=j µk(sk). So, ti believes that j believes that every opponents’ strategy profile

s−j is chosen with probability
Q

k 6=j µk(sk).
Finally, choose some arbitrary player k /∈ {i, j}. Since ti believes that k has CIB, and believes

that k’s type is tk, type tk must have CIB. Hence,

βk(tk)(s−k|t−k) =
Q

l 6=k βk(tk)(sl|tl) (4.3)

for every s−k ∈ S−k. Let l /∈ {i, k}. By Lemma 4.2 we know that ti has PB. Since ti has PB,
and believes that k’s type is tk, type ti’s belief about l’s strategy choice must be equal to k’s
belief about l’s strategy choice, and hence βk(tk)(sl|tl) = βi(ti)(sl|tl) = µl(sl) for every sl ∈ Sl.
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Since ti believes that j has PB, and believes that j has type tj , type tj must have PB. Hence,
tj ’s belief about i’s strategy choice must be equal to k’s belief about i’s strategy choice, which
implies that βk(tk)(si|ti) = βj(tj)(si|ti) = µi(si). Combined with (4.3) we obtain that tk believes
that every opponents’ strategy profile s−k is chosen with probability

Q
l 6=k µl(sl). So, ti believes

that every k 6= j believes that every opponents’ strategy profile s−k is chosen with probabilityQ
l 6=k µl(sl). Hence, we have shown property (2).
Since we already know from Lemma 4.1 that ti believes that every opponent j believes that

i’s type is ti, property (3) follows immediately. This completes the proof. ¥

We are now ready to prove our main theorem.

Theorem 4.5. LetM = (Ti, βi)i∈I be a finite epistemic model for a finite game Γ. Let ti ∈ Ti
be a type that satisfies BOR, SRB and CIB, and believes that every opponent satisfies BOR,
SRB, PB and CIB. Then, every strategy that is rational for ti is a Nash equilibrium strategy
for Γ.

Proof. Let ti be a type that satisfies BOR, SRB and CIB, and believes that every opponent
satisfies BOR, SRB, PB and CIB. By Lemma 4.4, there is a probability distribution µi ∈ ∆(Si),
and for every opponent j a probability distribution µj ∈ ∆(Sj) such that (1) ti believes that
every opponents’ strategy profile (sj)j 6=i is chosen with probability

Q
j 6=i µj(sj), (2) for every

j 6= i, type ti believes that j believes that every opponents’ strategy profile (sk)k 6=j is chosen
with probability

Q
k 6=j µk(sk), and (3) for every j 6= i, type ti believes that j believes that i

believes that every opponents’ strategy profile (sj)j 6=i is chosen with probability
Q

j 6=i µj(sj).
We show that (µj)j∈I is a Nash equilibrium.

Suppose first that j 6= i and that µj(sj) > 0 for some sj ∈ Sj . Since ti believes in j’s
rationality, and, by (2), believes that j’s belief about the opponents’ strategy choices is given
by µ−j = (µk)k 6=j , it follows that sj must be optimal against µ−j . Finally, let µi(si) > 0 for
some si ∈ Si. Choose some arbitrary opponent j. Since, by (2), ti’s belief about j’s belief about
the opponents’ strategy choice is given by µ−j , type ti believes that j believes that i chooses si
with positive probability. Since ti believes that j believes in i’s rationality, and since, by (3),
ti’s belief about j’s belief about i’s belief about the opponents’ strategy choices is given by µ−i,
it follows that si must be optimal against µ−i. Hence, (µj)j∈I is a Nash equilibrium.

Now, choose some strategy si that is rational for ti. Since, by (1), ti’s belief about the
opponents’ strategy choices is µ−i, strategy si must be optimal against µ−i. As (µi, µ−i) is a
Nash equilibrium, si is a Nash equilibrium strategy. This completes the proof. ¥

Our last result shows that every Nash equilibrium strategy can be chosen rationally by a
type that satisfies BOR, SRB and CIB, and believes that his opponents satisfy BOR, SRB, PB
and CIB. In particular, the combination of these seven events is shown to be possible.
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Theorem 4.6. Let Γ be a finite game, and let si be a Nash equilibrium strategy for player i
in Γ. Then, there exists a finite epistemic modelM = (Ti, βi)i∈I for Γ, and a type ti ∈ Ti, such
that si is rational for ti, type ti satisfies BOR, SRB, and CIB, and believes that every opponent
satisfies BOR, SRB, PB and CIB.

Proof. Let si be a Nash equilibrium strategy for Γ. Then, there is a Nash equilibrium (µj)j∈I
for Γ such that si is optimal for i against µ−i. We define the epistemic model M = (Ti, βi)i∈I
as follows: Define Tj := {t̂j} for every player j, and let βj(t̂j) be the probability distribution on
S−j × T−j given by

βj(t̂j)(s−j , t−j) :=

½ Q
k 6=j µk(sk), if t−j = t̂−j

0, otherwise.

We show that for every player j, the type t̂j satisfies BOR, SRB, PB and CIB. Since t̂i believes,
for every opponent j, that j’s type is t̂j , it would follow that t̂i believes that every opponent
satisfies these four conditions as well.

BOR: Let k be an opponent for j, and let sk be a strategy for k with βj(t̂j)(sk, t̂k) > 0.
Then, µk(sk) > 0. Since (µj)j∈I is a Nash equilibrium, sk is optimal for k against µ−k, and
hence sk is rational for t̂k. Therefore, t̂j satisfies BOR.

SRB: By construction, t̂j believes that every opponent k has type t̂k. Moreover, every such
type t̂k believes that j’s type is t̂j . Hence, t̂j believes that every opponent believes that j’s type
is t̂j . Now, suppose that t̂j believes an event E with probability p. Then, since t̂j believes that
every opponent believes that j’s type is t̂j , type t̂j believes that every opponent believes that j
believes E with probability p. Consequently, t̂j satisfies SRB.

PB: Let k, l be two different opponents for j, let Ek ⊆ Sk×Tk, and suppose that t̂j believes
Ek with probability p. By construction, t̂j believes that l’s type is t̂l, and t̂l’s belief about player
k is the same as t̂j ’s belief about player k. Hence, t̂j believes that l believes Ek with probability
p. We may thus conclude that t̂j satisfies PB.

CIB: It follows immediately from the construction of the epistemic model that t̂j satisfies
CIB.

Hence, we may conclude that every t̂j satisfies BOR, SRB, PB and CIB. This implies that
t̂i satisfies these four conditions, and believes that every opponent satisfies these four conditions
too. Recall that the Nash equilibrium (µj)j∈I was chosen such that si is optimal for i against
µ−i. Since µ−i is t̂i’s belief about the opponents’ strategy choices, si is rational for t̂i. This
completes the proof. ¥

5. No Conditions Can Be Dropped

In Theorem 4.5 we have shown that the conditions BOR, SRB, CIB, and belief in BOR, SRB,
PB and CIB, lead to Nash equilibrium strategy choices. So, in total we have seven conditions
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d e

a 2, 0 1, 1

b 1, 0 2, 1

c 0, 1 0, 0

Figure 4: BOR and belief in BOR cannot be dropped

d e f

a 3, 0 0, 3 0, 0

b 0, 3 3, 0 0, 0

c 2, 0 2, 0 2, 2

Figure 5: SRB and belief in SRB cannot be dropped

that we impose on a player’s beliefs. In this section we prove that this result no longer holds if
we drop one of these seven conditions. In particular, we show that these seven conditions are
logically independent.

Dropping BOR: Consider the two-player game in Figure 4, where player 1 chooses the rows
and player 2 the columns. Construct an epistemic model M such that T1 = {t1}, T2 = {t2},
β1(t1) assigns probability 1 to (d, t2), and β2(t2) assigns probability 1 to (a, t1). Then, t1 does
not BOR, since d is not optimal for t2. On the other hand, t1 believes that player 2 BOR, since
a is optimal for t1. Type t1 has SRB since t1 believes that player 2 believes that his type is t1.
Similarly, t2 has SRB, and hence t1 believes in SRB. Clearly, t1 has CIB, and believes that player
2 has PB and CIB, since these conditions are automatically satisfied for two players. Hence, t1
does not BOR, but satisfies the other six conditions. Strategy a is rational for t1, but a is not
a Nash equilibrium strategy.

Dropping belief in BOR: Consider again the two-player game in Figure 4. Construct an
epistemic modelM such that T1 = {t1}, T2 = {t2}, β1(t1) assigns probability 1 to (d, t2), and
β2(t2) assigns probability 1 to (c, t1). Then, t1 does not believe in BOR, since c is not optimal
for t1. However, t1 satisfies the other six conditions. Strategy a is optimal for t1, but a is not a
Nash equilibrium strategy.

Dropping SRB: Consider the two-player game in Figure 5. It can be shown that (c, f)
is the only Nash equilibrium, and hence c is the only Nash equilibrium strategy for player 1.
Construct an epistemic modelM such that T1 = {ta1, tb1}, T2 = {t2}, β1(ta1) assigns probability
1 to (d, t2), β1(t

b
1) assigns probability 1 to (e, t2), and β2(t2) assigns probability

1
2 to (a, t

a
1) and

probability 1
2 to (b, t

b
1). Then, t

a
1 does not have SRB, since ta1 believes that player 2 believes

with probability 1
2 that his type is t

b
1 and not t

a
1. However, t

a
1 satisfies the other six conditions.

Strategy a is optimal for ta1, but a is not a Nash equilibrium strategy.
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g d e f

a 3, 3, 0 3, 0, 3 0, 2, 0

b 0, 0, 0 0, 0, 0 0, 2, 0

c 2, 0, 0 2, 0, 0 2, 2, 0

h d e f

a 0, 0, 0 0, 3, 3 0, 2, 0

b 0, 0, 0 3, 3, 0 0, 2, 0

c 2, 0, 0 2, 0, 0 2, 2, 0

i d e f

a 0, 0, 2 0, 0, 2 0, 2, 2

b 0, 0, 2 0, 0, 2 0, 2, 2

c 2, 0, 2 2, 0, 2 2, 2, 2

Figure 6: Belief in PB cannot be dropped

g d e f

a 0, 0, 3 0, 0, 3 3, 3, 3

b 0, 0, 0 0, 0, 0 3, 3, 3

c 3, 3, 3 3, 3, 3 3, 3, 3

h d e f

a 0, 0, 2 0, 0, 0 0, 0, 0

b 0, 0, 0 0, 0, 2 0, 0, 0

c 0, 0, 0 0, 0, 0 0, 0, 0

i d e f

a 0, 0, 0 0, 0, 0 3, 3, 3

b 0, 0, 3 0, 0, 3 3, 3, 3

c 3, 3, 3 3, 3, 3 3, 3, 3

Figure 7: CIB and belief in CIB cannot be dropped

Dropping belief in SRB: Consider again the two-player game in Figure 5. Recall that
(c, f) is the only Nash equilibrium, and hence f is the only Nash equilibrium strategy for player
2. Construct an epistemic modelM such that T1 = {ta1, tb1}, T2 = {t2}, β1(ta1) assigns probability
1 to (d, t2), β1(t

b
1) assigns probability 1 to (e, t2), and β2(t2) assigns probability

1
2 to (a, t

a
1) and

probability 1
2 to (b, t

b
1). Then, t2 does not believe in SRB, since ta1 and tb1 do not have SRB.

However, t2 satisfies the other six conditions. Strategy d is optimal for t2, but d is not a Nash
equilibrium strategy.

Dropping belief in PB: Consider the three-player game in Figure 6. Here, player 1 chooses
the row, player 2 chooses the column, and player 3 chooses the matrix (g, h or i). Construct an
epistemic model M such that T1 = {t1}, T2 = {t2}, T3 = {t3}, β1(t1) assigns probability 1 to
((e, t2), (g, t3)), β2(t2) assigns probability 1 to ((a, t1), (h, t3)), and β3(t3) assigns probability 1
to ((a, t1), (e, t2)). Type t3 does not believe in PB, since t1 does not have PB. In order to see
this, note that t1 believes that player 3 chooses g, whereas t1 believes that player 2 believes that
player 3 chooses h. It can easily be verified that t3 satisfies the other six conditions.

Strategy g is rational for type t3. However, we will show that g is not a Nash equilibrium
strategy. Suppose, contrary to what we want to show, that g would be a Nash equilibrium
strategy. Then, there would be a Nash equilibrium (µ1, µ2, µ3) such that g would be optimal
against (µ1, µ2). Strategy g can only be optimal against (µ1, µ2) if µ1(a) > 0 and µ2(e) > 0.
Since (µ1, µ2, µ3) is a Nash equilibrium, this implies that a is optimal against (µ2, µ3) and e is
optimal against (µ1, µ3)̇. This, in turn, implies that µ3(g) ≥ 2

3 and µ3(h) ≥ 2
3 , which is clearly

impossible. Hence, g is not a Nash equilibrium strategy.
Dropping CIB: Consider the three-player game in Figure 7. Construct an epistemic model

M such that T1 = {t1}, T2 = {t2}, T3 = {t3}, β1(t1) assigns probability 1
2 to ((d, t2), (h, t3)) and

probability 1
2 to ((e, t2), (h, t3)), β2(t2) assigns probability

1
2 to ((a, t1), (h, t3)) and probability
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1
2 to ((b, t1), (h, t3)), and β3(t3) assigns probability

1
2 to ((a, t1), (d, t2)) and probability

1
2 to

((b, t1), (e, t2)). Then, t3 does not have CIB. It may be verified that t3 satisfies the other six
conditions.

Strategy h is rational for t3. However, we will show that h is not a Nash equilibrium strategy.
Assume, namely, that (µ1, µ2, µ3) would be a Nash equilibrium such that h would be optimal
against (µ1, µ2). If µ1(a) ≤ 1

2 , it can be shown that u3(h, µ1, µ2) < u3(i, µ1, µ2). If µ1(a) ≥ 1
2 , it

can be shown that u3(h, µ1, µ2) < u3(g, µ1, µ2). Hence, h can never be optimal against (µ1, µ2),
and therefore h is not a Nash equilibrium strategy.

Dropping belief in CIB: Consider again the three-player game in Figure 7. Construct an
epistemic modelM such that T1 = {t1}, T2 = {t2}, T3 = {t3}, β1(t1) assigns probability 1

2 to
((d, t2), (h, t3)) and probability 12 to ((e, t2), (h, t3)), β2(t2) assigns probability

1
2 to ((a, t1), (h, t3))

and probability 1
2 to ((b, t1), (h, t3)), and β3(t3) assigns probability

1
2 to ((a, t1), (d, t2)) and

probability 1
2 to ((b, t1), (e, t2)). Then, t1 does not believe in CIB, since t3 does not have CIB. It

may be verified that t1 satisfies the other six conditions.
Strategy a is rational for t1. However, we will show that a is not a Nash equilibrium strategy.

We have seen above that h is not a Nash equilibrium strategy. In particular, there is no Nash
equilibrium that assigns positive probability to h. But then, a cannot be optimal in a Nash
equilibrium, and hence a is not a Nash equilibrium strategy.

6. Comparison with Other Models

In this section we compare our sufficient conditions for Nash equilibrium with those proposed in
Aumann and Brandenburger (1995), Asheim (2006) and Brandenburger and Dekel (1987). One
important difference with the latter foundations is that our model only imposes restrictions on
the beliefs of a single player, while the other models simultaneously impose restrictions on the
beliefs of all players. In other words, we view the game from the perspective of a single player,
whereas the other foundations do not. We shall now discuss the similarities and differences with
the other models in some more detail.

6.1. Aumann and Brandenburger’s Model

Aumann and Brandenburger (1995) (AB from now on) make a distinction between the case of
two players and the case of more than two players, and provide sufficient conditions for Nash
equilibrium for both cases. In AB’s model, a type for player i does not only specify i’s belief
hierarchy, but also i’s strategy choice and i’s utility function. It is therefore possible to say that
type ti is rational. AB’s theorem for two-player games may be formulated as follows: Consider
a pair (u1, u2) of utility functions, a pair (µ1, µ2) ∈ ∆(S1) ×∆(S2) of probability distributions
over strategy choices, and a pair (t1, t2) of types. If at (t1, t2) it is true that (1) both players
are rational and believe that the opponent is rational, (2) both players i have utility function ui
and believe that opponent j has utility function uj , and (3) both players i have belief µj about
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j’s strategy choice, and believe that j has belief µi about i’s strategy choice, then (µ1, µ2) is a
Nash equilibrium with respect to (u1, u2).

A key assumption in AB’s theorem is that ti believes that player j has belief µi about i’s
strategy choice. That is, ti cannot assign positive probability to types tj and t0j that have different
beliefs about i’s strategy choice. In our model, this property follows from our assumption that
ti has SRB and believes that j has SRB (see Lemma 4.3), but, in contrast to AB, we do not
impose this property explicitly.

For the case of more than two players, AB add the following two conditions: (4) at the
type profile (ti)i∈I the types’ belief hierarchies are derived from a common prior probability
distribution on the set of type profiles, and (5) at (ti)i∈I there is common belief in the profile
(βi)i∈I ∈ ×i∈I∆(S−i) of beliefs about the opponents’ strategies. Here, by common belief we
mean that ti’s belief about the opponents’ choices is βi, that ti believes that every opponent j
has belief βj about the other players’ choices, that ti believes that every opponent j believes
that every other player k has belief βk about the opponents’ choices, and so on. By adding
these conditions (4) and (5), AB are able to show that there is some profile (µi)i∈I ∈ ×i∈I∆(Si)
of probability distributions over strategy choices such that for every player i, type ti’s belief
about the opponents’ choices is given by (µj)j 6=i, and that (µi)i∈I is a Nash equilibrium with
respect to (ui)i∈I . In particular, the conditions (4) and (5) imply that i’s belief about j’s choice
is independent from i’s belief about k’s choice, and that two different players i and j have the
same belief about k’s choice. These two properties are crucial for their proof. In our model,
these two properties follow from the assumption that ti has SRB and CIB, and believes that
every opponent has SRB, PB and CIB (see Lemma 4.4). Hence, one could say that in our model
the conditions of CIB and belief in PB and CIB play a similar role as the conditions (4) and (5)
in AB.

6.2. Asheim’s Model

Asheim (2006), on page 5 of his book, provides a sufficient condition for Nash equilibrium for
the case of two players. He basically uses the same epistemic model as we do, and his result
may be stated as follows: Consider a pair (t1, t2) of types, and assume that (1) t1 and t2 BOR,
and (2) for both players i, type ti believes that his opponent has type tj . Then, t1’s belief about
2’s choice and t2’s belief about 1’s choice constitute a Nash equilibrium. The key assumption is
that ti assigns probability one to a single type tj for his opponent, and that tj believes that i’s
type is ti. In our setting, this property follows from the assumption that ti has SRB and believes
that j has SRB (see Lemma 4.3), but we do not impose this condition explicitly as Asheim does.

6.3. Brandenburger and Dekel’s Model

Brandenburger and Dekel (1987) (BD from now on) use a model which substantially differs from
ours and the ones above. BD assume that there is a finite state space Ω, that every player i holds
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a prior belief Pi ∈ ∆(Ω), that for every player i there is an information partition Hi of Ω, and
that for every Hi ∈ Hi there is a conditional belief Pi(·|Hi) ∈ ∆(Hi) which is derived from Pi
by Bayes’ rule whenever possible. A strategy map for player i is an Hi-measurable map fi from
Ω to Si. A profile (fi)i∈I of strategy maps is called an a posteriori equilibrium if for every player
i, at every Hi ∈ Hi the prescribed strategy is optimal given the conditional belief Pi(·|Hi) and
the opponents’ strategy maps (fj)j 6=i. Hence, it is implicitly assumed that players have correct
beliefs about the opponents’ strategy maps, and that there is common belief in this event. The
prior beliefs (Pi)i∈I are called concordant if, for every choice of the strategy maps, two different
players i and j have the same prior belief about k’s choice. The information partitions (Hj)j 6=i
are called Pi-conditionally independent if, for every choice of the strategy maps, i’s belief about
j’choice is independent from i’s belief about k’s choice. The information partitions (Hj)j 6=i are
called Pi-informationally independent if, for every choice of the strategy maps, i’s belief about
the opponents’ choices does not depend on the information set Hi.

BD’s theorem on page 1401 can now be stated as follows: Suppose that the prior beliefs
(Pi)i∈I and the information partitions (Hi)i∈I are such that (1) the prior beliefs (Pi)i∈I are
concordant, and for every i, the information partitions (Hj)j 6=i are (2) Pi-conditionally indepen-
dent and (3) Pi-informationally independent. Then, for every a posteriori equilibrium there is a
profile (µi)i∈I ∈ ×i∈I∆(Si) of probability distributions over strategy choices such that, for every
i, player i’s prior belief about the opponents’ choices is given by (µj)j 6=i, and (µi)i∈I is a Nash
equilibrium.

In BD’s theorem, concordance of the prior beliefs guarantees that i and j have the same
beliefs about k’s choice, and is therefore similar to our condition of PB. The assumption in
BD that the information partitions (Hj)j 6=i are Pi-informationally independent guarantees that
i’s belief about his opponents is independent of his information state, and therefore i believes
that his opponents are right about his own beliefs. (Recall the implicit assumption that players
have correct beliefs about the opponents’ strategy maps, and that there is common belief in this
event). The assumption of Pi-informational independence has therefore the same effect as SRB
is our model. In BD, Pi-conditional independence guarantees that i’s belief about j’s choice
is independent from i’s belief about k’s choice. In our model, this property is implied by the
conditions of SRB, CIB, and belief in SRB, PB and CIB (see Lemma 4.4). However, we do not
impose this property explicitly.

References

[1] Asheim, G.B. (2006), The consistent preferences approach to deductive reasoning in games,
Theory and Decision Library, Springer, Dordrecht, The Netherlands.

[2] Aumann, R. and A. Brandenburger (1995), Epistemic conditions for Nash equilibrium,
Econometrica 63, 1161-1180.

17



[3] Bernheim, D. (1984), Rationalizable strategic behavior, Econometrica 52, 1007-1028.

[4] Brandenburger, A. and E. Dekel (1987), Rationalizability and correlated equilibria, Econo-
metrica 55, 1391-1402.

[5] Brandenburger, A. and A. Friedenberg (2006), Intrinsic correlation in games, Available at
http://pages.stern.nyu.edu/~abranden/

[6] Myerson, R. (1991), Game Theory: Analysis of Conflict, Harvard University Press, Cam-
bridge, Massachusetts, London, England.

[7] Nash, J. (1951), Non-cooperative games, Annals of Mathematics 54, 286-295.

[8] Pearce, D. (1984), Rationalizable strategic behavior and the problem of perfection, Econo-
metrica 52, 1029-1050.

[9] Tan, T. and S.R.C. Werlang (1988), The bayesian foundations of solution concepts of games,
Journal of Economic Theory 45, 370-391.

18


