
A Branch-and-Cut Algorithm for the Frequency Assignment

Problem

K.I. Aardal

A. Hipolito

C.P.M. van Hoesel

B. Jansen

Abstract

The frequency assignment problem (FAP) is the problem of assigning frequencies to trans-

mission links such that no interference between signals occurs. This implies distance

constraints between assigned frequencies of links. The objective is to minimize the num-

ber of used frequencies. We present an integer linear programming formulation that is

closely related to the vertex packing problem. Although the size of this formulation is an

order of magnitude larger than the underlying network of links, we use the integer linear

programming formulation within a branch-and-cut algorithm. This algorithm employs

problem speci�c and generic techniques such as reduction methods, primal heuristics,

and branching rules to obtain optimal solutions. We report on computational experience

with real-life instances.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6941719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table of contents

1 Introduction 3

2 Problem formulation 4

3 The cutting plane algorithm 7

4 The branch-and-cut algorithm 8

4.1 Preprocessing: Reducing the Problem Size . 9

4.2 Generating primal integer feasible solutions 10

4.3 Branching Strategies . 11

5 Computational results 12

6 A Variant of the Frequency Assignment Problem 13

7 Conclusions 14

2

1 Introduction

In mobile telephone systems communication between pairs of telephones takes place by wire-
less connections, which make use of frequencies from the electromagnetic band. Connections
may interfere with each other whenever they are close to one another, both with respect to
geographical distance, and distance of the assigned frequencies on the radio band. To reduce
the e�ect of interference to a minimum, links with a small geographical distance, should be
assigned frequencies with a high di�erence in value. On the other hand, the frequencies are
available in limited numbers, and there are many di�erent users, which makes it expensive to
hire them. Therefore, a client would like to use a minimum number of di�erent frequencies.

More formally we may describe the frequency assignment problem (FAP) as follows. A set
of transmission links L need to be established in order to enable communication between a
set of stations. Each link i 2 L has to be assigned a frequency f from a given available set of
frequencies Di, the domain, such that no interference occurs between given subsets of links,
i.e. such that for every pair of links (i; j) the frequencies fi and fj assigned to these links
di�er by at least dij . The union of the domains is denoted by D. The objective is to minimize
the number of used frequencies.

The FAP occurs in many variants. For instance, another realistic objective is to minimize the
span of the frequencies chosen, i.e., the di�erence between the largest and smallest frequencies
chosen. We shall also study a variant of FAP, in which we allow for interference which is
penalized, i.e., distance constraints can be violated against a prespeci�ed penalty. Moreover,
we assign preferred frequencies to a subset of the links. If another frequency, over the preferred
one is chosen to satisfy the distance constraints, then a penalty is incurred. The objective is
to minimize the total penalty.

The FAP is a hard problem as it is closely related to the graph coloring problem. This is
probably the reason that the majority of the papers on FAP describe heuristic procedures for
�nding good solutions. For a detailed overview on the latest developments with respect to
heuristics and exact methods see Tiourine et al. [11]. The relation to graph coloring provides
some interesting lower bounds as described in Gamst [1] and Lanfear [3]. Exact solution
methods have had little attention so far, with the exception of van Hoesel et al. [2], who
use combinatorial Branch and Bound with constraint satisfaction techniques. We present an
algorithm for the FAP based on an integer linear programming formulation of the problem
as a vertex packing problem. This formulation is used in a cutting plane algorithm, which
in turn is embedded in a branch-and-cut framework. The vertex packing formulation has a
disadvantage in the sense that it is an order of magnitude larger than the size of the network
of stations and links: the number of variables involved is O(jLjjDj). To cope with such
sizes we incorporate specially designed separation routines for the cutting plane algorithm,
and variable selection mechanisms as well as reduction techniques to keep the formulation as
small as possible. It should be noted that we intend to solve vertex packing problems with
up to 16000 variables, whereas previous studies using similar techniques stop at a mere 200
variables, see [8]. J�unger et al. [4] provide a survey of branch-and-cut applications, focused
on implementational aspects.

The outline of the paper is as follows. We describe the formulation for the FAP in Section 2.
Section 3 describes some classes of valid inequalities for the FAP, with separation routines.

3

It also contains a description of the implementational aspects of the cutting plane algorithm.
The branch-and-cut framework and its components can be found in Section 4. Preprocessing
techniques to decrease the size of the formulation are described, as well as primal heuristics
to generate integer feasible solutions, and a selection of branching rules. Section 5 contains
computational results on the CELAR test set, a set of real-life instances from military ap-
plications. Concluding, in Section 6, we discuss how the branch-and-cut algorithm can be
applied to tackle variants of FAP.

2 Problem formulation

The FAP can be represented on a graph GI = (VI ; EI) as follows. The set of vertices VI
of the graph correspond to the set of transmission links L. A pair of vertices i; j 2 VI is
connected by an edge fi; jg 2 EI if there is a distance requirement on the frequencies fi and
fj that are to be assigned to i and j. For each link i, there is a set of admissible frequencies
Di, the domain from which the frequency for i must be chosen. The union of all domains is
denoted by D.

We refer to the graph GI = (VI ; EI) as the interference graph.

The distance requirement on the frequencies are

jfi � fjj � dij for all fi; jg 2 EI (1)

where dij > 0.

Example

1

D1 = f0; 1; 2g

2

D2 = f1; 2; 3g

3

D3 = f1; 2; 3g

3 1

FAP instance.

The above problem representation is not a convenient one for integer programming. An
alternative representation for the FAP, which leads more naturally to a mathematical pro-
gramming formulation, is given by an extended graph GX = (VX ; EX). We introduce a
vertex vif 2 VX for each combination of a link i and a frequency f 2 Di, An edge between
two vertices vif and vjg corresponds to a violation of the distance constraint between i and j,
i.e., jf � gj < dij . We call GX the graph of variables. A feasible solution for the FAP consists
of a subset S of VX , such that exactly one vertex corresponding to each link i 2 L is chosen
S. Moreover, S should form a vertex packing in GX , i.e., no two vertices in S are allowed to
be connected by an edge. The graph GX for the above example is as follows.

Example (continued)

4

1,0

1,1

1,2

2,1

2,2

2,3

3,1

3,2

3,3

FAP instance: graph GX .

The objective is to �nd a set S which uses the minimum number of frequencies, i.e., the set of
frequencies corresponding to vertices in S must have minimum cardinality. The corresponding
integer programming formulation, FAPVP, is given below.

xif =

(
1 if frequency f is assigned to link i
0 otherwise,

yf =

(
1 if frequency f is used
0 otherwise.

(FAPVP) min
X
f2D

yf (2)

s.t.
X
f2Di

xif = 1 for all i 2 L (3)

xif + xjg � 1 for all i; j 2 L : jf � gj < dij (4)

xif � yf for all i 2 L; f 2 Di (5)

xif ;2 f0; 1g for all i 2 L; f 2 Di (6)

yf 2 f0; 1g for all f 2 D (7)

5

Note that the constraints 5 can be converted to vertex packing constraints, by using the
complement of yf (f 2 D), i.e., by taking �yf = 1� yf . This substitution will turn 5 into

xif + �yf � 1 for all i 2 L; f 2 Di (8)

Clearly, one can extend GX by adding nodes for the frequencies, which correspond to the
variables �yf (f 2 D).

Since the cardinality of each domain Di tends to be large this formulation contains many
variables. This problem is particularly important when solving the FAP with branch-and-
cut. In the following sections we will show how to deal with this problem in the various
components of the algorithm. For now, we will restrict ourselves to the positive side of the
extended formulation. If the FAP is relaxed by setting the distances dij = 1 for each edge
fi; jg 2 EI , we obtain the generalized coloring relaxation, also known as T -coloring problem.
Relaxing even more by setting Di = D (8i2L) we get the ordinary coloring relaxation. These
two relaxations provide lower bounds on the solution value of FAP. An even weaker, but
easier to determine, lower bound is the size of a maximum clique in GI . The clique bound is
outperformed by the bound obtained by the linear programming relaxation of FAPVP where
additional clique inequalities are added. If the distances play an important role, this bound
may also be better than the (generalized) coloring bound. In the example above addition of
clique inequalities leads to a lower bound of 3: link 1 must be assigned frequency 0, and link
2 must be assigned frequency 3; �nally link 3 must be assigned one of the frequencies 1 and
2. The combinatorial lower bounds all have value 2. Note that it is often hard to compute
the (generalized) coloring bound.

In practice two-way tra�c through a link i is realized by assigning two frequencies to i, one
for each tra�c direction. These frequencies should have a constant di�erence � for all links
in the network. In many practical situations we can forget about this situation. The reason
for this is that the distance requirements for both frequencies are equal and the domain D

is partitioned into two parts which are far enough to ensure that all distance requirements
between links that have frequencies in di�erent parts are met. A solution in which one of the
directions is assigned a frequency in the �rst part can then be copied for the second part.
However, in our case we have no symmetry in the distance requirements, nor do we have
domains which can be partitioned into two distant bands. Instead we have pairs of opposite
directions of a link, that must be assigned a pair of frequencies, such that for both directions
all the distance requirements are satis�ed. The frequencies come in pairs too, i.e., for each
frequency f there is a unique frequency f 0 with the property that jf � f 0j = � In the sequel
we will view the directions as separate links. Moreover, we will denote the opposite link of a
link i by i0, and the frequency paired to f by f 0.

In the graph of variables each vertex vif corresponds to a unique vertex vi0f 0 , where i and
i0 are opposite tra�c links, and f 0 is the unique frequency such that jf � f 0j = �. An edge
between two such vertices models an equality constraint, i.e., xif = xi0f 0 . This equation has
implications for the edge-set in the graph of variables. If a distance constraint forbids the
combinations (i; f) and (j; g), then also the combinations of the corresponding opposite links
(i0; f 0) and (j0; g0) are forbidden. Thus, we may draw an edge between the corresponding
variables as well. Note that this extension can not always be made in the interference graph:
if two links i and j must have distance at least dij , this does not necessarily apply to the
opposite links. For example, take Di = Di0 = Dj = Dj0 = f1; 2; 3; 7; 8; 9; 11; 12; 13; 17; 18; 19g
and set � = 6. If dij = 4, then fi = 3 and fj = 17 are valid choices. However, the opposite

6

links i0 and j0 have frequencies 9 and 11, which do not satisfy the distance requirement for i
and j. In the sequel we shall make implicit use of this special structure at several occasions:
in the construction of valid inequalities, in preprocessing ideas, and in the branch-and-cut
framework.

3 The cutting plane algorithm

The linear relaxation LRFAPVP of FAPVP is weak, which is a well-known fact for vertex
packing related problems, see Padberg [9]. Therefore, LRFAPVP must be strengthened with
strong valid inequalities. Since the vertex packing problem is a relaxation of FAPVP (relax 3
to � 1), constraints that are valid for the vertex packing polytope are also valid for FAPVP.
There are many classes of valid inequalities known for the vertex packing problem, among
which the best known ones are the clique inequalities and the (lifted) odd-hole inequalities,
see for instance Padberg [9]. Odd-hole inequalities and many other classes do not perform
well for vertex packing problems where the average value of the variables is small. In FAPVP
the average value is 1

jDij
for each link i 2 L. In all types of instances that we have encountered

the average domain sizes are 30 or more. Concluding, we restrict ourselves to inequalities
derived from cliques only in GX .

Cliques in the graph of variables GX Let the set C � VX form a clique in the graph of
variables. The corresponding clique inequality isX

vj2C

xj � 1 (9)

A clique inequality de�nes a facet of the convex hull of feasible solutions of the vertex packing
relaxation if C is maximal (see e.g. Padberg [9]). The clique inequalities for FAPVP form the
basic ingredients of the cutting plane algorithm. Nevertheless, we take only a subset of these
inequalities. The reason for that is the size of the graph of variables. We consider instances
with up to 916 links with average domain size of about 40. The graph of variables would
consist of approximately 36000 paired vertices. Moreover, the number of edges in this graph
is so large that it is senseless to construct it explicitly. Finally, �nding large cliques in this
graph is an enormous task.

Cliques in the interference graph GI The clique inequalities we identify are special
classes of clique inequalities, derived from cliques in the interference graph. Take a subset of
the links I � L, and take for each link i 2 I, a subset of the frequencies in its domain, say
Fi � Di. Let FI be the union of the sets of frequencies of the links in I. The type of cliques
we will identify are special structures of the following constraint typeX

i2I

X
f2Fi

xif � 1 (10)

In the special case that F consists of only one frequency f the right-hand side of (10) may
be reduced as follows if I is a clique in the interference graph:X

i2I

xif � yf (11)

7

Extended cliques in the interference graph GI In a way similar to the extension of
the edge-set of the graph of variables we may, under speci�c conditions, be able to extend
the interference graph, with additional edges, or the increase the distance of certain edges.

Consider a set of frequencies F with the property that for all f 2 F the opposite frequency
f 0 is f + � (or f � �). Then, for each edge fi; jg with distance dij we may explicitly add the
constraint jfi0 � fj0j � dij for the opposite links i

0 and j0 to the interference graph, since

jfi0 � fj0j = j(fi0 � �)� (fj0 � �)j = jfi � fj j � dij

In this extended interference graph we look for cliques, in which all edges have a distance of
at least d. Let C be such a clique, and let F be a set of frequencies such that the largest
distance between any pair of frequencies in F is smaller than d. Then the following inequality
is valid: X

i2I

X
f2Di\F

xif � 1 (12)

Take for example Di = Di0 = Dj = Dj0 = f1; 2; 3; 7; 8; 9; 11; 12; 13; 17; 18; 19g and set � = 6.
If dij = 3, then for I = f1; 2; 3g we may add the distance requirement di0j0 = 3.

In case F consists of only one frequency, we have only one opposite frequency, thus the
condition on F is always full�lled, and therefore the corresponding inequality (11) is also
valid for cliques in the extended interference graph.

Separation The problem of �nding violated clique inequalities has now been reduced to
�nding cliques in the (extended) interference graph. Since the size of these cliques is not too
large, this is a plausible idea. In our instances we have another advantage of looking for the
above type of inequalities in the fact that for a speci�c clique in the interference graph we can
�nd many sets F satisfying the requirements for which (11) and (12) are valid. Therefore,
we treat each clique in the interference graph as a basis for a whole class of inequalities.

KAREN : Hier iets over de pool?

4 The branch-and-cut algorithm

We have developed a branch-and-cut algorithm for the FAP based on the FAPVP formulation
in section 2. The algorithm has the following components besides the cutting plane algorithm.

� Preprocessing to reduce the size of the problem formulation. This is highly e�ective for
the initial problem, and is often useful in intermediate stages.

� Instance reduction techniques for the interference graph. This incorporates the need
for extension heuristics.

� Upper bounding. Heuristic methods based on the linear programming relaxation are
capable of �nding good solutions. In combination with the lower bounds provided by
the cutting plane algorithm the search process is substantially reduced.

8

� Branching rules for creating subproblems and selection of subproblems form the basis
of the search process in the framework. The search tree in a branch-and-cut framework
contains a large list of subproblems. Maintenance of the linear constraints is important.

Each of these components is discussed in the following subsections.

4.1 Preprocessing: Reducing the Problem Size

For expository reasons we maintained copies of variables in the graph of variables, i.e., each
variable xif has the same value as the variable xi0;f 0 where i0 is the opposite link of i and f 0

is the frequency corresponding to f : jf � f 0j = �. If we substitute these variables out of the
formulation this reduces the number of variables with a factor 2.

Technique 1 One way of reducing the number of xif -variables, other than by mere sub-
stitution, is by trying to identify links that can always be assigned the same frequency as
another link. If such a link is identi�ed it can be deleted from the instance. In terms of graph
coloring: a vertex w whose neighbor set contains the neigbor set of a vertex v can be removed
if v and w are not connected. Consider a pair of links (i; j). If the following conditions are
satis�ed, it is always possible to assign the same frequency to link i as to link j, without
a�ecting the objective function negatively.

Dominance criteria

(1) Dj � Di,

(2) dij = di0j0 = 0,

(3) dkj � dki for all k 6= i; j,

(4) dk;j0 � dk;i0 for all k 6= i0; j0.

Our experience shows that the number of xif -variables is reduced by ten to �fteen percent.
For more details see the section on computations. The problems with these variables removed
are really easier, since the removed vertices often have a large degree in the interference graph.

In terms of coloring the conditions (1) to (4) can be described as follows. Let two vertices i
and j have neighbor sets N(i) and N(j), respectively. If N(i) � N(j) and i 62 N(j), then we
can color i with the color used for j, in any feasible solution without increasing the number
of colors.

Technique 2 The second technique relies on the following idea. A link can be removed if for
any choice of frequencies of the neighbors in the interference graph one can �nd a frequency
such that the number of frequencies used is less than or equal to a given lower bound on the
number of frequencies necessary for the overall problem. This technique is derived from a
similar technique for the graph coloring problem, where vertices with a degree smaller than
the coloring number can always be assigned a color among the ones we select to color the rest
of the vertices. In the case of the frequency assignment problem, however, it also depends on
the distances of the chosen frequencies. This technique reduces the number of variables with

9

about 5%, on the instances that we used. But more important, this idea leads to an ordering
of the vertices which can be used to maintain smaller instances.

Instance reduction Before starting the branch-and-cut procedure we generate a set of
cliques in the (extended) interference graph, which are stored in memory. This so{called
clique{list consists of cliques that are maximal (i.e., no link can be added without decreasing
the minimum distance among the vertices in the clique). Violated inequalities are found by
browsing the clique{list and adding constraints that are `su�ciently' violated (i.e., within a
speci�ed tolerance). To keep the formulation as small as possible we start-o� with a subset
of the links, which with a high probability contains the `hard part' of the instance. Hereto
we derive an order of the links as follows. Remove the links with the lowest degree with its
incident edges, in the interference graph. Repeat this until the graph is empty. The order
of removal is reversed to get our order. Our initial instance consists of the �rst 20 links.
For this set we construct a number of clique inequalities, which form our initial formulation.
This instance is solved, and then we try to extend its solution to a solution for the complete
problem by a greedy algorithm in the order described before. If this procedure fails we extend
the set of links with the problem link and all the links that predecess this link in the described
order.

4.2 Generating primal integer feasible solutions

The availability of good feasible solutions may reduce the size of the branch-and-bound tree
signi�cantly. Furthermore, it is possible that the branch-and-cut process will be unable to
prove optimality within reasonable time and it is thus important that the process be able to
give good feasible assignments along the way.

We have developed a primal heuristic which tries to construct a feasible solution starting
from the current fractional solution. It is based on the idea that the solution to the current
linear programming relaxation can indicate good candidates for which frequencies to use and
what links to assign them to.

Let the current LP solution be given by (x�; y�). Let F � be the set of frequencies for which
the corresponding y�f is positive. F � consists of the set of candidate frequencies we will use
for the computation of an assignment, the other frequencies will not be used. If a link has
an already assigned frequency (by branching or forced by the LP), then this assignment is
not changed anymore; if certain assignments are ruled out by branching or LP then these are
also not considered in the primal heuristic. The remaining links are assigned as follows.

� For each link compute the number of frequencies that can be assigned to it, and take
the link (say i) for which this number is minimal.

� For each frequency f that can be assigned to i, compute the total number of possible
assignments to the remaining links that would remain if f is assigned to i; assign that
frequency to i for which this number is maximal.

� Continue with the next link.

10

If all the links have been successfully assigned a frequency, we try to improve upon the
assignment as follows. Consider the frequency that is used the minimal number of times; we
try to reassign to each link that uses this frequency another frequency that is already used in
the solution. Reassignment of link i is done if: (1) a frequency is found that can be assigned
to i such that no interference with the other links exists, or (2) if a frequency is found that
can be assigned to i such that there is one link with which it interferes and this link can also
be reassigned such that no interference exists.

The quality of the upper bound of a solution found in this way may still be improved by
subjecting it to other local search algorithms.

4.3 Branching Strategies

In our computational study we have implemented various branching strategies. The �rst one
is designed to complement the primal heuristic. The second is designed to give good lower
bounds on the problem.

Branching on assignment decisions The �rst branching rule is as follows:

� If there are fractional yf variables, branch on the variable yf with value closest to 1.
Set yf = 1 on one branch and yf = 0 on the other. Evaluate the yf = 1 node �rst.
This has the e�ect of using the frequency that the LP relaxation indicates to be the
best candidate.

� If there are no fractional yf variables, branch on an xif variable that will force the most
other x variables to zero. Set xif = 1 on one branch and xif = 0 on the other. Evaluate
the xif = 1 node �rst. Note that this assignment tends to contradict the rule used for
the primal heuristic. In this manner, the primal heuristic is more likely to see di�erent
measures of desirability in making assignments and perhaps increase the chance that it
will identify a good feasible solution.

Branching on pairs of links In the second strategy we choose two links i; j, that are
assigned a fractional amount of the same frequency and have dij = 0. Two subproblems are
created: we enforce in the �rst one the constraint that links i and j are assigned the same
unspeci�ed frequency, and in the second subproblem a distance constraint di;j = 1 is added,
i.e., i and j cannot be assigned the same frequency. Then this branching rule is illustrated
by Figure 1 with an interference graph with 5 links, where connected links must be assigned
di�erent frequencies.

Observe that subsets of the vertices with many edges (subgraphs that almost form cliques)
are logical candidates to use in this branching rule, since we know that using it may give a
better lower bound in at least one of the branches.

Subproblem selection rules The above branching strategies specify how to partition the
current set of feasible solutions into two smaller sets. They do not specify which subproblem
to choose when there are several candidates. Since the �rst branching rule is designed to

11

Subproblem 1

u u

u u

u

�
�
�

@
@
@

Father problem

u u

u u

u

�
�
�

@
@
@

Subproblem 2

u

u

u

u

��
��
��

HHHHHH

Figure 1: Branching on two links

generate good feasible solutions fast, we use the depth-�rst search rule on it. Best-bound
search is used on the second branching rule as it is used to generate good lower bounds.

5 Computational results

The branch-and-cut algorithm has been implemented using MINTO, a Mixed INTeger Op-
timizer [Nemhauser, Savelsbergh, and Sigismondi 1994]. MINTO is a software system that
solves mixed-integer linear programs by a branch-and-bound algorithm with linear program-
ming relaxation. This package provides a shell within which problem-speci�c routines can
be programmed in C and integrated into a branch-and-cut algorithm. The CPLEX 3.0 LP
package was used for the LP-solving within MINTO. We used the simplex method for solving
LPs. Using the steepest edge pricing rule appeared to very e�cient on the problems. In our
computational experience we observed it often to be better to restart solving the LP from
scratch (using primal simplex and preprocessing) after adding violated inequalities instead of
using the dual simplex with a warm start.

The algorithm was tested on the non-trivial feasible instances of the CELAR test set. As
mentioned above, preprocessing techniques were used to reduce the size of the initial formu-
lation. The results on preprocessing are given in Table 1. It gives the percentage reduction
on the number of links used in the model. In the last column of the table one can �nd the
CPU times (on a 486-66) for performing the reductions in seconds.

Table 2 below lists some computational results using branch-and-cut on the feasible RLFAP
instances using the pre-processed formulations obtained using technique 3. These results are
based on the branching rule based on assignment decisions and depth-�rst search. Except
for CELAR05, the solution values listed are based on minimizing the number of frequencies.
The values for CELAR05 are based on minimizing the largest used frequency.

The times reported are CPU times for an HP9000/720 with 144 MB of core memory, of

12

Instance Size Reduced size

1 916 806
2 200 166
3 400 348
11 680 646

Table 1: Preprocessing results.

which we used at most approximately 40MB. They do not include times for pre-processing
and the generation of initial lower bounds. The table includes CELAR04 and CELAR05 for
completeness although branch-and-cut was not used for them as they were trivial enough to
be pre-processed to optimality.

Initial Found Best Approx.
Instance lower bound lower bound value time (sec)

1 14 16 16 400
2 14 14 14 23
3 14 14 14 539
4 n.a. 46 46 1 (preprocessed)
5 n.a. 792 792 2 (preprocessed)
11 20 22 22 61671

1Lower bound of 22 veri�ed after 413 sec.

Table 2: branch-and-cut results: feasible instances.

The branch-and-cut procedure was able to �nd within reasonable time, optimal solutions to
all CELAR instances. More signi�cantly, it was able to improve the previously known lower
bounds of CELAR01 and CELAR11, thereby determining the optimal solutions of both in
the process.

Lower bounds We compare the lower bounds given by combinatorial arguments, such as
the maximum clique, coloring number and generalized coloring number with the bounds that
we have obtained so far in the following table. The (generalized) coloring bounds are taken
from van Hoesel [2].

Instance clique bound color. bound gen. color. bound LP-bound

1 12 14 16 16
2 14 14 14 14
3 12 14 14 14
11 20 20 20 22

Table 3: Lower bounding results: feasible instances.

6 A Variant of the Frequency Assignment Problem

One variant of FAP is to allow for some interference constraints to be violated against a
penalty. The total penalty should then be minimized. Instances 6-8 are all of this type. In

13

instances 9-10, additional penalties are introduced for links that are not assigned a preferred
frequency. The constraints that are allowed to be violated are called soft constraints. Let S
denote the set of all pairs of links (i; j) for which the corresponding interference constraint is
soft.

To be able to write the soft constraints in a linear form we introduce one variable zij for each
such constraint, where

zij =

(
1 if (i; j) 2 S

0 otherwise.

Let F be a set of frequencies such that the di�erence between any pair of frequencies in F is
less than dij . The following soft constraint replaces constraint (4) wherever applicable.X

f2F

xif +
X
f2F

xjf � 1 + zi;j (13)

Let the penalty associated with violation of the soft constraint involving the pair (i; j) of
links be equal to pij. The new objective function is given by

min
X

(i;j)2S

pijzij :

To strengthen the linear relaxation of this new formulation we can use modi�ed versions of
the clique inequalities (11) and (12). Say for instance the we have a clique of 3 links, where
each distance is d, and each constraint penalty is at least p. Then the following inequalities
are both valid, and they tighten the linear programming relaxation.X

f2F

xi;f +
X
f2F

xj;f +
X
f2F

xk;f � 1 + z1i;j;k + z2i;j;k

and
z1i;j;k + 2 � z2i;j;k � zi;j + zi;k + zj;k:

The variables z1i;j;k and z2i;j;k are both binary. Their sum determines the number of variables,
that are assigned value 1, over the one that is allowed to have value 1 in the left-hand side
of this inequality.

This inequality can easily be generalized to obtain valid inequalities for larger cliques.

We have made preliminary computations based on these ideas and unfortunately, the resulting
lower bounds are still very poor although they prove that the tested problems are indeed
infeasible (Table 4.). For CELAR07 we obtained only poor upper-bounding solutions, since
our strategies so far were just attuned to improving lower bounds instead of �nding good
solutions. The time required to generate the lower bounds and best value is approximately
30 minutes.

7 Conclusions

The main results indicate that the branch-and-cut framework can be a powerful approach in
dealing with feasible instances of the RLFAP in terms of

14

Found Best
Instance lower bound value

6 5 3942
7 5

Table 4: branch-and-cut results: infeasible instances.

� generating optimal solutions (CELAR01,02,03,11)

� improving existing lower bounds (GRAPH??), and

� generating good primal feasible solutions (GRAPH??)

within reasonable computational e�ort.

In the case of CELAR01 proving optimality is still a di�culty. Nevertheless, the branch-
and-cut process is able to �nd good primal solutions. Generating even tighter cuts and/or
devising new branching rules that might improve the generated lower bounds further is an
area that can be further explored.

Clearly, much work still need to be done before the infeasible models can be tackled e�ectively
using the branch-and-cut framework. Further research can be done on coming up with a more
compact formulation as well as more e�ective pre-processing techniques and cuts for lower
bounding. In addition, it may be possible to integrate the successful heuristic methods of
other groups in generating primal low-violation solutions in a branch-and-cut framework.
Overall, the results of this work element indicate that the branch and cut framework is
exible enough to allow the incorporation of a wide variety of techniques (from heuristics to
exact methods) as well as problem-speci�c information in dealing e�ectively with radio link
frequency assignment problems.

Acknowledgments

We would like to thank Martin Savelsbergh for providing helpful pointers on using MINTO
and Ed Klotz and Irv Lustig of CPLEX Optimization for their timely technical support for
CPLEX.

References

[1] A. Gamst, \Some Lower Bounds for a Class of Frequency Assignment Problems", IEEE
Trans. on Vehicular Technology, vol. VT-35, no. 1, 8-14, 1986.

[2] C. van Hoesel, and A. Kolen, and R. van de Wal, \Constraint satisfaction techniques for
the frequency assignment problem", to appear, 1996.

[3] T.A. Lanfear, \Graph theory and radio frequency assignment", Allied Radio Frequency
Agency, NATO Headquarters, Brussels, 1989.

15

[4] M. J�unger, G. Reinelt, and S. Thienel, \Practical problem solving with cutting plane
algorithms for combinatorial optimization," Report No. 94.156, Institut f�ur Informatik,
Universit�at zu K�oln, 1994.

[5] M. J�unger, G. Reinelt, and S. Thienel, \Provably good solutions for the traveling sales-
man problem," Preprint 92-31, Interdisziplin�ares Zentrum f�ur Wissenschaftliches Rech-
nen, Universit�at Heidelberg, 1992.

[6] G.L. Nemhauser, M.W.P. Savelsbergh, and G.S. Sigismondi, \MINTO, a Mixed INTeger
Optimizer," OR Letters 15 47-58, 1994.

[7] G.L. Nemhauser, and M.W.P. Savelsbergh, \A cutting plane algorithm for the single
machine problem with release times," M. Akgul, H. Hamacher, S. Tufekci (eds.) Combi-

natorial Optimization: New Frontiers in the Theory and Practice, NATO ASI Series F:
Computer and Systems Sciences 82 63-84, Springer-Verlag, 1992.

[8] G.L. Nemhauser and G. Sigismondi, \A strong cutting plane/branch and bound algo-
rithm for node packing," J. Opl. Res. Soc. 25 443-457, 1992.

[9] M.W. Padberg, \On the facial structure of set packing polyhedra," Mathematical Pro-

gramming 5 199-215, 1973.

[10] M.W.P. Savelsbergh, \A branch-and-price algorithm for the generalized assignment prob-
lem," Report COC-93-02, Georgia Institute of Technology, 1993.

[11] S. Tiourine, and C. Hurkens, and J.K. Lenstra, \An overview of algorithmic approaches
to frequency assignment problems," COSOR Memorandum, Eindhoven University of
Technology, 1995.

16

