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Abstract

Domains of individual preferences for which the well-known impos-
sibility theorems of Gibbard-Satterthwaite and Muller-Satterthwaite
do not hold are studied. To comprehend the limitations these re-
sults imply for social choice rules, we search for the largest domains
that are possible. Here, we restrict the domain of individual prefer-
ences of precisely one individual. It turns out that, for such domains,
the conditions of inseparable pair and of inseparable set yield the only
maximal domains on which there exist non-dictatorial, Pareto-e¢ cient
and strategy-proof social choice rules. Next, we characterize the max-
imal domains which allow for Maskin monotone, non-dictatorial and
Pareto-e¢ cient social choice rules.

1 Introduction

The two most negative results on the decentralization of social choice func-
tions are, respectively, the Gibbard-Satterthwaite (Gibbard (1973), and Sat-
terthwaite 1975) and the Muller-Satterthwaite (Muller and Satterthwaite,
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1977) theorems. The Gibbard-Satterthwaite theorem states that over an un-
restricted domain of linear orderings�and with at least three alternatives�
any surjective and strategy-proof social choice function is dictatorial. On the
other hand, the Muller-Satterthwaite theorem, by establishing the connec-
tions between strategy-proofness and Maskin monotonicity, states that any
unanimous and Maskin monotonic social choice function is dictatorial.
These two theorems have a damaging impact on decentralization. Strategy-

proofness andMaskin monotonicity are, respectively, necessary conditions for
dominant strategy implementation and Nash implementation. If a planner
restricts himself to institutions corresponding to normal game forms having a
unique equilibrium at every preference pro�le, then only trivial social choice
functions are decentralizable.
However, the two results strongly rely on the assumption of unrestricted

domain of preferences. Restricted domains have delivered possibility results
on strategy-proof and Maskin monotonic social choice functions.1 For in-
stance, if preferences are quasi-linear with respect to a numeraire good,
then Clark-Groves mechanisms are strategy-proof.2 If preferences are single-
peaked, then generalized median voting rules are strategy-proof (see e.g.
Moulin, 1980). Finally, in exchange or production economies, if the domain
of preferences is such that there always exist a unique Walrasian equilibrium
in the interior of the feasible set, then the Walrasian social choice function
is Maskin monotonic and obviously non-dictatorial.3

In this paper, we work with the abstract social choice model. We are
interested in the maximal preference domains under which there exists so-
cial choice functions that escape the Gibbard-Satterthwaite and the Muller-
Satterthwaite theorems. This question is not new, at least for the strategy-
proof case. In the literature, the approach that is usually followed is to take
a possibility domain and to �nd the maximal enlargement of this domain so
that the possibility result still holds. For instance, this is the case of Bar-
berà, Sonnenschein and Zhou (1994); Barberà, Gul and Stacchetti (1994);
Serizawa (1995); Serizawa and Ching (1998); or Masso and Neme (2001).
Each paper deals with entire restricted domain of preferences. Moreover, as

1There is a vast literature providing possibility results in various models. We voluntarily
only make reference to a few papers.

2Though, as shown in Green and La¤ont (1979), their lack of budget-balancedness
cannot be overcome. As a consequence, Clark-Groves mechanisms are not fully e¢ cient.

3Obviously, in such a case, the Walrasian social choice function is not strategy-proof
(see e.g. Hurwicz, 1972).
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far as we are aware of, there are no papers that deals with maximal domains
for non-trivialMaskin monotonic social choice functions. Closely related but
di¤erent questions were posed by Kalai and Muller (1978) and Kalai and
Ritz (1980). They studied the general conditions for domains which admit
the existence of non-dictatorial Arrow-type social welfare functions.
Our approach is di¤erent. Instead of allowing that any agent�s preference

domain be restricted, we restrict the preference domain of precisely one agent.
By doing so, we look for necessary and su¢ cient conditions that guarantee
a possibility result. We identify two conditions that are both necessary and
su¢ cient for the existence of non-trivial social choice functions. The social
choice function K we identify is a hierarchical rule. In that sense, the rule is
almost dictatorial. The conditions we identify are respectively strategy-proof
admissibility and Maskin admissibility.
We then examine the maximality of this domain restrictions. We study,

in turn, strategy-proofness and Maskin monotonicity since the conditions
we obtain are di¤erent. For strategy-proofness, we �nd that a domain of
preferences is a maximal possibility domain if and only the restricted set
of preferences of agent 1 has one inseparable pair or one inseparable set.
The notion of inseparable pair is well-known in relation with non-dictatorial
Arrow-type welfare functions (see e.g. Kalai and Ritz, 1980). Just to �x
idea, let us brie�y discuss the notion of inseparable pair and inseparable set.
We say that an agent has an inseparable pair if there exist two alternatives x
and y such that whenever x is ranked best, then y is second-best.4 Suppose
for instance that a board of managers has two vacancies. Current members
of the board are contemplating several candidates. Among those are b, a
bossy individual, and w a wimp that is afraid of b. Then, an agent i could
rank b at the top and w second because he expects w to be obedient and to
copy b0s decisions�the power of b would then be increased.5 Clearly, agent i
has an inseparable pair (b; w).
An agent has an inseparable set if there exist a set of alternatives B�

of cardinality at least equal to three�such that all preferences with a best
alternative in B ranks the alternatives in B adjacent to each other (while

4The de�nition of inseparable pair used by Kalai and Ritz (1980) is stronger: it says
that for all preferences where x is preferred to y; these two are ranked adjacent to each
other.

5On the other hand, for di¤erent preferences, this agent i may like a strong candidate
but dislike b0s bossiness and w0s obedience. Then, b and w are not necessarily ranked
adjacent to each other because i does not like when the power of b is increased.
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the ranking of alternatives both within B and the complement of B can be
reversed from one pro�le to another).6 For instance, suppose that there are
two parties, left and right, involved in an election where several positions
have to be distributed (e.g. prime minister versus lower ranked ministers). 7

Agents have to vote for one of the two parties and have to rank candidates
within each party according to the position they would like them to have.
There, it is natural to assume that agents rank individuals from the same
party adjacent to each other. Then, every agent has an inseparable set.8 On
the other hand, in order to escape the Gibbard-Satterthwaite theorem, we
only need one agent to satisfy the domain restriction imposed by inseparable
pair or inseparable set.
The notion of inseparable set goes at least back to Storcken (1989). It

follows that, in case of precisely three alternatives, if one arbitrary chosen
preference is no longer admissible for one arbitrary chosen agent�yielding an
inseparable pair for this agent�then on this domain neither the negative result
of Gibbard Satterthwaite nor that of Muller Satterthwaite can be deduced.
ForMaskin monotonicity, the condition is more intricate and relies on the

existence of disjoint subsets of the sets of alternative and the existence of an
asymmetric and transitive relation on the set of alternatives. However, like
in the case of the maximal strategy-proof possibility domains, the result spells
out a characterization of maximal Maskin monotone possibility domains in
terms of a set of pairs of alternatives on which the coalition of agents whom
sets of preferences are not restricted are decisive
The plan of the paper is as follows. In section 2, we introduce the model

and the necessary de�nitions useful for the paper. Section 3 presents su¢ cient
conditions for the existence of possibility results, as well as some connections
between strategy-proofness and Maskin monotonicity. Then, section 4 estab-
lishes that these su¢ cient conditions are also necessary. Section 5 charac-
terizes the maximal domain for strategy-proof, e¢ cient and non-dictatorial
social choice functions. Next, section 6 characterizes the maximal domain
for Maskin monotonic, e¢ cient and non-dictatorial social choice functions.
Finally, section 7 provides some concluding remarks.

6Observe that if the cardinality of B is equal to 2, then we have in fact two inseparable
pairs.

7Thus, each party has several candidates.
8Thus, the strategy-proof and Pareto-e¢ cient rules that one may identify there will be

less hierarchical than the one we identify.
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2 The model

There is a set of alternatives A = f1; :::;mg, with m > 3 and a set of agents
N = f1; :::; ng with n > 2.
Agents are endowed with a preference relation R over elements of A that

is (strongly) complete, anti-symmetric and transitive; that is a preference
relation is a linear order over alternatives. Let L(A) denote the set of all
these preferences and LN (A) be the set of possible preference pro�les. For
each R 2 L(A) and each (x; y) 2 A � (Anfxg), x::: = R means that x is
the best alternative at R, :::x:::y::: = R means that x is strictly preferred to
y at R, :::xy::: = R means that x is strictly preferred to y at R and there
is no alternative in between; and �nally x:::y = R means that x is the best
alternative and y is the worst alternative at R. Let Lx(A) denote the set of
linear orderings R such that x::: = R.
For each relation R on A, for each x; y 2 A, (x; y) 2 R means that

::::x::::y:::: = R or x = y, i.e. R � A � A. The upper contour of an
alternative x at R is de�ned as up(x;R) = fy 2 A : (y; x) 2 Rg and the
lower contour of x at R is de�ned as low(x;R) = fy 2 A : (x; y) 2 Rg. The
complement of the upper contour of x at R is non-up(x;R) = A� up(x;R).
Furthermore, let IA = f(x; x) : x 2 Ag denote the identity relation on A.
To model restrictions of domains of individual preferences let ; 6= Li �

L(A) be the domain of individual preferences of agent i 2 N . From now on,
we assume that Li = L(A) if i > 2 and L1 $ L(A). For each alternative a 2 A
and set of preferences V � L(A), let Lia = La(A) \ Li and Va = V \ La(A).
For a coalition M , i.e. a subset of N , and alternatives x, y in A; let LMx �
LN�My denote the set of pro�les p such that x::: = p(i) for all i 2 M and
y::: = p(i) for all i 2 N � M .9 We introduce the following restriction on
domain of preferences.

Convexity: The domain Li � L(A) is convex if for all R1, R2 in Li and
R3 in L(A),

R1 \R2 � R3 � R1 [R2 implies that R3 2 Li:

A social choice rule K is a function from LN to A. The set of pro�les LN

is convex if for each agent i 2 N , the preference domain Li is convex. For
coalitions M and pro�les p; q 2 LN , the preference pro�le p is said to be a
M -deviation of a pro�le q if pjN�M = qjN�M .

9We set L;x� LNy = LNy and LNx � L;y = LNx .
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Inseparable pair: The set of preferences Li has an inseparable pair
(x; y) 2 A� (An fxg) if xy::: = R for each R 2 Lix.

Inseparable set: Let B be a subset of A, with 3 6 #B < m. The set
of preferences Li has an inseparable set B; with 3 6 #B < m, if for each
b 2 B, for each R 2 Lib, for each a 2 B and for each c 2 A � B, we have
:::a:::c::: = R .
So, for all preferences R in Li, if the best alternative at R is in B, then

B is preferred to (A � B) at R. Note that this condition trivially holds
for the empty set, any singleton set and the set A itself. Therefore these
are excluded. Furthermore, if B consists of precisely two alternatives, then
having an inseparable set means having two inseparable pairs, which explains
why sets with cardinality 2 are excluded in the de�nition of inseparable set.
The notion of inseparable pair is well-known see e.g. Kalai and Ritz

(1980). Although there it is a slightly stronger condition. That is Li has an
inseparable pair (x; y) if for all R 2 Li if :::x:::y::: = R, then :::xy::: = R.
Here we only need this inseparability if x is top alternative, because the
almost dictatorial rule depends mainly on the top alternatives of agent 1, the
agent with the restricted preference set. A similar remark as for inseparable
pair holds for inseparable set as de�ned in Storcken (1989).

The following conditions for choice rules are well-known. We just rephrase
these using the notation at hand.
Non-dictatorship: The choice ruleK is non-dictatorial if for each agent

i 2 N , there is a pro�le p 2 LN such that K(p)::: 6= p(i).

Pareto e¢ ciency: The choice rule K is Pareto-e¢ cient if for each
(x; y) 2 A�A and each p 2 LN such that for all agents i 2 N , :::x:::y::: = p(i),
then K(p) 6= y.

Strategy-proofness: The choice rule K is strategy-proof if for each
agent i 2 N and each p, q 2 LN such that q is an fig-deviation of p, we have
that either K(p) = K(q) or :::K(p):::K(q)::: = p(i).

Intermediate strategy-proofness: The choice rule K is intermediate
strategy-proof if for each coalition M � N and for each pro�le p 2 LN , such
that there is a preference R 2 L(A) with p(i) = R for all i 2 M , and all
M -deviations q 2 LN , it holds that :::K(p):::K(q)::: = R or K(p) = K(q).
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Maskin monotonicity: The choice rule K is Maskin monotonic if for
each p, q 2 LN ,

low(K(p); p(i)) � low(K(p); q(i)) for each i 2 N implies that K(p) = K(q):

Strong positive association: The choice rule K is strongly positively
associated if for each p; q 2 L(A) and each a 2 A,
low(a; p(i)) � low(a; q(i)) for each i 2 N and p(i)jA�fag = q(i)jA�fag

implies that K(q) 2 fK(p); ag.

Decisiveness of coalitions appear also in our setting as a powerful tool to
analyze the problem at hand.

Decisiveness: At choice rule K, a coalitionM � N is said to be decisive
on (x; y) 2 A� A, if K(p) = x for each pro�le p 2 LMx � LN�My .

Let DK (M) = f(x; y) 2 A�A : M is decisive on (x; y)g: If K is Pareto-
e¢ cient, then it follows immediately that IA � DK(M). It appears that the
rules which simultaneously satisfy Pareto-e¢ ciency, non-dictatorship and
either strategy-proofness or Maskin monotonicity on the domains at hand
are almost dictatorial.

Let IA $ D $ A� A for some transitive relation D on A. De�ne by KD

the hierarchical choice rule corresponding to D de�ned as follows: for every
pro�le p such that p(1) 2 L1y, KD(p) = best(p(2)jup(y;D)). Because of D being
unequal to both IA and A � A, it follows that KD is non-dictatorial. Tran-
sitivity of D imposes a kind of rationality which under Pareto-e¢ ciency10 is
implied by both Maskin-monotonicity and strategy-proofness. Next, we dis-
cuss conditions that D has to satisfy in order forKD to be a strategy-proof or
Maskin monotonic social choice rule. We introduce the following de�nitions.

Strategy-proof admissibility: The pair (D;L1) is strategy-proof ad-
missible if IA $ D $ A � A , D is transitive and for each (x; y) 2 D, each
R 2 L1y and each z 2 up(x;R), both

(z; y) 2 D and

(x; z) 2 D whenever L1z 6= ;:
10But independent of the actual preference domain restriction of agent 1
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Let strategy(D;L1) stands for the strategy-proof admissibility of the pair
(D;L1).

Maskin admissibility: The pair (D;L1) is Maskin admissible, notation
Maskin(D;L1) if IA $ D $ A�A , D is transitive and for all (x; y) 2 D all
R 2 L1y all z 2 up(x;R) and all R0 2 L1z both

(z; y) 2 D and

(x; z) 2 D whenever low(x;R) � low(x;R0):

LetMaskin(D;L1) stands for theMaskin admissibility of the pair (D;L1).

3 Su¢ cient conditions, strategy-proofness and
Maskin monotonicity

The following Lemma shows that the condition of strategy-proof admissibility
andMaskin admissibility are su¢ cient to guarantee that KD is strategy-proof
or Maskin-monotone respectively and therewith explains the names of these
two requirements on D and L1.

Lemma 1 Consider the hierarchical choice rule KD : L
N ! A, correspond-

ing to D. Then

1. strategy(D;L1) implies that KD is non-dictatorial, Pareto-e¢ cient and
strategy-proof;

2. Maskin(D;L1) implies that KD is non-dictatorial, Pareto-e¢ cient and
Maskin-monotone.

Proof. Non-dictatorship follows in both cases because of IA $ D $ A� A.
To prove Pareto-e¢ ciency let p be a pro�le with p(1) 2 L1y. It is su¢ cient to
prove that Pareto-e¢ ciency is satis�ed at this pro�le p. This is indeed the
case whenever KD(p) = y. So, suppose that KD(p) = best(p(2)jup(y;D)) and
KD(p) 6= y. Because of strategy(D;L1) as well as Maskin(D;L1), it follows
that z 2 up(y;D) if there are x 2 up(y;D) and R 2 L1y with y:::z:::x::: = R.
So, for all a 2 non-up(y;D), we have :::KD(p):::a::: = p(1) and for all a 2
up(y;D) � fKD(p)g, we have :::KD(p):::a::: = p(2). So, Pareto-e¢ ciency is
satis�ed at p.
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In order to prove (1), assume strategy(D;L1). Furthermore, let p be as
above and pro�le q an fig-deviation of p for some agent i with q(1) 2 L1z
for some z 2 A. To the contrary suppose that :::KD(q):::KD(p)::: = p(i).
By the de�nition of KD it follows that i 6 2. If i = 2, then p(1) = q(1).
Consequently, y = z and KD(q) = best(q(2)jup(z;D)) = best(q(2)jup(y;D)). So,
in that case KD(q) 2 up(y;D). Because KD(p) = best(p(2)jup(y;D)), we ob-
tain a contradiction with :::KD(q):::KD(p)::: = p(i). To conclude the proof of
(1), let i = 1. Therefore, p(2) = q(2). Because of :::KD(q):::KD(p)::: = p(1)
and strategy(D;L1), it follows that KD(p) 2 up(KD(q); D). Thus, since
D is transitive; we conclude that KD(p) 2 up(z;D). But then KD(q) =
best(q(2)jup(z;D)) = best(p(2)jup(z;D)) and :::KD(q):::KD(p)::: = p(1) contra-
dict each other. This proves strategy-proofness.
In order to prove (2), assume Maskin(D;L1) and consider fig-deviations

p and q as before with, in addition, low(KD(p); p(i)) � low(KD(p); q(i)). It is
su¢ cient to prove that KD(p) = KD(q).This obviously holds whenever i > 2.
So suppose that i = 1. Since low(KD(p); p(1)) � low(KD(p); q(1)), it follows
that z 2 up(KD(p); p(1)). Maskin(D;L1), or re�exivity of D, or z = y imply
that (KD(p); z) 2 D and (z; y) 2 D. Furthermore, transitivity of D implies
that up(z;D) � up(y;D). But because KD(p) = best(p(2)jup(y;D)), it follows
that KD(p) = best(p(2)jup(y;D)) = best(p(2)jup(z;D)) = best(q(2)jup(z;D)) =
KD(q).

A domain LN is called a strategy-proof possibility domain if there exist
choice rules K : LN ! A which are simultaneously non-dictatorial, strategy-
proof and Pareto-e¢ cient. Furthermore, it is called a maximal strategy-proof
possibility domain if it is a strategy-proof possibility domain and there is no
other strategy-proof possibility domain, say bLN , such that LN $ bLN . Similarly
we de�ne a Maskin-monotone possibility domain and a maximal Maskin-
monotone possibility domain by replacing the condition of strategy-proofness
by the condition of Maskin monotonicity in the two previous de�nitions.

Example 1 In case L1 has an inseparable pair (y; x) or an inseparable set
B, it follows straightforwardly that strategy(D;L1), where D = f(x; y)g or
D = B�B respectively. So, the previous Lemma implies that in these situa-
tions, the hierarchical choice rule KD is non-dictatorial, Pareto-e¢ cient and
strategy-proof. Thus, in that case, LN is a strategy-proof possibility domain.

The following results logically link several of the conditions de�ned above.

9



Theorem 1 Let K : LN ! A be a social choice rule. Then

1. K is strategy-proof if and only if it is intermediate strategy-proof;

2. If K is strategy-proof, then it is Maskin monotonic and strongly posi-
tively associated;

3. If LN is convex, then strategy-proofness of K is equivalent to Maskin
monotonicity of K, as well as to strong positive association of K.

Proof. (First part) Clearly intermediate strategy-proof ness implies strategy-
proofness. So, suppose K is strategy-proof. Furthermore, let p and q be
S-deviations for some S � N such that p(i) = R for some R 2 L(A). It is
su¢ cient to prove that :::K(q):::K(p)::: 6= R. Without loss of generality let
S = f1; 2; :::; sg. Take pro�les r0; r1; r2; :::; rs 2 LN de�ned for all i 2 N by
rt(i) = p(i) if i > t, and by rt(i) = q(i) otherwise. So, r0 = p and rs = q. By
strategy-proofness, it follows that :::K(rt+1):::K(rt)::: 6= rt(t+ 1) = R for all
t 2 f0; 1; 2; :::; s � 1g. Because of negative transitivity of R, it follows that
:::K(q):::K(p)::: 6= R.
(Second part) Let p and q be fig-deviations in LN such that,

low(K(p); p(i)) � low(K(p); q(i)).

It is su¢ cient to prove that K(p) = K(q). By strategy-proofness, it follows
that K(q) 2 low(K(p); p(i)) and K(p) 2 low(K(q); q(i)). Given our assump-
tion, we have that K(q) 2 low(K(p); q(i)) and K(p) 2 low(K(q); q(i)). As
q(i) is antisymmetric we have that K(p) = K(q).
In order to prove strong positive association, let p and q be fig-deviations

in LN . Furthermore, let a 2 A be such that low(a; p(i)) � low(a; q(i)) and
p(i)jA�fag = q(i)jA�fag. It is su¢ cient to prove that K(q) 2 fa;K(p)g. Sup-
pose that K(p) 6= K(q). Then we have to prove that K(q) = a. By strategy-
proofness, it follows that :::K(p):::K(q)::: = p(i) and :::K(q):::K(p)::: = q(i).
Because p(i)jA�fag = q(i)jA�fag and low(a; p(i)) � low(a; q(i)), this can only
hold if K(q) = a.
(Third part) Let p and q be two fig-deviations in LN . It is su¢ cient that

both Maskin monotonicity and strong positive association imply that,

K(q) 2 low(K(p); p(i)):

Because of convexity of LN there are R0; R1; R2; :::; Rk 2 Li such that R0 =
p(i), Rk = q(i), Rt�Rt+1 = f(xt; yt); (yt; xt)g for some xt and yt in A, with
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xt 6= yt, for all t 2 f0; 1; 2; :::; k�1g and :::yt:::xt::: = Rs for all t < s 6 k and
:::xt:::yt::: = Rs for all 0 6 s 6 t. Now take pro�les r0; r1; r2; :::; rk 2 LN ,
fig-deviation of p such that rt(i) = Rt for all t 2 f0; 1; 2; :::; kg. Now if
K(rt) 6= K(rt+1) for some t 2 f0; 1; 2; :::; k � 1g, then Maskin monotonicity
as well as strong positive association imply thatK(rt) = xt andK(rt+1) = yt.
Hence K(rt+1) 2 low(K(rt); p(i)). By transitivity, it follows that K(rk) 2
low(K(r0); p(i)). So,K(q) 2 low(K(p); p(i)) proving thatK is strategy-proof.

4 Necessary conditions for strategy-proofness
or Maskin-monotonicity

In the previous section, the conditions of strategy-proof admissibility and of
Maskin admissibility appeared to be su¢ cient to guarantee the existence of
choice rules on the restricted domain that are Pareto-e¢ cient, non-dictatorial
and strategy-proof, or Maskin monotonic, respectively. Here we prove that
these two conditions are in fact also necessary.
For the rest of this section, letK be a Pareto-e¢ cient and non-dictatorial

social choice rule. We will show that whenever K is strategy-proof orMaskin
monotonic, then IA $ DK(N � f1g) $ A � A is transitive and that the
pair (DK(N � f1g); L1) is respectively strategy-proof admissible or Maskin
admissible.
To avoid needless repetitions, assume thatK is at leastMaskin monotonic.

So, cases at which the social choice rule K is strategy-proof are spelled out
explicitly in this section.

Lemma 2 Let p 2 LN , M � N and (x; y) 2 A�(An fxg) such that for each
agent i 2 M , xy::: = p(i) and for each agent i 2 N �M , y::: = p(i). Let
K(p) = x. Then (x; y) 2 DK(M).

Proof. Let q 2 LMx � LN�My . It is su¢ cient to prove that K(q) = x. Let
r 2 LN be an (N�M)-deviation of p and anM -deviation of q. Now, Pareto-
e¢ ciency implies thatK(r) 2 fx; yg. IfK(r) = y, thenMaskin monotonicity
would imply the contradiction that K(p) = y. Therefore, K(r) = x. But
then Maskin monotonicity implies that K(q) = x.

Lemma 3 IA $ DK(N � f1g) $ A� A and DK(N � f1g) is transitive.
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Proof. (Proof of IA $ DK(N � f1g)) To the contrary, suppose that IA =
DK(N � f1g). We show that this leads to the contradiction that agent 1 is
a dictator. Consider R 2 L1 and a pro�le p 2 LN , with xy::: = R = p(1)
for some x and y. To deduce the contradiction, it is su¢ cient to prove
that K(p) = x. Consider the pro�les q and r�both N � f1g-deviations of
p�such that q(i) = yx::: and r(i) = y:::x for each i > 2. Because of Pareto-
e¢ ciency, it follows that K(q) 2 fx; yg. Now, by Lemma 2, it follows that
K(q) 6= y, otherwise (y; x) 2 (DK(N � f1g) � IA). But then K(q) = x and
(x; y) 2 DK(f1g). So, K(r) = x. By Maskin monotonicity, we obtain that
K(p) = x.
(Proof of DK(N �f1g) $ A�A) To the contrary suppose that DK(N �

f1g) = A � A. We show that this leads to the contradiction that K is
dictatorial. For R 2 L1, consider the social choice rule KR de�ned by
KR(p) = K(R; p) for each pro�le p 2 L(A)N�f1g. It is clear that KR is
surjective�and even unanimous�and Maskin monotonic. By Theorem 1, it is
strategy-proof. Hence, by the Gibbard and Satterthwaite Theorem, it follows
that KR(p) is dictatorial, say by agent iR > 2.
Consider two preferences R and R0 in L1. In order to prove that K is

dictatorial, it is su¢ cient to show that iR = iR0. To the contrary, suppose
that iR 6= iR0. We deduce a contradiction and are done. Obviously there are
di¤erent alternatives x; y; z1; z2; :::zk�1 and zk, where k may be zero, such that
z1z2:::zkx::: = R and z1z2:::zky::: = R0. So x and y are the �rst alternatives
on which the preferences R and R0 di¤er. Consider pro�les p and q which
are f1g-deviations such that p(1) = R, q(1) = R0, p( iR) = q(iR) = y:::
and p(iR0) = q(iR0) = x:::. Then since iR is a dictator at KR, it follows
that K(p) = y and because iR0 is a dictator at KR0, it follows that K(q) = x.
Finally, because low(y;R) � low(y;R0), we have a contradiction withMaskin
monotonicity of K.
(Proof of transitivity) Let (x; y); (y; z) 2 DK(N � f1g). It is su¢ cient

to prove that (x; z) 2 DK(N � f1g). This is trivially the case when x, y
and z are not three di¤erent alternatives. So, let these three alternatives be
di¤erent. Let R = z::: 2 L1 arbitrary. Consider p 2 LN such that p(1) = R
and p(i) = xz::: for each i 2 N � f1g. By Lemma 2, it is su¢ cient to prove
that K(p) = x. Consider (N � f1g)-deviation q of p such that xyz::: = q(i)
for all i 2 N � f1g. If K(q) = y, then Maskin monotonicity would yield
K(r) = y�where r is the f1g-deviation of q with r(1) = y:::�which contradicts
(x; y) 2 D(N � f1g). If K(q) = z, then Maskin monotonicity would yield
K(u) = z, where u is a (N � f1g)-deviation of q, with yz::: = u(i) for all
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i 2 N � f1g, which contradicts (y; z) 2 D(N � f1g). Therefore K(q) = x
and Maskin monotonicity implies that K(p) = x.

Lemma 4 Let x, y and z be di¤erent alternatives and R 2 L1 such that
y:::z:::::x::: = R. Let (x; y) 2 DK(N � f1g). Then

1. (z; y) 2 DK(N � f1g);

2. (x; z) 2 DK(N � f1g) if K is strategy-proof and L1z 6= ;;

3. (x; z) 2 DK(N � f1g) if there are R0 2 L1z such that low(x;R) �
low(x;R0).

Proof. (Proof of 1 ) Let q 2 LN such that q(1) = R and zy::: = q(i) for
all i 2 N � f1g. By Lemma 2 it is su¢ cient to prove that K(q) = z.
Consider p and r, two (N �f1g)-deviations of q, such that xzy::: = p(i) and
zxy::: = r(i) for all i 2 N � f1g. Because of (x; y) 2 D(N � f1g), it follows
that K(p) = x. Pareto-e¢ ciency implies that K(r) 2 fy; zg. If K(r) = y,
then Maskin monotonicity would yield the contradiction that K(p) = y.
Therefore, K(r) = z and Maskin monotonicity implies that K(q) = z.
(Proof of 2 ) Suppose K is strategy-proof and z::: = R0 2 L1z 6= ;. Let

q 2 LN such that q(1) = R0 and xz::: = q(i) for all i 2 N � f1g. By Lemma
2, it is su¢ cient to prove that K(q) = x. Consider (N �f1g)-deviations p of
q, with p(1) = R. Because of (x; y) 2 D(N � f1g), it follows that K(p) = x.
Pareto-e¢ ciency implies that K(q) 2 fx; zg. Now considering p and q, it
follows that K(q) = z would violate strategy-proofness. In consequence,
K(q) = x.
(Proof of 3 ) Suppose R0 2 L1z such that low(x;R) � low(x;R0). Let

q 2 LN be such that q(1) = R0 and xz::: = q(i) for all i 2 N�f1g. By Lemma
2, it is su¢ cient to prove that K(q) = x. Consider (N �f1g)-deviations p of
q, with p(1) = R. Because of (x; y) 2 D(N � f1g), it follows that K(p) = x.
Next, because low(x;R) � low(x;R0) and Maskin monotonicity, we have
that K(q) = x.
Combining Lemma�s 1, 2, 3 and 4 yields the following corollaries.

Corollary 1 If LN is a Maskin monotonic possibility domain, then (DK(N�
f1g); L1) is Maskin admissible;

Corollary 2 If LN is a strategy-proof possibility domain, then ( DK(N �
f1g); L1) is strategy-proof admissible.
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5 Maximal domains for strategy-proofness

Corollary 2 characterizes strategy-proof possibility domains in terms of a set of
pairs of alternatives on which the coalition of agents whose sets of preferences
are not restricted are decisive. Consider a Pareto-e¢ cient, strategy-proof and
non-dictatorial social choice ruleK, such that for all strategy-proof possibility
domains bLN with LN � bLN , we have that LN = bLN . So, LN is a maximal
strategy-proof possibility domain. We shall prove in Theorem 2 that the con-
ditions on DK(N �f1g) under this maximality property yield that L1 either
has one inseparable pair or one inseparable set. Furthermore, we deduce that
these separabilities are not only necessary but also su¢ cient. The following
Lemmas are needed for the proof of Theorem 2.

Lemma 5 Let x 2 A. Then L1x 6= ;.

Proof. To the contrary let L1x = ;. Take bL1 = L1 [ fR 2 L(A) : xy::: = Rg
for some �xed y 2 A � fxg. Clearly, by taking bLi = L(A) for i > 1, we
obtain that LN $ bLN . By lemma 1, the latter is a strategy-proof possibility
domain. This yields a contradiction with LN being maximal.

Intuitively it is reasonable that the smaller the set of decisive pairs of
N � f1g; the larger L1 can be taken. The following Lemma shows that we
may shrink the set of decisive pairs of N � f1g.

Lemma 6 Let (x�; y�) 2 DK(N � f1g), with x� 6= y�.
Take,

Y = fa 2 A : a = y�or(a; y�); (y�; a) 2 DK(N � f1g)g and,

Z = fa 2 A : (a; y�) 2 DK(N � f1g) and (y�; a) =2 DK(N � f1g)g:
Let D� = [(Z � Z) [ (Z � Y ) [ (Y � Y ) [ IA] \DK(N � f1g).

Then strategy(D�; L1). Furthermore, [(Z�Y )[ (Y �Y )[ IA] � DK(N �
f1g).

Proof. By de�nition (x�; y�) 2 D� � IA and D� � DK(N � f1g). So,
IA $ D� $ A � A. Because of transitivity of DK(N � f1g) and [(Z � Z) [
(Z �Y )[ (Y �Y )[ IA] it follows that D� is transitive. Let x; y; z 2 A, with
#fx; y; zg = 3. Let (x; y) 2 D�. Let y:::z:::x::: = R in L1. It is su¢ cient to
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prove that (z; y) 2 D� and (x; z) 2 D�. Because of strategy(DK(N�f1g); L1)
and Lemma 5, it follows that (x; z); (z; y) 2 DK(N � f1g). Moreover, by
transitivity of DK(N � f1g) and the de�nition of Y and Z, it follows that
DK(N � f1g) \ (Y � Z) = ;. Thus, it is su¢ cient to prove that z 2 Y [ Z.
Because of y 2 Y [ Z, it follows that (y; y�) 2 DK(N � f1g). However,
(z; y) 2 DK(N � f1g) and transitivity of DK(N � f1g) together imply that
(z; y�) 2 DK(N � f1g). Therefore, z 2 Y [ Z.
The furthermore part follows by transitivity of DK(N � f1g) and the

de�nition of Y and Z.

Lemma 7 There are disjoint subsets Y and Z of A such that

1. Y is non-empty, Y [ Z 6= A, and #(Y [ Z) > 2;

2. IA $ [((Y [ Z)� Y ) [ IA] � DK(N � f1g) $ A� A and

3. strategy(((Y [ Z)� Y ) [ IA; L1).

Proof. In Lemma 6, we proved that there are disjoint Y and Z such that
strategy([(Z �Z)[ (Z � Y )[ (Y � Y )[ IA]\DK(N �f1g); L1). Because of
the transitivity of DK(N � f1g), we may take (x�; y�) 2 DK(N � f1g) such
that x� 6= y� and (Z � Z) \DK(N � f1g) � IA. By the furthermore part of
the previous Lemma 6, we obtain that (Y [Z)� Y � DK(N �f1g). Hence,
it follows that strategy(((Y [ Z)� Y ) [ IA; L1). The inclusions at (2) follow
readily.
Also, by de�nition, Y is non-empty and because of x�; y� 2 Y [ Z, with

x� 6= y�, we have #(Y [ Z) > 2.
It remains to prove that Y [ Z 6= A. In order to do so, suppose that

Y [ Z = A. We prove that we may take Z = ; and that Y 6= A. Consider
y 2 Y and R = y:::a in L1 where a 2 A. Because of strategy(((Y [Z)�Y )[
IA; L

1) and (a; y) 2 ((Y [ Z) � Y ), it follows for each b 2 A � fy; ag that
(a; b) 2 ((Y [ Z)� Y ). Hence, b 2 Y for each b 2 A� fa; yg. Next, because
[((Y [ Z) � Y ) [ IA] $ A � A, it follows that Z 6= ;. But then Z = fag.
As the previous holds for every a0 2 A for which there are y 2 Y , R 2 L1y
with y:::a0 = R and Z is a singleton, it follows that for each y 2 Y and each
R 2 L1y that y:::a = R. Hence, strategy((Y � Y ) [ IA; L1) and as Z is a
singleton Y 6= A. By taking Z = ; this shows the existence of such Y and
Z.
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Theorem 2 Consider LN with Li = L(A) for i > 2. Then LN is a maximal
strategy-proof possibility domain if and only if one of the following two holds:

1. There are a; b 2 A with a 6= b and L1 = V where V = fR 2 L(A) : if
R 2 L1a, then ab::: = Rg which means that L1 has an inseparable pair
(a; b);

2. There is a non-trivial subset Y of A, with #Y > 3, such that L1 = W
where W = fR 2 L(A) : if R 2 L1y for some y 2 Y , then for all a 2 Y
and all b 2 A� Y we have :::a:::b::: = Rg which means that L1 has an
inseparable set Y .

Proof. (Only-if-part) Suppose L1 is a maximal strategy-proof possibility
domain. By the previous Lemma there are disjoint subsets Y and Z of A
such that

1. Y is non-empty, Y [ Z 6= A, and #(Y [ Z) > 2;

2. IA $ [((Y [ Z)� Y ) [ IA] $ A� A and

3. strategy(((Y [ Z)� Y ) [ IA; L1).

Consider y 2 Y and z; t 2 Y [ Z. Take R 2 L1y which exist by Lemma
5 and assume without loss of generality that y:::t:::z::: = R. Then by strat-
egy(((Y [ Z) � Y ) [ IA; L1); it follows that (z; t) 2 (Y [ Z) � Y . Hence,
t 2 Y . So, #Z 6 1. Moreover, if z 2 Z, then for all t 2 Y � fyg, we
have y:::t:::z::: = R. Because y is chosen arbitrarily, this means that strat-
egy((Y � Y ) [ IA; L1) or #Y = #Z = 1. Suppose Y = fbg and Z = fag.
Then strategy(((Y [Z)�Y )[ IA; L1) implies that L1 has an inseparable pair
(a; b). Consider the set V . We shall prove L1 = V . Because obviously strat-
egy(((Y [Z)�Y )[IA; V ) and therefore strategy(((Y [Z)�Y )[IA; L1[V ) it
follows by the maximality of L1 that V � L1. Now V is de�ned such that it
contains all sets of preferences which have an inseparable pair (a; b). There-
fore L1 � V . So, L1 = V . Now suppose strategy((Y � Y ) [ IA; L1). Then it
follows that L1 has an inseparable set Y . Consider the set W . By proving
that L1 = W; we end the proof of the only-if-part. Because obviously strat-
egy((Y �Y )[IA;W ) and therefore obviously strategy((Y �Y )[IA; L1[W ),
it follows by the maximality of L1 that W � L1. But W is de�ned such that
is contains all sets of preferences which have an inseparable set Y . Therefore
L1 � V . So, L1 = W .
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(If-part) By example 1 it is clear that if L1 equals either V or W , then
LN is a strategy-proof possibility domain. It remains to prove the maximality
of it. Suppose Li � bLi for all agents i and bLN is a maximal strategy-proof
possibility domain. It is su¢ cient to prove that LN = bLN . By the only-if-part,
it follows that bL1has either an inseparable set say bY or an inseparable pair
say (ba;bb). Because L1 � bL1 and is such that it contains all sets of preferences
which either have an inseparable set Y or an inseparable pair (a; b), it follows
that the inseparable sets or pairs are equal and that L1 = bL1.
6 Maximal domains forMaskin-monotonicity

In this section we characterize the maximal Maskin monotone possibility do-
mains for the case that precisely one agent�s set of preferences is restricted.
Theorem 3 spells out a characterization of Maskin monotone possibility do-
mains in terms of a set of pairs of alternatives on which the coalition of
agents whom sets of preferences are not restricted are decisive.

Remark 1 Consider the Lemma�s 5�, 6�and 7�obtained from Lemma�s 5,
6 and 7 by replacing the word "strategy" by the word "Maskin" respectively
. The proofs of these Lemma�s follow likewise by the same substitution in
the proofs of the original Lemma�s. To avoid obvious repetitions neither the
Lemma�s 5�, 6�and 7�nor their proofs are written out here.

Theorem 3 Let N = f1; :::; ng and n > 2. Let Li = L(A) for all i > 2.
Then LN is a maximal Maskin monotone possibility domain if and only if
there are disjoint subsets Y and Z of A and an asymmetric and transitive
relation P on A such that

a Y is non-empty, Y [Z 6= A, #(Y [Z) > 2 and [(Y [Z)�(A�(Y [Z))] �
P � [(Y [ Z)� (A� Y )];

b if L1 has a separable pair (b; a) then Y = fbg and Z = fag;

c there is no partition X1, X2 of Y [Z with #X1 > 2 and X1�X2 � P and

d L1 = V where V = fR 2 L(A) :

1. if y::: = R for some y 2 Y , then P � R;
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2. if z::: = R for some z 2 Z, then there are t 2 A � (Y [ Z) such
that [(non-up(z; P )� fzg) \ (Y [ Z)] � low(t; R)g.

Proof. (Only-if-part) Let LN be a maximal Maskin monotone possibility
domain. We will show the existence of sets Y , Z and relation P satisfying
the conditions formulated in the theorem. By Lemma 7�we have Y , Z � A,
where Y \Z = ;, Y 6= ;, Y [Z 6= A andMaskin(((Y [Z)�Y )[IA; L1). For
di¤erent alternatives a and b, de�ne (a; b) 2 P if for all R 2 L1y and all y 2 Y
we have that :::a:::b::: = R. By de�nition, P is asymmetric and because the
preferences in L1are transitive, P is transitive. Because ofMaskin(((Y [Z)�
Y ) [ IA; L1), it follows that [(Y [ Z)� (A� (Y [ Z))] � P . Because of the
de�nition of P and Lemma 5� it follows that P � [(Y [ Z)� (A� Y )]. This
proves part (a).

Claim 1 Maskin(((Y [ Z)� Y ) [ IA; V ).

We have to prove the following implications for x; y; z 2 A and R;R0 2 V .

1. If (x; y) 2 (Y [Z)� Y and y:::z:::x::: = R, then (z; y) 2 (Y [Z)� Y ;

2. If (x; y) 2 (Y [ Z) � Y , y:::z:::x::: = R, z::: = R0 and low(x;R) �
low(x;R0), then (x; z) 2 (Y [ Z)� Y .

The proof of the �rst implication follows immediately from the �rst con-
dition in the de�nition of V and [(Y [Z)� (A� (Y [Z))] � P . To prove the
second implication, let x; y; z; R and R0 be as in the premises of implication
2. It is su¢ cient to prove that low(x;R) " low(x;R0) or (x; z) 2 (Y [Z)�Y .
Clearly by implication 1, it follows that z 2 (Y [Z). If z 2 Y , then evidently
(x; z) 2 (Y [ Z) � Y . So, suppose z =2 Y , which implies that z 2 Z. Now
because of P � R and the de�nition of P , it follows that (x; z) =2 P . Of
course x 6= z . So, there are t 2 A� (Y [ Z) such that x 2 low(t; R0). Now,
since t 2 A � (Y [ Z), it follows that y:::x:::t::: = R. Thus, low(x;R) "
low(x;R0). This proves the second implication and ends the proof of the
claim.
Next we prove part (b). Let L1 have an inseparable pair (b; a). In view of

Example 1, Theorem 1 and L1 being a maximal Maskin monotone possibility
domain it follows for all x 2 A� fbg that Lx(A) � L1and L1b = fR 2 L(A) :
ba::: = Rg. So, for (x; y) 6= (a; b), with x 6= y, there are R 2 L1 such that
y:::x = R. Now, (x; y) 2 (Y [Z)�Y would, byMaskin(((Y [Z)�Y )[IA; L1),
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imply that fxg�A � ((Y [Z)�Y ) and therewith the contradiction A � Y .
In consequence, ((Y [ Z) � Y ) = f(a; b)g. Hence, fag = Z and fbg = Y .
This completes the proof of part (b).
In order to prove (c) let X1 and X2 be a partition of Y [Z with #X1 > 2

andX1�X2 � P . It is su¢ cient to prove that this contradicts the maximality
of LN . Then IA [ [X1 � (Y \ X1)] $ A � A and IA [ [X1 � (Y \ X1)] is
transitive.Bythe de�nition of P it follows that X1 \ Y 6= ;. Consider y 2
X1 \ Y and x 2 X2. Then (x; y) 2 (Y [ Z) � Y . Let R 2 L1y and let
R0 2 L(A) be such that RjA�fxg = R0jA�fxg and y:::x = R0. Then R0 2 L1
and Maskin(((Y [ Z)� Y ) [ IA; L1) would imply fxg �A � ((Y [ Z)� Y )
which then contradicts Y [Z 6= A. So, R0 =2 L1. But obviouslyMaskin((X1�
(Y \X1))[ IA; L1 [fR0g) which contradicts the maximality of LN . Next we
prove (d).
First we prove L1 � V . Let R 2 L1. Then (1) follows because of the

de�nition of P . In order to show that also (2) is satis�ed let z::: = R. Let T =
(non-up(z; P )�fzg)\ (Y [Z). Take x = best(RjT ). So x 2 T and for some
y 2 Y there are R0 in L1 with y:::z:::x::: = R0. Because of z 2 Z, it follows
that (x; z) =2 ((Y [ Z)� Y ) [ IA. Therefore Maskin(((Y [ Z)� Y ) [ IA; L1)
implies low(x;R0) * low(x;R). So, there are t 2 low(x;R0) and x 2 low(t; R).
Because of the de�nition of x and the fact that x 2 low(t; R), it follows
that t =2 T . But then, because t 2 low(x;R0), it follows that t 2 non-
up(z; P ) � fzg. Now, because t =2 T; it implies that t =2 (Y [ Z). So,
t 2 A� (Y [ Z) and T � low(t; R) which in turn yields (2).
Next we prove that V � L1. Because of L1 � V and the maximality of

L1, it is su¢ cient to prove that V is a Maskin monotone possibility domain.
So, by Corollary 1 it is su¢ cient to prove thatMaskin(((Y [Z)�Y )[IA; V ),
which follows by the previous claim. This completes the proof of part (d)
and herewith the only if part.
(If-part) Let Y , Z, P and V as formulated in the if part of the theorem.

Let L1 = V . It is su¢ cient to prove that LN is aMaskin monotone possibility
domain and that for all Maskin possibility domains bLN with V � bL1 andbLi = L(A), we have that V = bL1. Note that P = f(a; b) 2 A�A : a 6= b and
for all y 2 Y and allR 2 L1y :::a:::b::: = Rg. By Claim 1 we haveMaskin(((Y [
Z)�Y )[IA; L1). SettingD of Lemma 1 equal to ((Y [Z)�Y )[IA, it follows
that LN is a Maskin monotone possibility domain. Therefore it is su¢ cient
to prove that there are no ; 6= D $ A � A and V $ W � L(A) with
Maskin(D;W ). To the contrary, let there be such D andW . Without loss of
generality we may assume that W is a maximal Maskin monotone possibility

19



domain. By the only-if-part, we may assume the existence of disjoint Y 0,
Z 0 � A with Y 0 6= ;, Y 0 [ Z 0 6= A, an asymmetric and transitive relation
P 0 on A with [(Y 0 [ Z 0) � (A � (Y 0 [ Z 0))] � P 0 � [(Y 0 [ Z 0) � (A � Y 0)],
#(Y 0 [Z 0) > 2, if L1has a separable pair (b; a) then Y 0 = fbg and Z 0 = fag,
there is no partition X 0

1, X
0
2 of Y

0 [ Z 0 with #X 0
1 > 2, X 0

1 � X 0
2 � P 0 and

W = fR 2 L(A) :

1. if y::: = R for some y 2 Y 0, then P 0 � R;

2. if z::: = R for some z 2 Z 0, then there are t0 2 A� (Y 0 [ Z 0) such that
for all x0 2 Y 0 [ Z 0, with x0 6= z and (x0; z) =2 P 0, x0 2 low(t0; R)g.

Now by Claim 1 it follows thatMaskin(((Y 0[Z 0)�Y 0)[IA;W ). Because
of V � W , this implies Maskin(((Y 0[Z 0)�Y 0)[ IA; V ). Next we prove that
(((Y 0 [ Z 0)� Y 0) [ IA) = (((Y [ Z)� Y ) [ IA).
First, we prove that (((Y 0 [ Z 0) � Y 0) [ IA) � (((Y [ Z) � Y ) [ IA).

It is su¢ cient to prove that Y 0 [ Z 0 � Y [ Z and that Y 0 � Y . In order
to prove the former let x 2 A � (Y [ Z). It is su¢ cient to show that
x =2 Y 0 [ Z 0. Clearly by the de�nition of V it follows that Lx(A) = Vx.
Because of V � W , it follows that Vx � Wx. Hence, Lx(A) = Wx. Suppose
x 2 Y 0. Then there are z 2 (Y 0 [ Z 0) � fxg and R 2 Lx(A) = Wx such
that x:::z = R. Now by the assumptions on Y 0,Z 0,P 0 and W we have that
(Y 0[Z 0)�(A�(Y 0[Z 0)) � P � R. As x:::z = R, x =2 Y 0 and z 2 Y 0[Z 0 this
can only hold if A = Y 0 [ Z 0 which contradicts our assumptions on Y 0,Z 0,P 0
and W . Suppose x 2 Z 0. Then there are R 2 Lx(A) = Wx such that
(Y 0[Z 0)� (A� (Y 0[Z 0)) � R. Now as there are t 2 A� (Y 0[Z 0) such that
((non-up(z; P ) � fzg) \ (Y 0 [ Z 0)) � low(t; R) and there are y 2 Y 0 which
clearly are in ((non-up(x; P ) � fxg) \ (Y 0 [ Z 0)) we have a contradiction.
This proves Y 0 [ Z 0 � Y [ Z.
In order to prove Y 0 � Y let y 2 Y 0. To the contrary assume y =2 Y . Then

by the inclusion Y 0[Z 0 � Y [Z we may conclude that y 2 Z and that there
are t 2 (A� (Y [Z)) � (A� (Y 0[Z 0)). Furthermore, there are R 2 Vy with
yt::: = R. As V � W , it follows that R 2 Wy where y 2 Y 0. But yt::: = R
with t 2 A � (Y 0 [ Z 0) contradicts [(Y 0 [ Z 0) � (A � (Y 0 [ Z 0))] � P � R.
Hence, Y 0 � Y .
Next we prove (((Y [Z)�Y )[IA) � (((Y 0[Z 0)�Y 0)[IA). By the proof

of the previous inclusion, we may assume that both (Y 0 [Z 0) � (Y [Z) and
Y 0 � Y .
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First we show that Y = Y 0. To the contrary let b 2 Y � Y 0. Now for
all c 2 Y 0 � Y; there are preferences R and R0 in V such that cb::: = R and
bc::: = R0. If b =2 (Y 0 [ Z 0), then R 2 V � W violates condition 1 of W .
So, b 2 (Y 0 [ Z 0) which means that b 2 Z 0. Because of R 2 W; it follows
that (x; b) =2 P 0 for all x 2 A � fc; bg. Now, because R0 2 W ,in view of
condition 2 of W it follows that (c; b) 2 P 0. Note that for all x 2 Y � fb; cg,
there are preferences R00 = xbc::: in V � W . So, because of (c; b) 2 P 0,
it follows that Y 0 = fcg. Since fc; bg � Y , it follows that (c; b) is not an
inseparable pair in V . Therefore, there are x 2 A � fc; bg and preferences
R000 = cx:::b::: in V � W . Then Maskin(((Y 0 [ Z 0) � Y 0) [ IA;W ) implies
x 2 (Y 0 [ Z 0). As Y 0 = fcg this yields x 2 Z 0. Because of R000 2 V and
c 2 Y , it follows that (y; x) =2 P for all y 2 A � fc; xg. But then, there are
preferences R0000 = bcx::: in V � W . Note that although b; x 2 Z 0 and (x; b) =2
P 0, there is no t0 2 A � (Y 0 [ Z 0) such that b:::t0:::x::: = R0000 contradicting
condition 2 of W . In consequence, Y = Y 0.
In the following, we prove that Y [ Z = Y 0 [ Z 0. To the contrary let

Y [Z 6= Y 0 [Z 0. We will prove that [(Y 0 [Z 0)� ((Y [Z)� (Y 0 [Z 0))] � P
which because of #(Y 0 [ Z 0) > 2 clearly contradicts the assumptions on P .
So let x0 2 (Y 0 [Z 0) and let z 2 ((Y [Z)� (Y 0 [Z 0)). Because of Y = Y 0 it
follows that z 2 Z�Z 0. Suppose to the contrary that (x0; z) =2 P . Then there
are y0 2 Y and R 2 V with y0:::z:::x0::: = R. As Y = Y 0 both x0 and y0 are
in (Y 0 [ Z 0) Maskin(((Y 0 [ Z 0)� Y 0) [ IA;W ) implies the contradiction z 2
(Y 0[Z 0). So, (x0; z) 2 P and herewith [(Y 0[Z 0)�((Y [Z)�(Y 0[Z 0))] � P .
So, Y = Y 0 and Z = Z 0. Next we show that P = P 0 which then by

the de�nition of V and W yields the desired result that V = W . First we
show that P � P 0. To the contrary, suppose that (a; b) 2 P and (a; b) =2 P 0.
Because P[ P 0 � [(Y [Z)�(A�Y )] and ((Y [Z)�(A�(Y [Z))) � P \P 0,
it follows that a 2 Y [ Z and b 2 Z. Now because of the de�nition of V
there are R 2 V with bat::: = R for some t 2 (A� (Y [ Z)). Since V � W ,
this clearly yields a contradiction with condition 2 of W . So, P � P 0.
Next we prove P 0 � P . Suppose (a; b) =2 P . We prove that (a; b) =2 P 0.

Because (a; b) =2 P it follows by the de�nition of V that there are R 2 V
such that both y::: = R for some y 2 Y and :::b:::a::: = R. As R 2 V � W .
This shows that (a; b) =2 P 0.
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7 Conclusion

By restricting the domain of only one agent, we showed that it is possi-
ble to escape the negative conclusions of the Gibbard-Satterthwaite and
the Muller-Satterthwaite theorems. Obviously, the social choice functions
we construct that are strategy-proof, Pareto-e¢ cient and non-dictatorial/
Maskin monotonic, Pareto-e¢ cient and non-dictatorial, indeed have a dic-
tatorship �avor because of their hierarchical structures.11

A question of interest would be to study how these social functions evolve
as we restrict the preferences of more than one agent. We leave this question
open for future research.
We close the discussion with two examples. The �rst one shows that

there are domains which admit non-dictatorial, Pareto-e¢ cient and strongly
positively associated choice rules but are not non-dictatorial, Pareto-e¢ cient
and strategy-proof choice rules.

Example 2 Let B $ A, with #B > 3, and let t 2 A� B. Take Li = L(A)
for i > 2 and L1 = fR 2 L(A) : if for some b 2 B R 2 Lb(A), then there
are c 2 B � fbg such that bct::: = Rg. De�ne the choice rule K from LN to
A for a pro�le p as follows: K(p) = a if x::: = p(1), x = a and x =2 B else
xyt::: = p(1) with fa; bg = fx; yg $ B and :::a:::b::: = p(2).
Clearly K is non-dictatorial, Pareto-e¢ cient but not strategy-proof. Fur-

thermore, K is strongly positively associated. To show this consider fig-
deviations p and q in LN such that p(i)jA�fag = q(i)jA�fag and low(a; p(i)) �
low(a; q(i)). It is su¢ cient to show that K(q) 2 fa;K(p)g. If i > 2; then
K(p) = K(q). Let i = 2. If K(p) =2 B, then K(p) = K(q). Let K(p) 2 B.
Then fK(p); bg = fx; yg $ B for some b; x; y in A and xyt::: = p(1) and
:::K(p):::b::: = p(2). If a 6= b, then :::K(p):::b::: = q(1) and consequently
K(q) = K(p). If b = a, then obviously K(q) 2 fK(p); ag. Let i = 1.
Let K(p) =2 B. If not a::: = q(1), then K(q) = K(p). If a::: = q(1),
then aK(p)::: = q(1) and as K(p) =2 B it follows that a =2 B. So, in
that case K(q) = a. Let K(p) 2 B. Then for some x; y; b 2 B we have
fK(p); bg = fx; yg, xyt::: = p(1) and :::K(p):::b::: = p(2). If K(p) = a,
then p(1) = q(1) or q(1) = yxt::: and K(p) = K(q). If a 6= K(p) and
not a::: = q(1), then K(p) = K(q). If a 6= K(p) and a::: = q(1), then
aK(p)bt::: = q(1). So, in that case a =2 B and K(q) = a.

11Indeed, at many preference pro�les, the agent with a restricted set of preferences gets
his top alternative.
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Our last example shows that if we restrict the sets of preferences of exactly
two agents, then neither the condition of inseparable pair nor the condition of
inseparable set is a necessary condition for the maximality of a strategy-proof
possibility domain.

Example 3 Let A = fx; y; z; tg and N = f1; 2g. Take L1 = fR 2 L(A) :
R = x::: or R = y:::x:::z::: or R = t:::x:::z:::or R = z:::g and L2 = fR 2
L(A) : R = x:::z:::t::: or R = y:::t:::x::: or R = z:::x or R = t:::y:::x:::g.
Now de�ne the choice rule K for an arbitrary pro�le p 2 LN as follows
K(p) = a if p(1) = a::: and p(2) = b::: and (a; b) =2 f(y; x); (t; x)g else take
K(p) = x. So at K agent 2 is decisive on the pairs (x; y) and (x; z); whereas
agent 1 is decisive on the remaining pairs. So K is not dictatorial. As K(p)
2 fbest(p(1)); best(p(2))g we have that K is Pareto-e¢ cient. To see that K
is strategy-proof consider pro�les p with p(2) = x:::. Then the outcome for
any f1g-deviation of p is either x or z depending on whether agent 1 prefers
x to z or z to x respectively. A similar reasoning holds for f2g-deviation of
pro�le p with p(1) = y::: or p(1) = t:::. It is straight forward to see that for
both agents i; the set Li does not have an inseparable pair or set. Therefore,
we may conclude that these inseparabilities are not necessary conditions for
maximal strategy-proof possibility domains in case the set of preferences of
more than one agent is restricted. Note further that K is tops-only but that
the sets L1 and L2 are neither convex nor connected.
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