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Abstract

In this paper it is shown how to compute stable sets, defined by Mertens (1989), in

the context of bimatrix games only using linear optimization techniques.

1. Introduction

The first systematic investigation concerning the definition of stability of a normal form equilibrium

was executed by Kohlberg and Mertens (1986). Their approach differed from what had been done

before. Up till then usually ad-hoc remedies were introduced for specific shortcomings of Nash

equilibrium. Kohlberg and Mertens simply started with the formulation of a list of desiderata that

should be satisfied by any reasonable interpretation of what a stable equilibrium is. Unfortunately,

despite several efforts, they did not find a definition of stability of equilibrium that featured all

desiderata. Several attempts were subsequently made to find an interpretation of stability that did

satisfy all their requirements. Eventually Mertens (1989, 1990) presented a definition that satisfied

all these conditions, along with a couple of new additions to the list of desiderata.

ORIGINAL DEFINITION We will first briefly explain how Mertens (1989) defined stable sets. Since,

for reasons we will explain in a moment, we will restrict ourselves to a two-person context, we will

present the terminology only for bimatrix games. The basic notion in the definition of stable sets is

that of a perturbation. For a bimatrix game, a perturbation is in fact a pair of non-negative vectors,

one for each player. For each player the number of coordinates of the corresponding perturbation

equals the number of pure strategies of that player. Given such a perturbation, we can define a

new game, that is played as follows. First let the players of the original bimatrix game each choose

a strategy. Given these choices we add to each player’s choice the corresponding perturbation and
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normalize the result. Now the payoff to a player in the perturbed game is simply the payoff he

would get in the original game if the perturbed strategies thus constructed were played.

Thus each perturbation induces a perturbed game. Such a perturbed game will have a non-empty

set of Nash equilibria. The graph of the correspondence that assigns to each perturbation its set

of perturbed Nash equilibria is denoted by E .

Now stable sets are determined with the aid of the notion of a germ. Loosely speaking, a germ

is a connected chunk of the graph E that satisfies some essentiality condition when considered

sufficiently close to the zero perturbation. In this paper the essentiality condition itself is phrased

in terms of singular homology groups. It states that the projection from the graph E onto the

perturbation space should induce a homomorphism between homology groups (to be made precise

in the definition) that is not the trivial map. (This is a slight deviation from the definition in

Mertens (1989), but it has the advantage that we need not add a statement concerning Hausdorff

limits of semi-algebraic sets. This way we immediately get a purely topological notion of a germ

for arbitrary compact parts of the graph E .) Now a set T is called stable if there is a germ in E

for which T is the part of the germ directly above the zero perturbation.

Aim of the paper

In Mertens (1989) the author is already concerned with the question of computability of this type

of stability in Remark 1, pp 590 – 593. In this remark the author sketches an algorithm for

the computation of semi-algebraic stable sets. This algorithm though will in general, even for

bimatrix games, involve finding solutions to systems of higher-order polynomial equations. This

effect is basically due to the rescaling factor in the definition of a perturbed game. The algorithm

is also based on fairly involved procedures such as the elimination algorithm of Tarski and the

triangulation algorithm for semi-algebraic sets.

In this paper we will present an algorithm that is capable of computing a (or all) stable set(s)

exclusively using addition and scalar multiplication. Both the algorithm and the proof of its

validity only use elementary techniques.

Two provisos

The above assertion is subject to the following two provisos. First of all, we will only consider

bimatrix games. The reason for this is that, for normal form games with more than two players,

even the inequalities that determine the Nash equilibrium set are in terms of higher-order poly-

nomials. Thus it cannot be expected that linear techniques will be adequate tools to solve these

games.

Secondly, we will restrict ourselves to a special type of stable sets. If the task is: compute one
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stable set, then this proviso is not relevant. However, for tasks like: compute all stable sets or,

given a set, check whether or not it is stable, we need some restrictions. This is basically due to

the fact that the only a priori restriction for a stable set is that it be compact and connected.

However, the class of all compact and connected sets is way too general to be handled effectively

only by linear computation techniques. For this reason we will restrict our domain of sets to a

specific class that we will specify below in the introduction and in section 6.

Contents of the paper

THE RESULTS Basically we will do two things. First, we will show that there is an alternative

definition of stable sets that does not involve rescaling. This makes the alternative definition more

appropriate for being handled by linear computation techniques.

Given this alternative definition we will construct an algorithm that, given the primitive data of

the game (i.e. the bimatrix) and for the special type of sets we consider, decides in a finite number

of linear operations whether or not the set is stable.

ALTERNATIVE DEFINITION The alternative definition is based on a reinterpretation of perturba-

tions. Algebraically speaking, a perturbation is still a vector like we described above, but the game

induced by a perturbation is going to be different. In the alternative definition a perturbation is

simply a restriction of the strategy space. Given a perturbation, the players in this new game are

only allowed to play strategies that put a minimum amount of weight on each pure strategy, these

minimum amounts being specified by the perturbation in question. Thus we get a new, perturbed,

game with its own set of equilibria. The graph of the correspondence that assigns its set of equi-

libria to each perturbation is denoted by F . Now we can redefine stable sets by requiring that the

germs are supposed to be chunks taken from F instead of E . As it turns out, this new notion of

stability yields the same collection of stable sets as the original notion of Mertens.

STANDARD STABLE SETS The advantage of the alternative definition is that, in the case of

bimatrix games, it preserves the linear structure of the inequalities that define the collection of

Nash equilibria. Thus, given a bimatrix game, the graph F can be written as the union of a finite

number of chunks of this graph, each of which is determined by a finite number of a specific type

of linear (in)equalities. Such a chunk will be called a polyhedral chunk of F .

Nevertheless, it cannot be expected that all stable sets of the bimatrix game can be computed since

basically the only ex ante restriction on a candidate-stable set is that it be compact and connected

(in a strong sense). Thus we restrict our attention to a special type of set. We will only consider

sets that are the part above the zero-perturbation of the union of a number of polyhedral chunks

of F . Stable sets of this form are called standard stable sets.
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It turns out that a candidate-stable set in question is a standard stable set if and only if the union

of the polyhedral chunks involved is a germ. We will show that it only takes a finite number of

linear operations to either compute all germs of this form (and thus also all standard stable sets)

or, given a number of polyhedral chunks of F , to decide whether or not it is a germ.

COMPUTATION The heart of the algorithm consists of two procedures. The first procedure checks

connectedness of the candidate germ under consideration. This is done by explicitly constructing

a combinatorial graph that is connected if and only if the candidate germ is connected. Checking

connectedness of a graph is of course a finite task.

The second procedure concerns the essentiality condition. We show that, sufficiently close to the

zero perturbation, the homomorphism induced by the projection map from the graph F to the

perturbation space can be determined in a finite number of steps.

Together these two procedures can be used to check whether or not a set in standard form is

a germ. Thus, for example by a simple enumeration procedure, it is possible to determine all

standard stable sets of the bimatrix game under consideration.

Organization of the paper

Sections 2 and 3 contain the material on algebra and singular homology theory needed to under-

stand the notion of stability presented in section 4. In section 5 we present our alternative definition

and prove its equivalence with the original one. In section 6 the notion of a standard stable set

is introduced and the relation with arbitrary stable sets and maximal stable sets is explained.

Finally, in section 7 the algorithm to compute all standard stable sets is presented together with

a proof of its validity.

Appendices A and B are concerned with the computability of several constructions used in the

determination of induced homomorphisms between homology groups. Appendix C contains the

definition of simplicial homology theory and its equivalence with singular homology theory. Fi-

nally, appendix D is entirely devoted to the technicalities concerning the construction of a specific

homeomorphism needed in the paper.

Some terminology The cardinality of a finite set M is denoted by |M |. For a set X in IRn, ext(X)

denotes the set of extreme points of X. A set is called a polytope if it is the convex hull of a finite

number of points. If the dimension of a polytope is one less than the number of its extreme points

it is called a simplex. A non-empty subset F (1) of P is called a face if for any two points x and

y in P and any positive number λ < 1 the event that λx + (1 − λ)y is an element of F implies

(1) Non-emptiness is not a strict requirement. It is however customary in the definition of homology

groups. Admittance of the empty face would yield reduced homology.
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that both x and y are elements of F . If F consists of one single point, this point is called an

extreme point or vertex of P . If F is not equal to P it is called a proper face of P . A set is called

polyhedral if it is the set of solutions to a finite number of linear inequalities. Given a topology

on a set X and a point x in X, any set containing an open set (w.r.t. the topology) that contains

x is called a neighborhood of x. X is called connected if it cannot be written as a disjoint union

of two non-empty and closed sets. For a subspace Y of X, the (topological) boundary ∂Y of Y is

the collection of points x in X with the property that each neighborhood of x has a non-empty

intersection with both Y and X \ Y . The closure cl(Y ) of Y is the union of Y and ∂Y . The set

Y̊ := Y \ ∂Y is called the interior of Y .

2. Preliminaries

FREE ABELIAN GROUPS A set G is called an Abelian group if it is equipped with an operator +,

the addition, for which

(1) (a + b) + c = a + (b + c) holds for all a, b, c ∈ G

(2) there exists an element in G, denoted by 0, for which a + 0 = a holds for all a ∈ G

(3) for every a ∈ G there exists an element in G, denoted by −a, for which a + (−a) = 0, and

(4) a + b = b + a holds for all a, b ∈ G.

For an element g ∈ G and an integer n ∈ Z6 we can define the element ng in G as follows. If n ≥ 1,

then

ng :=

n
∑

i=1

g.

Furthermore, 0g := 0 where the 0 on the right-hand side of the equality sign denotes the neutral

element of G, and for n ≤ −1

ng :=
−n
∑

i=1

−g.

An Abelian group G is called free if it has a basis, that is, if there is a family B = {gα}α∈I of

elements of G such that each element g of G can be written uniquely as a finite sum

g =
∑

nαgα

where nα is an integer. In particular, if the set B is finite, we say that G is finitely generated.

One particular way to construct free Abelian groups works as follows. Given an arbitrary set S,

the free Abelian group generated by S is the set of all functions ϕ:S → Z6 that take values different

from zero only on a finite number of elements of S. It is clear that each element ϕ in this group

can be written uniquely as

ϕ =
∑

nα1lsα

5



where nα is an integer and 1lsα
is the characteristic function of {sα}. By abuse of notation we will

identify sα with its characteristic function and write

s =
∑

nαsα.

Note in particular that, in case S is finite, the free Abelian group generated by S equals Z6 S .

QUOTIENT GROUPS Suppose that we have an Abelian group G with a subgroup H. Now we can

define a new group, denoted by G / H, as follows. The elements of G / H are sets of the form

a + H := {a + h | h ∈ H}

where a ranges through G. On the collection of all such sets we can define an operator ⊕ by

(a + H) ⊕ (b + H) := (a + b) + H.

This is a correct definition in the sense that summing different representations of the same elements

of G / H yields (different representations of) the same element of G /H. It can easily be seen that

G / H equipped with this operation is an Abelian group. It is called the quotient group of G w.r.t.

H. The addition ⊕ is usually simply denoted by +.

MAPS BETWEEN GROUPS Suppose we have two (free Abelian) groups G and H. A homomorphism

from G to H is a map f :G → H such that

f(a + b) = f(a) + f(b)

for all a, b ∈ G. If f has an inverse map f−1 it is called an isomorphism. Obviously f−1 is a

homomorphism as well. A homomorphism f is called trivial if f(a) = 0 for all a ∈ G.

There is an easy way to check whether two homomorphisms f and g from G to H coincide. Let B

be a basis for G.

Proposition 1. Two homomorphisms f and g from G to H are identical if and only if

f(a) = g(a)

for all a ∈ B.

Another simple but useful observation is

Proposition 2. Let f :B → H be any function. Then there is a unique homomorphism h:G →

H on G that coincides with f on the basis B of G.

This homomorphism is called the homomorphic extension of f to G. We will abuse notation and

also denote it by f instead of introducing a new symbol every time we use this proposition.
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3. Singular homology groups

The definition of stable sets in Mertens (1989) is based on the notion of homology groups of

topological spaces. In order to give a self-contained account of this definition we will first briefly

review those definitions and parts of the theory of homology groups that are relevant for our

purposes. This section borrows heavily from Munkres (1984).

Let ∆d denote the d-simplex in IR∞ spanned by the vectors ǫ0, ǫ1, ǫ2, . . . , ǫd, where

ǫik :=

{

1 if k = i

0 else.

Now let X be an arbitrary topological space. A singular d-simplex (2) of X is a continuous map

T :∆d → X.

The free Abelian group generated by the singular d-simplices of X is denoted by Sd(X) and called

the singular chain group of X in dimension d. Notice that this group is not finitely generated.

Elements of Sd(X) of the form 1lT are called elementary d-chains. We will abuse notation and

simply write T instead of 1lT .

LINEAR SINGULAR SIMPLICES A special type of singular simplices is constructed as follows.

Suppose we have d + 1 (not necessarily distinct) points v0, . . . , vd given in some Euclidean vector

space E. The linear singular simplex l(v0, . . . , vd) is the (affine) map from ∆d to E that is defined

by

l(v0, . . . , vd)(x1, . . . , xd, 0, 0, . . . . . .) := v0 +
d

∑

i=1

xi(vi − v0).

This way we can also talk about the linear singular simplices

l(ǫ0, . . . , ǫd) and l(ǫ0, . . . , ǫ̂i, . . . , ǫd).

The simplex l(ǫ0, . . . , ǫd) is simply the inclusion map from ∆d to IR∞. The second simplex is the

affine map that corresponds to the sequence

(ǫ0, . . . , ǫ̂i, . . . , ǫd) := (ǫ0, . . . , ǫi−1, ǫi+1, . . . , ǫd)

of points in ∆d ⊂ IR∞. Notice that the convex hull of these points is a facet of ∆d.

THE BOUNDARY OPERATOR For this type of chain groups the corresponding boundary operator

∂d:Sd(X) → Sd−1(X) can now easily be defined. For a singular d-simplex T :∆d → X we define

∂dT :=
d

∑

i=0

(−1)iT ◦ l(ǫ0, . . . , ǫ̂i, . . . , ǫd).

(2) Notice that such a simplex is automatically ordered by the canonical ordering on the vectors that

span ∆d.
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Since the collection of d-simplices is a basis for Sd(X), by proposition 2 this definition can be

extended in a unique way to a homomorphism, also called ∂d, from Sd(X) to Sd−1(X).

It can be shown that ∂d ◦ ∂d+1 = 0. So we can define the singular homology group Hd(X) of

dimension d by

Hd(X) := Ker(∂d) / Im(∂d+1).

The elements of Ker(∂d) are called cycles of dimension d, or d-cycles, and the elements of Im(∂d)

are called boundaries of dimension d, d-boundaries for short.

RELATIVE SINGULAR HOMOLOGY GROUPS Now assume that we have a subspace A of X. Such

a pair (X,A) is called a topological pair. Since a singular d-simplex

T :∆d → A

of A is automatically a singular d-simplex of X, it is immediately clear that the singular chain

group Sd(A) of A is in a natural way a subgroup of the singular chain group Sd(X) of X. So, we

can define the quotient group Sd(X,A) whose elements are the sets of the form

s + Sd(A) := {s + t | t ∈ Sd(A)}

where s ranges through Sd(X). Subsequently we can define the boundary operator (again called)

∂d:Sd(X,A) → Sd−1(X,A) by

∂d(s + Sd(A)) := ∂d(s) + Sd−1(A).

Since the boundary operator on Sd(X) maps Sd(A) into Sd−1(A), it can be checked that this is

a sound definition. It is also easy to check that ∂d ◦ ∂d+1 = 0. Hence we can define the relative

singular homology group

Hd(X,A) := Ker(∂d) / Im(∂d+1).

INDUCED HOMOMORPHISMS Singular homology theory is convenient to show topological in-

variance of homology groups because it is the easiest one to derive homomorphisms induced by

continuous maps from. This works as follows.

Suppose we have a continuous map f :X → Y from a topological space X to a topological space

Y . The idea is to construct a homomorphism f∗ from Hd(X) to Hd(Y ) (3)

X f Y

Hd Hd

Hd(X) f∗ Hd(Y )

(3) Actually a map f∗d is defined for each dimension d. We will suppress the dimensional subscript

though.
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in such a way that f∗ is an isomorphism as soon as f is a homeomorphism. This way we will show

that singular homology groups are topologically invariant.

In order to construct f∗, first notice that f induces a homomorphism f#:Sd(X) → Sd(Y ) as

follows. For a singular d-simplex T :∆d → X, the f#-image is defined as the composite of f and

T , that is

f#(T ) := f ◦ T.

Now f# is the unique homomorphic extension of this definition. This homomorphism f# induces

a homomorphism between homology groups as follows. Consider the diagram

Sd+1(X) ∂d+1 Sd(X) ∂d Sd−1(X)

f# f# f#

Sd+1(Y ) ∂d+1 Sd(Y ) ∂d Sd−1(Y ).

It can be shown that this diagram commutes (4). This fact can be used to show that we can define

a map f∗:Hd(X) → Hd(Y ) by, for all k ∈ Ker(∂d),

f∗(k + Im(∂d+1)) := f#(k) + Im(∂d+1).

Remark. We will briefly discuss this. First notice that, for an element k of Ker(∂d),

∂d(f#(k)) = f#(∂d(k)) = f#(0) = 0.

So, f#(k) is indeed a d-cycle, and therefore f#(k) + Im(∂d+1) is an element of Hd(Y ). Secondly,

suppose we have two d-cycles k and k′ with

k + Im(∂d+1) = k′ + Im(∂d+1).

In other words, k′ = k + ∂d+1(s) for some d + 1-chain s in Sd+1(X). So,

f#(k′) + Im(∂d+1) = f#(k + ∂d+1(s)) + Im(∂d+1)

= f#(k) + ∂d+1(f#(s)) + Im(∂d+1)

= f#(k) + Im(∂d+1)

where the last equality follows from the fact that Im(∂d+1) is a group and that ∂d+1(f#(s)) is an

element of this group. Thus,

f∗(k
′ + Im(∂d+1)) = f#(k′) + Im(∂d+1) = f#(k) + Im(∂d+1) = f∗(k + Im(∂d+1))

(4) First check that f# ◦∂d+1 coincides with ∂d ◦f# on elementary d+1-chains. Then use proposition1

and the fact that both maps are homomorphisms.
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which shows that f∗ is indeed well-defined. ⊳

HOMOMORPHISMS FOR RELATIVE HOMOLOGY Now suppose that we have two topological pairs

(X,A) and (Y,B). Furthermore suppose that we have a continuous map f from X to Y that maps

A into B (5). Then we can define a map f# from the relative singular chain group Sd(X,A) to the

relative singular chain group Sd(Y,B) by

f#(s + Sd(A)) := f#(s) + Sd(B).

Once again we can check that this is a correct definition and that f# is indeed a homomorphism.

Once we established these facts we can define the homomorphism f∗ from the relative homology

group Hd(X,A) to the relative homology group Hd(Y,B) by

f∗(k + Im(∂d+1)) := f#(k) + Im(∂d+1)

for all k in Ker(∂d). The proof that this is a well-defined homomorphism is completely identical

to the proof for the non-relative case. No interpretation whatsoever is needed for k, Im(∂d+1) or

Ker(∂d).

As we said before, one of the surprising facts about a homology group is that it is a topological

invariant. In order to check this we will first show the following. Suppose we have three topological

pairs (X,A), (Y,B) and (Z,C) as well as a map f from X to Y that maps A into B and a map g

from Y to Z that maps B into C.

(X,A) f (Y,B) g (Z,C).

Then we have the following relations between induced homomorphisms.

Theorem 1. The homomorphism (g ◦ f)# from Sd(X,A) to Sd(Z,C) equals g# ◦ f# and the

homomorphism (g ◦ f)∗ from Hd(X,A) to Hd(Z,C) equals g∗ ◦ f∗.

Proof. A. To prove: (g ◦ f)# = g# ◦ f#. First notice that, for an elementary relative singular

d-chain T + Sd(A) it is absolutely trivial to check that

(g ◦ f)#(T + Sd(A)) = (g# ◦ f#)(T + Sd(A)).

Then use proposition 1 and the fact that g# ◦ f# and (g ◦ f)# are homomorphisms that coincide

on the basis for Sd(X,A) consisting of all elementary d-chains.

B. To prove: (g ◦ f)∗ = g∗ ◦ f∗. This now follows immediately from the definitions and the fact

that (g ◦ f)# equals g# ◦ f#. ⊳

(5) Such a map is called a map between pairs.
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Topological invariance of homology groups is an immediate consequence of this theorem. To see

this, suppose that f is a homeomorphism between the topological pairs (X,A) and (Y,B) (meaning

that it is a homeomorphism of X to Y that maps A homeomorphically to B). Then we have

Corollary 1. The homology groups Hd(X,A) and Hd(Y,B) are isomorphic.

Proof. Take (Z,C) = (X,A) and g = f−1. Then the previous theorem yields that (f−1)∗ ◦ f∗ =

(1lX)∗. This implies that (f−1)∗ = (f∗)
−1 which in its turn implies that f∗ is an isomorphism

between the homology groups Hd(X,A) and Hd(Y,B). ⊳

Example 1. Let σ be a simplex of dimension d and let ∂σ be its (relative) topological boundary.

Since σ is the underlying space of the complex C mentioned in example 5 and ∂σ the underlying

space of the subcomplex C0, theorem 6 immediately yields that Hk(σ, ∂σ) is trivial unless k = d,

in which case it is isomorphic to Z6 .

Now let C be any convex and compact set of dimension d and let ∂C be its relative topological

boundary (relative w.r.t. its affine hull, that is). Then, since there is a homeomorphism from

the topological pair (C, ∂C) to the topological pair (σ, ∂σ), the previous theorem implies that the

relative singular homology groups Hk(C, ∂C) are all trivial, except when k = d, in which case it is

isomorphic to the group Z6 of integers. ⊳

4. The definition of stable sets

In this section we will present a slightly modified version of the definition of stable sets given in

Mertens (1989).

We only consider bimatrix games. So we assume that there are two players, player I and player

II. Player I has a finite set M and player II has a finite set N of pure strategies. The payoff

matrices (aij)i∈M,j∈N of player I and (bij)i∈M,j∈N of player II are denoted by A and B respectively.

Furthermore,

∆(M) := {p ∈ IRM | pi ≥ 0 for all i ∈ M and
∑

i∈M

pi = 1}

is the set of mixed strategies of player I and

∆(N) := {q ∈ IRN | qj ≥ 0 for all j ∈ N and
∑

j∈N

qj = 1}

is the set of mixed strategies of player II. The payoff for player I is pAq and the payoff for player

II is pBq when the strategy pair (p, q) is played. For i ∈ M the ith unit vector is denoted by ei

and is interpreted as the situation in which player I is playing pure strategy i with probability

one. Similarly a pure strategy j ∈ N of player II is identified with ej . We will also write ∆ :=

∆(M) × ∆(N).
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Definition 1. A Nash equilibrium of the game (A,B) is a strategy pair (p, q) such that

pAq ≥p′Aq for all p′ ∈ ∆(M)

pBq ≥pBq′ for all q′ ∈ ∆(N).and

The collection of equilibria of the game (A,B) is denoted by E(A,B).

PERTURBED GAMES First we will introduce some notation.

A perturbation for player I is a vector δ = (δi)i∈M with δi ≥ 0 and
∑

i∈M δi < 1. The collection

of all perturbations is denoted by P1. Similarly we can define the collection P2 of perturbations

ε = (εj)j∈N for player II.

A pair (δ, ε) is also called a perturbation. The collection of such perturbations is P := P1 ×P2. A

perturbation (δ, ε) in P is called completely mixed if δi > 0 for all i and εj > 0 for all j.

For some real number η > 0, write

P1(η) := {δ ∈ P1 |
∑

i∈M

δi ≤ η}

and P2(η) is similarly defined. Furthermore, P (η) := P1(η) × P2(η).

PAYOFF PERTURBATIONS A perturbation (δ, ε) defines a perturbed game in the following way.

The payoff-perturbed game associated with the perturbation (δ, ε) is the game (A(δ, ε), B(δ, ε))

with

A(δ, ε)i,j := σ(ei, δ) · A · τ(ej , ε)

where

σ(p, δ) :=
p + δ

1 +
∑

i δi

and τ(q, ε) :=
q + ε

1 +
∑

j εj

.

The payoff matrix B(δ, ε) is defined analogously. The set of equilibria of the perturbed game

is simply E(A(δ, ε), B(δ, ε)). We write E for the graph of the correspondence that assigns the

collection E(A(δ, ε), B(δ, ε)) of perturbed equilibria to the perturbation (δ, ε).

STABLE SETS Notice that the choice δ = 0 (the null element of the vector space IRM ) and ε = 0

returns the original bimatrix game (A,B). Hence, E(A(0), B(0)) = E(A,B).

Let S be a closed subset of the product space P × ∆. For η > 0,

S(η) = {(δ, ε, p, q) ∈ S | (δ, ε) ∈ P (η)}

is the part of S above P (η) and

∂vS(η) = {(δ, ε, p, q) ∈ S(η) | (δ, ε) ∈ ∂P (η)}

12



is the part of S above ∂P (η). Usually ∂vS(η) is called the vertical boundary of S(η).

Furthermore, let Si(η) be the set S(η) \ ∂vS(η). This is the set of points (δ, ε, p, q) in S(η) for

which (δ, ε) is completely mixed,
∑

i δi < η and
∑

j εj < η.

Now notice that the canonical projection π that assigns the perturbation (δ, ε) to (δ, ε, p, q) is a map

from S(η) to P (η) that maps ∂vS(η) into ∂P (η). So, the projection π is a map from the topological

pair (S(η), ∂vS(η)) to the topological pair (P (η), ∂P (η)). Hence, it induces a homomorphism π∗

from the relative singular homology group Hd(S(η), ∂vS(η)) to the relative singular homology

group Hd(P (η), ∂P (η)).

Furthermore, we already know from example 1 that Hd(P (η), ∂P (η)) is the trivial group, except

when d = |M | + |N |, in which case the group is isomorphic with Z6 . So, for each dimension the

induced homomorphism π∗ is necessarily trivial, except perhaps in case d = |M | + |N |. These

observations inspire the following definitions.

Definition 2. A non-empty, closed set S in P ×∆ is called a germ if for sufficiently small η > 0

(1) the set Si(η) is connected

(2) S(η) = cl(Si(η)), and

(3) for dimension d = |M | + |N | the homomorphism π∗ induced by the projection π from the

topological pair (S(η), ∂vS(η)) to (P (η), ∂P (η)) is not the trivial map.

Definition 3. A closed set T in ∆ is called stable if there exists a germ S ⊂ E such that

T = {(p, q) | (0, 0, p, q) ∈ S}.

Remarks. The above definition of stable sets differs slightly from the definition in Mertens.

Initially Mertens has the above definition, but with the additional requirement that the germ

involved is semi-algebraic. Subsequently he also considers the Hausdorff limits of the stable sets

thus obtained to be stable sets. (He also based his definition on simplicial instead of singular

homology groups, but for semi-algebraic (and therefore triangulable) sets both types of homology

groups coincide by theorem 6 of appendix C and the topological invariance of homology groups.

Another difference is that he considers different coefficient modules, but that can also be done in

singular homology.) Nevertheless, the above definition preserves all major results of the original

definition, such as existence, perfection, backwards induction and ordinality. ⊳

5. An alternative definition of stable sets

Even though one can obtain results on computability using the original definition (see e.g. Mertens

(1989), Remark 1, pp 590 – 593) this definition is not suited for our purposes. The problem is that,

even for bimatrix games, the linear structure of the inequalities that characterize the equilibrium set
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is lost when payoffs are perturbed. This is basically due to the rescaling factor in the denominator

of the perturbation map. However, there is an alternative way to interpret perturbations in terms

of restrictions of the strategy spaces. We will first show that the resulting notion of stable sets

under this interpretation is equivalent with the original one. In the next section we will also show

that the linear structure of the equilibrium correspondence is preserved under this interpretation,

and how this fact can be exploited for computational purposes.

STRATEGY PERTURBATIONS We will first give a reinterpretation of a perturbation. In other

words, given a perturbation, we will construct an alternative way to associate a perturbed game

with this perturbation.

So, let (δ, ε) be a perturbation. The perturbed game (A,B, δ, ε) is played as follows. The players

are only allowed to play strategy pairs (p, q) in the restricted strategy space ∆(δ) × ∆(ε) where

∆(δ) := {p ∈ ∆(M) | pi ≥ δi for all i ∈ M}

and ∆(ε) is similarly defined. The payoffs in this game remain pAq and pBq. An equilibrium of

the perturbed game (A,B, δ, ε) is a strategy pair (p, q) in the restricted strategy space such that

pAq ≥p′Aq for all p′ ∈ ∆(δ)

pBq ≥pBq′ for all q′ ∈ ∆(ε).and

The collection of equilibria of the perturbed game (A,B, δ, ε) is denoted by E(A,B, δ, ε). We

write F for the graph of the correspondence that assigns the collection E(A,B, δ, ε) of perturbed

equilibria to the perturbation (δ, ε) (6).

We can now give the alternative definition of stable sets as follows.

Definition 4. A closed set T in ∆ is called strategy-stable if there exists a germ S ⊂ F such

that

T = {(p, q) | (0, 0, p, q) ∈ S}.

Remark. So, the only difference with the previous definition is that in this case we require the

germ to be a subset of F instead of E . ⊳

The remainder of this section is devoted to the proof that the above definition of stability is equiv-

alent to Mertens’s definition presented in the previous section. The proof is based on the existence

of a homeomorphism from E to F . We will start with a description of this homeomorphism.

(6) For reasons that will become clear in a moment we restrict this correspondence to those perturba-

tions (δ, ε) for which
∑

i δi < 1
2 and

∑

j εj < 1
2 .
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A HOMEOMORPHISM Consider the sets C := C1 × C2 and D := D1 ×D2 defined by

C1 := {(p, δ) ∈ IRM × IRM | δi ≥ 0 and
∑

i∈M

δi < 1}

and C2 := {(q, ε) ∈ IRN × IRN | εj ≥ 0 and
∑

j∈N

εj < 1},

D1 := {(p, δ) ∈ IRM × IRM | δi ≥ 0 and
∑

i∈M

δi <
1

2
}

and D2 := {(q, ε) ∈ IRN × IRN | εj ≥ 0 and
∑

j∈N

εj <
1

2
}.

Define the function I1: C1 → D1 by

I1(p, δ) :=
1

1 +
∑

i δi

· (p + δ, δ)

and J1:D1 → C1 by

J1(p, δ) :=
1

1 −
∑

i δi

· (p − δ, δ).

It is straightforward to show that I1 is the inverse map of J1. Similarly we can define the map I2

from C2 to D2 with inverse map J2. Let I := (I1, I2) be the map from C to D and let J := (J1, J2)

be its inverse.

Lemma 1. The restriction of I to E is a homeomorphism from E to F and the restriction of J

to F is its inverse.

Proof. Since I is clearly continuous with inverse J , it is sufficient to show that I maps E into F

and vice versa.

A. So, let (δ, ε, p, q) be an element of E . In other words, (p, q) is an equilibrium of the perturbed

game (A(δ, ε), B(δ, ε)).

Write p∗ :=
p + δ

1 +
∑

i δi

and q∗ :=
q + ε

1 +
∑

j εj

as well as δ∗ :=
δ

1 +
∑

i δi

and ε∗ :=
ε

1 +
∑

j εj

.

We want to show that (p∗, q∗) is an equilibrium of the game (A,B, δ∗, ε∗). First notice that p∗ is

indeed an element of ∆(δ∗) and q∗ is an element of ∆(ε∗).

Now take another strategy p′ in ∆(δ∗). Define the strategy p′′ by

p′′ :=
p′ − δ∗

1 −
∑

i δ∗i
.
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Then p′ = σ(p′′, δ), p∗ = σ(p, δ) and q∗ = τ(q, ε). So,

p′Aq∗ = σ(p′′, δ) · A · τ(q, ε) =
∑

i

p′′i
∑

j

qjA(δ, ε)i,j

≤
∑

i

pi

∑

j

qjA(δ, ε)i,j

= σ(p, δ) · A · τ(q, ε)

= p∗Aq∗,

where the inequality follows from the fact that (p, q) is an equilibrium of (A(δ, ε), B(δ, ε)). This

shows that p∗ is a best reply against q∗ within ∆(δ∗). In the same way we find that q∗ is a best

reply against p∗ within ∆(ε∗). Hence, (p∗, q∗) is an equilibrium of (A,B, δ∗, ε∗).

B. Conversely, let (δ, ε, p, q) be an element of F . In other words, (p, q) is an equilibrium of the

perturbed game (A,B, δ, ε). We have to show that J(δ, ε, p, q) is an element of E . This though

follows from an analogous line of reasoning. ⊳

Now that we have this homeomorphism from E to F the proof of the equivalence of the two

definitions of stability presented previously is elementary and discussed below.

Theorem 2. A set T in ∆ is stable if and only if it is strategy-stable.

Proof. Suppose that T is stable. We will show that T is also strategy-stable. To this end, let

S ⊂ E be a germ for T . Since I(S) is a subset of F by the previous lemma, it is sufficient to show

that it is also a germ for T .

To this end, first notice that, for 1 > η > 0, I(S(η)) equals I(S)( η
1+η

) and I(∂vS(η)) equals

∂vI(S)( η
1+η

). So, I is a map between the pairs (S(η), ∂vS(η)) and (I(S)( η
1+η

), ∂vI(S)( η
1+η

)).

Furthermore, the map b from P ( η
1+η

) to P (η) defined by

b(δ, ε) := (
δ

1 − δ
,

ε

1 − ε
)

is a map between pairs (P ( η
1+η

), ∂P ( η
1+η

)) and (P (η), ∂P (η)). Finally, the composition of the

maps I, π and b
(

S(η), ∂vS(η)
)

I
(

I(S)( η
1+η

), ∂vI(S)( η
1+η

)
)

ρ π

(

P (η), ∂P (η)
)

b
(

P ( η
1+η

), ∂vP ( η
1+η

)
)

equals the projection ρ from (S(η), ∂vS(η)) to (P (η), ∂P (η)). So, b∗ ◦ π∗ ◦ I∗ equals ρ∗ by theorem

1. Hence, since ρ∗ is not the trivial map by assumption, π∗ can also not be the trivial map.

The proof of the converse implication in the statement of the theorem is of course virtually identical

to the above proof. ⊳
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6. Standard stable sets

From a topological point of view stable sets can still take on many forms. Essentially the only

restrictions are compactness and connectedness. Therefore it cannot be expected that, given an

arbitrary (bimatrix) game, all stable sets can be computed. In this section we will introduce a

specific type of stable set, called standard stable set, that turns out to be sufficiently well-behaved

for purposes of computability involving solely linear optimization techniques. The structure of

these standard stable sets derives from the linear structure of the graph F of the equilibrium

correspondence. We will also show that in the case of bimatrix games the collection of standard

stable sets is fairly large and captures the spirit of the notion of stability pretty well.

THE LINEAR STRUCTURE OF F Let (δ, ε) be a perturbation of a bimatrix game (A,B). For a

strategy p of player I in the restricted strategy space ∆(δ) the δ-carrier Cδ(p) of p is defined as

Cδ(p) := {i ∈ M | pi > δi}.

Analogously we can define the ε-carrier Cε(q) of a strategy of player II in the strategy space

restricted by the perturbation ε. Carriers corresponding to the unperturbed game are denoted by

C(p) and C(q).

For a strategy p of player I the set PB2(p) of pure best replies of player II to p is defined by

PB2(p) := {j ∈ N | pBej ≥ pBel for all l ∈ N}.

Again we can do something similar for player I and define PB1(q). Now we have the following key

lemma. A proof can e.g. be found in Vermeulen (1996).

Lemma 2. The strategy pair (p, q) is an equilibrium of the perturbed game (A,B, δ, ε) if and

only if the δ-carrier of p is a subset of PB1(q) and the ε-carrier of q is a subset of PB2(p).

This lemma can now be used to decompose the graph F into a finite number of polytopes. This

decomposition works as follows.

Let I ⊂ M be a set of pure strategies of player I and let J ⊂ N be a set of pure strategies of

player II. With these two sets of pure strategies we can associate a subset S(I, J) of the cross

product ∆(M) × D1 of the strategy space ∆(M) and the collection D∞ defined above. This set

S(I, J) is formally defined as the collection of solutions (p, δ) in IRM × IRM of the system of linear
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(in)equalities

pBej − pBek ≥ 0 for all j ∈ J and all k ∈ N

pi ≥ δi for all i ∈ I

pi = δi for all i /∈ I.

0 ≤ δi for all i ∈ M
∑

i∈M

pi = 1

(∗)

The group of (in)equalities after the blank line are merely added to guarantee that p is indeed

a strategy and δ is indeed a perturbation as soon as (p, δ) is a solution of the above system of

inequalities. (The “missing” inequalities pi ≥ 0 and
∑

i∈M δi ≤ 1 are already implied by the above

system.) The first group of inequalities states that every pure strategy in J is a best reply against

p. The second and third groups of (in)equalities guarantee that p is an element of ∆(δ) and that

moreover the δ-carrier of p is a subset of I.

In ∆(N) ×D2 we can analogously define the set T (I, J) by a system of linear (in)equalities.

We will frequently encounter sets of the form

S(I, J) × T (I, J)

in the remainder of this paper, and we will therefore give these sets a name.

Definition 5. A set of the form described above is called a polyhedral chunk of F .

This name is justified by the following straightforward consequence of the previous lemma.

Lemma 3. Each polyhedral chunk of F is a subset of F .

Notice that, since each equilibrium is indeed an element of some polyhedral chunk of F , this lemma

states that F is the union of the collection of polyhedral chunks.

STANDARD STABLE SETS Now we have done enough preliminary work to be able to define the

notion of a standard stable set and to explain the rationale behind this definition. The idea is

that, in order to construct a stable set, one first needs to decide which polyhedral chunks are

needed, and secondly one needs to select within each of the polyhedral chunks chosen a collection

of equilibria that is sufficiently robust. For a standard stable set we leave out the second step and

only decide which polyhedral chunks go into the stable set, and which do not. Thus we get the

following definition.

Definition 6. A germ S is said to be in standard form if it can be written as the union of a

number of polyhedral chunks. A stable set T is called standard if there is a germ S for T that is

in standard form.
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Remark. The maximal elements of the (finite) collection of standard stable sets coincide with

the maximal stable sets as they are defined in Govindan and Wilson (2002). ⊳

We will argue that the class of standard stable sets is a sufficiently rich class of stable sets to

capture the flavor of stability pretty well.

Theorem 3. Each stable set is contained in a standard stable set.

Proof. Suppose that T is a stable set and let S ⊂ F be a germ for it. Now let A be the collection

of those sets S(I, J)×T (I, J) that have a sequence (δk, εk, pk, qk)∞k=1 in common with S for which

(δk, εk)∞k=1 is completely mixed and convergent to (0, 0). Let V be the union of these sets. We will

show that V is a germ in F that contains S(η) for sufficiently small η. For if we can prove that,

it immediately follows that

W := {(p, q) | (0, 0, p, q) ∈ V }

is a standard stable set that contains T .

A. First note that V is a subset of F by lemma 3.

B. Next we will show by contradiction that, for sufficiently small η, V contains S(η).

Suppose this is not the case. Then there is a sequence (δk, εk, pk, qk)∞k=1 in S for which (δk, εk)∞k=1

converges to (0, 0) and none of the (δk, εk, pk, qk) are elements of V . Moreover, since S(η) =

cl(Si(η)) for sufficiently small η, we may even assume that all (δk, εk) are completely mixed. Next,

by taking a subsequence if necessary, we can make sure that there is a pair (I, J) such that

Cδk(pk) = I and Cεk(qk) = J

for all k. This however implies that S(I, J) × T (I, J) is a subset of V by the definition of V .

Contradiction.

C. Now we will show that V is a germ. Take an η > 0 such that the requirements for a germ

are fulfilled for S(η) and moreover S(η) is a subset of V . We will check the three requirements for

a germ one by one for V (η).

(1) The set V i(η) is connected. To see this, suppose that there are two closed sets F and G such

that F ∩ V i(η) and G ∩ V i(η) are not empty, mutually disjoint and their union equals V i(η). We

will derive a contradiction.

Since S(η) is a subset of V , also F ∩ Si(η) and G ∩ Si(η) are mutually disjoint and their union is

Si(η). So, it suffices to show that F ∩ Si(η) is not empty. Suppose it is empty. Then Si(η) must

be contained in G.

Now take a polytope Q = S(I, J) × T (I, J) in A. So, by definition of A, there is a sequence

(δk, εk, pk, qk)∞k=1 in Q ∩ S for which (δk, εk)∞k=1 is completely mixed and convergent to (0, 0).
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In particular this implies that the intersection of Q and Si(η) is not empty. So, since Si(η) is

contained in G, this implies that Qi(η) must have a non-empty intersection with G. Therefore,

since Qi(η) is a connected set, Qi(η)∩F must be empty. Then however Qi(η) must be contained in

G. This though, since Q was chosen arbitrarily in A, implies that V i(η) has an empty intersection

with F . Contradiction.

(2) V (η) = cl(V i(η)). This immediately follows from the fact that V is the union of a finite number

of polytopes Q in A for each of which Qi(η) is not empty.

(3) For dimension d = |M | + |N | the homomorphism π∗ induced by the projection π from the

topological pair (V (η), ∂vV (η)) to (P (η), ∂P (η)) is not the trivial map. To see this, first notice

that S(η) is a subset of V by the choice of η. Then the inclusion map

ι: (S(η), ∂vS(η)) → (V (η), ∂vV (η))

is a map between topological pairs. Furthermore, π|S(η) := π|V (η) ◦ι where π|S(η) and π|V (η) denote

the respective restrictions of the projection π to S(η) and V (η). Thus we get that (π|S(η))∗ :=

(π|V (η))∗ ◦ ι∗ and (π|V (η))∗ cannot be trivial since (π|S(η))∗ is not trivial by assumption. ⊳

7. Computability of standard stable sets

All standard stable sets can be computed in finite time. There are several ways to see this. We will

explain one of them. We selected our method of choice not on grounds of computational speed,

but merely for ease of exposition.

First we will show that we can restrict ourselves to germs of a special form. Consider a fixed pair

(I, J) of sets of pure strategies for the moment. We say that the polyhedral chunk S(I, J)×T (I, J)

is associated with the pair (I, J). Let

ext(I, J) := ext
(

S(I, J) × T (I, J)
)

denote the set of extreme points of the associated polyhedral chunk S(I, J) × T (I, J).

Definition 7. We say that the pair (I, J) is admissible if

(1) there exists a point (0, 0, p, q) in ext(I, J), and

(2) there is no pure strategy i in M such that δi = 0 for all (δ, ε, p, q) in ext(I, J)

(3) there is no pure strategy j in N such that εj = 0 for all (δ, ε, p, q) in ext(I, J).

Requirement (1) excludes chunks of the graph of the equilibrium correspondence that are not

present directly above the zero perturbation. Such parts of the graph are clearly not needed in

a germ. Thus, this requirement is not really crucial, it is only convenient. Requirements (2) and

(3) are crucial. They guarantee that the associated polyhedral chunk contains at least one point
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(δ, ε, p, q) for which (δ, ε) is completely mixed. Together these requirements guarantee for example

that

[S(I, J) × T (I, J)]i(η)

is not empty for all η > 0. It is easy to see that every standard stable set has a germ in standard

form that consists entirely of polyhedral chunks S(I, J) × T (I, J) for which (I, J) is admissible.

Thus, since admissibility is evidently a finitely computable property, we can from now on assume

that only admissible pairs (I, J) are used to construct germs.

Now we have made enough precautions to explain our algorithm. Let J be a set of admissible pairs

and let V be the union over all chunks S(I, J) × T (I, J) for (I, J) in J . Since V is automatically

a subset of F , the set

W := {(p, q) | (0, 0, p, q) ∈ V }

is stable if and only if V is a germ. First notice that, by the admissibility of J , the requirement

V (η) = cl(V i(η))

automatically holds for all η. We will explain how to test in finite time whether or not V features

the remaining two requirements for a germ. We will basically show that there exists an η∗ > 0

such that for all η ≤ η∗,

(1) V i(η) is connected if and only if a certain finite graph (J , E) is connected, and

(2) π(η)∗ is not trivial ⇔ π(η∗)∗ is not trivial

(where π(η) indicates the projection from the topological pair (V (η∗), ∂vV (η∗)) to the topolog-

ical pair (P (η∗), ∂P (η∗))).

Given these two results it evidently suffices to check whether the graph (J , E) is connected and

whether π(η∗)∗ is not trivial.

Thus, the test itself consists of three different procedures, namely

(1) a procedure that computes η∗ > 0

(2) a procedure that checks in finite time whether the graph (J , E) is connected, and

(3) a procedure that checks in finite time whether the homomorphism π∗ induced by the projection

π from the topological pair (V (η∗), ∂vV (η∗)) to (P (η∗), ∂P (η∗)) is not the trivial map.

We will consider these three procedures one by one. The computation of η∗ is fairly simple. First,

for a polytope S(I, J)×T (I, J) with (I, J) in J , compute the collection ext(I, J) of extreme points

of this polytope. Next, compute

η(I, J) := min{
∑

iδi +
∑

jεj | (δ, ε, p, q) ∈ ext(I, J) for some (p, q) and (δ, ε) 6= (0, 0)}.
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Notice that η(I, J) > 0 because (I, J) is assumed to be admissible. Now take

η∗ := 1
4 min{η(I, J) | (I, J) ∈ J }.

This number η∗ will be fixed for the remainder of this paper. So we only need to consider the

issues of connectedness and non-triviality.

HOW TO CHECK CONNECTEDNESS Define the undirected graph (J , E) as follows. Its vertex set

is J . For two distinct elements (I, J) and (I ′, J ′) in J there is an edge between these two vertices,

formally denoted by

{(I, J), (I ′, J ′)} ∈ E,

if and only if the two associated sets

S(I, J) × T (I, J) and S(I ′, J ′) × T (I ′, J ′)

have a point (0, 0, p, q) as well as a point (δ, ε, p, q) for which (δ, ε)is completely mixed in common.

Theorem 4. For η ≤ η∗, the set V i(η) is connected if and only if the graph (J , E) is connected.

Proof. A. Suppose that (J , E) is connected. Since each intersection of the two elements in

an edge have a point (δ, ε, p, q) (with (δ, ε) completely mixed) in common, it is easy to show that

V i(η) is (path-)connected.

B. Suppose that (J , E) is not connected. So, we can take write (J , E) as the disjoint union of

two graphs (J1, E1) and (J2, E2). Let F be the union over all sets S(I, J) × T (I, J) with (I, J)

in J1 and G be the union over all sets S(I, J) × T (I, J) with (I, J) in J2. Clearly F and G are

closed, non-empty sets and V i(η) is the union of V i(η) ∩ F and V i(η) ∩ G. So, it is sufficient to

show that the intersection of V i(η)∩F and V i(η)∩G is empty. Suppose on the contrary that the

intersection V i(η) ∩ F and V i(η) ∩ G is not empty. We will derive a contradiction.

Since the intersection of V i(η)∩ F and V i(η)∩G is not empty there must be sets (I, J) ∈ J1 and

(I ′, J ′) ∈ J2 such that the intersection Q ∩ R of

Q := S(I, J) × T (I, J) and R := S(I ′, J ′) × T (I ′, J ′)

has a point (δ, ε, p, q) in V i(η). Now notice that, since this point is contained in the face Q ∩ R of

Q and R, it must be a convex combination of the points in

ext(I, J) ∩ ext(I ′, J ′).

However, since η < η∗, we know that at least one of these points must be of the form (0, 0, p, q).

Thus, Q∩R contains the point (δ, ε, p, q) with (δ, ε) completely mixed as well as a point of the form
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(0, 0, p, q). Hence, there is an edge between (I, J) and (I ′, J ′) and that contradicts the assumption

that (J1, E1) and (J2, E2) are disjoint. ⊳

Finally notice that, given J , the graph (J , E) can be constructed in a finite number of operations

and that the connectedness of this graph can also be checked in finite time.

HOW TO CHECK NON-TRIVIALITY Let π(η)∗ denote the homomorphism that the projection π(η)

from the topological pair (V (η), ∂vV (η)) to the topological pair (P (η), ∂P (η)) induces between the

corresponding homology groups.

Theorem 5. For all η < η∗, π(η)∗ is not trivial if and only if π(η∗)∗ is not trivial.

Proof. We will apply the results from appendix D to this situation. Take IRm = IRn = IRM×IRN .

Perturbations (δ, ε) will be interpreted as the x-variable and strategy pairs (p, q) as the y-variable.

Notice that this does indeed place our setting within the non-negative orthant. Take

P := {S(I, J) × T (I, J) | (I, J) ∈ J }.

Notice that indeed each element of P has an element of the form

(0, y) = (0, 0, p, q)

and an element

(x, y) = (δ, ε, p, q)

with x = (δ, ε) 6= (0, 0). Notice that this way we get that η∗ = 2η∗. So, for every η ≤ η∗,

P (η) is a subset of C(η∗). So we can apply the results of the appendix taking D = P (η) and

we get homeomorphisms f(η):V (η) → U(η∗) and gP (η): IR
M × IRN → IRM × IRN such that

f(η)(0, 0, p, q) = (0, 0, p, q) and the diagram

V (η) f(η) U(η∗)
f(η∗)−1

V (η∗)

π π π

IRM × IRN gP (η) IRM × IRN (gP (η∗ )−1

IRM × IRN

commutes. Thus we get that the maps f := f(η∗)−1 ◦ f(η) and g := (gP (η∗))
−1 ◦ gP (η) are

homeomorphisms, f(0, 0, p, q) = (0, 0, p, q), and the diagram

V (η) f V (η∗)

π π

IRM × IRN g IRM × IRN
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commutes. Now notice that g is a homeomorphism from P (η) to P (η∗). So, it must be a home-

omorphism from the topological pair (P (η), ∂P (η)) to the topological pair (P (η∗), ∂P (η∗)). Now

the commutativity of the above diagram implies that the map f is a homeomorphism from the

topological pair (V (η), ∂v(V (η))) to the topological pair (V (η∗), ∂v(V (η∗))). Thus we get that the

diagram

Hd (V (η) , ∂vV (η)) f∗ Hd (V (η∗) , ∂vV (η∗))

π(η)∗ π(η∗)∗

Hd (P (η) , ∂P (η)) g∗ Hd (P (η∗) , ∂P (η∗))

commutes and f∗ and g∗ are isomorphisms. Now the theorem immediately follows. ⊳

HOW TO CHECK NON-TRIVIALITY OF π(η∗)∗ The only thing left to verify is whether we can check

that the homomorphism π∗ induced by the projection map π ≡ π(η∗) from V (η∗) to IRM × IRN

is trivial or not. In order to do this, we want to show first that this can in fact be decided using

simplicial homology theory, defined in appendix C, instead of singular homology theory. To this

end we need to introduce some terminology.

Let I be a finite (7) set of indices. A (finite) collection

P := {Pi | i ∈ I}

of (non-empty) polytopes is called a polyhedral complex if the faces of each Pi are also elements of

P and, moreover, each intersection Pi ∩ Pj is a face of both Pi and Pj as soon as this intersection

is not empty. The underlying space of the polyhedral complex P is the set

∪P∈PP.

First we will explain how one can construct a polyhedral complex P whose underlying space is

V (η∗). Since V is the union of the sets S(I, J) × T (I, J) where the pairs (I, J) range through the

set J , it is clear that V (η∗) is the union over all (I, J) in J of the sets

[S(I, J) × T (I, J)](η∗).

It can easily be checked that such a set is a polytope and that, if not empty, the intersection of

two such sets is a face of both. Given these facts, it is straightforward to check that the collection

P of all sets

[S(I, J) × T (I, J)](η∗)

(7) In most textbooks finiteness is not required. We however will encounter only finite complexes in

this article, so we will make life a bit easier and develop the required machinery only for finite

complexes.
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with (I, J) in J together with their faces is a polyhedral complex. Also notice that, given J , this

complex can be computed in a finite number of steps.

Now that we have the polyhedral complex P, we want to apply the theory developed in appendix

C. In order to do that, we again need some more terminology.

A polyhedral complex C in IRd whose elements are all simplices is called a simplicial complex. So,

for any two simplices σ and τ in C

(1) σ ∩ τ is a face of both σ and τ if it is not empty, and moreover

(2) each face of σ is an element of C.

Let P be a polyhedral complex with underlying space X and let Q be a polyhedral complex with

underlying space Y . A map f from X to Y is said to be a polyhedral map from P to Q if f maps

each polytope P in P linearly (8) onto an element of Q. In case both P and Q are even simplicial,

f is also called simplicial.

Given this terminology, lemma 5 of appendix B applied to the projection map π on the underlying

space V (η∗) of the polyhedral complex P constructed above states that there is a simplicial complex

C with underlying space V (η∗) and a simplicial complex D with underlying space π(V (η∗)) = P (η∗)

such that the projection π from V (η∗) to P (η∗) is a simplicial map.

In order to establish the connection with relative simplicial homology, we also need to consider the

following two subcomplexes (9). Let B be the simplicial subcomplex of D whose underlying space

is ∂P (η∗) and let A be the simplicial subcomplex of C whose underlying space is ∂vV (η∗). Notice

that π is automatically a simplicial map from (C,A) to (D,B), meaning that it is a simplicial map

from C to D such that the image under π of each element of A is an element of B.

Now theorem 6 in appendix C and the subsequent comments state that there exist isomorphisms

m∗:Hd(X,A) → Hd(V (η∗), ∂vV (η∗)) and n∗:Hd(Y,B) → Hd(P (η∗), ∂P (η∗))

such that the diagram

Hd(X,A) m∗ Hd(V (η∗), ∂vV (η∗))

π∗sim π∗

Hd(Y,B) n∗ Hd(P (η∗), ∂P (η∗))

(8) The map f is called linear on a polytope P if for every x and y in P and λ in [0, 1] we have that

f(λx + (1 − λ)y) = λf(x) + (1 − λ)f(y).
(9) A subcomplex of a simplicial complex C is a simplicial complex that is a subset of C.
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commutes. Thus the central question in this section, whether we can in some sense check in finite

time whether π∗ is the trivial map or not, boils down to the question: can we check in finite time

whether or not the map

Hd(X,A)
π∗sim

Hd(Y,B)

is trivial. As it turns out, this is indeed possible. First notice that from the proofs in appendix B

we actually get procedures to compute the complexes C and D. Thus it can be seen that we can

also compute bases for the groups Cd(X,A) and Cd(Y,B) in finite time.

Given these bases we will show how we can compute a basis for Ker(∂d). To this end, take an

enumeration

b1, . . . , bk

of the finite collection of basis elements υ+Cd(A) of Cd(X,A), where υ ranges through the collection

of oriented d-simplices. Similarly, let

c1, . . . , cm

be an enumeration of the finite collection of basis elements w + Cd−1(A) of Cd−1(X,A).

Now note that ∂d is a homomorphism from Cd(X,A) to Cd−1(X,A). So, using the algorithm from

appendix A we can construct bases d1, . . . , dk of Cd(X,A) and e1, . . . , em of Cd−1(X,A) such that

the corresponding representation matrix of ∂d has the diagonal form















p1

. . . ⊖

pr

⊖ ⊖















where p1, . . . , pr are positive integers such that ps divides ps+1 and ⊖ symbolizes a null-matrix of

appropriate dimension. Thus we get that e1, . . . , er is a basis for Im(∂d) and dr+1, . . . , dk is a basis

for Ker(∂d).

Now it can easily be seen that π∗sim is trivial if and only if

π#(dr+1), . . . , π#(dk)

are all elements of the subgroup Im(∂d+1) of Cd(Y,B). This however can be tested in finite time

as follows. As shown above we can use the algorithm presented in appendix A to compute a basis

g1, . . . , gs

of Im(∂d+1). Once we have computed this basis, note that

π#(dr+1), . . . , π#(dk)
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are all elements of Im(∂d+1) if and only if we can find integers nij such that

π#(di) =

s
∑

j=1

nij · gj

for every r + 1 ≤ i ≤ k. However, since all π#(di) and all gj can be represented as vectors in

Z6 Y\B, this is equivalent to asking whether a certain integer-valued linear system has an (and in

that case automatically unique) integer-valued solution. This though can easily be tested using

Gauss elimination.

8. Appendix A. A representation theorem

In this appendix we will prove a representation theorem for maps between finitely generated groups.

This proof can also be found in Munkres (1984).

Suppose we have two groups G and H. Further suppose that G is generated by a basis b1, . . . , bk

and H by a basis c1, . . . cm. Let f be a homomorphism from G to H.

Consider the f -images f(b1), . . . , f(bk) of the basis b1, . . . , bk of G. Since f is a homomorphism,

the entire map f is determined by these images. Furthermore, we can compute in finite time the

representation

f(bi) =

m
∑

j=1

nijcj

of f(bi) in terms of the basis c1, . . . , cm of H. In this representation the numbers nij are integers.

Thus we can represent the map f by the integer-valued matrix

N :=









n11 · · · n1m

...
...

nk1 · · · nkm









.

BASIS TRANSFORMATION We will show that we can construct bases d1, . . . , dk of G and e1, . . . , ek

of H such that the corresponding matrix of f has the diagonal form

D :=















p1

. . . ⊖

pr

⊖ ⊖















where p1, . . . , pr are integers such that ps divides ps+1 and ⊖ symbolizes a null-matrix of appropriate

dimension (10).

Consider the following elementary operations that we will allow on an integer matrix.

(10) Note that N and D are of dimension k × m and hence not necessarily square.
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(1) interchange row i and row k

(2) multiply row i by −1

(3) replace row i by row i + row k for k 6= i.

Each of these three operations correspond to a transformation of the current basis b1, . . . , bk of G.

The first operation corresponds to an interchange of bi and bk. The second operation corresponds

to a replacement of bi by −bi and the third to a replacement of bi by bi + bk.

Obviously we can define similar operations on the columns that correspond to similar operations

on the current basis c1, . . . , cm of H. In particular, the replacement of column j by column j +

column l corresponds to the replacement of cl by cl − cj (!).

We will now provide an algorithm that uses only these six elementary operations to transform N

into an integer-valued matrix of the form

[

k ⊖

⊖ M

]

where M is an integer-valued matrix and k is an integer that divides all entries of M . Moreover,

since we only use elementary operations to transform the matrices involved, any integer that divides

a matrix will also divide the matrix resulting after application of the elementary operations. Hence,

iteration of this procedure yields the above assertion.

The algorithm depends on the following notion. For a given integer-valued non-zero matrix A a

minimal entry is a non-zero entry aij of A such that |aij | ≤ |akl| for all entries akl of A. The

(uniquely determined) absolute value of a minimal entry is denoted by m(A).

The algorithm is divided into two parts, depending on whether m(A) divides all entries or not.

First, take a minimal entry aij of A.

Case I. m(A) does not divide all entries of A. We will, only using elementary operations,

construct a new matrix B with m(B) < m(A). We consider three subcases.

A. If aij does not divide all entries in its column. Let akj be an entry that is not divided by aij .

Then we can write

akj = s · aij + t

for some integers s and t, while 0 < |t| < |aij | = m(A). Now, using the elementary operations, we

can subtract row i s times from row k. The resulting entry on position (k, j) will be

akj − s · aij

which is equal to t. Thus we have constructed an integer-valued non-zero matrix B with m(B) ≤

|t| < m(A).
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B. If aij does not divide all entries in its row. For this situation we employ the same method as

in A.

C. Else. Let akl be an entry that is not divided by aij . Since aij divides all entries of its row

and column, we know that k 6= i and l 6= j. Consider the following four entries of A:

aij · · · ail

...
...

akj · · · akl

Since aij divides akj , there exists an integer p such that aij = p · akj . So, p subtractions of row i

from row k yields a matrix in which these entries look as follows

aij · · · ail

...
...

0 · · · akl − p · ail

Now adding row k to row i yields entry

ail + akl − p · ail

in position (i, l) and this number cannot be divided by aij which brings us back to subcase B.

Now notice that (if necessary repeated) application of the algorithm described in case I eventually

yields a non-zero matrix of which a minimal entry divides all entries. Thus, after a finite number

of elementary operations we have a matrix to which we can apply

Case II. m(A) does divide all entries of A. First interchange rows and columns to bring the

entry aij to position (1, 1). Next, since aij divides all other entries in the matrix, we can make all

other entries in the first row and first column equal to zero by only using elementary operations.

Moreover, aij will still divide all non-zero entries in the matrix that results after these operations.

This concludes the proof.

9. Appendix B. Polyhedral and simplicial complexes

In this section we will state and prove some assertions concerning polyhedral complexes. It is

essential for our main assertion in this paper, the computability of standard stable sets in finite time

using exclusively linear optimization techniques and finite enumerations, that all manipulations

and computations used in the proofs in this section can indeed be executed only using linear

optimization techniques and finite enumerations.

Let P be a polyhedral complex. A refinement of P is a polyhedral complex Q such that each

polytope in Q is a subset of some polytope in P and, secondly, each polytope P in P is the union

29



if polytopes in Q. The refinement is Q called simplicial if Q happens to be a simplicial complex.

A refinement is said to preserve vertices when the vertex set of Q equals the vertex set of P.

Lemma 4. Let P be a polyhedral complex. Then there exists a simplicial refinement of P that

preserves vertices.

Proof. The proof is split in two parts. First we will assign to each polytope P in P a vertex vP

of P in such a way that vP = vF for any face F of P of which v is a vertex. Then we will use this

assignment to construct a simplicial refinement of P that preserves vertices.

A. First we construct the assignment. Take any vertex v in P (note that we can do this as long

as P is not empty). For every polytope P in P of which v is a vertex we define vP := v. Next,

consider the collection

P ′ := {P ∈ P | v /∈ P}.

It is easy to check that P ′ is a polyhedral complex with less elements than P. So, if P ′ is not

empty we can repeat the above procedure. Eventually we have an assignment from P to its set of

vertices such that vP is an element of P for every P in P and moreover vF = vP for every face F

of P of which vP is a vertex.

B. Now let Pd be the collection of polytopes in P of dimension d or less. Obviously Pd is a

polyhedral complex. We will construct a set Cd of simplices in such a way that

(1) the vertex set of Cd equals the vertex set of Pd (which equals the vertex set of P)

(2) each simplex σ in Cd is a subset of some polytope P in Pd

(3) each polytope P in Pd is the union of simplices in Cd and

(4) Cd is a simplicial complex.

In other words, Cd will be a simplicial refinement of Pd that preserves vertices. Thus, since Pd = P

for d sufficiently large, we will have our proof.

We construct the sets Cd by induction to d. For d = 0, we define

C0 := P0

which is simply the set of vertices of P. Obviously C0 satisfies the above four conditions.

Now suppose we have constructed Cd for some dimension d ≥ 0 in such a way that it satisfies all

four conditions.

We will show how to construct Cd+1. Take a polytope P in P of dimension d + 1. (So, P is an

element of Pd+1 but not of Pd.) Let vP be the vertex of P that is assigned to P by the procedure

of part A of the proof. Take a (proper) face F of P that does not contain vP . Then F will
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automatically be an element of Pd. Take a simplex σ in Cd that is contained in F . Write

[σ, vP ] := {λx + (1 − λ)vP | x ∈ σ}.

Since vP is not an element of F and σ ⊂ F is a simplex of dimension d or less, [σ, vP ] is also a

simplex, of dimension d + 1 or less.

Now let Cd+1 be the union of Cd and the collection of all simplices [σ, vP ] we can thus construct.

The claim is that Cd+1 satisfies all the above conditions. We will check them one by one.

Check of (1). From the construction of Cd+1 it is clear that its vertex set equals the vertex set

of Cd together with vP . Since the vertex set of Cd is assumed to be equal to the vertex set of P by

the induction hypothesis, and vP is a vertex of the polytope P in P, the vertex set of Cd+1 must

also be equal to the vertex set of P.

Check of (2). This is easy to check, once we realize that each simplex in Cd+1 is either an element

of Cd or of the form [σ, vP ] for some polytope P in Pd+1 and simplex σ ⊂ F ⊂ P . In the first case

we can use the induction hypothesis. In the second case, [σ, vP ] is a subset of P .

Check of (3). Let P be a polytope of Pd+1 but not of Pd and let x be an element of P . We will

show that x is contained in a simplex of the form [σ, vP ] for some simplex σ ⊂ P in Cd.

(i) If x equals vP . Since the dimension of P is at least one, P will have at least one face F that

does not contain vP . So, this face F is an element of Pd. Now the induction hypothesis tells us

that F is the union of simplices σ in Cd. So, since F is not empty, we have at least one simplex σ

that is a subset of F ⊂ P . So, there is at least one simplex of the form [σ, vP ] and vP is an element

of it.

(ii) If x does not equal vP . Write

λ∗ := max{λ | λ ≥ 1 and λx + (1 − λ)vP ∈ P}.

Then x∗ := λ∗x + (1 − λ∗)vP is clearly an element of some face F of P that does not contain vP .

So, by the induction hypothesis we get that x∗ must be an element of some simplex σ ⊂ F in Cd.

This however implies that x is an element of the simplex [σ, vP ] ⊂ P in Cd+1, since

x =
1

λ∗
x∗ +

λ∗ − 1

λ∗
vP

is a convex combination of x∗ ∈ σ and vP .

Check of (4). (i) First we will check that each face of a simplex in Cd+1 is an element of Cd+1.

Take a simplex τ in Cd+1. If τ is already an element of Cd, the assertion follows from the induction

hypothesis. So, suppose it is not an element of Cd. In this case τ is of the form [σ, vP ] for some
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polytope P and some simplex σ in Cd that is a subset of some face F of P not containing vP . Now

let ρ be a face of τ . There are two possibilities. Either ρ equals σ, in which case it is clearly an

element of Cd+1. Or it is of the form [κ, vP ] for some face κ of σ. However, κ is an element of Cd

by the induction hypothesis, and it is also a subset of F . Hence, also in this case,

ρ = [κ, vP ]

is an element of Cd+1.

(ii) Assume that for each simplex σ in Cd and simplex τ in Cp the intersection is a face of both

simplices. Now take a simplex σ in Cd+1 and a simplex τ in Cp that have a non-empty intersection.

We will show that the intersection is a face of both. Write

σ = [ρ, vP ]

for some simplex ρ that is contained in a face F of P ∈ P not containing vP . Since τ ∩P is a face

of τ , we can assume w.l.o.g. that τ is a subset of P by (4)(i). We distinguish two cases.

sub (a) Suppose that τ is contained in a proper face F of P . In this case

σ ∩ τ = (σ ∩ F ) ∩ τ.

Therefore it is sufficient to show that σ ∩ F is an element of Cd. At least it is clear that σ ∩ F is a

face of σ, since σ is a subset of P and F is a face of P . So, by (4)(i), σ ∩ F is an element of Cd+1.

However, F is a proper face of the d + 1-dimensional polytope P and therefore of dimension d or

less. Hence, σ ∩ F is an element of Cd.

sub (b) Suppose that τ is not contained in a proper face of P . Since τ is not contained in a proper

face of P , it must be of the form [κ, vP ]. Now, if ρ ∩ κ is empty, σ ∩ τ must be equal to {vP }. If

ρ∩ κ is not empty, it is a face of both ρ and κ by the induction hypothesis. So, it is an element of

Cd and we can write

σ ∩ τ = [ρ ∩ κ, vP ]

which is indeed a face of both σ and τ . This concludes the proof. ⊳

Now let P be a polyhedral complex in IRm × IRn with underlying space X. Furthermore, let

π:X → IRm be defined by

π(x, y) := x.

Lemma 5. There exists a simplicial refinement C of P together with a simplicial complex D

whose underlying space is π(X) such that π is a polyhedral map from C to D.
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Proof. A. First we will construct the simplicial complex D. Take a polytope P in P. Given

this polytope, determine a system of linear inequalities

A(P )1x ≥ b(P )1

...

A(P )k(P )x ≥ b(P )k(P )

whose set of solutions equals π(P ). Now a sign prescription is a function ≺ that assigns to each

pair (P, i) with P ∈ P and 1 ≤ i ≤ k(P ) an element

≺P,i ∈ {≥,=,≤}.

Let Q(≺) be the set of solutions of the system

A(P )ix ≺P,i b(P )i

of linear (in)equalities, where P ranges through P and i ranges through 1, . . . , k(P ). Let Z be

the collection of sign prescriptions for which Q(≺) is not empty and contained in π(P ) for some

P ∈ P. First we will show that

Q := {Q(≺) |≺∈ Z}

is a polyhedral complex. First notice that each Q(≺) is polyhedral and, since it is contained in

some π(P ), bounded. So it is a polytope. Now the proof is easy once we realize that for two sign

prescriptions ≺1 and ≺2 the intersection

Q(≺1) ∩ Q(≺2)

equals Q(≺3) for

≺3
P,i:=

{

≺1
P,i if ≺1

P,i=≺2
P,i

= if ≺1
P,i 6=≺2

P,i.

Secondly we will show that the underlying space of Q is π(X). To this end, notice that each element

of Q is a subset of some π(P ). So, the underlying space of Q is a subset of π(P ). Conversely, given

a point x in π(P ), it is a simple exercise to construct a sign prescription ≺ in Z in such a way that

x is an element of Q(≺). Now let D be any simplicial refinement of Q. (Note that there exists at

least one by the previous lemma.)

B. Next we will construct a refinement R of P in such a way that each element of R maps

precisely onto an element of D. Let R be the collection of non-empty polytopes of the form

P ∩ π−1(Q)

where P ranges through P and Q ranges through Q.
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(i) First we will show that each element of R maps precisely onto an element of Q. To this end,

take an element

R = P ∗ ∩ π−1(Q(≺))

of R. So, P ∗ is an element of P and Q(≺) is an element of Q. Now note that

π(R) = π(P ∗ ∩ Q(≺)).

We will show that this is an element of Q. Define the sign prescription ≺R by

≺R
P,i:=















≺P,i if P 6= P ∗

≥ if P = P ∗ and ≺P∗,i = ≥

= if P = P ∗ and ≺P∗,i ∈ {≤,=}.

It is straightforward to show that Q(≺R) equals P ∗ ∩ π−1(Q(≺)) = R.

(ii) Now we will show that R is a refinement of P. Since it is obvious from the construction of R

that each polytope in R is a subset of some polytope in P, we only need to show that

(1) each polytope in P is the union of polytopes in R, and

(2) R is a polyhedral complex, which means that,

sub (a) every face of an element of R is an element of R, and

sub (b) the intersection of two elements of R is a face of both elements.

Check of (1). Take a polytope P in P and a point (x, y) in P . Since x is an element of the

underlying space π(X) of Q we can take a polytope Q in Q that contains x. Hence, (x, y) is

contained in the element P ∩ π−1(Q) ⊂ P of R.

Check of (2) sub (a). Let F be a face of the polytope P ∗ ∩ π−1(Q(≺)) in R. Take a system

C

[

x
y

]

≥ d

of linear inequalities whose solution set equals P ∗. So, the polytope P ∗∩π−1(Q(≺)) is the collection

of points (x, y) that solve

C

[

x
y

]

≥ d

A(P )ix ≺P,i b(P )iand

for all P in P and 1 ≤ i ≤ k(P ). So, the face F is determined by changing some of the inequalities

in this system into equalities. However, the resulting equalities in the first part of the above system

define a face G of P ∗ which is automatically an element of P. The equalities in the second part

define a sign prescription ≺′. It is straightforward to check that F must be equal to G ∩ Q(≺′).
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Check of (2) sub (b). Trivial.

C. Now the application of lemma 1 to R yields a simplicial refinement C of R that preserves

vertices. We will show that π is a simplicial map from C to D. To that end, take an element σ of

C. We have to show that π(σ) is an element of D.

Since C is a refinement of R, we can take an element R of R that contains σ. So, π(σ) is at least

a subset of the element π(R) of D. We will explain why it must even be a face of π(R). To see

that, note that C is a refinement of C that preserves vertices. So, the extreme points of σ are also

extreme points of R. This implies that the extreme points of π(σ) are extreme points of π(R).

This in its turn however implies that π(σ) must be a face of π(R) since π(R) is a simplex (and

hence the convex hull of some of its extreme points is automatically a face of it). ⊳

10. Appendix C. Definition of simplicial homology

Let σ be a simplex, and let {v0, . . . , vd} be its set of vertices. Then the dimension of this simplex

is d. A simplex of dimension d is simply called a d-simplex. An orientation of a simplex is simply

an ordering of its vertices modulo even permutations. A simplex together with an orientation of

this simplex is called an oriented simplex. It is denoted by [v0, . . . , vn].

Example 3. Suppose we have a triangle with vertices v0, v1 and v2. Then

[v0, v1, v2] = [v1, v2, v0] = [v2, v0, v1] and [v1, v0, v2] = [v0, v2, v1] = [v2, v1, v0].

Thus we obtain two possible orientations for each simplex. ⊳

Now take a simplicial complex C and let it remain fixed for the duration of this section. Choose for

each simplex σ ∈ C, an (arbitrary!) orientation and denote the collection of all oriented simplices

thus constructed by C. So, C has the same number of elements as C. A generic element of C will

be denoted by υ.

Now consider the free Abelian group Z6 C generated by C. Remember that we identified an element

υ of C with the characteristic function 1lυ of {υ} in Z6 C. It turns out to be convenient to identify

the opposite orientation of υ with −1lυ and consequently denote it by −υ.

Now let d be an integer in Z6 . A d-chain is an element

c =
∑

nαυα

in Z6 C in which nα is non-zero only if υα is an orientation of a d-simplex.

The subgroup of Z6 C of all d-chains on C is denoted by Cd(C) and is called the group of oriented

d-chains of C. Notice that Cd(C) is the trivial group for those dimensions d for which there

are no d-simplices in C. Also notice that by the identification of an oriented d-simplex with its
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characteristic function each oriented d-simplex can be viewed as a d-chain. These d-chains are

called the elementary d-chains.

THE BOUNDARY OPERATOR Now let d be an element of Z6 . We will define a homomorphism

∂d:Cd(C) → Cd−1(C).

To this end, take an elementary d-chain [v0, . . . , vd] in C. Define

∂d([v0, . . . , vd]) :=
d

∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vd],

where [v0, . . . , v̂i, . . . , vd] := [v0, . . . , vi−1, vi+1, . . . , vd].

Since the collection of elementary d-chains is a basis for Cd(C), this definition extends uniquely to

a homomorphism on the entire group Cd(C) by proposition 2. The resulting homomorphism, also

denoted by ∂d, is called the boundary operator in dimension d.

Example 4. Formally one needs to show that this is a correct definition. In other words,

different representations of the same d-chain need to have the same image under the boundary

operator ∂d. E.g., notice that [v0, v1, v2] = [v1, v2, v0]. Application of the boundary operator ∂3 to

both these representations of the same oriented 3-simplex yields

∂3([v0, v1, v2]) = [v1, v2] − [v0, v2] + [v0, v1]

and ∂3([v1, v2, v0]) = [v2, v0] − [v1, v0] + [v1, v2].

And indeed both right-hand side expressions are the same since [v2, v0] = −[v0, v2] and [v0, v1] =

−[v1, v0]. It can be shown that this is a general fact. ⊳

By its very definition the boundary operator ∂d is a homomorphism. Its kernel in Cd(C) is denoted

by Zd(C) and its image in Cd−1(C) is denoted by Bd−1(C). The group Zd(C) is known as the group

of d-cycles and the group Bd−1(C) is called the group of d − 1-boundaries.

Furthermore, it can be shown that the composition of the maps ∂d and ∂d+1 depicted below

Cd+1(C) ∂d+1 Cd(C) ∂d Cd−1(C)

equals the trivial map. In other words, ∂d ◦ ∂d+1 = 0. In particular this implies that the group

Bd(C) of d-boundaries is a subgroup of the group of d-cycles Zd(C). Thus we can define the

homology group Hd(C) of dimension d by

Hd(C) := Zd(C) / Bd(C).
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RELATIVE HOMOLOGY GROUPS Now suppose we have a fixed simplicial complex C with associ-

ated collection C of oriented simplices. Furthermore suppose that we have a subcomplex C0 of C

and denote its associated collection of oriented simplices by C0. Obviously C0 is a subset of C.

Now it is evident that the group Cd0 := Cd(C0) of those d-chains on C that only take non-zero

values on elements of C0 is a subgroup of Cd := Cd(C) (11). Now, as we have seen before, we can

define the quotient group Cd(C,C0) whose elements are the sets of the form

υ + Cd0 := {υ + w | w ∈ Cd0}

where υ ranges through Cd. The addition on this collection of sets is defined in the obvious way.

This yields again a, in this case free, Abelian group. It is called the group of relative chains of

dimension d.

Now we can define a map, which we will also denote by ∂d, from the group Cd(C,C0) of relative

d-chains to the group Cd−1(C,C0) of relative d − 1-chains by

∂d(υ + Cd0) := ∂d(υ) + Cd−1,0

for all υ + Cd0 in Cd(C,C0). The ∂d on the left-hand side of the equality sign is of course not the

same map as the ∂d on the right-hand side of the equality sign.

Remark. This is a sound definition. To see this, suppose that υ+Cd0 = υ′+Cd0. So, υ′ = υ+w

for some w ∈ Cd0. Then

∂d(υ
′) = ∂d(υ + w) = ∂d(υ) + ∂d(w)

which implies that
∂d(υ

′) + Cd−1,0 = ∂d(υ) + ∂d(w) + Cd−1,0

= ∂d(υ) + Cd−1,0,

where the last equality follows from the fact that ∂d(w) is an element of Cd−1,0. Hence,

∂d(υ
′ + Cd0) = ∂d(υ

′) + Cd−1,0 = ∂d(υ) + Cd−1,0 = ∂d(υ + Cd0)

which shows that different representations of the same equivalence class yield (different represen-

tations of) the same image under the boundary operator ∂d. ⊳

It is straightforward to check that ∂d is a homomorphism and that ∂d ◦∂d+1 = 0. So, we can define

the relative simplicial homology group Hd(C,C0) of dimension d by

Hd(C,C0) := Ker(∂d) / Im(∂d+1).

(11) This is a slight abuse of notation. Formally the elements of Cd(C0) are elements of Z6 C0 , not of Z6 C.
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Example 5. Consider the simplicial complex C that consists of a d-simplex together with all its

proper faces, and let C0 be the subcomplex that consists of all these faces. Then clearly all groups

Ck(C,C0) are trivial, except when k = d, in which case Cd(C,C0) ∼= Z6 (since there is precisely one

d-simplex in C, and that simplex is not an element of C0). Now it is straightforward to check that

all k-dimensional relative homology groups are trivial, except when k = d. For the d-dimensional

relative homology group we find that Hd(C,C0) ∼= Z6 . ⊳

HOMOMORPHISMS INDUCED BY SIMPLICIAL MAPS Let X be the underlying space of some sim-

plicial complex X in IRn. Let A ⊂ X be the underlying space of a subcomplex A of X . Similarly,

let Y be the underlying space of a simplicial complex Y in IRm and let B ⊂ Y be the underlying

space of a subcomplex B of Y.

Now suppose that we have a map f from (X,A) to (Y,B) that is simplicial. So, each element of X

maps linearly onto an element of Y under f . Notice that in this case elements of A automatically

map onto elements of B.

As we explained in section 2, the map f induces a homomorphism, which we will indicate by

f∗sin for the moment, from the singular homology group Hd(X,A) to the singular homology group

Hd(Y,B). However, it also induces a homorphism, which we will call f∗sim, from the simplicial

homology group Hd(X,A) to the simplicial homology group Hd(Y,B). This homomorphism is

constructed as follows.

Take an elementary d-chain [v0, . . . , vd] in Cd(X). So,

[v0, . . . , vd] + Cd(A)

is an element of Cd(X,A). Define

f#([v0, . . . , vd] + Cd(A)) :=

{

[f(v0), . . . , f(vd)] + Cd(B) if all f(v0), . . . , f(vd) are distinct

Cd(B) else

and let f# be the homomorphic extension of this definition. It can be shown that the homomor-

phism f# depicted in the diagram below

Cd+1(X,A) ∂d+1 Cd(X,A) ∂d Cd−1(X,A)

f# f# f#

Cd+1(Y,B) ∂d+1 Cd(Y,B) ∂d Cd−1(Y,B)

commutes with the boundary operator. So, we can define the map f∗sim:Hd(X,A) → Hd(Y,B) by,

for all k ∈ Ker(∂d),

f∗sim(k + Im(∂d+1)) := f#(k) + Im(∂d+1).
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THE RELATION WITH SINGULAR HOMOLOGY Concerning the relation between singular and sim-

plicial homology groups the following can be shown.

Again let X be the underlying space of some simplicial complex X in IRn. Let A ⊂ X be the

underlying space of a subcomplex A of X . Consider the homomorphism m# from Cd(X ,A) to

Sd(X,A) determined by the definition

m#([v0, . . . , vd] + Cd(A)) := l(v0, . . . , vd) + Sd(A)

for all elementary d-chains [v0, . . . , vd] in Cd(X ). It is an elementary exercise to show that the

diagram

Cd+1(X,A) ∂d+1 Cd(X,A) ∂d Cd−1(X,A)

m# m# m#

Sd+1(X,A) ∂d+1 Cd(X,A) ∂d Cd−1(X,A)

commutes. Therefore the homomorphism m# induces a homomorphism

m∗:Hd(X,A) → Hd(X,A)

in the usual way. Moreover,

Theorem 6. The above homomorphism m∗ from the relative simplicial homology group Hd(X,A)

to the singular relative homology group Hd(X,A) is even an isomorphism.

And, if we construct isomorphisms

m∗:Hd(X,A) → Hd(X,A) and n∗:Hd(Y,B) → Hd(Y,B)

this way in the setting of the previous subsection, it can be shown that the diagram

Hd(X,A) m∗ Hd(X,A)

f∗sim f∗sin

Hd(Y,B) n∗ Hd(Y,B)

commutes. Thus we get the equivalence of singular and simplicial homology theory for simplicial

maps on simplicial complexes. This result is also true for a much wider variety of spaces and maps,

but we only need it in this context and will not go into the details concerning the generalizations

of the above theorem.

Still, even the above assertions are not at all trivial. The proofs are long and arduous, and we will

not repeat them here. The interested reader is referred to Munkres (1984) or any other textbook on

algebraic topology. The theorem is very useful though for direct computation of homology groups.
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11. Appendix D. A homeomorphism

Consider the non-negative orthant IRm
+ × IRn

+ of the product space IRm × IRn. A generic element

of IRm × IRn is denoted by (x, y) with x in IRm and y in IRn. Further, let

P := {Pα | α ∈ A}

be a collection of polytopes in this nonnegative orthant with the following two additional properties.

Firstly, each polytope in this collection contains at least one element of the form (0, y) and at least

one element of the form (x, y) with x 6= 0. Secondly, the collection of polytopes in P together with

all their proper faces is a polyhedral complex. For each polytope Pα in P let ext(Pα) be its set of

extreme points. Define

η(Pα) := min{
∑m

j=1xj | (x, y) ∈ ext(Pα) and x 6= 0}.

Further define

η∗ :=
1

2
min{η(Pα) | Pα ∈ P}.

For η ≤ 2η∗, write C(η) for the collection of points x in IRm
+ for which

m
∑

j=1

xj ≤ η.

Let Pα(η) be the collection of points (x, y) in Pα for which x is an element of C(η). Let U(η) be

the union over all sets Pα(η) for Pα in P.

Let D ⊂ IRm be a compact and convex neighborhood of 0 with the additional property that D is

a subset of C(η∗). Write

V := {(x, y) ∈ U(η∗) | x ∈ D}

and ∂vV := {(x, y) ∈ U(η∗) | x ∈ ∂D}.

For x in IRm
+ , write ||x|| :=

∑m
i=1 xi, and define

η(x) :=

{

max{η > 0 | η x
||x|| ∈ D} if x 6= 0

1 if x = 0.

Remarks. Obviously, η takes on positive values exclusively. Furthermore, η is continuous

everywhere, except perhaps in x = 0. Also note that x is an element of D if and only if ||x|| ≤ η(x).

Define the map g from IRm
+ to IRm

+
(12) by

g(x) :=
η∗

η(x)
· x.

(12) Notice that the map g actually depends on D.
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Even though η need not be continuous in x = 0, it can easily be verified that g is a homeomorphism

from D to C(η∗). Let π be the projection from IRm × IRn onto IRm defined by

π(x, y) := x.

We will show that there exists another homeomorphism f :V → U(η∗) such that f(0, y) = (0, y)

and the diagram

V f U(η∗)

π π

IRm g IRm

commutes. In order to construct this map we need some preliminary theory.

COORDINATE SYSTEMS The theory we need, concerning coordinate systems for polyhedral com-

plexes, is easier to explain in a more general context. We will do that now.

Let P be a polyhedral complex. Let U be its underlying space and let E denote its collection of

vertices. Let ∆(P) be the collection of vectors

(ce)e∈E

with

(1) ce ≥ 0

(2)
∑

e∈E ce = 1 and

(3) {e | ce > 0} is a subset of some P in P.

The map b:∆(P) → U defined by

b((ce)e∈E) :=
∑

e∈E

ce · e

is called the coordinate map associated with P. Clearly this map is onto, but it need not be a

homeomorphism.

A coordinate system on P is a subset B of ∆(P) such that the coordinate map is a homeomorphism

from B to U .

There is a straightforward way to construct a coordinate system on P. This works as follows.

According to lemma 4 we can take a simplicial subdivision C of P that preserves vertices. Let B

be the collection of those vectors (ce)e∈E in ∆(P) with the property that the carrier

{e ∈ E | ce > 0}
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of c is a subset of at least one of the elements of C. It is now an elementary exercise to check that

the coordinate map is a homeomorphism from B to U . ⊳

CONSTRUCTION OF f Switching back to our original aim, the construction of f , write P(2η∗)

for the polyhedral complex consisting of all polytopes of the form Pα(2η∗) for some Pα in P and

all its faces (13). It is obvious that U(2η∗) is its underlying space. Let B be the coordinate

system of P(2η∗) as constructed above and let C be the corresponding vertex-preserving simplicial

subdivision of P(2η∗).

Let E be the set of vertices of P(2η∗). Notice that, since E is still a subset of IRm × IRn, we can

write each e in E as e = (ex, ey) with ex in IRm and ey in IRn. Write

E1 := {e ∈ E | ex = 0} and E2 := {e ∈ E | ex 6= 0}.

Notice that E1 and E2 are not empty by the choice of P and that

m
∑

i=1

(ex)i = 2η∗

for all e in E2 by the choice of η∗.

Now take a point (x, y) in V . Since V is a subset of U(2η∗), there is a (unique) coordinate vector

c = (ce)e∈E

in B with b(c) = (x, y). Now recall that D is a subset of C(η∗). So, ||x|| < 2η∗, and hence

∑

e∈E1

ce 6= 0.

Thus we can define f :V → IRm × IRn by

f(x, y) :=
(η(x) − η∗ ·

∑

e∈E2
ce

η(x) ·
∑

e∈E1
ce

)

∑

e∈E1

ce · e +
∑

e∈E2

η∗
η(x)

ce · e.

Remark. Notice that those points (x, y) in V with
∑

e∈E2
ce > 0 are a linear combination of

the points
∑

e∈E1

ce
∑

e∈E1
ce

· e and
∑

e∈E2

ce
∑

e∈E2
ce

· e.

In that case the image f(x, y) of (x, y) is also a convex combination of these two points, only the

total weight on E2 relative to the total weight on E1 in the definition of f has been increased by

the factor η∗

η(x) . The complicated-looking factor in front of the summation over E1 simply makes

sure that the sum over all coefficients remains one. ⊳

(13) It is straightforward to check that P(2η∗) is indeed a polyhedral complex.
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We will now verify a couple of claims about this map f . The first claim concerns an inequality we

need several times in the proofs of the other claims.

CLAIM I For (x, y) in U(2η∗) with coordinate vector c = (ce)e∈E , we have

2η∗
∑

e∈E2

ce ≤ ||x||.

The inequality can be checked immediately:

||x|| =

m
∑

i=1

xi =

m
∑

i=1

∑

e∈E

ce · (ex)i =
∑

e∈E

m
∑

i=1

ce · (ex)i

=
∑

e∈E

ce

m
∑

i=1

(ex)i =
∑

e∈E2

ce

m
∑

i=1

(ex)i

= 2η∗
∑

e∈E2

ce.

CLAIM II The vector f(x, y) is an element of U(η∗). First note that that f(x, y) is simply the

image under b of the vector
(((

η(x) − η∗ ·
∑

e∈E2
ce

η(x) ·
∑

e∈E1
ce

)

ce

)

e∈E1

,

(

η∗
η(x)

ce

)

e∈E2

)

if we can show that the above vector is an element of B. This we will do presently.

First we will show that all coordinates are not negative. This is obvious for those coordinates

corresponding to elements e of E2. For those corresponding to elements e of E1, notice that x is

an element of D, since (x, y) is an element of V . So, ||x|| ≤ η(x). Thus, using claim I,

η(x) − η∗ ·
∑

e∈E2

ce > 0

Hence, the multiplication factor in front of the ce is positive. Next, it is an elementary exercise to

show that these coordinates sum up to one. Finally, the coordinates in this vector that are strictly

positive coincide with those coordinates in the vector (ce)e∈E that are strictly positive. And the

collection of those coordinates is indeed a subset of some element of C. These facts together show

that the above vector is indeed an element of B.

So, f(x, y) is the image under b of the above vector. Left to show:
∑m

i=1 f(x, y)x ≤ η∗. Well, again

using the fact that ||x|| ≤ η(x) and the inequality from claim I we get

m
∑

i=1

f(x, y)x =

m
∑

i=1

(η(x) − η∗ ·
∑

e∈E2
ce

η(x) ·
∑

e∈E1
ce

)

∑

e∈E1

ce · (ex)i +

m
∑

i=1

∑

e∈E2

η∗
η(x)

ce · (ex)i

=

m
∑

i=1

∑

e∈E2

η∗
η(x)

ce · (ex)i =
η∗

η(x)

∑

e∈E2

ce

m
∑

i=1

(ex)i

=
η∗

η(x)
· 2η∗

∑

e∈E2

ce ≤
η∗

η(x)
· η(x)

= η∗.
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CLAIM III For (x, y) in V with x = 0 we have f(x, y) = (x, y). Since x = 0, we get that ce = 0

for all e in E2 and
∑

e∈E1
ce = 1. Thus we get that f(x, y) is the image under b of the vector

(

((

η(0) − η∗ · 0

η(0) · 1

)

ce

)

e∈E1

,

(

η∗
η(0)

· 0

)

e∈E2

)

=
(

(ce)e∈E1
, (0)e∈E2

)

= c

which is in its turn equal to (x, y).

CLAIM IV The set V maps onto U(η∗) under f . This can be seen as follows. Take a point

(x, y) in U(η∗). Let

(ce)e∈E

be the coordinates of (x, y) in B. Since
∑

e∈E1
ce 6= 0 by the choice of η∗ and B we can define the

vector

d = (de)e∈E :=

(((

η∗ − η(x) ·
∑

e∈E2
ce

η∗ ·
∑

e∈E1
ce

)

ce

)

e∈E1

,

(

η(x)

η∗
ce

)

e∈E2

)

.

Using the assumption that D is a subset of C(η∗), it is straightforward to check that this is an

element of B. So, b(d) is an element of U(2η∗). Furthermore, using claim I and the fact that x is

an element of C(η∗), we get that

m
∑

i=1

b(d)i =
m

∑

i=1

∑

e∈E

de · (ex)i =
∑

e∈E

m
∑

i=1

de · (ex)i =
∑

e∈E

de

m
∑

i=1

(ex)i

= 2η∗
∑

e∈E2

de = 2η∗
∑

e∈E2

η(x)

η∗
ce

≤
η(x)

η∗
· ||x|| ≤

η(x)

η∗
· η∗

= η(x).

Hence, b(d) is even an element of V . Finally, we will show that the image under f of b(d) equals

(x, y). Write b(d) = (v, w). Note that

f(b(d)) = f(v, w) =
(η(v) − η∗ ·

∑

e∈E2
de

η(v) ·
∑

e∈E1
de

)

∑

e∈E1

de · e +
∑

e∈E2

η∗
η(v)

de · e

=
∑

e∈E1

(

η(v) − η∗ ·
∑

e∈E2
de

η(v) ·
∑

e∈E1
de

· de

)

· e +
∑

e∈E2

η∗
η(v)

de · e.

We will show that this expression equals

∑

e∈E1

ce · e +
∑

e∈E2

ce · e = (x, y)

by showing that for each term in the above sums the coefficients coincide.

First of all, notice that

x =
∑

e∈E2

ce · ex and v =
∑

e∈E2

η(x)

η∗
ce · ex.
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Thus, either x = 0 = v, or x
||x|| = v

||v|| . In either case, η(x) = η(v).

Using this equality the above claim is easy to check for an element e in E2 since in this case

η∗
η(v)

de =
η∗

η(v)

η(x)

η∗
ce = ce.

On the other hand, for an element e in E2, notice that

η∗
∑

e∈E2

de = η(x)
∑

e∈E2

ce.

Using the fact that the sum over all ce equals 1 and rearranging yields

η(x) − η∗
∑

e∈E2
de

η(x)
∑

e∈E1
ce

= 1.

Hence,

η(v) − η∗
∑

e∈E2
de

η(v)
∑

e∈E1
de

· de =
η(x) − η∗

∑

e∈E2
de

η(x)
∑

e∈E1
de

· de =
η(x) − η∗

∑

e∈E2
de

η(x)
∑

e∈E1
ce

· ce = ce

and the proof is complete.

CLAIM V The map f is one-to-one. Take two different points (x, y) and (v, w) in V . Let

c = (ce)e∈E and d = (de)e∈E be the coordinates in B of (x, y) and (v, w), resp. Obviously, c 6= d.

First we will argue that in this case the elements

(((

η(x) − η∗ ·
∑

e∈E2
ce

η(x) ·
∑

e∈E1
ce

)

ce

)

e∈E1

,

(

η∗
η(x)

ce

)

e∈E2

)

(((

η(v) − η∗ ·
∑

e∈E2
de

η(v) ·
∑

e∈E1
de

)

de

)

e∈E1

,

(

η∗
η(v)

de

)

e∈E2

)

and

of B are also different.

So, assume that these elements are equal. We will derive a contradiction. First notice that this is

easy if
∑

e∈E2
ce = 0 or

∑

e∈E2
de = 0. So, assume that

∑

e∈E2

ce > 0 and
∑

e∈E2

de > 0.

From the equality of the second part of the above vectors we get that there is a real number κ > 0

such that

ce = κde for all e ∈ E2.

Thus we get that

x =
∑

e∈E2

ce · ex = κ
∑

e∈E2

de · ex = κ · v
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from which it follows that η(x) = η(v). Now the equality

η∗
η(x)

ce =
η∗

η(v)
de for all e ∈ E2

immediately yields that ce = de for all e ∈ E2. Once we have this, it can easily be shown that

η(x) − η∗ ·
∑

e∈E2
ce

η(x) ·
∑

e∈E1
ce

=
η(v) − η∗ ·

∑

e∈E2
de

η(v) ·
∑

e∈E1
de

.

Now notice that these numbers are strictly positive by claim I and, since both x and v are elements

of V , the facts that ||x|| ≤ η(x) and ||v|| ≤ η(v). Given this observation, equality of the above vectors

immediately implies that ce = de for all e ∈ E1. Hence c = d, which contradicts the assumption

that (x, y) and (v, w) are not equal.

Now recall that b is a homeomorphism on B∗. Hence, the respective images f(x, y) and f(v, w)

under b of these elements of B∗ must also be different.

CLAIM VI The map f commutes with g. We have to show that π ◦ f = g ◦π. To this end, take

a point (x, y) in U(η). Let c = (ce)e∈E be its coordinates in B∗. So,

(x, y) =
∑

e∈E

ce · e.

Thus we find that

(g ◦ π)(x, y) = g(x) =
η∗

η(x)
· x =

η∗
η(x)

·
∑

e∈E

ce · ex.

On the other hand, since π is linear,

(π ◦ f)(x, y) =
(η(x) − η∗ ·

∑

e∈E2
ce

η(x) ·
∑

e∈E1
ce

)

∑

e∈E1

ce · π(e) +
∑

e∈E2

η∗
η(x)

ce · π(e)

=
(η(x) − η∗ ·

∑

e∈E2
ce

η(x) ·
∑

e∈E1
ce

)

∑

e∈E1

ce · ex +
∑

e∈E2

η∗
η(x)

ce · ex

=
∑

e∈E2

η∗
η(x)

ce · ex

and (f ◦ π)(x, y) equals (π ◦ g)(x, y).
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