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Abstract

We present a model of adaptive economic agents that are k periods
forward looking. Agents in our model are randomly matched to interact
in finitely repeated games. They form beliefs by relying on their past
experience in the same situation (after the same recent history) and then
best respond to these beliefs looking k periods ahead. We establish almost
sure convergence of our stochastic process and characterize absorbing sets.
These can be very different from the predictions in both the fully rational
model and the adaptive, but myopic case. In particular we find that
also Non-Nash outcomes can be sustained almost all the time whenever
they are individually rational and satisfy an efficiency condition. We then
characterize stochastically stable states in 2x2 games and show that under
certain conditions the efficient action in Prisoner’s Dilemma games and
Coordination games can be singled out as uniquely stochastically stable.
We show that our results are consistent with typical patterns observed
in experiments on finitely repeated Prisoner’s Dilemma games. Finally,
if populations are composed of some myopic and some forward looking
agents parameter constellations exists such that either might obtain higher
average payoffs.
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1 Introduction

When trying to understand how economic agents involved in strategic interac-
tions form beliefs and choose actions, traditional Game Theory has ascribed a
large degree of rationality to players. Agents in repeated games are for example
assumed to be able (and willing) to analyze all possible future contingencies
of play and find equilibria via a process of backward induction or at least act
as if they were doing so. In recent decades this model has been criticized for
ascribing too much rationality to agents. Experimental work has for example
demonstrated that agents do not engage in backwards induction when making
choices in finitely repeated games.! Consequently some effort has been made
to develop models of learning, in which agents are assumed to adapt their be-
liefs (and thus actions) to experience rather than reasoning strategically. In
these models agents are usually ascribed a substantial degree of myopia or "
rationality", assuming e.g. that players learn through reinforcement, imitation
or at best choose myopic best responses.? There is vast evidence, though, that
economic agents typically rely on both: adaptation and some degree of forward
looking.?

In this paper we present a learning model exhibiting both these features.
Agents in a large, but finite population are randomly matched to interact in
finitely repeated games. They form beliefs by relying on their past experience
in the same situation (after the same recent history) and then best respond to
these beliefs looking k periods ahead. Beliefs are conditioned on the history of
play which is of length h. This implies that when choosing an action plan agents
take into account how their choice in the current period t alters the history at
t+1 and thus typically the action choices of their opponent in the next k periods.

In general being forward looking implies that two kinds of changes can be
anticipated. On the one hand agents will be aware that their action choice will
affect the history of play (whether relations will "turn sour" or whether they
will improve). On the other hand they might anticipate that future beliefs of
their opponents will change. Our model allows for agents to learn the first kind
of effect explicitly. The second effect is only present implicitly. The reasons are
that a) forming beliefs about the opponent’s beliefs implies a kind of strategic
thinking that is absent in our model and b) since the degree of forward looking
k is assumed to be rather small such belief changes will be negligible over the
horizon of the agent.

The stochastic process implied by our learning model can be described by a
finite Markov chain of which we characterize absorbing and stochastically stable
states. The model nests the model of adaptive play by Young (1993).

We find that absorbing sets are such that either a Nash equilibrium (satisfy-
ing very mild conditions) or an outcome that is individually rational and locally
efficient (but not necessarily Nash) will be induced almost all the time (as the

ir-

1See Gueth, Schmittberger and Schwarze (1982) or Binmore et al (2001) among others.

2See e.g. Young (1993), Kandori, Mailath and Rob (1993) or the textbook by Fudenberg
and Levine (1998).

3See e.g. Ehrblatt et al (2008) or Boyd and Richerson (2005) amomg many others.



length of the interaction grows larger). Outcomes can thus be very different
from the prediction in both the fully rational and the myopic case. This is all
the more interesting, since in myopic learning models the predictions are usually
very similar to those of the fully rational model. We also establish almost sure
convergence to such pure absorbing sets. We then characterize stochastically
stable states in 2 x 2 games and show that under certain conditions the efficient
action in Prisoner’s Dilemma games and Coordination games can be singled out
as uniquely stochastically stable. Again this contrasts with the results obtained
for adaptive, but myopic agents analyzed by Young (1993). We show that these
results are consistent with typical patterns observed in experiments on repeated
Prisoner’s Dilemma games, such as e.g. by Andreoni and Miller (1993). We also
show that if populations are composed of some myopic and some forward looking
agents there are parameter constellations such that myopic agents obtain higher
average payoff and others such that forward-looking agents obtain higher aver-
age payoffs in absorbing states. These results suggest that in an evolutionary
model polymorphic populations (composed of both myopic and forward-looking
agents) or populations composed of only forward looking agents might evolve.

There are few other models with limited forward looking agents. Most of
them take a strategic perspective. Jehiel (1995) has proposed an equilibrium
concept for agents making limited horizon forecasts in two-player infinite hori-
zon games, in which players move alternately. Under his concept agents form
forecasts about their own and their opponent’s behavior and act as to maximize
the average payoff over the length of their forecast. In equilibrium forecasts have
to be correct. In Jehiel (2001) he shows that this equilibrium concept can some-
times single out cooperation in the infinitely repeated Prisoner’s Dilemma as a
unique prediction if players payoff assessments are non-deterministic according
to a specific rule. Apart from being strategic another difference between his
and our work is that his concept is only defined for infinite horizon alternate
move games whereas our model deals with finitely repeated (simultaneous move)
games. Also Jehiel (1995) shows that the length of memory does not matter for
equilibrium outcomes, whereas in our model it can be crucial, as we will show
below.*

Blume (2004) has proposed an evolutionary model of unlimited forward look-
ing behavior. In his model agents are randomly matched to play a one shot game.
They revise their strategies sporadically taking into account how their action
choice will affect the dynamics of play of the population in the future. He shows
that myopic play arises whenever the future is discounted heavily or whenever
revision opportunities arise sufficiently rarely. He also shows that the risk-
dominant action evolves in the unique equilibrium in Coordination games.> Ule
(2005) has modeled and simulated forward looking players interacting in a Pris-
oner’s Dilemma through a network. In his model agents realize that changing
their action to cooperation may be beneficial in the presence of other agents that

4In Jehiel (1998) he proposes a learning justification for limited horizon equilibrium.

5See also Fujiwara-Greve and Krabbe-Nielsen (1999) or Selten (1991). The idea of sophis-
tication is also present in e.g. Stahl (1993), who analyzes agents that are n smart according
to the levels of rationalizability.



link only with cooperators, hence enabling the spread of cooperation. There is
also some conceptual relation to the literature on long-run and short-run play-
ers (see e.g. Kreps and Wilson, 1982).5 Results more closely related to this
literature have been tested in experiments that investigate strategic sophistica-
tion and the existence of some "teachers" among adaptive players. Examples
are Ehrblatt et al. (2008), Terracol and Vaksman (2008) or Camerer, Ho and
Chong (2002).

The paper is organized as follows. In Section 2 we present the model. In
Section 3 we collect our main results. Section 4 discusses extensions and Section
5 concludes. The proofs are relegated to an Appendix.

2 The Model

The Game: There is a large, but finite population of individuals that is par-
titioned into two non-empty classes C7 and Cs. At each t = 0,7,27,3T..., 2n
players are randomly drawn (n from each class) and matched in pairs to in-
teract repeatedly in a (normal form) two-player game. The members of C; are
candidates to play role ¢ in the game. Each interaction consists of T" repetitions
of the stage game.

Each player has a finite set of actions A; to choose from. The payoff that
player 7 obtains in a given round if she chooses action a and her opponent action
b is given by 7(a,b). A history of play for player i of length h < T, denoted
H;;(h),is a vector that summarizes the past action choices in the last h rounds
of the current interaction with player j. In the first round of each T'—period
interaction we set H;j(h) = @. Denote by H(h) C (A; X Ay)" the set of all
possible histories of length h.

Learning: Agents in our model are adaptive forming beliefs by relying on
their observations in the past. In this respect our learning model is similar to
much of the literature (see e.g. Young, 1993). An important difference to this
literature is that we do not assume that players are myopic. The myopic case
analyzed by Young (1993) is a special case of our model.

Limited Foresight and Sophistication: Players have limited foresight of
k periods, meaning that they choose actions in order to maximize their expected
utility across the following k rounds.” They also have limited "sophistication"
of h periods, meaning that they condition their beliefs on histories of length h.
We will assume that h,k < T/2 to enable the process to converge. For most
part of the paper we will assume that all agents in the population display the
same degree of forward-looking k and the same h. We will investigate alternative
assumptions in Section 4.

Beliefs: At each period in time ¢ players form predictions about their oppo-
nent’s action choices based on their experience with the population and on the
history of play in their current (7'—period) interaction. More precisely, for each

6See also Fudenberg and Levine (1989) or Watson (1993).
"Whenever there are less than k rounds to play agents simply take into account all remain-
ing rounds.



history H, agents randomly sample p < m out of the last m periods where the
history was H.® The probability p'(b|H) that agent i attaches to her opponent
choosing action b conditional on history H then corresponds to the frequency
with which b was chosen after history H in the agents sample. Denote by u‘*(H)
the beliefs of agent i given history H at time ¢. Note that if h = 0 then all his-
tories are the same and players just sample p out of the last m periods. Note
also that beliefs are formed relying exclusively on information of past periods.
The effect an agent’s action choice at time ¢ might have on her opponent’s belief
at later times will generally be negligible and is not taken into account by the
agent.9

Action Choice: She then chooses an action vector (a”),=¢, ¢+k—1in order
to maximize her payoff over the next k rounds, i.e. in order to maximize!'?

max{t+k—1,[T]}

VW' H) @)= > D HTEHT D@, ()

beA

where [T] denotes any multiple of T. Expression (1) illustrates how players take
into account the impact their action choice at time ¢ has on their opponent’s
action choice in the following k& — 1 periods (by altering the history of play). If
there are less than k periods left to play agents realize this and sum only over
the remaining periods.

State: Denote by M;(t, H) the action choices in the last m interactions
of player ¢ in which the history was H and let M;(t) = (M(t,H))ycq and
M (t) = (Mi(t));cc,u0,- The state at time ¢ is then given by the tuple

i.e. by the collective memory of all agents together with the current history in
all agents’ interactions.!’ Since memory m is finite and all decision rules are
time-independent the process can be described by a stationary Markov chain
on the state space S = (A4 x H)‘HlmxH. Furthermore denote by H® the
history associated with state s and by M (H?®) the memory associated with that
history. Call 5 a successor of s € S if 5§ is obtained from s by deleting the
leftmost element from some M (H?), adding a new element (a,b) to the right of
M(H?) and updating H*® accordingly. Denote this last element added to s by

r(3) = (a,b).
Techniques: The learning process can be described by a transition matrix
P € P where P is defined as follows.

81f a history occured only m’ < m times in the past agents sample min{m/, p} periods
from the last m’ periods. If a history never occurred in the past agents use a default belief
having full support on A_;.

9Tn Section 4 we will discuss this a little more. See also Blume (2004) for an evolutionary
model with (unlimited) forward looking players taking into account these effects.

10We chose not to include an explicit discount factor for notational simplicity. A discount
factor could be easily included in the model, but wouldn’t affect any of the results qualitatively.

I1Tf an agent is currently not interacting with another agents set H(t) = @.



Definition (Transition Matrices) Let P be the set of transition matrices P
that satisfy Vs,s’ € S :

s’ is a successor of s and

/
Ple,s') >0 @{ r(s') € argmax V(u(H?), k), Vi

Definition (Absorbing Set) A subset X C S is called absorbing if P(s,s’) =
0,Vse X,s' ¢ X.

In Section 3.1 we will characterize absorbing sets. Naturally the question
arises which absorbing sets are more likely to arise if the process is subjected
to (arbitrarily) small perturbations. Let P¢(s,s’) denote the transition matrix
associated with the perturbed process in which players choose according to
decision rule (1) with probability 1 — e and with probability e choose an action
randomly (with uniform probability) from A;.

The perturbed Markov process P¢(s, s’) is ergodic, i.e. it has a unique sta-
tionary distribution denoted p°. This distribution summarizes both the long-run
behavior of the process and the time-average of the sample path independently
of the initial conditions.'? The limit invariant distribution w* =lim._,o p° exists
and its support {s € S| lim._,o pu(s) > 0} is a union of some absorbing sets of
the unperturbed process. The limit invariant distribution singles out a stable
prediction of the unperturbed dynamics (¢ = 0) in the sense that for any € > 0
small enough the play approximates that described by p* in the long run. The
states in the support of u* are called stochastically stable states.

Definition State s is stochastically stable < u*(s) > 0.

We will characterize stochastically stable states in Section 3.2.

3 Results

First let us comment on the standard case where (h,k) = (0,1) and T =1, i.e.
where each agent plays one round of a normal form game with his opponent
before being rematched. All agents have foresight & = 1, i.e. are myopic and
take into account only their payoffs in the current period when deciding on an
action. In this case the process corresponds to the process of adaptive play
described by Young (1993). Define the best reply graph of a game I' as follows:
each vertex is a tuple of action choices, and for every two vertices a and b there
is a directed edge a — b if and only if a # b and there exists exactly one agent

i such that b is a best reply to a~*.

Definition A game I' is acyclic if its best reply graph contains no directed
cycles. It is weakly acyclic if, from any initial vertex a, there exists a
directed path to some vertex a* from which there is no exiting edge (a
sink).

12Gee for example the classical textbook by Karlin and Taylor (1975).



For each action-tuple, let L(a) be the length of a shortest directed path in
the best reply graph from a to a strict Nash equilibrium, and let Lr = max L(s).

Theorem (Young, 1993) If T' is weakly acyclic, (h,k) = (0,1), and p <
m/(Lr + 2) then the process converges almost surely to a point where a
strict Nash equilibrium is played at all t.

The theorem by Young (1993) shows that in this special case only strict
Nash equilibria of the normal form game will be observed in the long run. But
note that, unlike in Young’s model, here in general T" > 1. Note that Young’s
theorem still applies to this context, as long as agents are myopic and choose
their actions via the process outlined above. One might of course ask, whether
it makes sense to think of myopic learners if 7 > 1. We do not make such a
claim. The result by Young (1993) can serve as a benchmark, though.

3.1 Absorbing States

We will start by analyzing absorbing states. In our discussion we will focus
exclusively on what we call "pure absorbing states", i.e. states in which one
action profile is played almost all of the time if T — oo. This should not be
read to imply that we will assume that 7" is large. In fact a pure absorbing state
can be one in which several different action profiles are chosen. What we require
though is that the fraction of times in which one particular action profile @ is
chosen is strictly increasing in 7" while all others are not.

Definition We say a profile @’ * = (a*,b*) is (pure) absorbing if there exists an
absorbing set X C S in which @’ * is chosen with limit probability one (as
T — ).

If a set X C S induces a pure absorbing profile we will also refer to this set
as being pure absorbing. We now proceed to characterizing such pure absorbing
profiles. The first property we establish is that all absorbing sets are individually
rational in the sense that they guarantee each player at least the (pure strategy)
minmax payoff at each t.

Lemma 1 All pure absorbing profiles are individually rational.

Proof. Appendix. =

This property is not very surprising given that agents in our model choose
k—period best responses at each period. The underlying logic is then essentially
the same as in the repeated games literature. Players will only be willing to
choose an action which is not a best-response in the one shot game, because they
believe that doing otherwise will be "punished" by the other player’s reaction to
such a history in future periods. The worst such threat is the mutual minmax
profile. Since agents look only k periods ahead, every sequence of k periods has
to satisfy this property.

The second property we would like to establish is an efficiency condition. In
fact it is not hard to see that in 2 x 2 games absorbing profiles (unless they



are Nash equilibria) have to be Pareto efficient. The intuition is again quite
simple. Players will only refrain from choosing a myopic best response if they
believe that the induced history of play will induce the opponent to choose an
action which will yield a lower payoff than the absorbing path. But this is only
possible if the non-Nash action is Pareto efficient.

Lemma 2 In any 2 X 2 game: If an action profile which is not a Nash equilib-
rium is absorbing then it must be Pareto efficient.

Proof. Appendix. =

Note that the requirement of pareto-efficiency or Nash is not particularly
strong in 2 X 2 games. It basically rules out only very unintuitive outcomes.
In games with a unique Nash equilibrium for example (matching pennies) all
outcomes will be Pareto efficient. The following example illustrates why in larger
games this assertion need not be true.

L [C [R
T [2,2]0,4 4,0 @
M| 4,0] 1,100
B [0,4]00]33

Intuitively in this game it seems that the action profile (T, L) can be sustained
in a pure absorbing state in spite of the fact that it is not pareto efficient. This
could be the case for example if players believe that switching to M (C) will
induce the opponent to respond with C' (M) while switching to B (R) will not
change the opponent’s future action choice. Of course there is a sense in which
the profile (T, L) is "locally efficient" in a sense that we will make precise below.
For this we need the following definition.

Definition (Basu and Weibull 1991) A subset of actions A" C (41 x Aj)
is called curb whenever it is closed under best replies to all distributions
weAA  Vi=1,2.

The definition of a curb set (short for "closed under rational behavior") was
introduced by Basu and Weibull (1991). Essentially a subset of strategies in
a normal form game is curb whenever the best replies to all the probability
mixtures over this set are contained in the set itself. Obviously any game is
a curb-set itself, strict Nash equilibria are (minimal) curb-sets but also the set
A" = (T, M) x (L,C) in the example above is curb.

What we will require for a Non-Nash action profile to be pure absorbing
also in larger games is roughly that it is efficient in a curb set. This is quite
intuitive. Assume that an efficient (non Nash) profile a* was played in all rounds
of an interaction 1,..7— 1. Since in round 7T players will choose myopic best
responses they will typically end up playing a Nash profile in this round. But
this means that given any history of length h beliefs are never guaranteed to
lie on the boundary of the simplex. In fact if p is small enough compared to
m, then conditional on the pure history containing only a* all beliefs putting



positive probability on either a*; or the action chosen in the last period T may
be drawn. But then if the set A’ , containing both a* and the best response
chosen in T, is curb all action choices following the pure history a* will remain
in A’. The necessary condition is then that a* is efficient in this set A’ for the
same reasons underlying Lemma 2.

Lemma 3 If an action profile a* which is not a Nash equilibrium is pure ab-
sorbing for any value of p/m, then there must exist a curb set in which
a* is pareto efficient.

Proof. Appendix. =

Lemma 3 shows that local efficiency is a necessary condition for an action
profile to be induced in a pure absorbing state. The discussion preceding the
Lemma though suggests that that same condition may not be sufficient. The
reason is that if p/m is such that beliefs placing too little probability on the
efficient action may be drawn, then choosing the efficient action almost all of
the time will not be absorbing. Since then, there is positive probability for
"bad" beliefs to be drawn repeatedly, there is positive probability that agents
will converge to a Nash equilibrium instead.This will be the case especially if p
is too small.

Consequently such efficient profiles cannot be absorbing for any p/m (even
though they are efficient in a curb-set). To derive a sufficient condition some
restrictions on p/m will be needed. But then again - given that we will impose
such restrictions on p/m we can relax our condition on curb sets. In fact to
derive necessary and sufficient conditions we will use the following definition of
"ocal efficiency".

Definition We call an action tuple a* locally efficient if
1) all unilateral deviations from a* strictly hurt at least one player and

2) a*is pareto efficient within a p(a*)—curb-set A" C (A1 x Ay), i.e. aset closed
under best replies to all beliefs placing at least probability y on a*.

The exact value of p(-) will of course depend on p,m and T as well as the
game payoffs. Note also that, since all games are curb sets any profile that is
pareto efficient in some game automatically satisfies Condition 2). The first
condition 1) ensures that efficient profiles are singletons, which is needed to
prevent beliefs from fluctuating too much.

Remember also that our definition of pure absorbing does not imply that the
profile in question is chosen at all t. In fact in the last round of each T'—period
interaction, the efficient profile will never be chosen. What is the case, though in
all such absorbing sets is that the number of times the efficient profile is chosen
is strictly increasing in T'. But then, as T' — oo it will be observed almost all
the time. This is the sense in which these profiles are "pure" absorbing.

The next Lemma now shows the sufficient condition guaranteeing that non-
Nash profiles can be induced in a pure absorbing and the additional qualifica-
tions needed.



Lemma 4 Assume (h,k) > (0,1). For any game there exists n € (0,1) s.t.
if p~! {%1 < n then any action profile which is individually rational and
locally efficient is pure absorbing.

Proof. Appendix. =

The condition on p~* [%W ensures that samples remain informative enough,
as outlined already above. Remember that non Nash profiles will never be played
all the time since at least in round 7' one agent will deviate, as in this round
agents choose myopic best responses. As indicated above whenever m is large
relative to 7' then many "rare" events (whose frequency is not increasing in T')
may be contained in the memory. If p now is too small compared to m then it is
possible that such "rare" events are overrepresented in the sample on the basis
of which agents form beliefs. This can destabilize the efficient absorbing profile.
One role of the size of memory in our model is thus to ensure that samples
remain "informative". Unlike in Jehiel (1995) memory thus can be crucial in
determining absorbing sets of the stochastic process.

Note that the result in Lemma 4 does not depend on there being a discrep-
ancy between Nash and minmax outcomes in the game, nor per se on the time
horizon being sufficiently long, nor on there being a multiplicity of Nash equi-
libria in the stage game. Both the result and the underlying intuition are thus
fundamentally different from the standard repeated game literature. Lemma 4
implies for example that paths involving cooperation in the Prisoner’s Dilemma
almost all the time are absorbing.

We have seen that profiles which are not Nash equilibria can be induced at
an absorbing state, provided they are individually rational and locally efficient.
Next we want to answer the question whether all Nash equilibria can be induced
at an absorbing state. It turns out that this is not the case and that we have
to impose an - albeit very weak - condition on the Nash equilibrium. Consider
the following condition.

Definition (C1) An action profile @* satisfies C1 if Vi and a} # a} : 3a_; €
A_; st mi(al,a ;) < ©(a@*).

Condition 1 is a relatively weak requirement. It only says that - starting
from an action profile @* - there should not exist an action that yields always
(weakly) larger payoffs then 7?(a’*) irrespective of what the opponent chooses.
Obviously strict Nash equilibria satisfy this requirement. But even Nash equi-
libria in weakly dominated strategies can satisfy this requirement. With this
observation we can state the following Proposition

Proposition 1 Assume (h,k) > (0,1). A profile is pure absorbing if and
only if it is either (i) a Nash equilibrium satisfying C1 or (i) individually
rational and locally efficient satisfying the conditions from Lemma 4.

Proof. Appendix. =
Proposition 1 shows that both Nash equilibria as well as profiles which are
not Nash equilibria can be induced in pure absorbing states provided that they

10



are efficient in a sense defined above. An example is cooperation in the Prisoner’s
dilemma. The intuition simply is that if agents experience "bad" actions by their
opponent with higher probability after a history of Nash play than after a history
of efficient (but possibly non Nash) play and form the corresponding beliefs,
then they will have incentives to refrain from choosing best responses. More
loosely speaking agents will anticipate that taking "aggressive" actions (like e.g.
defection in the Prisoner’s dilemma) will make relations turn sour, which is why
they refrain from doing so in early rounds of the repeated interaction.

One might ask whether there are other absorbing sets then the pure absorb-
ing sets characterized above or whether cycles are possible. The following result
shows that in acyclic games the process converges with probability one to one
of the pure absorbing sets.

Proposition 2 Assume the game is acyclic. Then there exists n'(h,k) € (0,1)
s.t. whenever (p/m) < n'(h,k), the process converges almost surely to a
pure absorbing set.

Proof. Appendix. =

The intuition for this convergence result is that the fact that beliefs are
formed by drawing imperfect samples from the past allows for sufficient variation
in beliefs to break possible cycles. This is only true for acyclic games, though.
In games with best response cycles, such as e.g. the matching pennies game
convergence to a pure absorbing state cannot be ensured and cycles thus remain
possible.

Proposition 2 establishes that the stochastic process converges with proba-
bility one to a pure absorbing set. A natural question that arises is whether
some of these absorbing sets are more likely to be observed in the long run than
others. The previous results suggest that this might be the case.

As is illustrated e.g. in Lemma 5, the freedom to choose beliefs "off equi-
librium" freely may be crucial for some states being absorbing. For example in
order to sustain defection in the Prisoner’s Dilemma the "off equilibrium belief"
that the partner in the T-period interaction will cooperate after the history
("cooperate, defect") should not be too high, because else players can induce
joint cooperation by switching once. Depending on the game parameters and
the degree of forward looking this may maximize V(u®(H), (a7)). This free-
dom to select off-equilibrium beliefs freely thus may question the robustness
of the absorbing states. In the next subsection we will perturb the process a
little and study which of the absorbing states survive under these conditions.
More precisely we will check which of the absorbing states are also stochastically
stable.

11



3.2 Stochastically Stable States in 2 x 2 Games

For our analysis of stochastically stable states we will focus for simplicity on
2 x 2 games. Consider the following payoff matrix

z1 zZ9
z1 | LA 0,6 | 3)
zo | 0,0 | 9,0

If & > A > § > 0 this matrix represents a Prisoner’s Dilemma. If A > 6 and
0 > 0 it represents a Coordination game. (If in addition 6§ = 0, this is a pure
Coordination game and if A > max{6,0} the game is one of Common Interest).
We will focus on the different cases in turn. We adopt the notational convention
that @ denotes any action profile as before and ?j = (2j,25),7 = 1,2 is the
profile where action z; was chosen by both agents.

3.2.1 Prisoner’s Dilemma

Before we start our analysis of stochastically stable states, let us first describe
the entire set of absorbing states for this game. It is quite obvious that states
involving defection (z3) in all periods can be absorbing (since (22, z2) is a strict
NE this follows from Proposition 1). The more interesting question, though,
is under which conditions states involving cooperation in some periods can be
absorbing and how such states will look like. Note that, since cooperation is
pareto efficient we know from Lemma 4 that such conditions will exist. Our
first observation is the following.

Claim 1 The paths of play induced by absorbing sets involving cooperation sat-
isfy non-increasing cooperation (NIC), i.e. they are such that - within any
T—period interaction - if a;(t) = z1 then also a;(t — 1) = 21.

Proof. Appendix. =

The Claim states that the probability to observe cooperation within a given
T—period game is non-increasing in ¢. This is intuitive, since cooperation (being
efficient but dominated in the one shot game) can only be sustained by the belief
of agents that defection by altering the history will lead to a higher probability
of defection by his opponent in the future. For any given degree of forward-
looking k the effect of such a change on total payoffs will be smaller, the closer
agents are to the end of their interaction T

Let us now characterize the absorbing sets more directly. The set

Xo={s|d e M(H*)UH®* = @ = Z5} (4)

is always absorbing. In addition sets

sy HEHEMEN | 1oy
Y c if ZQ ¢H m 2 9
PENSS HY = o then @ € M(HY) = W = F (5)

and if zz € H® then @ € M(H®) =
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are absorbing whenever p~! [] < 222 (Condition 2 (C2)).!3 This is a sufficient
condition that guarantees that X7 is non-empty for k£ > 1, which is also necessary
if kK =2. The condition implies that samples should not be too small (relative
to the length of the memory). If this were the case, then there would always
be positive probability to draw a very arbitrary sample that does not reflect
the path of play in any given T—period interaction. The size of memory does
thus matter for our results (unlike in Jehiel, 1995), by ensuring that samples
are informative.

The set X5 in (5) is directly characterized through the memory of agents as
follows. Conditional on the empty history memory contains only profiles 72’1,
after a history containing zs the memory contains only z5 and conditional on
a history containing only z; the memory contains at least % elements Zz7.
(Note that as T — 00), the memory contains infinitely more elements z; than
Z5). Together with the assumption of best responses and C2 the property of
non-increasing cooperation is implied.

Inspection of the first row in (5) may suggest that higher values of k lead
to "less" cooperation in absorbing states (once k > 1). This is not quite true,
though. The reason is that with higher k& the payoff conditions that make a
particular set X; absorbing become weaker. Note also that the share of zj
entries in M (H?) is strictly increasing with 7. Thus as T'— oo induced paths
will be almost entirely cooperative. (Note that joint cooperation is efficient and
thus pure absorbing under the conditions of Proposition 1).

Assume now that Condition 2 holds s.t. both sets X; and X, are absorbing.
Then we can state the following proposition.

Proposition 3 If (h,k) >> (0,1), C2 holds and P—;l € (55, %], then
all stochastically stable states are contained in X,. FElse stochastically
stable states can be contained in either X or Xs.

Proof. Appendix. =

Two conditions are needed for this result. Condition C2 ensures that samples
are "informative" enough s.t. agents beliefs conditional on histories containing
only z place high enough probability on the opponent choosing cooperation
again. C2 is necessary condition. The condition p—;l > ﬁ on the other is
sufficient to prevent too "easy" transitions from any state in X; to a state in Xy
by ensuring that few trembles to defection are never enough to infect the whole
population. %1 < ﬁ%ﬁg) on the other hand is sufficient to enable relatively
more "easy" transitions from any state characterized by defection to a state
characterized by cooperation. A relatively weaker bound on p, thus suffices to
enable transitions to cooperative states rather than vice versa. The intuitive
reason is that, since cooperation is efficient, the range of beliefs sustaining co-
operative outcomes is larger than that sustaining outcomes characterized by full
defection.

Note also that the conditions are not tight bounds, since we require in the

proof that the maximal number of trembles needed for transitions from any

13For a proof of why this is the bound see the Appendix.

13



state in X to a state in X5 requires less transition than the minimal number of
transitions needed from any state in X5 to X;. Since this kind of computation
includes all the states, even those through which no minimal mutation passes,
the bounds are generally not tight (i.e. the interval generally even larger).

3.2.2 Coordination Game

Since in this 2 x 2 game the only pareto efficient point is a Nash equilibrium
and since both Nash equilibria satisfy C1, the pure absorbing sets are simply
given by

X, ={s|d e M(H*)UH* =@ =721}

and
Xo={s|d e M(H*)UH®* = @ = 73}

Note that no other set can be absorbing, since if z; is a best response to 1(b|z;)
if agents maximize over a horizon corresponding to their degree of forward-
looking k, it is so also for a horizon of any length 1,..k — 1. (Holding fixed the
agents beliefs, the longer the horizon over which agents maximize the stronger
are the incentives to forego best responding in the current period in order to
achieve a better outcome in the future). Note also that X; and X5 are in general
not singleton sets. The reason is that M (H?®) is not uniquely determined for
histories which are "off the equilibrium path", implying that there may be a
different support for off-equilibrium beliefs.

To make the problem more interesting, let us assume that additionally 8+§ >
A > ¢, implying that (21, 21) is the efficient Nash equilibrium in the one-shot
game and (22, z2) the risk-dominant equilibrium. The question we then want to
answer is: how does our adaptive learning process select among risk-dominance
and efficiency if agents are forward-looking ? Again Young (1993) has analyzed
this question for 2 x 2 games in the case where (h,k) = (0,1) and has found
that risk-dominant equilibria are the only ones that are stochastically stable in
this setting. In the presence of forward looking agents this is in general not the
case as the following result shows.

Proposition 4 There exists p(6, A, ) s.t. whenever p > p(-) all stochastically
stable states are contained in X;. Else stochastically stable states can be
contained in either X, or Xs.

Proof. Appendix. =

The exact value of p(6, A, §) is derived (implicitly) in the proof. The intuition
is again quite simple. In the myopic case a unilateral tremble starting from the
risk dominant equilibrium is not as detrimental (yielding a payoff of § > 0)
as a tremble starting from the efficient equilibrium (yielding a payoff of zero).
Heuristically speaking then less trembles will typically be needed to reach the
risk-dominant equilibrium than to leave it. This continues to be true in the
forward looking case only if it does not lead to a change in the opponent’s
behavior. If it is the case, though, that the opponent is likely to react to such a
tremble by changing his action, then trembles starting from the efficient action
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can actually be less detrimental than those starting from the risk dominant
action.

Note that the threshold value p(0, A,¢) does neither depend on h nor k.
The reason is that the Proposition describes a sufficient condition. Even in the
case least favorable to the efficient convention (the case (h,k) = (1,2)), the
threshold value derived in the Appendix will suffice to single out efficient states
as stochastically stable. The more forward looking agents are the weaker the
conditions on p will be that suffice to get this result.

3.3 Application to Experimental Results

In this subsection we want to illustrate how the results from the previous subsec-
tion (in particular 3.2.1) can provide an alternative explanation for experimental
data from finitely repeated Prisoner’s dilemma games. An experiment that is
relatively well suited to test our theory was conducted by Andreoni and Miller
(1993).

The treatment that is most closely related to our theoretical set-up is their
"Partner treatment". In this treatment subjects were randomly paired to play a
10-period repeated prisoner’s dilemma with their partner (T' = 10). They were
then randomly rematched with another partner for another 10-period game.
This continued for a total of 20 10-period games, i.e. for a total of 200 rounds
of the prisoner’s dilemma. Their main results can be summarized as follows.
There is significantly more cooperation in the first 5 rounds of each game than
in the last five rounds. In the last two 10 period interactions the percentage
of cooperation ranges from 60% to 85% until round 6 roughly. Afterwards
cooperation breaks down (to 10%).

The second treatment we are interested in is the treatment they call "Com-
puter50". This treatment coincides with "Partner", except that subjects had a
50% chance of meeting a computer partner in any 10-period game programed
to play the "Tit-for-Tat" strategy. In the language of our model a "Tit-for-Tat"
player is characterized by a level of sophistication h = 1 and always mimics
the action of the opponent in the previous round, i.e. chooses z; at ¢t whenever
a_;(t —1) = z;. In this treatment there is still significantly more cooperation
in the first 5 rounds of each game than in the last five rounds. The percentage
of cooperation now ranges between 60% and 70% until round 8 roughly. After-
wards cooperation breaks down (to 10%). In this treatment, thus, cooperation
is sustained two periods longer on average.

The payoffs in the Prisoner’s Dilemma in their experiment were given by

21 22
z1 | 7,7 0,12 | (6)
Zs | 12,0 | 4,4

Can we explain their findings with our model ? First note that our sufficient
condition to rule out defection as a stochastically stable state yields p € (2,9]

and p~' [#] < 2. This is satisfied e.g. if p = 5 and m = 10. But since we
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do not know p and m, in principle, both sets X; and X5 as defined in (4) -
(5) might be stochastically stable. Observe also that the experimental evidence
(not only in their experiment) largely satisfies the property of non-increasing
cooperation rates over time, that we stated in Claim 1 above. We can say
much more, though. Focus on the "Partner"-treatment first. If we assume for
simplicity that h = 1 for all agents, we can state the following result.!*

Claim 2 If (h,k) = (1,5) the path of play were agents cooperate in the first six
rounds of all T—period interactions and defect afterwards is induced in a
stochastically stable state.

Proof. Appendix. =

If m is not too large (in fact m < 13), this path of play induces beliefs
w(z1]|(z1,21)) > 5/6 and p(z1|(22,22)) = 0. Given these beliefs off-equilibrium
beliefs have to satisfy p(z1](22,21)) € [0.42,0.49] in order for such a path to
be part of a stable state.!” Obviously we do not know what beliefs of the
participants in the experiment were. We can look, though at actual play in the
first 100 rounds of the experiment. We find that for the partner-treatment the
probability to observe cooperation (z1) after a round of mutual cooperation is
roughly 0.83 and after a round of mutual defection is roughly 0.1. Given this
we would need p(z1](22,21)) € [0.32,0.41] for this to be a stable state. Again
we can’t observe beliefs but average play shows roughly 30% cooperation after a
history of oneself defecting and the opponent cooperating. This is at the lower
bound of permissible beliefs. Thus if we think that the actual path of play
is roughly consistent with the beliefs of the agents, our learning process can
provide an explanation for their results.

What happens now if agents know that there is 50% chance of meeting a
tit-for-tat player in each given T'—period interaction ? Holding fixed the degree
of forward looking for all agents, it is intuitive to expect that agents will have
stronger incentives to cooperate in this case. The following Claim confirms this
intuition.

Claim 3 If (h,k) = (1,5) and if there is a 50% chance of meeting a tit-for tat
(computer) player the path of play were agents cooperate in the first eight
rounds of all T—period interactions and defect afterwards is induced in a
stochastically stable state.

Proof. Appendix. =

Note that (h,k) = (1,5) here obviously is a condition on the human play-
ers only, since the computer players are preprogrammed to tit-for-tat as ex-
plained above. Obviously we would expect more cooperation in the presence

140f course it is also possible to induce this path with higher values of h, since more
sophistication always allows also for behavior as if h = 1.

151t has to be optimal for a player to cooperate in rounds 2,...6, and to defect in rounds
7,..10 given the induced beliefs. From this set of inequalities the feasible interval can be
calculated. Note also that this interval is much larger if we relax the condition that all agents
should defect in round 7. See also the Appendix.
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of such players and this is indeed what we find. For the induced beliefs the
following holds. If m < 1, on the equilibrium path p(z1](21,21)) > 8/9 and
w(z1|(22, 22)) = 0 have to be satisfied. Given this, off-equilibrium beliefs would
have to satisfy u(z1|(z2,21)) > 0.12 in order for such a path to be part of a
stable state. In the data we find indeed that after a history of joint cooperation
the probability that one’s opponent will cooperate again is roughly 95%. After
a history of joint defection this probability is roughly 11% and after a history
(22, z1) this probability is roughly 13%. (Note that this substantially lower value
compared to the first treatment is due to the presence of the tit-for-tat players
who always defect after observing a defection by the opponent). If the agent’s
beliefs are only roughly consistent with their experience, then again our learning
process again can explain their results.

4 Extensions

4.1 Heterogenous Agents

A natural question that arises is whether agents with a higher degree of forward-
looking (k) will always be able to exploit others with a lower degree of forward
looking. We will see that this is not always the case. To see this consider the
following example. Assume that there are two types. k; is a myopic type with
(h,k) = (1,1) and ks is forward-looking characterized by (h, k) = (1,2). Denote
the share of k; agents by o. Irrespective of their type, agents are randomly
matched to play a 4—period repeated Prisoner’s Dilemma. (Since the game is
symmetric we simply assume that agents are matched randomly within C; UC5.)
The stage game payoffs are given by (3). We want to consider two different
scenarios. In the first agents know that the population is heterogenous and are
able to observe the type of their match at the end of an interaction to store this
information in their memory and thus to form conditional beliefs. In the second
scenario agents are not able to form conditional beliefs. The reason could be
either that they (wrongly) assume that the population is homogenous or that
they are simply never able to observe (or infer) the type of their opponent.

Conditional Beliefs

In this scenario all agents are aware that the population is composed of
two different types and can react to this knowledge. In particular forward-
looking types can update their priors on the type they are facing (and thus
their conditional beliefs about behavior in future rounds) conditional on the
behavior they observe in earlier rounds.

Claim 4 If 0 < %, then forward looking agents (k3) obtain higher av-

32—0
myopic agents (k1) obtain higher average payoffs in all absorbing states

and if o > :”‘?;\%036 all agents obtain the same average payoff in all states.

; ; 3A\—0-25 3A—0-35
erage payoffs in all absorbing states. If o € [3)\7075, then
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Proof. Appendix. =

The condition o < % is simply necessary for absorbing states with
cooperation to exist at all. Given that they do exist, forward looking agents
do only make higher profits in expectation if ¢ is not too high. Else myopic
agents do make higher payoffs in these states. The reason is that when forward-
looking agents decide on their action choice they expect to be able to exploit a
cooperative opponent in the last round of their horizon (t+k—1). But this is not
true in an absorbing state, since other forward looking types do reason in the
same way. Consequently they overestimate the relative benefit of cooperation
and choose cooperation in a range of o where they should be choosing defection.

These results have natural implications in terms of evolution. If we assume
that cooperative outcomes have positive probability to be observed, one could
argue that two outcomes could be identified as stable given standard Replicator
Dynamics (possibly with some drift). The state where all agents are forward
looking (0 = 0) would be an attractor of such a system, since for o small enough
forward looking agents always make higher profits. The other state that would
be stable is the state where o = W, i.e. both myopic and forward looking
agents are present.!6

Finally note that if matching were assortative, i.e. if forward looking types
were matched with increased probability with other forward-looking types and
vive versa, forward-looking types will tend to have higher payoffs on average.
Whether they would always have higher payoffs will obviously depend on the
degree to which matching is assortative.'”

Unconditional Beliefs

Let us focus next on the case where agents are not able to infer the type
of their opponents (or simply assume that the population is homogenous) and
thus form beliefs that are not conditional on the type of their opponent. In
this case the only absorbing state involves full defection, as the following Claim
illustrates.

Claim 5 If beliefs are unconditional all absorbing states involve full defection
and all agents obtain the same payoff in expectation.

Proof. Appendix. m

The intuition is simply that if forward-looking types are repeatedly matched
with myopic types their beliefs will decrease below the cooperation threshold.
But given this, there is positive probability that even a small number of myopic
types can induce the beliefs of all forward-looking types to decrease. Somewhat
ironically forward-looking types might still have high beliefs about the cooper-
ation probability following a history of joint cooperation (since myopic types
never cooperate). The problem is that their beliefs about initial cooperation
(after the empty history) and about cooperation after unilateral cooperation

16 This point would be Lyapunov stable in a model without drift and asymptotically stable
in a model with drift (where drift pushes the dynamics towards the interior of the state space).
17See e.g. Myerson, Pollock and Swinkels (1991) or Mengel (2007,2008).
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will be too low. The lack of strategic reasoning is in this case responsible for
them not being able to restore cooperative outcomes.

4.2 Node-dependent Beliefs

Note that in our setting agents are generally not aware of (or do not take into
account) which round (decision node) they are currently in.'® They only care
about which history precedes the current node. Conditioning on the decision
node in addition certainly involves much more computational ressources. There
is also a sense in which node dependent beliefs might contradict the very notion
of limited forward looking behavior, since in this case agents memory would
include events categorized according to all nodes and history. It is a little more
difficult to argue then that agents do not foresee future rounds. Still we want to
investigate whether (and which) results would change, if agents formed beliefs
p(a|H, ) that depend on the current round of play 7 = 1,...T. The following
Proposition summarizes the main differences.

Proposition 5 If agents have node dependent beliefs then the size of memory
m will not affect absorbing states. In 2 x 2 games outcomes will always
induce Nash equilibria, but in larger games locally efficient outcomes can
also be sustained.

Proof. Appendix. =

Remember that the reason why memory affects the set of absorbing states in
the general case, was that too large values of m/p tend to make samples unin-
formative, since behavior that is optimal only for some rounds 7',T — 1, .. might
be dramatically overrepresented in any given sample with positive probability.
This can imply that convergence to some efficient states is not possible. With
node-dependent beliefs this is obviously not the case anymore, since if memory
and thus beliefs are conditioned on the decision nodes then samples will always
be informative of the behavior at that node, unless behavior is random sth we
excluded.

Still though, the Proposition shows that this need not be unambigously
good for efficient outcomes to arise. The reason simply being that if beliefs
are conditioned on the decision node agents at T'— 1 will eventually learn that
whatever they choose, their opponent will best respond in 7. But then for 2 x 2
games the typical backward induction logic kicks in and we will end up with
Nash behavior at each node. In larger games, though this need not be true, since
agents can still believe that deviating from the efficient action will induce their
opponent to choose a third (and possibly worse) action with high probability.
In these games thus individually rational and locally efficient outcomes can still
be sustained even if they are not Nash. Note again that this is true irrespective
of whether there is a discrepancy between the Nash and the minmax payoff and

18 An exception is the first decision node in each T—period interaction which is always
preceded by the empty history.
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irrespective of whether the game in question has a unique Nash equilibrium or
not.

Node - indepence of beliefs is thus crucial for some of the results. It certainly
seems to be the right assumption in cases where a) the cognitive cost of having
time-dependent memories and beliefs is too high or b) where the time horizon
T (while finite) is large. If T is small, though, node-dependence might also
constitute a reasonable model.

4.3 Anticipating Belief Changes

One might wonder what would happen if agents anticipated the effect their
action choice at t has on their opponent’s beliefs in future rounds. Of course
adaptive agents will not take such effects into account explicitly, but what if
they were somewhat more strategic 7 Note though, that since we assume that
agents care only about k < T periods, but typically have a relatively large
memory these effects will be negligible. They could become important, though,
if agents had a larger horizon or even unlimited foresight (i.e. k& — o0). To
analyze these effects is beyond the scope of this paper. See Blume (2004) for a
model of unlimited forward looking players focusing on these effects.

5 Conclusions

In this paper we have studied agents interacting in finitely repeated games.
Agents are adaptive learners, but also forward-looking to some degree. We have
shown that in a pure absorbing set either Nash equilibria satisfying a very weak
conditions or individually rational and locally efficient profiles can be induced.
In 2 x 2 there are parameter conditions under which only the efficient outcomes
are induced in stochastically stable states. We have also seen that these results
can provide explanations for common findings in experiments.

Further research could extend on Section 4.1 and study under which condi-
tions forward looking behavior emerges as a result of evolutionary selection. It
seems also worthwhile to test forward-looking behavior experimentally, since it
seems to provide a very intuitive foundation of many other experimental results.
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A Appendix: Proofs

Proof of Lemma 1
Proof. Consider an absorbing action profile ((a,b)%);—t—m+1,..+. where the
same actions are chosen at each time t by both players. Focus wlg on player
1. Either ¢* € BR(b*). But then ¢* must guarantee the maxmin payoff 7
to player 1. If a* ¢ BR(b*) A w(a*,b*) < 7T then this must be because player
1 believes that a deviation (to say a’) yields a higher payoff in the future,
i.e. for some 7 € [t + 1,¢ + min{k, h}] within the same T—period interaction:
) ()....(a’,b%), )7 ((BR(D),b) < 7. But then again at 7 the same argument
holds, i.e. there must be a 7 € [r + 1,¢ + min{k, h}] for which the above in-
equality holds. Applying this argument recursively shows that she can guarantee
herself the maxmin payoff at 7 € [t + 1,7 + k] and thus at ¢. =

Proof of Lemma 2
Proof. As the profile (a*,b*) is not a Nash equilibrium, there must exist at
least one player i s.t. (wlg) a* ¢ BR(b*) at some t. This can only be if player i
believes that deviating will reduce her payoff in some periods t+1,..,t+k. But
if (a*,b*) is not pareto efficient then either (a’,b*) or (a’,b") must yield a higher
payoff to both players for some a’, b’ # a*,b*.'? Then the previous statement
cannot be true. m

Proof of Lemma 3
Proof. We start with condition 2) of local efficiency. First note that as a*
is not a Nash equilibrium it cannot be a singleton curb set (and thus Lemma

197f this is not true for player 7 it must be true for player —i.
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3 states that it must be pareto efficient in a set of at least cardinality 4.20 If
a* is pareto efficient in a set of cardinality > 4 then it must be so also in a
set of cardinality 4. But if it is not pareto efficient in a set of cardinality 4 it
cannot be induced by Lemma 2. Now we will show that this set, denote by
A’ has to be p(a*)—curb. If the set A" = A} x A} is not curb = Ju; € AA’
where p;(a*) > p(a*) s.t. BR_;(1}) ¢ AA’. Furthermore as a* is not a Nash
equilibrium, some player i must have a better response a”, which will be chosen
in a T-period interaction for some 7 € [T' — 7,T] after a history (a*,...a*). But
then there is strictly positive probability that at some point ¢ player ¢ will hold
a belief p; € AA" where p(a*) > p(a*) s.t. BR_;(u;) ¢ AA'. =
Proof of Lemma 4 B
Proof. Denote by @* = (a*,b*) an individually rational and locally effi-
cient action profile. We want beliefs to satisfy a) u(b, (@*,..., @*)) is s.t.
BR!'[u(b, (@*,...,a*))] = a*, ¥t < T — 1 and b) u(b,(a*,...,a’)) is such
that BR! [u(b, (@*,...,a"))] = a”,Va',a"” € A’ where A’ contains a* and is
p(a*)—curb. Now consider an absorbing state where all T'—period interactions
are identical and look as follows, (@ *,..., @*,@”). Then pu(b*, (d*,...,a*)) >
—_——
T—1 Rounds

1—p ' [2] and p(b”|(@*, ..., @*)) < p~' [2] since memory of size m permits
to draw at most [2¢| times @”in a sample of size p. Also p(V'|[(@*, ..., a™*))

yeeey @
0,Vb' # b*,b". On the other hand default beliefs can be chosen s.t. u(b”|(@*,...,a’))
> 0= b" € A, holds. Finally assuming that p=! [2*] < a for o small enough
s.t. BR [1 —pt [%” =a*,Vt <T — 1 yields the result. m
Proof of Proposition 1

Proof. Part (ii) follows directly from Lemma 1-3. For part (i) the proof is
as follows. Consider an state where the NE @* is played at each t. We
will first show that if C1 is satisfied such a state is absorbing. In order for

—7k —%

such a state to be absorbing beliefs have to satisfy p(a*|(@™, ..., @*)) =1 and
t+k—1 , .
p®|(a*, ..., (a),a,)) is st > S, w0 H(T — 1)7'(a,b) — kn(@*) < 0.
T=t

But beliefs u(b|(@’*, ..., (a},a*;)) that guarantee the previous inequality exist
whenever C1 is satisfied. Next we prove necessity. Assume C1 is not satisfied,
in particular assume that there exists a/ s.t. 7*(a},a_;) > 7 (d*),Ya_;, € A_,.
But then Bu(b|(@™*, ..., (a}, a* ;) for which player i would strictly prefer to choose
af rather than a; . m

Proof of Proposition 2
Proof. We will show that there exists a number K € N and a probability p
s.t. from any s € S the probability is at least p to converge within K periods
to a pure absorbing set. K and p are time independent and state independent.
Hence the probability of not reaching a pure absorbing set after at least rK
periods is at most (1 — p)” which tends to zero as r — oo.

(i) Let s* = (M(t), H(t)) be the state in period t > m. Denote a* the profile
chosen at ¢. If H(t 4+ 1) = H(t) = (a*,...a™) then we can go to step (ii) of the
proof (setting t = 7). Assume thus H (¢t + 1) # H(t). Then, since the set of all

20Note that any set of cardinality 2 or 3 containing (a*,b*) cannot be curb.
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possible histories H is finite, 37’ > ¢ s.t. H(7') = H(r) for some 7 € [t, 7" — 1].
But then there is positive probability that H(7'+1) = H(7+1) etc..., i.e. there
is positive probability to return to history H(7) any finite number of times. At
history H(7), there is positive probability, that each agent samples the last p
plays in M (H(t)). Denote this sample by £. There is also positive probability
that the next p times that the history is H(t) the agent samples £ again and
chooses the same best response.

(ii) Order the histories according to 7 as follows: H(7), H(t+1),. . H(7'—1).
Now assume there exists H(7") € [H(7), H(7" — 1)] where H(7") =: (a*,..a*)
is part of an absorbing set. Then there is positive probability to sample only
the last p rounds for the next m — p periods thereby creating a homogenous
memory M(H(7")) = (a*,..a*). Since af € BR(a*;) an absorbing set has been
reached.

(iii) Assume now instead that there does not exist H(7") € [H(7), H(7' —1)]
with this property. Now for any 7 € [r, 7/ — 1] there is positive probability that
each agent samples the last p periods where the history was H(7"), i.e. takes
a homogenous sample (a, ...a). The best response to (a,...a) for each agent lies
on a directed path leading to an absorbing set since the game is acyclic. Again
now 37" > 1" s.t. H(7"") = H(r") for some 7 € [”, 7" — 1], since the set of
all histories is finite. But then again there is positive probability that all agents
take the same sample and choose the same best response to this sample in the
next p periods VH (7%%)...H (7" —1). If there is a history in H(7%)...H (7" — 1)
that is part of an absorbing set, then jump to (ii). Else repeat step (iii). Note
next that since the game is acyclic a directed path from any (a, ...a) to a history
(a*,..a*) which is part of a pure absorbing set exists. Using the algorithm
above, there is thus a positive probability to reach any history on that path and
eventually a history which is part of an absorbing set. In order for that to be
possible £ needs to be small enough, since some agents have to be able to look
back far enough.

To sum up, we have shown that from any state s there is positive probability
ps to converge to a pure absorbing set. By setting p = mingcg ps > 0 it follows
that from any initial state the process converges with at least probability p to
an absorbing set in K periods. m

Proof of Absorbing Sets Prisoner’s Dilemma:

Proof. That the set Xo is absorbing follows directly from Lemma 5. The
proof that X, is absorbing follows from Lemma 4. It remains to show that the
upper bound on p~! [%1 is given by %. First note that the most restrictive
conditions are encountered in the case k = 2 and h = 1. In this case the
condition is that both players have to find it advantageous to choose z1 (z1)
after a history of a;.

d
V(u(d1),21) > V(u(@h), 22) & plz]dr) > Y
where we have set 11(21|(22,21)) = 0. But then since M* contains at most [ 2|

choices of zo and p elements from M?® are randomly drawn to form this belief.

The inequality p~* (%W <1- % = )‘Tf‘s follows. Also note that there can be no
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other absorbing states not contained in either X; or X5. Since starting from any
state outside X7 involving some cooperation there is always positive probability
to draw beliefs which will lead to convergence to Xo. m

Proof of Claim 1
Proof. Assume that at round ¢ (within a given T'—period interaction) beliefs
of agent i are such that she finds it optimal to choose cooperation (z1). If
[t]; —t > k (where [t], denotes the smallest multiple of 7" larger than t), then
the maximization problem at ¢ — 1 is identical to that at ¢. Now assume that
beliefs at ¢ — 1 were such that the agent would find 25 optimal. But then (since
we are in an absorbing state) it cannot be that beliefs change in such a way that
cooperation is optimal at t. What if [¢], —t < k 7 Then at ¢ the agent will have
strictly less "foresight" than at ¢—1. But then defection (z2) will seem relatively
better to cooperation (z3) compared to a situation where the agent expects k
more periods. The reason is that choosing defection must always reduced the
probability with which the opponent is expected to cooperate in the future. (If
this were not the case both agents would defect at all ¢). But given this again
cooperation must follow at t — 1. =

s-trees

For most of the following proofs we will rely on the graph-theoretic tech-
niques developed by Freidlin and Wentzell (1984).2! They can be summarized
as follows. For any state s an s—tree is a directed network on the set of ab-
sorbing states (2, whose root is s and such that there is a unique directed path
joining any other s’ € Q to s. For each arrow s’ — s” in any given s—tree the
“cost” of the arrow is defined as the minimum number of simultaneous trembles
necessary to reach s” from s’. The cost of the tree is obtained by adding up the
costs of all its arrows and the stochastic potential of a state s is defined as the
minimum cost across all s—trees.

Proof of Proposition 3
Proof. (i) Consider first transitions from X5 — X;. Denote by k(1) the mini-
mal number of mistakes necessary in order for one pair of players in a T-period
interaction to start choosing cooperation at each ¢ < T'. Note that kc(1) > 1 will
hold for any s € X5, since otherwise s couldn’t have been absorbing in the first
place. Now assume that at ¢ player 1 trembles s.t. the action profile is (21, 22)
and that then at t+1 player 2 trembles s.t. a(t+1) = (22, 21). Consider choices
at t + 2. Now player 1 will choose z; whenever p(z1|(21, 22)) > m D fy.
But then since beliefs are formed by drawing randomly p out of the last m
observations, this implies that we need % > [iy in order to have kg (1) = 2.

Where does ji; = m come from ? First note that the least favorable
case for such a transition is the case with (h,k) = (1,2). Then we observe that

Vi, (21,22)) = p(z1l(z1,22)) [N+ (u(21]20)0 + (1 — p(z1]21))d)] (7)
+(1 = p(21(21, 22)) [(21(21, 22)0 + (1 — p(z1](21, 22))d] and
Vi, (22,22)) = pl21l(21,22)) [0+ p(21](22,21))0 + (1 — p(z1](z2, 21)))d]

+(1 = p(21(21,22) [0 + p(21]22)0 + (1 — p(21]22))d] -
21See also Young (1993, 1998).
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We then want to find conditions on p(z1|(21, 22)) such that V(u(-), (#1,22)) >
V (1u(+), (22, 22)) for all candidate states s € Xo. Clearly u(z1]2z2) = 0 is deter-
mined "on the equilibrium path". By setting j(z1](22,21)) = 0 and pu(z1|z1) to
either {0, 1} we obtain the threshold above. (We can set pi(z1](z2,21)) = 0 since
the state with the corresponding memory can be reached from any other state
in X5 by a sequence of one-trembles which is not true for the reverse).

Finally note that after two agents have been infected (through k¢ = 2
trembles) the whole population can be infected. The reason is that whenever
the infected agents are rematched they will start to cooperate after the empty
history since their beliefs u(z1|(z2,21)) are sufficiently high and since & > 1.
The history (22, z1) will be repeated until there are sufficient draws for player 1
to optimally choose z;. This is always possible if T" is "large enough" and since
%1 > 2

(ii) Let us then turn to the reverse transitions X; — X5. Again we are
interested first in the minimal number of mistakes kp(;) needed for a pair of
players to start choosing defection at each t. First assume that two players
simultaneously make a mistake and choose (29, 22) at some time ¢t. Then it
can be shown by comparing the analogous expressions to (7) that a necessary
condition for either player to choose z2 (22) also at t+1 is that 25 > 6. Secondly
assume that player 1 makes two mistakes and chooses z5 at t and t+ 1. Now we
want to identify a sufficient condition for a transition not to be possible, so we
consider the most favorable case for such a transition which is (h, k) = (1, 2).

Next we consider both player’s decisions at ¢t + 2. We will show that a
necessary condition for player 2 to choose zy at t+2 is that p(z1 (22, 21)) > 525.
To see this compare

Vip, (21,22)) = plz1](z2,21)) [N+ pu(z1, 20)0 + (1 — p(z1, 21))d]
+(1 = p(z1](22, 21))) (21| (22, 21))8 + (1 — p(21] (22, 21)))d] and
V(s (22,22)) = plz1](z2,21)) [0 + p(21](21, 22))0 + (1 — p(21(21, 22)))d]
|

+(1 = plz1 (22, 21)) [z, 22)0 + (1 = (21, 22))9] -

Then it can be seen that a necesary condition for a transition to be possible
from any state in X; is that u(21|(22, 21)) > 955 Since p rounds are drawn from

the memory to form this belief we need 2= > . By analyzing the analogous
expressions for player 1 it can be shown that a trans1t10n cannot be induced by
player 1 repatedly choosing zo starting at ¢ + 2.

(iii) Combining the conditions found in (i) ad (ii) we first note that 2= >

p
%5 = 20 < 0. Together with 1 5 < m a sufficient condition thus is p—;l >
A+260+5

m} the condltlon in Proposition 3.

(iv) To finish the proof take any state s € X5 and consider a minimal s—tree.
Assume first that there exists a state s’ € X7 s.t. the transition from s’ to s
requiring the least amount of trembles is direct (i.e. does not pass through
another absorbing state). Remember now that s’ — s requires more trembles
than s — s’ under our conditions. But then we can simply redirect the arrow
s’ — s thereby creating an s’ tree with smaller stochastic potential. Finally if

max{ 7%
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the shortest transition s’ — s is indirect (passing through other states in X7)
do the following do the following. Take the arrow s” — s leading to s and
reverse it. Since s” — s has a cost of at least two under our conditions we
have created an s”—tree with potential ¥(s”) < 9 (s). If strict inequality holds
the proof is complete. Assume thus ¥ (s”) = 9(s). Then consider the arrow
s — s" and reverse it etc... Now at some point there must exist a state s*
on the path s’ — s” s.t. reversing this link saves one "mutation". Else the
s—tree could not be minimal. Reversing this link will yield an s tree with
(s®) < B(s") < V(s). m
Proof of Proposition 4

Proof. We will show that there exists p(6,,d) s.t. whenever p > p(:) a
transition from any state in X; to some state in X5 involves more simultaneous
mistakes than a transition from any state in X5 to a state in X;. (i) Consider
first transitions from X; to Xs. Assume that in a given T'—period interaction
one player makes a mistake and chooses z; in the first round. For some states
in Xy (e.g. states where p(z1|(22,21) = 0) this will be sufficient to induce
a pair of agents to end up both choosing zs in this interaction with positive
probability.2? To induce a transition then one agent from such a pair has to
observe z9 often enough after the empty history in order to start choosing z,
in each new interaction. Comparing expected payoffs yields u(z|2) < Q)fsﬁ in
the case where (h, k) = (1,2). For higher (h, k) the conditions will be weaker.
Since we are interested in a sufficient condition we focus on (h, k) = (1,2). But
then since yu(21|@) > £ where £y is the number of mutations, we have that

at least (2040 8)
=~ _ | pEA+O —

mutations are necessary to induce such a transition. (ii) On the other hand
for the reverse transition from any state in X5 to a state in X; the following
number of mistakes i are sufficient. First it can be calculated that the number
of mutations to ensure a pair of agents to converge to choosing z; from any
state in X is bound above by k' = [W\%‘f&%)—‘ .(Again this can be found by
comparing expected payoffs after assuming that one player of the pair makes s
mistakes in a row). If this is true still one of the two players has to experience
enough trembles after the the empty history in order to start choosing z; in
each new interaction. If this is true, no additional trembles are needed, since
for this player favorable beliefs have positive probability to be drawn, since she
has already experienced convergence to z; once. How many additional trembles
are needed can again be calculated comparing expected payoffs. Beliefs have to

. 26—p 1A . . .
satisfy p(z1]|9) > (27p*1)/\+57p071<;’p*1(075) and since pu(z1|@) < £ a sufficient

22These states may seem inherently unstable, but remember that we only want to find a
sufficient condition.
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condition is

—~ 20p — A

k1(p) = —&-[ h\ 255_0—‘.
@-pN+8—0- | B pi0-9)| PAF30-0)

Now, if K1 < Re, then all stochastically stable states are contained in X;. Note
that Ok2/0p > 0R1/0p,Vp and K2(0) = 0. Hence a fixed point p(-) does exist.
This completes the proof. m
Proof of Claim 2:
Proof. Assume that u(z1]|(z1,21)) = 5/6, p(z1|9) = 1 and p(z1](22,22)) = 0
and denote off-equilibrium beliefs 1i(z1](22,21)) =: . By Claim 1, if an agent
finds it optimal to cooperate in round 6, she will find it optimal to cooperate
in round 1,..5. Also if an agent finds it optimal to defect in round 7, she will
find it optimal to do so in rounds 8,..10. We will thus show that under the
conditions of the Claim all agents will find it optimal to cooperate in round 6
and to defect in round 7. Denote the vectors (21,21, 21,21, 22) =: a (z1) and
(29, 22, %9, 22, 22) =: @ (22). To show the first claim, it is then sufficient to
verify that V(u®(21]21), @ (21)) ~ 33.73 exceeds V (u(21|21), @ (22)) = 10.4 +
12 Z?Zl 2 +4 2?21 (1—27). To show the second claim it is sufficient to establish
that V (u®(21]21), @ (21)") ~ 27.9 is smaller than V (u®(21|27), @ (22)") = 10.4+
12 2?21 zd + 42321(1 — 27) where @ (21)" = (21,21,21,22) and @ (z2) =
(22, 22, 22, 22). Both inequalities are satisfied whenever = € [0.42,0.49]. Then
whenever m < 13 beliefs will always lie in the relevant intervals and thus this
will be absorbing. In fact we have shown that all absorbing states that involve
any cooperation at all are characterized by this pattern. Furthermore we know
by Proposition 3 that at least some cooperative states are stochastically stable,
which then again must be characterized by the pattern above. m
Proof of Claim 3:

Proof. Assume that p(z1|(z21,21)) = 7/8, p(21|@) = 1 and p(z1|(22,22)) =
0 and denote off-equilibrium beliefs p(z1](22,21)) =: £ and p(z1](z1,22)) =

2
y. (Note that now pu(z1](22,21)) is denoted%, since with probability % the

agent faces a tit-for-tat player. In analogy to the proof of Claim 2, wz will
show that under the conditions of the Claim all agents will find it optimal
to cooperate in round 8 and to defect in round 9. For this we verify that
V(i (21)|21), (21, 21, 22)) =~ 21.9 exceeds V (u'(21]21), (22, 22, 22)) =~ 16 + 4(x +
2? + 2%), Vo € [0,1] and that V (u™(21|21), (21, 22)) ~ 17.2 + 2y is smaller than
V(p'(21]21), (22, 22)) = 17+ 6.6z. Note that y will be at least $ since a tit-for-
tat player will always respond with cooperation to (21, z2). But then Va > 0.12
this inequality is satisfied. But then whenever m < 19 beliefs will always lie in
the relevant intervals. It follows from the same arguments as in the proof of
Claim 2 that such cooperative states are stochastically stable. m
Proof of Claim 4

Proof. First note that absorbing states with full defection exist for all o.
Obviously in these states all agents will have the same average payoffs. Fur-

thermore whenever o > 3)‘37/\9:936 or whenever 3\ — 6 < 0, all absorbing states
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will be characterized by full defection. Note also that myopic types will always
choose defection since it is a dominant strategy. If o < 3/\?:\7(:]:5(5 types ko will
find it always optimal to cooperate after the empty history (given all beliefs
w(z1|@, k2) = 1; (21|21, k2) > 35 0(21|@, k1) = p(z1|z1, k1) = 0). But then

given that ko types cooperate in the first three and defect in the fourth round,
k1 types will make higher expected payoffs whenever

(k1) > TI°(ke) &
cd+(1-0)0+35 > (1-0)[3A\+0]+030 <
3A—0-20
3N—0-0"

v

g

]

Proof of Claim 5
Proof. Note that whenever ¢ > 0 there is positive probability that some ks
agents are matched with only k; agents for at least m periods. Consequently
their (unconditional) beliefs will converge to u(z1|@) = 0 (or at least will fall
below the cooperation threshold) and they will start choosing defection at all
rounds. There is then again positive probability that such "infected" agents will
be matched amongst each other (thereby continuing to defect) and that the kq
types will be matched with the remaining ko types. m

Proof of Proposition 5
Proof. First note that at all (pure) absorbing states the same actions will be
chosen at each given round 7. But then - irrespective of m - memories will
be homogenous and beliefs will thus be point-beliefs no matter how large m or
p. The second assertion follows simply from a backward-induction argument.
Remember from Lemma 2 that if a Non-Nash outcome is induced in an absorb-
ing state it must be pareto-efficient. Such outcomes can be induced if agents
anticipate a payoff loss in the future by choosing the Nash action at t. But since
at time T' Nash actions will be chosen irrespective of the history (and agents
have the corresponding round T'—beliefs), there will be no incentive to choose
the efficient action at T — 1 etc..The last assertion follows from the following
argument. Assume that at T — 1 agents believe that if they choose the efficient
action at T'— 1, the Nash action will be chosen at T’ (with probability one), but
if they do not a third action yielding even worse payoffs will be chosen. Then
choosing the efficient action at T'— 1 (and thus at T— 2, T —3...) can be optimal
under certain payoff conditions and the corresponding state absorbing. m
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