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Abstract

Nash equilibria with identical supports are compared for bimatrix
games that are different with respect to the risk aversion of player
2. For equilibria in 2× 2-bimatrix games and for equilibria with effi-
cient supports in coordination games it is established for which cases
increased risk aversion of player 2 benefits or hurts player 2.

1 Introduction

Uncertainty plays a central role in the theory of games, be it uncertainty
about the parameters of the game—called incomplete information—or uncer-
tainty about the actions of the opponent(s)—called strategic uncertainty by
von Neumann and Morgenstern (1944). Following these authors, uncertainty
is usually modelled by assuming the players to maximize expected utility.
It is somewhat of a surprise that the effects of one of the most extensively
studied characteristics of expected utility, namely the Arrow-Pratt measure
of risk aversion (Arrow, 1971; Pratt, 1964), have received relatively little
attention in game theory, with the exception of bargaining theory (starting
with Kannai, 1977, and Kihlstrom et al., 1981).

In the present paper we study the effects of increased risk aversion in
two-person noncooperative games with finite pure strategy sets, i.e., bima-
trix games. Specifically, we consider the situation where player 2 is replaced
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by a more risk averse player and study the effect of this on Nash equilib-
rium. In doing so we assume that the supports of the Nash equilibria under
comparison in the two situations—one with the less risk averse player 2 and
the other one with the more risk averse player 2—do not change, in order to
make a meaningful comparison. This implies that the equilibrium strategy of
player 2 and therefore the expected payoff of player 1 does not change. This
may appear peculiar but it is a direct consequence of the fact that in a mixed
strategy Nash equilibrium a player is indifferent between the pure strategies
that are played with positive probability. Since it is meaningless to com-
pare the expected payoffs of player 2 in the two situations, we compare the
equilibria themselves. Specifically, we say that risk aversion benefits player
2 if the Nash equilibrium in the situation with the more risk averse player 2
would give the less risk averse player 2 a higher payoff. In the opposite case,
we say that risk aversion hurts player 2.

We give a complete analysis of the 2×2-case (Section 3), and of coordina-
tion games in which the players coordinate on Nash equilibria with efficient
supports (Section 4). The analysis of the 2×2-case suggests that it is difficult
to obtain results for the completely general case.

We identify cases where risk aversion benefits player 2—this happens in
particular for Nash equilibria with efficient supports in coordination games—
and cases where risk aversion hurts player 2. In the former case, as an
alternative interpretation, it would be advantageous for player 2 if he could
make player 1 believe that he is more risk averse than he actually is. In the
latter case, in contrast, player 2 would want player 1 to believe that he is
less risk averse than he actually is. See also the discussion in Section 2.

After preliminaries in Section 2 we proceed with 2 × 2 games in Section
3 and coordination games in Section 4. Section 5 concludes.

2 Preliminaries

A bimatrix game is a pair (A,B) of m×n-matrices of real numbers. A (mixed)
strategy for player 1 is an element p ∈ ∆m := {x ∈ Rm | x ≥ 0,

∑m
i=1 xi = 1}.

Similarly, a strategy for player 2 is an element q ∈ ∆n. The strategy profile
(p, q) results in the expected payoffs pAq for player 1 and pBq for player 2.
A Nash equilibrium is a strategy profile (p∗, q∗) such that p∗Aq∗ ≥ pAq∗ for
all p ∈ ∆m and p∗Bq∗ ≥ p∗Bq for all q ∈ ∆n. Let aij (bij) denote the element
in row i and column j of matrix A (B). As is well known, (p∗, q∗) is a Nash
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equilibrium if and only if

n∑
j=1

aijq
∗
j ≥

n∑
j=1

akjq
∗
j for all i with p∗i > 0 and all k = 1, . . . , m (1)

and

m∑
i=1

bijp
∗
i ≥

m∑
i=1

bikp
∗
i for all j with q∗j > 0 and all k = 1, . . . , n. (2)

Let (A,B) be a bimatrix game and let k be a concave and strictly increasing
function defined on (at least) the interval [min{bij}, max{bij}]. Let k(B)
denote the matrix with element k(bij) in row i and column j. We say that
player 2 in the game (A, k(B)) is more risk averse than player 2 in the game
(A, B) (cf. Pratt, 1964).

Suppose, in this situation, that (p∗, q∗) is a Nash equilibrium in (A,B) and
that (p̃, q∗) is a Nash equilibrium in (A, k(B)) such that p∗ and p̃ have the
same support, that is, p∗i > 0 ⇔ p̃i > 0 for all i = 1, . . . ,m. We say that risk
aversion benefits player 2 at (p∗, q∗) and (p̃, q∗) if

p̃Bq∗ ≥ p∗Bq∗ (3)

and that risk aversion hurts player 2 at (p∗, q∗) and (p̃, q∗) if

p̃Bq∗ ≤ p∗Bq∗. (4)

In words, if risk aversion benefits [hurts] player 2, then the equilibrium in
the game with the more risk averse player 2 is better [worse] for the less risk
averse player 2 than the equilibrium in his own game.

Note that we assume that the two Nash equilibria under comparison are
similar in the sense that their supports are the same. Hence, the players
agree on the strategies that should be played with positive probability. This
implies that player 2 should not (or, at least, must not) change his strategy
(q∗ in both equilibria), so that (1) is fulfilled in both (A,B) and (A, k(B)).
Player 1, however, adapts his strategy from p∗ in (A,B) to p̃ in (A, k(B)), in
order for (2) to hold with p̃ and k(B) instead of p∗ and B.

Also note that it does not make sense to compare the expected payoffs
p∗Bq∗ and p̃ k(B)q∗, since the numbers in B and k(B) represent the under-
lying preferences only up to a positive affine transformation.
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An alternative justification for definitions (3) and (4) is that player 1
may have only limited information about the utility function of player 2.
Specifically, suppose that player 1 knows player 2’s utility function up to an
increasing concave transformation, i.e., up to player 2’s risk attitude. To
fix ideas, one might think of the matrices B and k(B) as representing the
utilities of monetary outcomes. Player 1 knows these monetary outcomes
but not the utilities attached to them by player 2. The inequalities in (3)
and (4) reflect the possible consequences for player 2 in a Nash equilibrium if
player 1 believes that player 2 is more risk averse than he actually is. For this
interpretation we must implicitly assume that player 2 behaves myopically in
the sense that he does not react optimally to the ‘wrong’ strategy of player
1, that is, he does not play a strategy q̃ that maximizes his payoff p̃Bq over
all q ∈ ∆n. Allowing for this possibility would only increase the effect in
(3), but might undo the effect in (4). This assumption of myopic behavior
makes sense if player 2 does not know that player 1 misjudges player 2’s risk
attitude. But even if player 2 tries to make player 1 believe that he (player
2) is more risk averse than he actually is—because risk aversion may benefit
player 2—then he might still behave myopically in order not to reveal his
true risk attitude, although making this argument precise would call for a
dynamic model such as a repeated game.

The purpose of this note is to investigate in which cases risk aversion
benefits or hurts player 2. In the next section we analyze the 2 × 2-case,
and in Section 4 we consider the special case of coordination games. As the
2× 2-case will reveal, a complete analysis of the general case does not seem
to be tractable.

3 2× 2-bimatrix games

We consider bimatrix games (A,B) with m = n = 2. Let k be a strictly
increasing concave transformation. For pure strategy Nash equilibria (p∗, q∗)
in (A,B) we have, in the notation of the preceding section, p̃ = p∗, so that
(3) and (4) are fulfilled with equality. This case is not interesting and, in
fact, we will assume,a forteriori, that player 2 has no (weakly) dominated
strategy. For

B =

[
b11 b12

b21 b22

]

4



this implies that b11 6= b12. Without loss of generality we take b11 > b12

and, thus, b21 < b22. It is easy to verify that the following—not completely
disjoint—cases are exhaustive:

(i) b11 > b12 ≥ b22 > b21;

(ii) b11 ≥ b22 ≥ b12 ≥ b21 and b11 > b12, b22 > b21;

(iii) b11 ≥ b22 > b21 ≥ b12.

Let (p∗, q∗) be a completely mixed Nash equilibrium in (A,B), that is 0 <
p∗1, q

∗
1 < 1. (Of course, the existence of such an equilibrium depends on A as

well, but will just be assumed here.) Then

p∗1 =
b22 − b21

b22 − b21 + b11 − b12

, (5)

as can easily be verified.

We first consider case (i), and normalize the function k such that k(b21) =
b21 and k(b11) = b11. Hence, k(b22) ≥ b22 and k(b12) ≥ b12 by concavity of k.
For the equilibrium (p̃, q) in (A, k(B)) we now derive

p̃1 =
k(b22)− b21

k(b22)− b21 + b11 − k(b12)
≥ p∗1. (6)

Hence

p̃Bq∗ = p̃1[q
∗
1b11 + q∗2b12] + p̃2[q

∗
1b21 + q∗2b22]

≥ p∗1[q
∗
1b11 + q∗2b12] + p∗2[q

∗
1b21 + q∗2b22]

= p∗Bq∗, (7)

where the inequality follows from (6) and the fact that q∗1b11 +q∗2b12 ≥ q∗1b21 +
q∗2b22. We conclude that, in case (i), risk aversion benefits player 2 at (p∗, q∗)
and (p̃, q∗).

Consider next case (ii). The analysis of case (i) goes through including
(6), but now there are two cases:

(a) q∗1b11 + q∗2b12 ≥ q∗1b21 + q∗2b22. In this case, risk aversion again benefits
player 2, just like in case (i), see (7).
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(b) q∗1b11 + q∗2b12 ≤ q∗1b21 + q∗2b22. In this case we have the reverse inequality
in (7), so that risk aversion hurts player 2.

So in case (ii), whether risk aversion benefits or hurts player 2 depends on
q∗, hence on the matrix A. Since

q∗1 =
a22 − a12

a22 − a12 + a11 − a21

risk aversion benefits player 2 (case (a)) if

a22 − a12

a22 − a12 + a11 − a21

≥ b22 − b12

b22 − b12 + b11 − b21

(8)

and risk aversion hurts player 2 (case (b)) if

a22 − a12

a22 − a12 + a11 − a21

≤ b22 − b12

b22 − b12 + b11 − b21

. (9)

Consider, finally, case (iii). For this case we show by means of an example
that the effect of risk aversion is ambiguous and depends not only on the
matrices A and B but also on the function k. Consider the bimatrix games

(A, B) =

[
0, 7 1, 0
1, 2 0, 4

]
, (A,B′) =

[
0, 5 1, 0
1, 2 0, 4

]
, (A,B′′) =

[
0, 7 1,−1
1, 2 0, 4

]
.

Clearly, both B′ and B′′ can be obtained by applying increasing concave
transformations to B. The (unique) Nash equilibrium in (A,B) is (p∗, q∗) =
((2

9
, 7

9
), (1

2
, 1

2
)), in (A,B′) it is (p′, q∗) = ((2

7
, 5

7
), (1

2
, 1

2
)), and in (A,B′′) it is

(p′′, q∗) = ((1
5
, 4

5
), (1

2
, 1

2
)). Then p∗Bq∗ = 31

9
, p′Bq∗ = 31

7
, and p′′Bq∗ = 3 1

10
.

Hence, risk aversion benefits player 2 at (p∗, q∗) and (p′, q∗) but hurts player
2 at (p∗, q∗) and (p′′, q∗).

The intuition for the different results in these three cases is as follows. In
case (i), player 1 has to put more weight on the upper row in order to keep
the more risk averse player 2 indifferent, but this row is unambiguously the
best row from the point of view of player 2, so risk aversion benefits player 2.
In case (ii) player 1 again has to put more weight on the first row, but now
it depends on q∗, and thus on the matrix A, whether the first or second row
is better from the point of view of player 2. This results in the two cases (a)
and (b). In case (iii) it is not only ambiguous which one of the two rows is
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better from the point of view of player 2, but also the change in weight put
by player 1 on the first row is ambiguous, as is clear from the example.

We summarize and slightly extend these results in the following two
propositions. The first proposition summarizes cases (i) and (ii).

Proposition 1 Let m = n = 2, let (A,B) and (A, k(B)) be bimatrix games
with k an increasing and concave function, and let (p∗, q∗) and (p̃, q∗) be
completely mixed Nash equilibria in (A, B) and (A, k(B)), respectively.

(i) If b11 > b12 ≥ b22 > b21, then risk aversion benefits player 2 at (p∗, q∗)
and (p̃, q∗).

(ii) If b11 ≥ b22 ≥ b12 ≥ b21 and b11 > b12, b22 > b21, then risk aversion
benefits player 2 at (p∗, q∗) and (p̃, q∗) if (8) holds and risk aversion
hurts player 2 at (p∗, q∗) and (p̃, q∗) if (9) holds.

The second proposition considers case (iii).

Proposition 2 Let m = n = 2, let (A,B) be a bimatrix game, and let
(p∗, q∗) be a completely mixed Nash equilibrium. Let b11 ≥ b22 > b21 ≥ b12.
Then there are increasing concave transformations k and k′ and Nash equilib-
ria (p̃, q∗) in (A, k(B)) and (p̃′, q∗) in (A, k′(B)) such that risk aversion ben-
efits player 2 at (p∗, q∗) and (p̃, q∗) but hurts player 2 at (p∗, q∗) and (p̃′, q∗).

Proof. Let k satisfy k(x) = x for all x ≤ b22 and k(b11) = b22 + 1
2
(b11 − b22).

Then it is straightforward to verify (using (5)) that p̃1 ≥ p∗1. Let k′ satisfy
k′(x) = x for all x ≥ b21 and k′(b12) = b12 − 1

2
(b21 − b12). Then it is easy

to verify (again using (5)) that p̃′1 ≤ p∗1. If (8) holds, then k and k′ are as
desired. If (9) holds, then the proof is complete by switching the roles of k
and k′. ¤

Proposition 2 in particular makes it clear that there is not much hope to
obtain general results for the m×n-case. In the next section we consider the
special but interesting case of coordination games.

4 Coordination games

A coordination game is an m×m-bimatrix game (A,B) such that aij = bij =
0 whenever i 6= j, and aii, bii > 0 for all i = 1, . . . , m. Clearly, the players
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would want to coordinate on one or more diagonal elements. In such a game,
for each non-empty subset I ⊆ {1, . . . ,m} there is a unique Nash equilibrium
with support I for each player, namely the strategy profile (pI , qI) satisfying

pI
i bii = pI

jbjj and qI
i aii = qI

j ajj for all i, j ∈ I, pk = qk = 0 for all k /∈ I.
(10)

Observe that, for m = 2, such a coordination game falls under case (ii)
and under case (iii) in Section 3. In fact, it is a boundary case between
these two: Proposition 2 applies, but the function k′ defined in its proof is
constant, so that it only depends on q∗ (i.e., on A) whether risk aversion
benefits or hurts player 2.

In a coordination game equilibria of interest are those where inefficient
diagonal outcomes are played with zero probability. More generally, we say
that a Nash equilibrium (pI , qI) has efficient support if for all i, j ∈ I, aii >
ajj implies bii < bjj.

1 Clearly, if (pI , qI) has efficient support and k is an
increasing concave function with k(0) = 0, then the equilibrium (p̃I , qI) in
(A, k(B)) also has efficient support.2 Moreover, we have the following result.

Proposition 3 Let (A, B) be an m × m-coordination game and let, for
some I ⊆ {1, . . . , m}, (pI , qI) be a Nash equilibrium with efficient support in
(A, B). Let k be an increasing concave function with k(0) = 0 and let (p̃I , qI)
be a Nash equilibrium in (A, k(B)). Then risk aversion benefits player 2 at
(pI , qI) and (p̃I , qI).

Proof. Without loss of generality suppose I = {1, . . . ,m} and 0 < b11 ≤
. . . ≤ bmm. We write p instead of pI , p̃ instead of p̃I , and q instead of qI .

Since (p, q) has efficient support and by (10), we have 0 < q1 ≤ . . . ≤ qm,
so that

0 < q1b11 ≤ . . . ≤ qmbmm. (11)

By concavity of k, k(bii)/bii ≥ k(bjj)/bjj whenever i ≤ j. By (10) this
implies

p̃i

p̃j

=
k(bjj)

k(bii)
≤ bjj

bii

=
pi

pj

for all i, j ∈ I with i ≤ j. (12)

1Clearly, unless I is a singleton, such an equilibrium is neither ex ante nor ex post
efficient. So the efficient support requirement is a very weak efficiency requirement.

2The condition k(0) = 0 is imposed in order that (A, k(B)) is formally a coordination
game. No generality is lost.
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For all `, j ∈ I with ` > j, (12) implies

p1

p`

+ · · ·+ pj

p`

≥ p̃1

p̃`

+ · · ·+ p̃j

p̃`

hence
p`

p1 + · · ·+ pj

≤ p̃`

p̃1 + · · ·+ p̃j

hence
pj+1 + · · ·+ pm

p1 + · · ·+ pj

≤ p̃j+1 + · · ·+ p̃m

p̃1 + · · ·+ p̃j

hence
1− (p1 + · · ·+ pj)

p1 + · · ·+ pj

≤ 1− (p̃1 + · · ·+ p̃j)

p̃1 + · · ·+ p̃j

which implies

p1 + · · ·+ pj ≥ p̃1 + · · ·+ p̃j for all j = 1, . . . , m. (13)

Define b00 := 0, then

m∑
j=1

pjqjbjj =
m∑

j=1

(
m∑

i=j

pi

)
(qjbjj − qj−1bj−1,j−1)

≤
m∑

j=1

(
m∑

i=j

p̃i

)
(qjbjj − qj−1bj−1,j−1)

=
m∑

j=1

p̃jqjbjj, (14)

where the inequality follows from (11) and (13). Now (14) shows that risk
aversion benefits player 2. ¤

As a note to this proof, observe that (13) states that p̃ first-degree stochas-
tically dominates p, and (14) is the familiar consequence that the expected
payoff under p̃ is higher than under p.

The intuition for Proposition 3 is that increased risk aversion of player
2 forces player 1 to put more weight on the outcomes that are better for
player 2. From the point of view of the original—less risk averse—player 2
the resulting distribution is preferable. This intuition (and result) is similar
to the result established for a bargaining context in Köbberling and Peters
(2003), although that paper assumes rank-dependent utility instead of ex-
pected utility.
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5 Concluding remarks

The present paper has shown that at least in some interesting cases it is
possible to say something about the effect of the risk attitude of a player in a
noncooperative game. From a more general point of view the paper can also
be interpreted as studying the effect of one player having limited information
about the utility function of another player. We focus, however, on risk atti-
tude, which is one of the most important characteristics of an expected utility
function. Further research may concentrate on specific economic games, such
as risky investments in portfolios.
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