
Optimising halting station of passenger railway lines

Jan-Willem Goossens ∗ Stan van Hoesel † Leo Kroon ‡

April 9, 2004

Abstract

In many real life passenger railway networks, the types of stations and lines characterise
the halting stations of the train lines. Common types are Regional, Interregional or Intercity.
This paper considers the problem of altering the halts of lines by both upgrading and down-
grading stations, such that this results in less total travel time. We propose a combination
of reduction methods, Lagrangian relaxation, and a problem-specific multiplier adjustment
algorithm to solve the presented mixed integer linear programming formulation. A compu-
tational study of several real-life instances based on problem data of the Dutch passenger
railway operator NS Reizigers is included.

Keywords: Mixed integer programming; Railway problems; Lagrangian relaxation

1 Introduction

The planning problem faced by railway operators is a complex multi-staged problem. The individ-
ual decision problems range from the strategic line planning problem (see Bussieck [2], Goossens
et al. [6, 7], Zwaneveld [16]) via the construction of timetables (see Nachtigall [10], Odijk [12],
Peeters [13], Schrijver and Steenbeek [15]), to traffic planning (see Zwaneveld [16]), rolling stock
planning (see Schrijver [14]) and personnel (see Caprara et al. [3]), and shunting planning (see
Gallo and Di Miele [4]).

The line planning problems in Bussieck [2], Goossens et al. [6], Zwaneveld [16] and Goossens
et al. [7] describe the decision problem of finding routes in the railway network on which trains
are to be operated. However, the stations at which these lines halt are dictated by the types of
the stations and lines, as we will describe later. These types are part of the problem input. In
contrast, this paper considers the line plan to be given, but concentrates on altering the stops of
the lines along their route to decrease the total travel time of passengers through the network.

First, in §2, we introduce new concepts such as the line-event graph. Then, in §3 we show how to
formulate the problem of optimising halting station of passenger railway lines as a multi-commodity
network flow problem with additional constraints and variables. Using Lagrangian relaxation, we
show in §4 how to find lower bounds for this problem. To effectively use these bounds in a branch-
and-bound framework, as described in §5, we introduce a number of preprocessing and tree search
techniques, together with a problem-specific multiplier adjustment algorithm. Finally, in §6, we
describe a computational study based on instances of the Dutch passenger railway operator NSR.

∗Dept of Quantitative Economics, University of Maastricht, P.O. Box 616, 6200 MD Maastricht, The Nether-
lands. E-mail: j.goossens@t75.nl

†Dept of Quantitative Economics, University of Maastricht, P.O. Box 616, 6200 MD Maastricht, The Nether-
lands. E-mail: s.vanhoesel@ke.unimaas.nl

‡Rotterdam School of Management, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The
Netherlands. E-mail: l.kroon@fbk.eur.nl

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6941679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: The Dutch railway network.

2 Modelling

The railway infrastructure of the stations and tracks is modelled as an undirected graph G = (V,E)
of stations (vertices) and tracks (edges). This graph is also called the network graph. As an
example, consider the network graph shown in Figure 1. By definition, every track e = {v, w} ∈ E
represents the track connecting stations v and w of V .

In addition, we are given a set of operated lines L, i.e., a line plan. A line l ∈ L is described
by a route in the railway network between an origin and a destination station along which trains
are operated at a given hourly frequency f(l) ∈ N. The route that a line l follows through the
network G is a simple path of edges. For ease of notation, we define this route simply as l ⊆ E.
We also define the subset of lines L(v) as all the lines that pass some station v ∈ V .

Even though the subsequent stops of a line, also called the line’s halts or dwells, could be
any arbitrary set of the stations it passes along its route, we consider the halts to follow a strict
pattern. The stations at which a line halts are defined by the type of the line. This type comes
from a set of types T = {1, . . . , Tmax}. Not only is every line l associated with a type t(l), also
every station v ∈ V is of a type from T . The halting pattern of l, i.e., the stations at which l
halts, are defined by the line type t(l), and the types of the stations along the line’s route. The
types reflect the sizes of the stations: type 1 for stations in villages, up to type Tmax for stations
serving large metropolitan areas. Most real-life railway instances consider three types of stations
and lines. These are often referred to as regional (R) for type 1, interregional (IR) for type 2,
and intercity (IC) for type 3. Note that some authors refer to Regional lines and stations as
Aggloregional . The types of the stations in the instance in Figure 1 are indicated by the sizes of
the nodes in the network.

As is common in the Netherlands, but also in most other countries, the halting patterns of train
lines follow a simple ordering. Train lines of type 1 halt at all stations they pass. Lines of type 2
skip the small stations of type 1, but halt at all stations of type 2 and higher, etc. Throughout
this paper we assume that the halting stations of lines follow this strict hierarchical pattern in
which a line of type t halts at all stations along its route that are of type t, or higher. In practise,
however, exceptions are sometimes made.

For most planning problems, the types of lines and stations in the network are given as part
of the input. In contrast, this paper considers the types of the lines to be given, and concentrates
on finding a type for every station. Since the type of a station determines the halts of the passing
lines, these types also influence the travel times through the network.

As an example, consider some station v. The type of this station is important not only for the

2

people that want to travel by train to and from v, but also for the people that pass v on their
journey. Because some of the passing lines may not halt there, the travellers starting or ending
their trip at v are restricted in their possibilities by the type of v. On the other hand, upgrading v
to a higher station type can have a negative influence on the travel time of people on a train line
passing v, if the new type of v causes their train to halt there.

The models we describe for the station type optimisation problem (STOP) focus on finding an
assignment of types to stations that minimises the total travel time of all passengers through the
network. We assume that all passengers choose their route through the network in such a way that
they minimise their individual travel time. To allow the passengers this freedom, we also assume
that the capacities of the train lines are sufficient. This defines a complete traffic assignment.

2.1 The line-event graph

Without knowing the halting stations of the lines, the travel times of train lines and, therefore,
of the passengers are clearly not known. Note that the passengers choose their own shortest path
through the network. To model this structure, we can construct the line-event graph. In this
graph, every possible halt, train change, etc, is represented. For example, the line-event graph
contains two nodes for every station that a line passes, with two pairs of opposing arcs between
these nodes: a pair with a positive length representing a halting event (the halt arcs), and a pair
with length zero (for not halting). It also contains arcs representing the trips between consecutive
stations, as well as arcs modelling the changing between trains at a station (consider already
Figure 3). In this line-event graph, depending on an assignment of types to stations, only a subset
of the arcs is available. The length of an arc represents the amount of time needed for the event.
This concept is formalised below.

Consider the network graph G = (V,E) and a set of lines L. The line-event graph GL =
(V ∪ V L, AL) is a directed graph that is defined on two node sets V and V L. We first discuss the
set of line-event nodes V L. This set is defined as

V L = {(l, e, v)|l ∈ L, e ∈ E, v ∈ V : v ∈ e, e ∈ l}.

The set V L contains for every train line two nodes for every station it passes. The event tuple i ∈
V L is defined as the triple v = (li, ei, vi). The nodes in the set V are used in GL as general
source/sink nodes for every station. We refer to these nodes as station nodes.

The overall arc set AL of line-event arcs is defined as the union of five sets:

AL
d (e) = {(i, j)|i, j ∈ V L : li = lj , e = ei = ej , vi 6= vj}

AL
c (v) = {(i, j)|i, j ∈ V L : li 6= lj , v = vi = vj}

AL
h (v) = {(i, j)|i, j ∈ V L : li = lj , ei 6= ej , v = vi = vj}

AL
n(v) = {(i, j)|i, j ∈ V L : li = lj , ei 6= ej , v = vi = vj}

AL
p (v) = {(i, v), (v, i)|i ∈ V L : vi = v}

(1)

for all edges e and vertices v. The set AL
d (e) models the possible driving trips across track e. We

refer to these arcs as driving arcs. The changing of trains at v is modelled by the change arcs
in AL

c (v). The possible halting events and non-halting events at a station v are given by the arcs
in the sets AL

h (v) and AL
n(v) respectively. Finally, the possibilities for passengers to enter and

leave trains at v are modelled as the passenger arcs in AL
p (v). The total set of all change arcs, i.e.,

the union of the sets AL
c (v) for all v, is denoted AL

c . Analogously, we define the sets AL
d , AL

h , AL
n

and AL
p for the other line-event arcs.

Note that the set of non-halt arcs AL
n(v) is a copy of the set of halt arcs AL

h (v). Note also the
existence of arcs implied by these definitions. For example, the existence of two change arcs (i, j)
and (j, k), both at some station v and between lines li 6= lk implies that there also exists a change
arc (i, k) at v.

3

l2

l1

u v w
e u v= ,{ } f v w= ,{ }

t l() = 22

t l() = 11

Figure 2: The network as a graph on three vertices and two edges, together with 2 lines.

(, ,)l f v1

(, ,)l e u2

(, ,)l f w2

(, ,)l e v2 (, ,)l f v2

(, ,)l f w1

u

1 2

3 4 5 6

v w

Figure 3: The line-event graph.

Example 2.1. Consider the network graph G = (V,E) with stations V = {u, v, w} and tracks E =
{e, f} with e = {u, v} and f = {v, w} as shown in Figure 2. There are two lines l1 and l2 operated
on this network. The first line uses only edge f and thus goes from v to w and vice versa, and is
of type 1. The second line uses both tracks e and f and is of type 2.

The line-event graph GL = (V ∪ V L, AL) for this network is shown in Figure 3. The larger
nodes are the nodes from V = {u, v, w}, the others are the line-event nodes from V L.

For simplicity we have not only shown the triples (li, ei, vi) but we have also numbered these
nodes. The arcs between nodes 1 and 2 represent the driving of line l1 from station v to w and
vice versa. There are two pairs of arcs between nodes 4 and 5. One pair represents the halting of
line l2 at v with a length of e.g. 2 minutes, either coming from u and going to w, or the other way
around. The other two arcs between vertices 4 and 5 are the non-halt arcs of length 0. The arcs
between vertices 1 and 4 represent the possibility for passengers to change from line l1 to l2 at v
and vice versa. Finally, the arcs between node v and node 4 are there to model the possibilities for
passengers to enter and to leave line l2 at v.

All commodities use the line-event graph to find their (shortest) path through the network.
However, as discussed earlier, the availability of the arc pairs in the line-event graph depends on
the types of the stations.

Example 2.2. Whether an event can occur, i.e., an arc can be used, depends on a given assign-
ment of types. Consider the line-event graph of the previous example and the type-assignment
vector t̄ with t̄(u) = 2, t̄(v) = 1 and t̄(w) = 2.

Since line 2 is of type 2, this line does not halt at v when v is of type 1. Therefore, neither
the pairs of change arcs, nor the two pairs of halt arcs are available. Thus, for station v, this

tv =1

1

4 5

vu

3

2

6

w
tu =2 tw =2

Figure 4: The line-event graph, given that station v is of type 1.

4

assignment allows only the arcs (v, 1) and (1, v) and the non-halt arcs (4, 5) and (5, 4) to be used,
as can be seen in Figure 4.

To model the availability of arcs, we introduce the subgraph GL(t̄) of the line-event graph GL

for a given type-assignment vector t̄ of types to the stations. The available arcs at station v, in
case v is of type t = t̄v are given by the sets

AL
c (v, t) = {(i, j) ∈ AL

c (v) : t(li) ≤ t, t(lj) ≤ t}
AL

h (v, t) = {(i, j) ∈ AL
h (v) : t(li) ≤ t}

AL
n(v, t) = {(i, j) ∈ AL

n(v) : t(li) > t}
AL

p (v, t) = {(i, v) ∈ AL
p (v) : t(li) ≤ t}

(2)

If station v is of type t, then the halt arcs, change arcs and passenger arcs of lines of type t and
lower are available. On the other hand, only the non-halt arcs of lines of types strictly larger than t
can be used. We also define the complementing sets, i.e., those arcs that are unavailable at a type
strictly lower than t. For halt arcs, for example, these sets are given by ĀL

h (v, t) = AL
h (v)\AL

h (v, t).
Using these sets, we define the graph GL(t̄) = (V ∪ V L, AL(t̄)). This graph contains only the

arcs of AL that are available for a given assignment vector. In this definition AL(t̄) is the union
of the above arc sets for t = t̄v for all v ∈ V , together with the drive arcs of AL

d . An assignment
vector t̄ is called feasible if between any pair of stations v and w, there exists a path from v to w
in GL(t̄).

From these definitions we can make the following observations that are used throughout this
paper.

Observation 2.3. The sets of change arcs, halt arcs and passenger arcs are nested in t in the
sense that for any station v it holds that

AL
r (v, t′) ⊆ AL

r (v, t) for all t′ ≤ t and r ∈ {c, h, p}.

The opposite relation is true for the non-halt arcs:

AL
n(v, t′) ⊇ AL

n(v, t) for all t′ ≤ t.

Observation 2.4. The sets of halt and non-halt arcs at some station v are each other’s comple-
ments:

AL
n(v, t) = AL

h (v) \AL
h (v, t) ≡ ĀL

h (v, t) for all t ∈ T .

For a driving arc (i, j) ∈ AL
d (e), the length depends on the involved line lj and edge e = {vi, vj}

of the network graph G. Thus, the lengths of pairs of driving arcs are symmetric. The driving
times are part of the input.

A change arc (i, j) ∈ AL
c (v) has a length that only depends on the line lj that is changed to.

Given that line l = lj is operated at an hourly frequency of f(l), we assume that these f(l) trains
per hour are evenly distributed across the hour, i.e., every 60

f(l) minutes. This leads to an expected
change time of 60

2f(l) .
The length of a halt arc (i, j) ∈ AL

h (v) of line l at station v is assumed to depend only on
this line and station. The length of arc (i, j) is assumed to be less that 60

2f(l) . All the arcs of AL
n

and AL
p have length 0.

2.2 Valid paths in the line-event graph

Given a type assignment t̄, a shortest path in GL(t̄) is not necessarily a realistic path for real life
travellers. Using the graph of Figure 2, consider the path shown in Figure 5.

All the highlighted arcs are available for the assignment t̄. Still, the path for travellers from u
to w is invalid because it describes a path in which the passengers first change from line l2 to l1
using arc (6, 2), and then use the leaving arc (2, w) to exit the system. We define valid paths as
follows.

5

(, ,)l f v1

(, ,)l e u2

(, ,)l f w2

(, ,)l e v2 (, ,)l f v2

(, ,)l f w1

u

1 2

3 4 5 6

v w

Figure 5: The highlighted path is not valid.

Algorithm 1 Find a shortest valid path.
Input: A graph GL(t̄), and two stations v and w.
1: Hide all passenger arcs (i, j) for which

i ∈ V \ {v} or j = v

2: Find the shortest path P from v to w that has the smallest number of arcs.

Definition 2.5. A directed path P = (a1, . . . , a2m+1) ⊆ AL from station v ∈ V to station w ∈ V
is a valid path if and only if

a1, a2m+1 ∈ AL
p

a2i ∈ AL
d for all 1 ≤ i ≤ m

a2i+1 ∈ AL
c ∪AL

h ∪AL
n for all 1 ≤ i ≤ m

The arcs a1 and a2m+1 are passenger arcs of AL
p since, by construction, these are the only arcs

incident to the station nodes v ∈ V .
Finding a shortest valid path is polynomially equivalent to finding a shortest path. Consider

Algorithm 1. After Step 1, the only remaining passenger arcs are those that are outgoing arcs at v,
and those that are incoming arcs at any station node other than v. The algorithm used in Step 2
to find the shortest path with the smallest number of arcs requires only a simple modification of
the Dijkstra algorithm. Of all paths with minimal length this algorithm returns the one with the
smallest number of arcs. We now show that the shortest path P is also valid.

Lemma 2.6. The shortest path P = {a1, . . . , a2m+1} as calculated by Algorithm 1 is a shortest
valid path.

Proof. Hiding all outgoing passenger arcs at nodes other than v ensures the absence of internal
passenger arcs in the shortest path from some station v to w. The assumption that our path P is
a shortest path with the smallest number of arcs allows us to show that both arcs a2 and a2m can
only be drive arcs of AL

d . Since similar reasoning holds for arc a2 and arc a2m, we only discuss the
latter case. Given that the arc a2m+1 = (j, w) is a passenger arc, consider some arc a2m = (i, j),
with vi = vj . Since, by construction, there also exists a passenger arc (i, w) of the same length
as (j, w), we could replace the arcs a2m and a2m+1 by (i, w) and thereby decrease the number of
arcs in P .

The combination of a halt arc (i, j) and a change arc (j, k) in P can be ruled out by similar
reasoning: by construction there exists a change arc (i, k) of the same length as (j, k). Replacing
the sequence (i, j), (j, k) by (i, k) thus decreases the length of P by the (positive) length of (i, j).

For a sequence of two change arcs, the argumentation is very similar. Now, however, we use
the property that the length of a change arc depends only on the line that is changed to, not on
the feeder line. Thus, two change arcs (i, j) and (j, k) from lines li to lj and from lj to lk can
always be replaced by the arc (i, k).

6

To show that a pair of halt and non-halt arcs cannot occur consecutively in any path P in
some GL(t̄), observe that for some line l at a station v both pairs of arcs cannot be present
simultaneously. This is, by construction, also true for non-halt arcs and change arcs.

Lemma 2.7. For a line l and a station v, every valid shortest path contains at most one arc of l
at station v, i.e., at most one arc (i, j) ∈ AL(v) for which l = li or l = lj.

Proof. If a halt arc or a non-halt arc of l is used, then no other arcs of l can be used at v, since
both line-event nodes have already been visited. In addition, the definition of a valid path tells us
that at most one passenger arc at v can be used. Therefore, we are left with only two possibilities:
a combination of a passenger arc and a change arc, or a combination of two change arcs. The
first combination cannot be present in a shortest path, since also the passenger arc (of the same
length) of the line that is changed from could have been used to exit the system. The usage of
two change arcs can be ruled out by a similar exchange argument, since this valid path can be
shortened by immediately changing from the first line to the last.

3 Problem formulation

The number of travellers that want to travel from v to w, i.e., the demand for commodity k =
(v, w), is given by its entry Hvw in the origin-destination matrix H. By using the digraph GL(t̄)
for some type assignment t̄, we define the multi-commodity flow problem KSTOP(t̄) for routing
the passengers (commodities) through the network as follows:

zKSTOP(t̄) = min
∑

k∈V ×V

dF k (3a)

s.t. NF k = bk for all k ∈ V × V (3b)

0 ≤ F k
ij for all k ∈ V × V and

(i, j) ∈ AL(t̄) : i /∈ V \ {vk}, j 6= vk

(3c)

where the variables F k
ij represent the amount of flow of commodity k across arc (i, j) in the

network. In this sense, F k is for commodity k the vector of all flow variables for all arcs. The
vector d gives the travel times for every line-event arc in AL(t̄). The matrix N is the node-arc
incidence matrix of AL(t̄). Together with the column vector bk of size |V ∪ V L|, it builds the
flow balance constraints (3b). Note that for every commodity k = (v, w), the vector bk of size |V |
contains only two nonzero entries: a positive entry Hvw at v, and −Hvw at w. The restrictions (3c)
impose that the commodity k = (vk, wk) can use arcs that are not outgoing from a station node,
except vk, and that are also not incoming arcs at vk. The flow on arcs for which these conditions
do not hold is set to 0. These constraints are identical to the restrictions in Algorithm 1.

Note the absence of capacity restrictions on the amounts of flow in (3). As mentioned in §2,
we assume that the capacities of the train lines are sufficient to meet the passenger demand.

Lemma 3.1. For every feasible solution F k
ij of KSTOP(t̄) there exists a solution with the same

cost per commodity, but for which for every commodity the arcs with positive flow make up a valid
path through the network.

Proof. Since there are no capacity restrictions on the arcs of the flow problem KSTOP(t̄) it follows
that it can be solved by considering a separate single-commodity flow problem for every commodity,
and that each of these problems amounts to finding a shortest path from the origin vertex to the
destination vertex. The arcs-usage restrictions in (3c) allow the same arcs to be used as in Step 1
of Algorithm 1. It follows from Lemma 2.6 that if there exists a shortest path between a pair of
nodes in this restricted graph of Step 1, then there exists a shortest valid path of equal length.

As the model formulation lacks restrictions that tie the different commodities together, the
minimisation problems for the different commodities are independent. Every commodity chooses

7

the cheapest route(s) according to the arc lengths d through the network. Because there are
no capacity restrictions present in the STOP problem, these paths form a feasible and optimal
solution.

Lemma 3.1 shows that an optimal solution to the multi-commodity flow problem of KSTOP(t̄)
can be found by solving a shortest path problem in GL(t̄) for every commodity k ∈ V × V , con-
sidering only the available arcs in (3c). Thus, the set of arcs with positive flow of the commodities
with source u form a shortest path tree rooted at u. This leads to the following equivalent refor-
mulation of KSTOP(t̄) called STOP(t̄). This formulation uses the flow variables Fu

ij for u ∈ V
that represent the flow across arc (i, j) that originates at u.

zSTOP(t̄) = min
∑
u∈V

dFu

s.t. NFu = bu for all u ∈ V

0 ≤ Fu
ij for all u ∈ V and

(i, j) ∈ AL(t̄) : i /∈ V \ {u}, j 6= u

where again the vector d contains the costs per arc in AL(t̄). We use this reformulation to describe
a model for STOP, i.e., optimising STOP(t̄) over the type assignments t̄.

The next section introduces a formulation for solving mint̄ STOP(t̄) as a mixed-integer pro-
gramming problem.

3.1 Extending the STOP(t̄) formulation

To model the variable type t of a station v, we introduce additional binary variables xv
t , where

xv
t =

{
1 if station v is of type t, and
0 otherwise.

Two new classes of constraints are used to link the station type variables to the flow variables,
allowing only a flow that is consistent with the value of the xv

t variables. This formulation is
called STOP.

min
∑
u∈V

dFu (4a)

s.t. NFu = bu for all u ∈ V (4b)∑
u∈V

∑
a∈ĀL

r (v,t)

Fu
a ≤M

∑
t′>t

xv
t′ for all v ∈ V, t ∈ T and

r ∈ {h, c, p}
(4c)

∑
u∈V

∑
a∈ĀL

n(v,t)

Fu
a ≤M

∑
t′<t

xv
t′ for all v ∈ V, t ∈ T (4d)

∑
t∈T

xv
t = 1 for all v ∈ V (4e)

0 ≤ Fu
ij for all u ∈ V and

(i, j) ∈ AL(t̄) : i /∈ V \ {u}, j 6= v

(4f)

xv
t ∈ {0, 1} for all v ∈ V, t ∈ T (4g)

We refer to the optimal objective function value of (4) as zSTOP. Constraint (4c) for halt arcs
enforces that if a station v is of some type t or lower, in which case

∑
t′>t xv

t′ = 0, then no flow is
allowed across the arcs in AL

h (v) \AL
h (v, t) ≡ ĀL

h (v, t), i.e., those that are unavailable at type t or
lower.

Theorem 3.2. The problems STOP and mint̄ STOP(t̄) are equivalent.

8

Proof. The additional restrictions of (4c)-(4d) are necessary restrictions to hold for any feasible
solution F of STOP(t̄) for a vector t̄. Thus, the flow F automatically satisfies the additional
restrictions of STOP with xv

t = 1 for t = t̄v and zero otherwise.
Vice versa, consider some feasible solution (F, x) of STOP. We construct a vector t̄ such that F

is feasible for STOP(t̄). Because of (4e), we set t̄v = t for those xv
t = 1. It remains to be shown

that only for arcs a ∈ AL(t̄) the flow Fu
a is strictly positive for any station u. By contradiction,

assume that the solution (F, x) has some Fu
a > 0 for an arc a at some station v for which xv

t = 1,
but with a /∈ AL(v, t). The following argument can similarly be applied to (non-) halt, change
and passenger arcs. Consider the case where a is a non-halt arc. It follows that a ∈ ĀL

n(v, t)
since a /∈ AL(v, t). However, since by assumption xv

t = 1, this implies that the right-hand side
of (4c) is equal to zero, and thus Fu

a ≤ 0. Clearly, this contradicts that (F, x) is feasible in
STOP.

The problem formulation STOP allows us to model the Station Type Optimisation Problem.
The difficulty, however, lies in the number of variables needed in the modelling. With the number
of arcs in the line-event graph GL of order O(mk + nk2), the number of flow variables Fu

ij is of
order O(n×(mk+nk2)), where n = |V |, m = |E| and k = |L|. Even though this is still polynomial
in n, m and k, the number of variables needed to model practical instances is enormous (see §6).
The next section considers Lagrangian relaxation on the complicating constraints (4c)-(4d). This
allows us to solve the STOP formulation by considering only small independent subproblems.

4 Lagrangian relaxation

Consider dualising the complicating additional constraints (4c)-(4d). Since these are the only
constraints linking the flow variables of different origin stations, this makes the remaining problem
separable. Therefore, let us study the following relaxation of STOP, referred to as LR(λ).

zLR(λ) = min
∑
u∈V

dFu + λ

(∑
u∈V

A(u)Fu −
∑
v∈V

B(v)xv

)
s.t. NFu = bu for all u ∈ V

Cxv = 1 for all v ∈ V

0 ≤ Fu
ij for all u ∈ V and

(i, j) ∈ AL(t̄) : i /∈ V \ {u}, j 6= u

xv
t ∈ {0, 1} for all v ∈ V, t ∈ T

(5)

where the matrix A is an m by |V | · |AL| matrix, and B is an m × (|V | · Tmax) matrix, with m
equal to the number of additional constraints. We define A(v) and B(v) as the submatrices of A
and B that contain only the columns for some station v ∈ V . Thus, for example, B(v) is of
size m by Tmax, and holds for station v the big-M values of the restrictions that contain the xv

t

variables. Note that the only nonzero elements that B(v) contains are at the restrictions for
station v. The class of constraints Cxv = 1 represents the constraints for choosing exactly one
type for every station as in (4e). The vector λ ∈ Rm

+ is a multiplier vector with one element
for every of the m additional constraints. Lagrangian theory tells us that for any nonnegative
vector λ, the value zLR(λ) is a lower bound for the objective value zSTOP of the original problem.
In particular, recall the following well-known theorem in optimisation theory.

Theorem 4.1 (Kuhn and Tucker [8]). For a given vector λ, if the optimal solution of LR(λ)
is feasible in the original problem, and if λ and the dualised constraints satisfy the complementary
slackness conditions, then the solution is also optimal for the original problem.

We use this lower bound in a branch and bound scheme, and we are therefore interested in
the vector λ that maximises zLR(λ). For a review of Lagrangian relaxation and duality, we refer

9

to Nemhauser and Wolsey [11, Page 323]. First, consider solving LR(λ) for a given λ. We can
rewrite and solve LR(λ) as

zLR(λ) = min zLRF(λ)− zLRX(λ)

with the two subproblems LRF(λ) and LRX(λ) defined as

zLRF(λ) = min
∑
u∈V

(d + λA(u))Fu

s.t. NFu = bu for all u ∈ V

0 ≤ Fu
ij for all u ∈ V and

(i, j) ∈ AL(t̄) : i /∈ V \ {u}, j 6= u

(6)

and

zLRX(λ) = max
∑
v∈V

λB(v)xv

s.t. Cxv = 1 for all v ∈ V

xv
t ∈ {0, 1} for all v ∈ V, t ∈ T

(7)

First consider the maximisation problem (7). Since the constraints Cxv = 1 impose that for
every station v we choose exactly one station type, this problem can be solved to optimality by
inspection:

xv
t =

{
1 if t = argmaxt′∈T λB(v, t′),
0 otherwise.

for all v ∈ V (8)

where λB(v, t′) is the objective function coefficient of variable xv
t′ .

The subproblem (6) is also much easier to solve than the original problem. Given a vector λ, this
problem is similar to STOP(t), but with all arcs in AL. The objective function coefficients d+λA(u)
make up a new vector of the arc costs per unit of flow originating from station v. However, the
matrix A(u) is based on the arc-presence in the sets ĀL

r (v, t). Thus, for all pairs of stations u
and u′ the constraint matrices are equal: A(u) = A(u′). This is easy to see, since a flow variable Fu

a

appears in the constraints based on the arc a for which it is defined, but irrespective of its origin
station u.

If we define the new arc costs depending on λ as d(λ) = d + λA(·), then the optimal routing
in the multi-commodity flow problem can be found by solving one all-pairs shortest path problem
using d(λ) as arc costs. Given the shortest paths Puw ⊆ AL, the flows F can be reconstructed
as Fu

a =
∑

w∈V :a∈P uw Huw.
In §5.2, we consider a standard subgradient based optimisation method, and a problem-specific

method to find good multiplier vectors. First, however, consider the following well-known result
by Geoffrion [5].

Theorem 4.2 (Geoffrion [5]). If for all vectors λ ≥ 0 the optimal value of zLR(λ) is not
altered by dropping the integrality conditions on its variables, then the value of the Lagrangian
Dual problem (LD)

zLD = max
λ∈Rm

+

zLR(λ) (9)

is equal to the optimal value of the linear programming relaxation of the original problem.

For the integrality restriction of (7), it is easy to see that all extreme points of {x ∈ R|V |·Tmax :
Cx = 1, 0 ≤ x ≤ 1} are integer, since every variable is only part of exactly one of the constraints.
Therefore, the following is true for the Lagrangian Dual LD.

Corollary 4.3. The value of zLD is equal to the value of the linear programming relaxation of
STOP.

This bound offers a way to test the quality of algorithms for finding a good multiplier vector λ.

10

5 The branch-and-bound algorithm

As mentioned in the previous section, STOP cannot be solved by only optimising the Lagrangian
dual problem of (9). Therefore, we apply branch-and-bound on the xv

t variables, using the La-
grangian relaxation LR(λ) for calculating lower bounds. The details of the branch-and-bound
algorithm are described in three sections. First, we discuss preprocessing techniques. Then, the
details of using the Lagrangian relaxation for deriving good dual bounds are presented. Finally,
the section on tree search covers branching rules and primal heuristics.

5.1 Preprocessing

Strengthening the initial problem formulation is done on three levels. The next section discusses
techniques for reducing the size of the line-event graph.

5.1.1 Line-event graph reduction

Identifying redundant lines in L can significantly reduce the size of the line-event graph.

Lemma 5.1. Consider two distinct lines l and l′ for which the path of line l′ in the network
graph G is contained in the path of l. If for every arc a′ = ((l′, e1, v1), (l′, e2, v2)) of line l′ the
following holds

da ≤ da′ for all a = ((l, e1, v1), (l, e2, v2)),

then line l′ is dominated by line l, and can be removed from the problem description.

Proof. We show that every arc of line l′ can be replaced by an arc of l that is not longer. This
follows immediately from the fact that the path of l′ is contained in the path of l, and the presence
of arcs as implied by definition (1). Any solution (F ′, x) of STOP, that uses arcs of l′, can thus
be replaced by a solution (F, x), where the flow on arcs of l′ is replaced by arcs of l.

Due to the structure of the line-event graph, and the assumptions we have made concerning
the lengths of its arcs, sufficient conditions for line dominance can easily be derived.

Corollary 5.2. Consider two distinct lines l and l′ for which the path of l′ in the network graph G
is contained in the path of l. If t(l) = t(l′) and f(l) ≥ f(l′), then l′ is dominated by l.

5.1.2 Reducing the number of dualised constraints

The Lagrangian relaxation formulation presented in §4 is defined on the line-event graph, and
the dualised constraints. The number of these constraints, i.e., the number of constraints that is
relaxed, depends on the possible types T (v) for the stations v in the network. These sets can be
taken equal to the set of all available types T . However, the sizes of these sets can be reduced by
using several intuitive methods. We discuss three such ideas.

Consider a station v and the lines L(v) ⊆ L for which v is part of their route. Making v of a
type that is higher than any of the lines is not useful. Similarly, a type of v that is lower than the
lowest type of the lines in L(v) would induce that no line halts at v.

The given set of operated lines implies that the start and end stations are available for these
lines. In other words, the type of a station must be at least equal to the type of the lines that
start or end there.

In case a station v is fixed to type t ∈ T (v), then by definition the arcs of AL(v, t) are available
at v. If, for some other type t′ ∈ T (v), the available set AL(v, t′) is a subset of AL(v, t), then
type t′ can be removed from the set of available types of T (v).

Fixing a station v at some type t ∈ T (v) can make GL unconnected. In this case, any
assignment t̄ with v at this type would be infeasible, and therefore t can be removed from T (v).
This holds in particular for the smallest type in T (v).

11

l2

b c

t l() = 22

l1 t l() = 11

d

a

Figure 6: Setting station b to type 1 causes line l2 not to halt at b.

Example 5.3. Consider the following example with four stations V = {1, 2, 3, 4}, three tracks E =
{{1, 2}, {2, 3}, {2, 4}} and two lines, l1 of type 1, operated between stations b and d, and l2 of type
2 operated between a and c. Using the rules given above, we can set T (2) = {1, 2}. However, if
we consider the case where station b is of type 1, then this causes line l2 not to halt at b. Thus,
the travellers from b and d cannot reach a or c, and vice versa. Thus, type 1 is not a valid option
for b.

5.1.3 Coefficient reduction

We propose a formulation specific preprocessing rule to strengthen the big-M constraints of (4c)-
(4d):

∑
u∈V

∑
a∈ĀL

h (v,t)

Fu
a ≤M

∑
t′>t

xv
t′ for all v ∈ V, t ∈ T (v) (10)

∑
u∈V

∑
a∈ĀL

c (v,t)

Fu
a ≤M

∑
t′>t

xv
t′ for all v ∈ V, t ∈ T (v) (11)

∑
u∈V

∑
a∈ĀL

p (v,t)

Fu
a ≤M

∑
t′>t

xv
t′ for all v ∈ V, t ∈ T (v) (12)

∑
u∈V

∑
a∈ĀL

n(v,t)

Fu
a ≤M

∑
t′<t

xv
t′ for all v ∈ V, t ∈ T (v) (13)

Given a station u and type t, note that the right-hand sides of the first three constraints are
identical. In order to tighten the values of M , let us recall Lemma 2.6, i.e., the valid path lemma.
From this we can show that non-halt arcs are the only arcs of which travellers originating from
some station v can possibly use more than one arc at any station in the network. This is formalised
in the following lemma.

Lemma 5.4. A shortest valid path of a commodity contains at most one arc a ∈ AL(v) \ AL
n(v)

for every station v ∈ V .

Proof. By contradiction, assume that two or more of these arcs are used. From Lemma 2.7 it
follows that at least two lines are involved. Since at some station, v or other, the path changes
from one line to another, this change could also have been made immediately at v, since the
assumption of §2.2 tells that the time needed to change lines depends only on the line that is
changed to. Thus, a valid path cannot be a shortest valid path if two or more arcs of AL(v)\AL

n(v)
are used at v ∈ V .

This lemma shows that any passenger can use at most one change or halt arc at any station.
Therefore, we can merge (10) and (11) to∑

u∈V

∑
a∈ĀL

h (v,t)

Fu
a +

∑
u∈V

∑
a∈ĀL

c (v,t)

Fu
a ≤M

∑
t′>t

xv
t′ for all v ∈ V, t ∈ T (v) (14)

12

l2

b c

l1 t l() = 21

d

a

t l() = 22

Figure 7: The shortest path from a to d can contain two non-halt arcs at b.

where, for a station v, for the value of M we can use the total number of travellers in the system
except the people entering or leaving the system at u:

M ←
∑

u,w∈V \{v}

Huw for all v ∈ V, t ∈ T (v) (15)

Passengers entering or leaving at v use a passenger arc, and can thus not use any change or halt
arcs according to Lemma 5.4.

For the passenger arcs at u, we already know from Lemma 5.4 that at most

M ←
∑
u∈V

(Hvu + Huv) for all v ∈ V, t ∈ T (v) (16)

units of flow can pass on the arcs entering and leaving v in the line-event graph. Thus, the M for
station v in constraint (12) can be replaced by this quantity.

The number of non-halt arcs used at a station can be more than one. Consider the following
example.

Example 5.5. Let us study an instance with four stations and two lines as shown in Figure 7.
In case the type of station b is less than the type of l1 and of l2, then travellers that want to travel
from a to d have to use two non-halt arcs at b.

From Lemma 2.7 it follows that at most one of the non-halt arcs of a line at a station can be
used. Therefore, the total flow across the arcs in AL

n(v, t) is at most

M ← |L(v)|

∑
u∈V

(Hvu + Huv) +
∑

u,w∈V \{v}

Huw

 for all v ∈ V, t ∈ T (v) (17)

Note that the right-hand side sum of elements of H is equal to the total number of travellers in
the system.

We now derive bounds for the maximum amount of flow via station v, i.e., for
∑

u,w∈V \{v} Huw.
The technique derives guaranteed maximum travel times through the network, and uses these to
determine if stations in the network can ever be passed by travellers of a commodity in any
feasible solution. First, we derive lower bounds on the travel times between stations in GL(t̄) for
any assignment t̄.

Lemma 5.6. The shortest valid path distance between two nodes v and w in GL is a lower bound
for the shortest valid path distance between v and w in GL(t̄) for any assignment t̄.

Proof. Trivial, since GL(t̄) is a subgraph of GL.

Next, consider the shortest path distance in the following graph that is derived from the line-
event graph. The graph D is equal to GL(t̄) for t̄v = min{t ∈ T (v)}. Thus, D contains the arcs
that are available in case all stations are assigned to their lowest type. In contrast to the arcs in
the line-event graph, the non-halt arcs in D are of a length that is equal to the length of their
(unavailable) halt counterpart in ĀL

h (v, t̄v).

13

Lemma 5.7. Consider two nodes v and w for which a shortest valid path in D exists, with length s.
The length of the shortest valid path between v and w in GL(t̄) for any feasible assignment t̄ is at
most s.

Proof. We prove this lemma by contradiction. Define P to be the shortest valid path from v to w
in D. If a shortest valid v-w path P ′ in GL(t̄) is longer than s, then either some arc lengths in GL(t̄)
are higher than in D, or P contains arcs that are not present in GL(t̄). From Observation 2.3 it
is clear that, by construction, the only arcs of D that can be unavailable in GL(t̄) are non-halt
arcs. However, the complementarity relation of Observation 2.4 shows that for every unavailable
non-halt arc there is an available halt arc. Since, in D, these arcs are of the same length it follows
that P ′ cannot be longer than P .

This lemma leads immediately to the following corollary.

Corollary 5.8. Consider two nodes v and w for which a shortest valid path in D exists, with
length s. Any v-w path in some GL(t̄) that is strictly longer than s is not a shortest valid path in
this graph.

Using the lower and upper bounds on the lengths of the shortest valid paths, we can prove the
following theorem.

Theorem 5.9. Consider two nodes v and w for which a shortest valid path in D exists, with
length s. If the shortest valid path in GL from v to u, combined with the shortest valid path from u
to w is strictly longer than s, then u cannot be part of the shortest valid path from v to w in GL(t̄)
for any assignment t̄.

Proof. From the assumption, and Lemma 5.6 it follows that a similar path from v to w via u in
any GL(t̄) is at least as long as that in GL, and thus also longer than s. The remainder follows
from Corollary 5.8.

Thus, we can bound the number of travellers passing some station in any type assignment.
Only travellers for whom the conditions in Theorem 5.9 for some station v do not hold can possibly
travel via v. The total number of these passengers for station v is used in (15) and (17) to replace
the previous bound

∑
u,w∈V \{v} Huw on the number of travellers via v.

5.2 Bounding methods

The Lagrangian relaxation formulation is used to find lower bounds for the optimal objective value
in a branch-and-bound setting. Since the size of the enumeration tree strongly depends on the
quality of these lower bounds, this section describes a problem-specific algorithm for finding good
multiplier vectors for the Lagrangian relaxation. This method is based on a sensitivity analysis of
the arc costs. We have also implemented the subgradient-based Revised Volume Algorithm (RVA)
as described in Bahiense et al. [1]. The algorithm can be found in Algorithm 2 in the Appendix.
At the end of this section we discuss several issues related to using Lagrangian relaxation for
bounding in general.

5.2.1 Problem-specific multiplier adjustment algorithm

As we have seen previously, solving the Lagrangian relaxation problem for a given multiplier
vector λ can be done by solving two polynomially solvable problems. This section describes a
technique for finding good values for λ, that is based on a sensitivity analysis of the shortest paths
resulting from optimising the flow problem LRF(λ) in (6). We refer to this multiplier adjustment
algorithm as MAA.

First, recall the structure of the dualised constraints. In the original formulation of (4), each
restriction relates the flow across a set of arcs to the variables modelling the station types. Follow-
ing the dualisation, the multiplier λr of constraint r = 1, . . . ,m thus contributes to the cost of a
group of arcs in the problem (5). For simplicity, we refer to this set of arcs as AL(r). Conversely,

14

a specific arc can be contained in the arc set of more than one constraint. The relation between
the multipliers λ of the constraints and the cost per unit per arc is given by the vector d(λ). The
set of constraints that are part of the restrictions of some station u are given by the set R(u).

For suitably small changes in λ, and so for small changes in the arc costs d(λ)a, the optimal
flow F of LRF(λ) does not change. Therefore, we propose to do a sensitivity analysis on the arc
costs d(λ)a. This analysis results in a lower bound δ−a , and an upper bound δ+

a for every arc a.
If we consider one arc a, then the flow solution F is optimal for any cost of a between these two
bounds, given that all other arc costs remain unchanged.

A sensitivity analysis on the cost of an arc a with respect to an optimal flow F is equivalent
to an arc cost analysis for shortest paths. We present a specialised algorithm for performing this
analysis. The special structure of the underlying problem gives us the opportunity to derive better
(wider) bounds on the allowed changes in arc costs. Of particular use is the fact that the costs
of arcs are not changed individually, but are altered as a consequence of a change in a constraint
multiplier that affects a set of arcs at the same time. A second important aspect is the valid path
property that must hold for the paths of travellers through the network. The proposed sensitivity
analysis algorithm is outlined in Algorithm 3 in the appendix.

We assume that the optimal flow F does not change if the implied changes in all the arc
costs remain within the sensitivity bounds. This allows us to model the effects of changes of the
multiplier vector to changes in the value of the Lagrangian dual. The following linear program
determines a good update λ← λ + ∆ by building the vector ∆ station by station.

Given a flow F , a change ∆r in the multiplier of some constraint r has a two-sided effect on
the objective function value of (5). Firstly, through (6), it results in a change of

∆r(AF)r = ∆r

∑
a∈AL(r)

F (a) = ∆rcr with cr ≡
∑

a∈AL(r)

F (a)

where F (a) is the total flow of all origin stations on arc a.
Secondly, via (7) there can be a change in the optimal solution x. The new vector ∆ appears

in the objective function of (7). As shown in (8), the optimal solution to this problem is found by
station-wise setting the xu

t to one for which the objective function coefficient is highest.
The overall effect of a variable ∆r on the two subproblems can be expressed using linear

restrictions. For the constraints of a station v, the problem of finding the vector elements ∆ that
maximise the objective value of the Lagrangian relaxation is modelled as follows

max
∑

r∈R(u)

cr∆r − Z (18a)

s.t. δ−a ≤
∑

r|a∈AL(r)

∆r ≤ δa for all a ∈ AL(u) (18b)

(λ + ∆)B(u, t) ≤ Z for all t ∈ T (18c)
∆r ∈ R+ for all r ∈ R(u) (18d)
Z ∈ R+ (18e)

The variable Z is used to model the optimal objective function value zLRX(λ) of (7). The
constraints (18b) link the change in the multiplier of every constraint r to the upper and lower
bounds δ+

a and δ−a for arcs on which r is defined. According to (8), the optimal solution for
station u takes the type t that maximises (λ + ∆)B(u, t). The restrictions (18c) model this by
ensuring that Z is at least as large as (λ + ∆)B(u, t) for any type t of station u. Since Z has a
negative coefficient in the objective function of the maximisation problem here, this ensures that Z
actually attains the correct value.

The bounds derived by the sensitivity analysis are only valid for changes in the costs of indi-
vidual arcs. Changing the costs of many arcs, as we propose here, can therefore not guarantee an
improvement. However, consider only the arcs R(u) at station u. Lemma 5.4 shows that every
valid shortest path can contain at most one of them, except for the non-halt arcs. Therefore, we

15

could propose to iteratively solve LR(λ) for the new vector λ ← λ + ∆, for changes made to the
arcs of only one station. However, extensive initial experiments have shown that solving for all
changes at the same time gives better results. This procedure is shown in Line 30 and Line 34 of
Algorithm 3.

5.2.2 Using Lagrangian relaxation for branch-and-bound

A solution (F, x) of LR(λ) for some vector λ is used in the primal heuristic of §5.3. Alternatively, in
case the solution (F, x) is primal feasible, then such a solution is only optimal for the subproblem,
if (F, x) is an optimal solution of LR(λ) and if the complementary slackness conditions hold. These
are the well-known conditions under which a solution of a Lagrangian relaxation is also optimal
for the original problem (see Geoffrion [5]).

The optimality condition is satisfied automatically by the algorithms used to solve LR(λ). In
case the complementary slackness conditions are not satisfied, then this means that the Lagrangian
relaxation lower bound resulted in a feasible solution, but there is no guarantee that this solution
is the best feasible solution for this subproblem.

When some station u is branched on, then its xu
t variables and the constraints R(u) can be

removed from the problem description. The remaining question is what happens to the lower
bound in the child node. Let us compare the value of the lower bound for a vector λ∗ in the
parent node and in the child node.

Lemma 5.10. For a given vector λ ≥ 0, removing any redundant dualised restriction r from LR(λ)
increases the value of the Lagrangian bound from zLR(λ) to zLR(λ′) for λ′ equal to λ with ele-
ment λ′r = 0.

Proof. The objective function of LR(λ′) is

zLR(λ′) = min
F,x

∑
v∈V

dF v + λ′ (AF −Bx)

= min
F,x

∑
v∈V

dF v + λ (AF −Bx)− λr (AF −Bx)r .

Since r is redundant, it follows that (AF)r ≤ (Bx)r for any solution (F, x), and thus zLR(λ) ≤
zLR(λ′) for any λ ≥ 0.

This lemma shows that removing any obsolete restrictions from the dualised constraints by
fixing their multiplier to zero does not lower the optimal solution value of the minimisation problem
for the Lagrangian relaxation.

Corollary 5.11. Consider a parent and child node in the branch-and-bound tree for which a
vector λ results in a lower bound of zp ≡ zLR(λ) in the parent node. In the child node, after
fixing the variables and removing the redundant constraints by setting the elements of λ to zero,
the Lagrangian relaxation lower bound is at least zp.

5.3 Tree search

Next, we discuss the construction of the enumeration tree and the search process through it.

5.3.1 Branching

Branching rules are used to split a problem into several new subproblems that are easier to
solve than the original problem. Normal variable branching for binary variables creates two new
subproblems, one for every possible value of the binary variable. Alternatively, we propose to
create at most Tmax new subproblems, where in every new node a chosen station u is assigned to
be of type t with t ∈ T (u). Clearly, the station to use for branching can be chosen in an number
of ways.

16

Branching rules influence the number of nodes of the branch-and-bound tree. Because the size
of the enumeration tree strongly depends on how quickly the upper and lower bounds converge,
we prefer a branching station that improves these bounds (see also Linderoth and Savelsbergh [9]).
A difficulty of the STOP problem is that many of the variables—in particular, all x variables, and
the flows on the non-halt arcs and passenger arcs—do not appear in the objective function (4a).
We consider three branching rules, given a solution (F, x) of the Lagrangian relaxation problem
for the multiplier vector λ.

Maximum unavailable flow branching For every station u, we consider the current
amount of flow of F that would become unavailable if u where to be of type t in T (u). The quality
of branching on u is given by the smallest amount of unavailable flow over the types in T (u).
Thus, we branch on the station for which

min
t∈T (u)

∑
a∈ĀL(u,t)

F (a)

is maximal.
Constraint based branching Consider the vector AF − Bx that represents the dualised

constraints. A positive entry shows a violated constraint AF ≤ Bx of (5). Every constraint can
be contributed to exactly one station. This branching rule proposes to branch on the station with
the maximally violated constraint, i.e., the station u for which

(AF −Bx)r

is maximal.
Estimated degradation branching Throughout the branch-and-bound tree, it is likely

that a station is branched on more than once. To estimate the increase in the lower bound of
the new child problems when branching on some station u, this branching rule uses the average
increases over previous nodes where u was used for branching (see also Linderoth and Savelsbergh
[9]). For every station u, we store the sum of the differences between the lower bound at the
parent node, and the lower bound at the current node after fixing u to a certain type. This total
improvement for u is reset after a fixed number of times u was branched on. Then, this estimate Pu

is used to weigh the amount of unavailable flow, as in the first branching rule. We choose the
station u for which

min
t∈T (u)

Pu

∑
a∈ĀL(u,t)

F (a)

is highest. To initialise the estimate Pu, we iteratively fix every station u to the types t ∈ T (u).

5.3.2 Primal heuristics

A primal feasible solution (F, x) is completely described by an assignment vector x of types to
stations. We propose two algorithms to construct good assignments according to a solution (F, x).

The first primal heuristic is based on the flow solution F of LRF(λ). Every station is assigned
the type t for which the amount of unavailable flow of F is smallest: t̄u = argmint

∑
a∈ĀL(u,t) F (a).

This assignment is then used with STOP(t̄) to find a primal feasible flow and the total travel time
needed.

Second, consider the assignment variables xu
t that are produced by LRX(λ). From the con-

struction of this solution in (8) it is clear that the solution xu
t can also be represented by an

assignment vector t̄. Again, a primal feasible flow can easily be constructed from this assignment
by solving STOP(t̄).

These fast primal heuristics are used at every node in the branch-and-bound tree to find good
primal solutions.

17

NS3600 NSNH NSRandstad

Stations 28 36 122
Tracks 27 37 138
Types 3 3 3
Lines 14 14 64

Table 1: Basic statistics for the used instances.

NS3600 NSNH NSRandstad

LR cons 120 176 432
Lines 14 14 64
Nodes 168 288 1308
Arcs 1296 3074 19812
zLR(0) 4326 3221 3404

Table 2: Initial statistics before preprocessing. The numbers of nodes and arcs refer to the line-
event graph. The value zLR(0) is the Lagrangian bound for the zero multiplier vector.

6 Computational results

The proposed Lagrangian relaxation based branch-and-bound algorithm of §5 is tested using three
real life instance of NSR. Table 1 shows some basic statistics for these instances, such as the number
of stations, tracks and available types, as well as the number of lines in the instance. Figure 8
shows the network graphs for these instances. All computations were obtained on an AMD Athlon
XP 2700+ with 1 GB internal memory running Linux, kernel 2.4.18, using CPLEX 8.1.

A short list of characteristics for the line-event graphs of these instances before preprocessing
is shown in Table 2. The sizes of the line sets (‘# Lines’), node sets (‘# Nodes’) and arc sets (‘#
Arcs’) are presented. In addition, the table also gives the number of dualised constraints in the
Lagrangian problem (‘# LR cons’), and the values of the Lagrangian relaxation zLR(λ) for λ = 0.

Using the preprocessing techniques described in §5.1, the sizes of the line-event graphs can
be reduced considerably, as can be seen in Table 3. By eliminating redundant lines from the
problem description, the number of nodes and arcs is reduced on average by around 27% and 50%
respectively. The strength of the reduction techniques for the available types of stations is shown
by the number of dualised constraints for the Lagrangian relaxation. For some of the stations
only one available type remains. These stations can thus be fixed to this type a-priori (‘# Fixed’).
Note also the improvements in the values for zLR(λ).

The line-event graphs for these instances are too large to have a useful visual representation.
We start our analysis of the reduced problems at the root node of the branch-and-bound tree.

To test the effectiveness of the two techniques mentioned in §5.2, several combinations of them
are tried at the first node. Apart from the two algorithms, we also test the zero multiplier vector,
as an obvious trivial ‘algorithm’. The statistics for the revised volume algorithm, the multiplier
adjustment algorithm and the zero-vector (‘Zero’) are shown in Table 4. The column ‘MAA, RVA’
gives the results for first applying the MAA, and then using the resulting vector as input for the
RVA. The column ‘RVA, MAA’ is similar, but for the reverse order. The last column shows the
value of the linear programming lower bound, obtained from constructing and solving the LP
relaxation of the original STOP model of (4). As was shown in Corollary 4.3, these LP bounds are
tight upper bounds on the best possible values of the Lagrangian relaxation. The LP relaxation
for the last problem, NSRandstad, turned out too large to construct. More information on the
number of variables and constraints of STOP can be found in Table 8 in the Appendix.

For the first instance, the improvement of the lower bound (‘zLR’), compared to using just the
zero-vector, is considerable. Here RVA takes much more time, but also slightly outperforms MAA.

18

(a) NS3600 (b) NSNH

(c) NSRandstad

Figure 8: The networks for the instances NS3600 (8(a)), NSNH (8(b)) and NSRandstad (8(c)).

19

NS3600 NSNH NSRandstad

LR cons 60 (−50%) 126 (−28%) 321 (−26%)
Fixed 10 (+36%) 6 (+17%) 57 (+47%)
Lines 7 (−50%) 9 (−36%) 40 (−37%)
Nodes 130 (−23%) 230 (−20%) 922 (−30%)
Arcs 660 (−49%) 1773 (−42%) 9502 (−52%)
zLR(0) 4939 (+14%) 3353 (4%) 3717 (+9%)

Table 3: Statistics after preprocessing. The first row shows the number of stations for which the
type could be fixed a-priori. The numbers of node and arcs refers to the line-event graph. The
value zLR(0) is the Lagrangian bound for the zero multiplier vector.

MAA, RVA,
Instance Zero MAA RVA RVA MAA LP

NS3600 zLR 4939 5019 5024 5019 5025 5026
zSTOP 5497 5497 5497 5497 5497
Gap 11.30% 9.52% 9.41% 9.52% 9.39%
Time 0.24 0.47 4.14 1.59 4.32 32.95

NSNH zLR 3353 3368 3353 3368 3368 3370
zSTOP 4252 4252 4252 4252 4252
Gap 26.81% 26.25% 26.81% 26.25% 26.25%
Time 0.31 0.87 2.37 3.01 3.09 165.95

NSRandstad zLR 3717 3717 3717 3717 3717 -
zSTOP 4200 4200 4200 4200 4200
Gap 12.99% 12.99% 12.99% 12.99% 12.99%
Time 2.4 5.95 127.73 131.41 129.81 -

Table 4: Statistics for the root node of the branch-and-bound tree.

4930

4940

4950

4960

4970

4980

4990

5000

5010

5020

5030

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (seconds)

O
b

je
ct

iv
e

fu
n
ct

io
n

va
lu

e

RVA

MAA

Figure 9: The improvement of the lower bound zLR(λ) over time (seconds), for NS3600 at the root
node, for combinations of the improvement techniques.

20

Instance Flow Constraint Degradation

NS3600 zLR 5489 5489 5489
zSTOP 5489 5489 5489
Gap 0.00% 0.00% 0.00%

Nodes 389 377 331
Time 6.8 6.68 6.51

NSNH zLR 4088 4139 4139
zSTOP 4203 4139 4139
Gap 2.81% 0.00% 0.00%

Nodes 240489 28333 18500
Time * 507.15 320.14

NSRandstad zLR 3972 3949 3979
zSTOP 4135 4135 4138
Gap 4.10% 4.71% 4.00%

Nodes 12900 12978 13752
Time * * *

Table 5: Branch-and-bound statistics for using the different branching rules on the three instances.
An asterisk (*) indicates that the time limit of 3600 seconds was exceeded.

Combining RVA and MAA, in this order, further enhances the quality of the lower bound. This
is shown graphically in Figure 9. The graph shows the value of the so far best lower bound as a
function of time. The different nodes in the graph indicate the iterations of the two algorithms.
For the RVA, the nodes represent only the iterations at which an improvement was made. The
final bound is very close to the theoretical limit imposed by the linear programming relaxation.
This is also true for the second instance, NSNH. However, for this instance RVA cannot improve
upon the trivial lower bound, nor on the vector of MAA. Based on these findings, we use the
combination of RVA, followed by MAA to find the multiplier vector at the root node.

Table 4 also shows the results of applying the primal heuristics of §5.3 (‘zSTOP’). The remaining
gaps between the lower bounds and these upper bounds (‘Gap’) are still considerable. However,
as we shall see in Table 6, these initial solutions are within a few percent of the optimal solutions.

Next, we investigate the different branching rules presented in §5.3. Each of the three instances
was tested using one of the branching rules. For a maximum computation time of one hour, the
results of these nine tests are reported in Table 5.

An important difference in the results is the fact that, using the maximum unavailable flow
rule (‘Flow’), the instance NSNH could not be solved within the given time bound, while the two
other rules solve within a few hundred seconds. Based on these results, we propose to use the
estimated degradation rule (‘Degradation’) as the default branching rule.

Using the Degradation based branching rule, and strengthening the root node as described
earlier, we have tested all three instances against three different scenarios for applying the bound
improvement techniques. To investigate the computational tradeoff between better bounds and
complex improvement techniques, we first tried using only the zero-vector at every node. This
considers the zero-vector, and the multiplier vector of the parent, and chooses the one that gives
the best bound. Through its simplicity, this technique is very fast at every node. Alternatively,
we tried the MAA and RVA individually, but we have not tested a combination of these two.

The findings of applying different improvement techniques are shown in Table 6. A maximum
computation time of two CPU hours is used. The first two instances could be solved to optimal-
ity, regardless of the configuration. However, the necessary amount of time and the number of
enumeration nodes differs significantly. For these instances, the number of nodes is smallest when
using the MAA at every node, even though the difference is only modest. The RVA does not
outperform the trivial zero-vector method. For NSNH, the number of nodes needed to solve the
instance is much higher. With respect to the required amount of time, the zero-vector method

21

Instance Zero MAA RVA STOP

NS3600 zLR 5489 5489 5489 5489
zSTOP 5489 5489 5489 5489
Gap 0.00% 0.00% 0.00% 0.00%

Nodes 303 292 303 200
Time 5.35 12.71 94.94 68.47

NSNH zLR 4139 4139 4139 4139
zSTOP 4139 4139 4139 4139
Gap 0.00% 0.00% 0.00% 0.00%

Nodes 18500 17068 25221 8700
Time 319.17 1265.59 6284.49 4600

NSRandstad zLR 3996 3954 3835 -
zSTOP 4138 4138 4138 -
Gap 3.55% 4.65% 7.90% -

Nodes 29733 4497 157 -
Time * * * -

Table 6: Computational results of applying the MAA and RVA techniques at every node of tree.
The results of the first column are obtained using only the zero-vector at every node. An asterisk
(*) indicates that the time limit of 7200 seconds was exceeded. The NSRandstad could not be
constructed using the original STOP formulation.

Instance Current New Difference

NS3600 5607 5489 −118 (−2.1%)
NSNH 4331 4139 −192 (−4.4%)
NSRandstad 4281 4138 −143 (−3.3%)

Table 7: Comparing the current and new total travel times.

excels due to its simplicity. The time spent at a node is roughly a factor of four lower than for
MAA. Even though the quality of the individual lower bounds is less, the overall computation
times are lower.

The last column in Table 6 shows the findings for solving the complete STOP formulation
of (4) as a mixed integer programming problem using CPLEX 8.1. As mentioned before, the
NSRandstad instance is too large to construct in this way. The remaining two instances can be
solved. However, the computation times are far worse than using, e.g., the zero-vector method, or
MAA. This shows that the techniques proposed in this paper perform much better on practical
instances than the off-the-shelf solver CPLEX.

In Table 7 we compare the total travel time using the currently operated station types (‘Cur-
rent’), with the best solution of Table 6 (‘New’). The improvements of between 2.1% and 4.4%
are indications that a reassignment of station types can indeed shorten the total travel time of the
passengers. From the complete traffic assignment used by STOP it is easy to compute estimates
of, for example, the number of direct travellers (see Table 9 in the Appendix). The effect of the
new type assignment on the average number of necessary train changes is estimated to be small.

7 Summary and conclusions

This paper outlined an approach for solving the problem of determining the halting patterns
for passenger trains through a network of stations and tracks. We first derived a mixed integer
programming formulation of this problem, based on a multi-commodity flow formulation with

22

additional decision variables and restrictions (§3). For practical applications this model is too
large. To make the problem more tractable, we introduced a Lagrangian relaxation (§4). This
relaxation can be solved by considering a number of smaller easy-to-solve problems. The provided
lower bounds are used in a branch-and-bound algorithm. This algorithm is described by intro-
ducing several classes of preprocessing rules (§5.1), lower bound improvement methods (§5.2) and
branching rules (§5.3).

The described techniques were tested on three real-life instances of NSR. From these tests we
conclude that the techniques perform well on practical instances, and significantly better than
using the MIP formulation with CPLEX 8.1. The preprocessing techniques considerably reduce
the size of the initial problem, and the improvement methods effectively strengthen the lower
bounds. Two of the three test cases were solved to optimality within a time limit of two hours.
The remaining case was provably solved to less than 4% of optimality. Compared to the current
situation, the proposed solutions offer a reduction in the total travel time of between 2.1% and
4.4%.

Acknowledgments

This research is partly sponsored by the Human Potential Program of the European Union under
contract no. HPRN-CT-1999-00104 (AMORE).

References

[1] L. Bahiense, N. Maculan, and C. Sagastizábal. The volume algorithm revisited: relaxation
with bundle methods. Mathematical Programming, 94:41–69, 2002.

[2] M.R. Bussieck. Optimal lines in public rail transport. PhD thesis, Technical University
Braunschweig, Braunschweig, Germany, 1998.

[3] A. Caprara, M. Fischetti, P. Toth, D. Vigo, and P.L. Guida. Algorithms for railway crew
management. Mathematical Programming, 79:125–141, 1997.

[4] G. Gallo and F. Di Miele. Dispatching busses in parking depots. Transportation Science, 79:
322–330, 2001.

[5] A.M. Geoffrion. Lagrangean Relaxation for Integer Programming. Mathematical
Programming Study, 2:82–114, 1974.

[6] J.H.M. Goossens, C.P.M. van Hoesel, and L.G. Kroon. A branch-and-cut approach for
solving line planning problems. METEOR Research Memorandum RM/01/016, University
of Maastricht, Maastricht, The Netherlands, 2001. Forthcoming in Transportation Science.

[7] J.H.M. Goossens, C.P.M. van Hoesel, and L.G. Kroon. On solving multi-type line planning
problems. METEOR Research Memorandum RM/02/009, University of Maastricht,
Maastricht, The Netherlands, 2002.

[8] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman, editor, Proceedings
of the Second Berkeley Symposium on Mathematical Statistics and Probability, pages
481–492, 1951.

[9] J.T. Linderoth and M.W.P. Savelsbergh. A computational study of search strategies for
mixed integer programming. INFORMS Journal on Computing, 11(2):173–187, 1999.

[10] K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. Deutsches
Zentrum für Luft- und Raumfahrt e.V., Braunschweig, Germany, 1999. Habilitation thesis.

23

[11] G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization. John Wiley &
Sons, Inc., New York, 1988.

[12] M.A. Odijk. Railway Timetable Generation. PhD thesis, Delft University of Technology,
Delft, The Netherlands, 1997.

[13] L.W.P. Peeters. Cyclic railway timetable optimization. PhD thesis, Erasmus Research
Institute of Management (ERIM), Erasmus University Rotterdam, Rotterdam, The
Netherlands, 2003.

[14] A. Schrijver. Minimum circulation of railway stock. CWI Quarterly, 3:205–217, 1993.

[15] A. Schrijver and A. Steenbeek. Dienstregelingontwikkeling voor Railned (Timetable
construction for Railned). Technical report, CWI, Amsterdam, The Netherlands, 1994. In
Dutch.

[16] P.J. Zwaneveld. Railway planning, routing of trains and allocation of passenger lines. PhD
thesis, Erasmus Universiteit Rotterdam, Rotterdam, The Netherlands, 1997.

24

Appendix

7.1 Bounding algorithms

Algorithm 2 Revised Volume Algorithm
Input: A vector of Lagrangian multipliers λ0 ≥ 0, and a primal bound z∗.
Input: A tolerance m1 ∈ (0, 1), and a relaxation factor µ ∈ (0, 2).
Input: A maximum # of iterations T , and a # of consecutive null steps N .
Input: Two threshold values δω and δε.
1: Solve LR(λ0), and let (F, x) be the optimal solution.

2: Initialise ν0 = (AF −Bx), z1 = F , λ̂1 = p1 = λ0, ω0 = ω1 = ν0, and ε1 = 0.
3: Calculate the new stepsize

st+1 = µ
z∗ − zLR(λt)

‖ωt‖
. (19)

4: Set k = t = 1.
5: while t ≤ T and zLR(λ̂k) ≤ z∗ do

6: Make the move λt = λ̂k + stωt.
7: Compute the ascent measure δt = st‖ωt‖2 + |〈ωt, λ̂k − pt〉|+ εt.

8: if ‖ωt‖2 ≤ δ2
ω or |〈ωt, λ̂k − pt〉|+ εt ≤ δε then

9: stop
10: end if
11: Solve LR(λt) as described in §4, and let (F, x) be the optimal solution.
12: Set νt = (AF −Bx).

13: if zLR(λt) ≥ zLR(λ̂k) + m1δt then {serious step}
14: Reset the counter n = 0, and set k ← k + 1
15: Set λ̂k = λt

16: if µ < 1 then µ← 1.1 · µ end if
17: else {null step}
18: n← n + 1
19: if n ≥ N then {too many null steps} Set n← 0 and µ← 0.5µ end if
20: end if
21: Calculate the new stepsize st+1 as in (19) above.

22: Set Et = νt(λ̂k − λt), and Êt = ωt(λ̂k − pt).
23: Set αt ∈ [0, 1] to be the value closest, or equal to

Êt−Et
st+1

− 〈νt, ωt〉+ ‖ωt‖2

‖νt‖2 − 2〈νt, ωt〉+ ‖ωt‖2
(20)

24: Compute

zt+1 = αtF + (1− αt)zt

ωt+1 = αtνt + (1− αt)ωt

pt+1 = αtλt + (1− αt)pt

εt+1 = αtσt + (1− αt)εt

where σt = (1− αt)〈νt − ωt, pt − λt〉
25: Set t← t + 1.
26: end while
Output: the proposed multiplier vector λ̂k

25

Algorithm 3 Multiplier Adjustment Algorithm
Input: A vector of Lagrangian multipliers λ, and a tolerance m1.
Input: A distance matrix with Dvi ∈ R+ for v ∈ V and i ∈ V ∪ V L.
Input: A predecessor matrix with Pvi ∈ AL for v ∈ V and i ∈ V ∪ V L.
Input: The set Pv contains the arcs of the shortest path tree rooted at v.
Input: A maximum # of iterations T , and a # of consecutive null steps N .
Input: A factor c > 0 for widening the derived sensitivity bounds.
1: Set λ̂ = λ {the best vector is λ̂}
2: while t ≤ T and zLR(λ̂) ≤ z∗ do
3: for all stations v do
4: for all a = (i, j) ∈ AL : a /∈ Pv do {loop all non-tree arcs}
5: if Pvi /∈ AL

d then break end if
6: Set d = Dvj − (Dvi + d(λ)a) {d is non-positive}
7: Set a′ = (i′, j′) = Pvj

8: if a′ is not in the same constraints as a then {consider decreasing the cost of a}
9: δ−a = max{δ−a , d}

10: end if
11: while i 6= j do
12: if Dvi > Dvj or t = v then {consider decreasing the cost of arcs to i}
13: a′ = (i′, j′) = Pvi {a′ is on the path to the tail of a, but not to head.}
14: if (a′ ∈ AL

d) or (a at a different station than a′) then

15: Update δ−
a′ = max{δ−

a′ , d}
16: end if
17: i← i′

18: else {consider increasing the cost of arcs to j}
19: a′ = (i′, j′) = Pvj {a′ is on the path to the head of a, but not to tail.}
20: if a′ is not in the same constraints as a then
21: Update δ+

a′ = min{δ+
a′ ,−d}

22: end if
23: j ← i′

24: end if
25: end while
26: end for
27: end for
28: Stretch the bounds: δ− ← c · δ−, and δ+ ← c · δ+.
29: if ‖δ+ − δ−‖ ≤ m1 then stop end if
30: for all stations v that are not fixed do
31: Solve the improvement problem (18) for v, giving the vector ∆
32: Set λ← λ + ∆.
33: end for
34: Solve LR(λt) as described in §4, and let (F, x) be the optimal solution.

35: if zLR(λ)/zLR(λ̂) ≥ 1 + m1 then {serious step}
36: Reset the counter n = 0.
37: Set λ̂ = λ.
38: else {null step}
39: n← n + 1
40: if n ≥ N then {too many null steps} stop end if
41: end if
42: end while
Output: the proposed multiplier vector λ̂

26

7.2 Additional tables

NS3600 NSNH NSRandstad

#Var. initially 31642 99536 2257130
#Var. after 15348 55790 1055054
#Con. initially 148 212 554
#Con. after 88 162 443
Size reduction 71% 57% 63%

Table 8: Statistics for the original STOP formulation, before and after preprocessing.

NS3600 NSNH NSRandstad

Distribution Direct 93.5% (−0.1%) 91.6% (−0.3%) 80.0% (−1.0%)
1 Change 6.3% (0.0%) 7.8% (0.7%) 18.3% (0.8%)
2 Changes 0.2% (0.1%) 0.5% (−0.4%) 1.7% (0.2%)

Speed Direct 72.0 (3.6%) 62.9 (5.6%) 66.0 (4.5%)
(kph) 1 Change 47.2 (−7.3%) 43.0 (−0.6%) 50.7 (4.5%)

2 Changes 0.0 (0.0%) 39.1 (−4.3%) 46.6 (1.7%)

Solution Upgraded 0 (0.0%) 2 (5.6%) 0 (0.0%)
Downgraded 3 (10.7%) 3 (8.3%) 11 (9.0%)
Tr. time 5489 (−2.1%) 4139 (−4.4%) 4138 (−3.3%)
Tr. distance 6274 (0.1%) 4057 (−0.1%) 4100 (0.4%)

Table 9: Solution statistics for travellers in the proposed solution. The differences with using the
current station types are shown between brackets. The distribution of the travellers and their
average speeds are shown for the direct travellers, and for those travellers that have to change
trains once, etc. The last rows of the table show the percentages of all stations that were upgraded
or downgraded relative to the currently operated station types, and the new total travel time and
total travelled distance.

27

