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Abstract

Several panel unit root tests that account for cross section dependence using a common

factor structure have been proposed in the literature recently, notably Pesaran (2005),

Moon and Perron (2004) and Bai and Ng (2004a). Pesaran’s (2005) cross-sectionally

augmented unit root tests are designed for cases where cross-sectional dependence is due

to a single factor. The Moon and Perron (2004) tests which use defactored data is similar

in spirit but can account for multiple common factors. The Bai and Ng (2004a) tests

allow to determine the source of non-stationarity by testing for unit roots in the common

factors and the idiosyncratic factors separately.

This paper makes four contributions: (1) it compares the three testing procedures

in terms of similarities and difference in the data generation process, tests, null and

alternative hypotheses considered, (2) using Monte Carlo results it compares the small

sample properties of the tests in models with up to two common factors, and of the panel

unit root tests by Breitung and Das (2006) and Sul (2006), (3) it provides an application

which illustrates the use of the tests, and (4) finally it discusses the use of the tests in

modelling in general.
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6200 MD Maastricht, The Netherlands. Corresponding author: Christian Gengenbach, email:
C.Gengenbach@ke.unimaas.nl. The authors would like to thank Jörg Breitung and 4 anonymous refer-
ees for helpful comments and suggestions. The usual disclaimer applies.
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1 Introduction

For many economic applications it is important to know whether an observed time series is

stationary or non-stationary. For example, to test the validity of Purchasing Power Parity

(PPP) one should examine the properties of the real exchange rates. One needs to look at

the behavior of differences in real per capita output growth to test for growth convergence.

Therefore, unit root tests are an important tool for econometric analysis. However, univariate

unit root tests are known to lack power for samples of small or medium size. Unfortunately,

for many macroeconomic variables data is available only for a small sample span. But, since

studies investigating for example PPP or growth convergence are concerned with the behavior

of similar data series from several countries, a natural attempt is to pool the information

contained in a data panel. Indeed, that is the general idea of panel unit root tests, and

they only differ in the way the information is pooled. Unfortunately, simple pooling is only

valid if the units of the panel are independent of each other and sufficiently homogenous.

Independence however is unlikely to hold in most applications of panel unit root tests. In

cross-country analysis there might be common influences to all panel members, e.g. in PPP-

studies one usually uses a common numeraire country to calculate real exchange rates.

In early approaches to panel unit root testing, the often unrealistic assumption of cross-

sectional independence is made. For instance, the tests proposed in Levin, Lin and Chu

(2002) and Im, Pesaran and Shin (2003), denoted respectively as LLC and IPS, assume cross-

sectional independence, but allow for heterogeneity of the form of individual deterministic

effects (constant and/or linear time trend) and heterogenous serial correlation structure of

the error terms. Both methods test the same null hypothesis of non-stationarity, but differ in

terms of the considered alternative and hence, in the way information is pooled. Levin, Lin and

Chu (2002) study balanced panels with N cross-sectional units and T time series observations.

They assume a homogenous first order autoregressive parameter and their test is based on the

pooled t-statistic of the estimator. Im, Pesaran and Shin (2003) allow unbalanced panels with

N cross sectional units and Ti time series observations for each i = 1, . . . , N . They propose a

standardized average of individual ADF statistics to test the pooled unit root null hypothesis

against a heterogenous alternative. Both methods assume cross-sectional independence among

panel units except for a common time effect. In that case, the derived results remain valid if

cross-sectional averages are subtracted from the data.

Attention has been drawn recently to the assumption of cross-sectional independence

on which the asymptotic results of both procedures rely. Among the first to analyze the

effect of cross-sectional correlation on panel unit root tests was O’Connell (1998). Using

Monte Carlo simulations he shows that the LLC test severely suffers from cross-correlation in

terms of increased size and reduced power. He suggests using FGLS estimation to overcome

this problem. However, estimation of the error covariance matrix becomes infeasible as N

and T grow large. Flôres, Jorion, Preumont and Szafarz (1999) use SUR estimation of

the (possibly heterogenous) AR parameter, and determine critical values for their test via
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Monte Carlo simulations. Their methodology has the disadvantage that it requires extensive

simulations to determine critical values and does only account for contemporaneous cross-

sectional correlation. In simulation studies, Banerjee, Marcellino and Osbat (2004, 2005)

assess the finite sample performance of panel unit root and cointegration tests when panel

members are cross-correlated or even cross-sectionally cointegrated1. Their finding is, that all

methods experience size distortions when panel members are cointegrated. This means that

procedures such as the LLC or IPS test would over-reject the non-stationarity null when there

are common sources of non-stationarity. This is analytically confirmed by Lyhagen (2000).

Recently, panel unit root tests have been proposed model cross-sectional correlation using

a common factor representation of the data, or robust methods allowing for a general form of

cross-sectional dependence, e.g. Chang (2002). The purpose of this paper is to study some of

the new methods which assume a factor structure and compare them in terms of modelling,

assumptions and statistical properties of the test statistics. A Monte Carlo study assesses the

finite sample properties of the test statistics in terms of size and power in order to compare

them.

Three different newly proposed unit root tests will be considered. Pesaran (2005) suggests

a cross-sectionally augmented Dickey-Fuller (CADF) test where the standard DF regressions

are augmented with cross-sectional averages of lagged levels and first differences of the in-

dividual series. He also considers a cross-sectional augmented IPS (CIPS) test, which is a

simple average of the individual CADF-tests. The data generating process (DGP) is a sim-

ple dynamic linear heterogenous panel data model. The error term is assumed to have an

unobserved one-common-factor structure accounting for cross-sectional correlation and an

idiosyncratic component.

A second type of panel unit root tests has been proposed by Moon and Perron (2004).

We consider two feasible t-statistics proposed by them to test for unit roots in a dynamic

panel model allowing for fixed effects. The stationary error term follows a K-unobserved-

common-factor model to which an idiosyncratic shock is added. The t-statistics are based on

appropriately standardized pooled estimators of the first order serial correlation coefficients

of the data series.

The third type of panel unit root tests has been proposed by Bai and Ng (2004a). In their

“Panel Analysis of Non-stationarity in Idiosyncratic and Common Components” (PANIC)

approach the space spanned by the unobserved common factors and idiosyncratic disturbances

is consistently estimated without knowing whether they are stationary or integrated. Next,

the number of independent stochastic trends driving the common factors is determined. Both

individual and pooled individual statistics are proposed to test separately for unit roots in

the unobserved common and idiosyncratic components of the data instead of the observed

series. Both common and idiosyncratic components may be stationary or integrated.

These three panel unit root tests have been selected for the following reasons. First of all,

1The notation of panel cointegration tests refers to tests for cointegration between several variables of one
panel member, in contrast to cointegration between panel members.
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the model specifications are sufficiently close to each other and some are partly nested to allow

for comparison. At the same time, the test procedures differ in important ways to make it

interesting to compare their properties and provide some guidelines for the empirical analysis

of non-stationary panel data. Second, in all the approaches an unobserved common factor

structure is assumed to explain cross-sectional correlation. Common factor structures have

several advantages. Statistical estimation and testing methods, and selection procedures for

the number of factors are at the disposal of the empirical researcher. The statistical properties

of these procedures are in general well-understood. These method recently experienced a

revival in the common features literature. Using common factors to explain cross-sectional

correlation allows to deal with the curse of dimensionality problem in a natural way, which has

been found to work well in empirical econometrics. Finally, common factor structures often

result from theoretical considerations in economics. For instance the CAPM and the APT

models used in finance are common factor models, and many intertemporal microeconomic

models imply factor structures for the data.

The paper is organized as follows: In Section 2 we present the DGPs used in the three

approaches mentioned above. Wherever one DGP is nested in another this will be pointed

out. Also, the testing procedures used will be described in some detail. We briefly discuss

which features of the three approaches will be compared. In Section 3, we present the results

of an extensive simulation study which compares the three approaches to panel unit root

testing for models with factor structures and two panel unit root tests proposed by Breitung

and Das (2006) and by Sul (2006) which do not fully exploit factor structure. A PPP test

using the described methods is presented in Section 4 as an illustrative example. Section 5 is

devoted to conclusions. In particular, the implications of the findings for modeling in practice

will be discussed.

2 Testing for unit roots in panel data when cross-sectional

dependencies result from unobserved common factors

This section describes three approaches to panel unit root testing in the presence of cross-

sectional correlation which employ factor models. In particular, the methods proposed by

Pesaran (2005), Moon and Perron (2004) and Bai and Ng (2004a) will be presented. For

reasons of comparison, it also briefly describes the panel unti root tests by Breitung and Das

(2006) and by Sul (2006) which assume a factor structure but do not fully exploit it.

Assuming a common factor representation, one can write an observed data series Yi,t as

the weighted sum of (unobserved) common and idiosyncratic components. For a panel with

i = 1, . . . , N cross-sectional units, t = 1, . . . , T time series observations and m = 1, . . . ,K

common factors, where K << N , consider the following model:

Yi,t =
K∑

m=1

Dim(L)ηm,t + Ci(L)εi,t, i = 1, . . . , N, t = 1, . . . , T. (1)
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The common shock terms ηm,t are assumed to be i.i.d.(0, σ2
fm

) variables, and the idiosyn-

cratic errors εi,t are also i.i.d.(0, σ2
εi

). Furthermore, ηm,t and εi,t are assumed to be mutually

independent for all i,m, t. The lag polynomials Dim(L) =
∑∞

j=1 dim,jL
j , where L is the lag

operator, describe the (dynamic) dependence of the observed data on the common factor,

and Ci(L) =
∑∞

j=1 ci,jL
j generate individual specific dynamics. By suitably restricting these

lag polynomials, it is possible to obtain the models used by Pesaran (2005), Moon and Per-

ron (2004) and Bai and Ng (2004a) from (1). The necessary restrictions will be mentioned

explicitly in the Section 2.4.

A note on notation: Throughout this paper, M is used to denote a finite, generic constant.

For a matrix A, A > 0 denotes that A is positive definite. Common factors which are denoted

by ft are always assumed to be stationary. Common factors denoted by Ft result from an

autoregressive transformation of ft. Ft has a unit root when there is a unit root in the autore-

gression. Whenever we refer to nonstationary common factors, this means nonstationarity of

Ft.

2.1 Pesaran(2005): A simple dynamic panel with common factors gener-

ating disturbance cross-section dependence

For a panel of observed data with N cross-sectional units and T time series observations,

Pesaran (2005) uses a simple dynamic linear heterogenous model

Yi,t = (1− δi)µi + δiYi,t−1 + ui,t, i = 1, . . . , N, t = 1, . . . , T, (2)

with given initial values Yi,0 and a one-factor structure for the disturbance

ui,t = λiηt + εi,t. (3)

The idiosyncratic shocks, εi,t, i = 1, . . . , N , t = 1, . . . , T are assumed to be independently

distributed both across i and t, have zero mean, variance σ2
i , and finite forth-order moment.

The common shock ηt is serially uncorrelated with mean zero and constant variance σ2
f , and

finite forth-order moment. Without loss of generality, σ2
f is set equal to one. The variables

εi,t, λi and ηt are assumed to be mutually independent for all i and t.

It is convenient to write (2) and (3) as

∆Yi,t = αi − (1− δi)Yi,t−1 + λiηt + εi,t, (4)

where αi = (1 − δi)µi and ∆Yi,t = Yi,t − Yi,t−1. The unit root hypothesis considered by

Pesaran (2005), δi = 1 for all i is tested against the possibly heterogenous alternative δi < 1

for i = 1, . . . , N1, δi = 1 for i = N1 + 1, . . . , N . Pesaran (2005) assumes that N1
N , the fraction

of the individual processes that is stationary, is non-zero and tends to some fixed value κ such

that 0 < κ ≤ 1 as N →∞.

The assumptions made above imply that the composite disturbance term ui,t is serially
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uncorrelated. This assumption and the one common factor assumption, K = 1, could be

relaxed. In fact, Pesaran (2005) considers an example where he includes p lagged values of

ui,t in (3) to obtain a stationary p-th order autoregression for ui,t. This can be inverted to

yield

ui,t = λift + ei,t,

where ft = Φ(L)ηt and ei,t = Φ(L)εi,t are stationary and invertible MA processes, with

Φ(L)−1 being the AR polynomial of ui,t.

It is important to notice that any non-stationarity of the observations Yi,t in the setting

considered by Pesaran (2005) is due to the presence of a unit root in the autoregressive part of

(2), i.e. δi = 1. For the unit root null hypothesis considered by Pesaran (2005), he proposes a

test based on the t-ratio of the OLS estimate b̂i in the following cross-sectionally augmented

DF (CADF) regression

∆Yi,t = ai + biYi,t−1 + ciȲt−1 + di∆Ȳt + εi,t, (5)

where Ȳt = 1
N

∑N
i=1 Yi,t, ∆Ȳt = 1

N

∑N
i=1 ∆Yi,t, and εi,t is the regression error2.

The cross-sectional averages, Ȳt−1 and ∆Ȳt, are included into (5) as a proxy for the

unobserved common factor ft. For analytical convenience when deriving the asymptotic

properties, Pesaran (2005) replaces the usual estimator for σ2
i in the t-value for bi by a slightly

modified and also consistent one. He derives the asymptotic distribution of the modified t-

statistic and shows that it is free of nuisance parameters as N → ∞ for any fixed T > 3, as

well as for the case where N →∞ followed by T →∞.

In line with Im, Pesaran and Shin (2003), Pesaran (2005) proposes a cross-sectional aug-

mented version of the IPS-test

CIPS =
1
N

N∑
i=1

CADFi, (6)

where CADFi is the cross-sectionally augmented Dickey-Fuller statistic for the i-th cross-

sectional unit given by the t-ratio of bi in the CADF regression (5). The distribution of

the CIPS statistic is shown to be non-standard even for large N . This is in contrast to the

results obtained by Im et al. (2003) under cross-sectional independence, where a standardized

average of individual ADF statistics was found to be normally distributed for sufficiently large

N .

2Note that (5) is valid for serially uncorrelated ui,t. For the more general case, lagged values of ∆Yi,t, but
also of ∆Ȳt need to be included in the estimation.
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2.2 Moon and Perron (2004): A dynamic panel model with a K common

factor error term

For a panel of observed data with N cross-sectional units and T time series observations,

Moon and Perron (2004) model the DGP for Yi,t as an AR(1) process and assume, similar to

Pesaran (2005), that common factors are present in the error term. They assume a K-factor

model for the error term ui,t

Yi,t = (1− δi)µi + δiYi,t−1 + ui,t, (7)

ui,t = λ′ift + ei,t, (8)

for i = 1, . . . , N and t = 1, . . . , T , where ft is a (K × 1) vector of common factors, λi is

the corresponding vector of factor loading for cross-section i, and ei,t is an idiosyncratic

disturbance term.

The DGPs considered by Pesaran (2005) and Moon and Perron (2004) are identical if

a single common factor is present in the composite error term. For the components of the

composite error term in (8) similar assumptions are made as by Pesaran (2005). The idiosyn-

cratic part ei,t follows a stationary and invertible infinite MA process, and is cross-sectionally

uncorrelated, so that ei,t = Γi(L)εi,t, where Γi(L) =
∑∞

j=0 γi,jL
j and εi,t ∼ i.i.d.(0, 1) across

i and t. Also the common factors ft are assumed to have a stationary, invertible MA(∞)

representation, i.e. ft = Φ(L)ηt. Here, Φ(L) =
∑∞

j=0 φjL
j is a K-dimensional lag poly-

nomial and ηt ∼ i.i.d.(0, IK). Furthermore, the covariance matrix of ft is (asymptotically)

positive definite. Although more than one common factor are permitted to be present in

the data, some maximum number K̄(≥ K) is supposed to be known. Also, redundant fac-

tors, i.e. factors that asymptotically influence only a finite number of observed series, are

excluded by imposing 1
N

∑N
i=1 λiλ

′
i →p Σλ > 0. Furthermore, short-run and long-run vari-

ances, σ2
ei

(
=
∑∞

j=0 γ2
i,j

)
and ω2

ei

(
= (
∑∞

j=0 γi,j)2
)
, as well as the one sided long-run covari-

ance ϕei

(
=
∑∞

l=1

∑∞
j=0 γi,jγi,j+l

)
are supposed to exist for all idiosyncratic disturbances

ei,t. Additionally, these parameters are assumed to have non-zero cross-sectional averages,

σ2
e = 1

N

∑N
i=1 σ2

ei
, ω2

e = 1
N

∑N
i=1 ω2

ei
and ϕ2

e = 1
N

∑N
i=1 ϕ2

ei
.

The unit root null hypothesis considered by Moon and Perron (2004) is H0 : δi = 1 for

all i = 1, . . . , N , which is tested against the heterogenous alternative H1 : δi < 1 for some i3.

To test this hypothesis, two modified t-statistics are suggested, based on pooled estimation of

the first-order serial correlation coefficient of the data. The estimation and testing procedure

relies on de-factoring the data by a projection onto the space orthogonal to that spanned by

the common factors. For that purpose, the matrix of factor loading Λ = (λ1, . . . , λN )′ has to

3To analyze local power properties of their test, Moon and Perron (2004) consider the following local
alternative hypothesis:

δi = 1− θi√
NT

,

where θi is a random variable with mean µθ on finite support [0, M̄ ]. The considered null hypothesis is
H ′

0 : µθ = 0, which is tested against the local alternative H ′
1 : µθ > 0.
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be estimated to construct a projection matrix QΛ = IN − Λ(Λ′Λ)−1Λ′.

Imposing δi = δ for all i, the pooled OLS estimator, denoted as δ̂pooled, is T -consistent for 1

under the unit root null, as well as under the local alternative considered by Moon and Perron

(2004). The usual t-ratio to test this hypothesis has a non-standard limiting distribution, due

to the persistent cross-sectional correlation introduced by the common factors. From the

residuals of the pooled regression (under the null where the intercept is equal to zero)

ûi,t = Yi,t − δ̂pooledYi,t−1, (9)

the matrix of factor loadings is estimated by the method of principal components4. With the

estimator Λ̂ one can then construct an estimator of the projection matrix denoted as QΛ̂K
.

Additionally, consistent estimates of the above defined nuisance parameters can be obtained

non-parametrically from the de-factored residuals ê = ûQΛ̂K
, where û = (û1, . . . , ûN ) with

ûi = (ûi,1, . . . , ûi,T )′. Denote the estimates as ϕ̂ei and ω̂2
ei

, and their cross-sectional averages

as ϕ̂e and ω̂2
e . Then the modified pooled estimator of δ suggested by Moon and Perron (2004)

is

δ∗pooled =

∑T
t=2 Y ′

t−1QΛ̂K
Yt −NTϕ̂e∑T

t=2 Y ′
t−1QΛ̂K

Yt−1

, (10)

where Yt = (Y1,t, . . . , YN,t)′. Based on this estimator, the following two t-statistics can be

used to test the pooled unit root null hypothesis,

t∗a =

√
NT (δ̂∗pooled − 1)√

2φ̂4
e

ω̂4
e

(11)

and

t∗b =
√

NT (δ̂∗pooled − 1)

√√√√ 1
NT 2

T∑
t=2

Y ′
t−1QΛ̂K

Yt−1

(
ω̂e

φ̂2
e

)
, (12)

where φ̂4
e = 1

N

∑N
i=1 φ̂4

ei
, φ̂4

ei
= ω̂4

ei
. Moon and Perron (2004) analyze the asymptotic behavior

of the two statistics as N → ∞ and T → ∞ with5 lim inf(N,T→∞)
log T
log N > 1. Both test

statistics have a limiting standard normal distribution under the null, and diverge under the

stationary alternative.

2.3 Bai and Ng (2004a): A common factor model with unobserved common

and idiosyncratic components of unknown order of integration.

In contrast to Pesaran (2005) or Moon and Perron (2004), the PANIC model of Bai and

Ng (2004a) permits the non-stationarity in a panel of observed data to come either from a

4The principal component estimator is in general not unique. Moon and Perron (2004) use the normalization
1
T

PT
t=1 ftf

′
t = IK and re-scale the obtained estimate.

5The restriction on the relative divergence rate of N and T is necessary, as ft and ei,t are unobserved.
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common source, or from the idiosyncratic errors, or from both6. Therefore, they focus on

consistent estimation of the common factors and error terms, to test the properties of these

series separately.

The model Bai and Ng (2004a) consider describes the observed data Yi,t as the sum

of a deterministic part, a common (stochastic) component, and the idiosyncratic error. In

particular,

Yi,t = Di,t + λ′iFt + Ei,t i = 1, . . . , N, t = 1, . . . , T, (13)

where as before λi is a (K × 1) vector of factor loadings, Ft is a (K × 1) vector of common

factors7, and Ei,t is an error term. The deterministic component Di,t contains either a constant

αi or a linear trend αi + βit. As the two aforementioned approaches, Bai and Ng (2004a)

consider a balanced panel with N cross-sectional units and, T time series observations.

The common factors are assumed to follow an AR(1) process, such that

Ft = Ft−1 + ft, (14)

where ft = Φ(L)ηt, Φ(L) =
∑∞

j=1 φjL
j is a K−dimensional lag polynomial and rank

(
Φ(1)

)
=

k1. So, Ft contains k1 ≤ K independent stochastic trends and consequently K−k1 stationary

components. The shock ηt is assumed to be i.i.d.(0,Ση) with finite forth-order moment. The

idiosyncratic terms are allowed to be either I(0) and I(1), and are also modelled as AR(1)

processes

Ei,t = δiEi,t−1 + ei,t, (15)

where ei,t follows a mean zero, stationary, invertible MA process, such that ei,t = Γi(L)εi,t

with ε ∼ i.i.d.(0, σ2
εi

). Bai and Ng (2004a) do not assume cross-sectional independence of

the idiosyncratic term8 from the outset, but impose it later to validate pooled testing. The

assumption that Ση is not (necessarily) a diagonal matrix is more general than the correspond-

ing assumption in Moon and Perron (2004), where the innovations of the common factors are

assumed to be uncorrelated. The short-run covariance matrix of ∆Ft has full rank while

the long-run covariance matrix has reduced rank and hence permits cointegration among the

common factors. As in Moon and Perron (2004), (asymptotically) redundant factors are ruled

out.

In this setup, the goal of PANIC is to determine the number of non-stationary factors

k1, and to test for each i = 1, . . . , N , whether δi = 1. Bai and Ng (2004) suggest using

principal components to consistently estimate the unobserved components Ft and Ei,t. How-

ever, to derive consistent estimates even if some elements of Ft and Ei,t are I(1), a suitable

transformation of Yi,t is used. In particular, if the data contains only a constant, the first

6Under the unit root null the data in the Pesaran’s (2005) or Moon and Perron’s (2004) model contains a
common, as well as an idiosyncratic stochastic trend.

7K is assumed to be known here.
8Bai and Ng(2004a) allow for some weak cross-sectional dependence of the shock terms driving the ei,t.

The full set of assumptions can be found in their paper.
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differences are employed, while in the presence of a linear trend, Yi,t is de-trended. So, in

the former case yi,t = ∆Yi,t = Yi,t − Yi,t−1, while in the latter yi,t = ∆Yi,t − ¯∆Yi,t, where
¯∆Yi,t = 1

T−1

∑T
t=2 ∆Yi,t. As the estimated common factors and idiosyncratic errors, denoted

as f̂t and êi,t respectively, are derived applying the method of principal components to first-

differenced or de-trended data, Bai and Ng (2004a) propose to re-accumulate them to remove

the effect of possible overdifferencing. This yields

F̂t =
t∑

s=2

f̂s, (16)

Êi,t =
t∑

s=2

êi,s. (17)

These estimates are now individually tested for unit roots.

For the idiosyncratic components, Bai and Ng (2004a) suggest to compute an ADF statistic

based on up to p lags. Denote the t-statistic to test the unit root hypothesis for each Êi,t

as ADF c
Êi

or ADF τ
Êi

, depending on whether a constant, or a constant and linear trend is

included in the DGP. Bai and Ng (2004a) derive the limiting distributions, which are non-

standard. For the case where a constant is present in the DGP given by (13), the distribution

coincides with the usual Dickey-Fuller (DF) distribution where no constant is included in the

estimation. The 5% critical value is −1.95. If the DGP in (13) contains a constant and a

linear trend, the limiting distribution is proportional to the reciprocal of a Brownian bridge.

Critical values for this distribution are not tabulated yet, and have to be simulated.

Both ADF statistics given above do not have the advantage of a standard normal limiting

distribution, as do the other panel unit root tests described so far. That is due to the fact that

the panel information has only been used to consistently estimate Ei,t, but not to analyze its

dynamic properties. Only if independence among the error terms is assumed, pooled testing

is valid. In that case, Bai and Ng (2004a) propose a Fisher-type test9 as suggested in Maddala

and Wu (1999), using the correction proposed by Choi (2001). The test statistic, denoted as

P c
Ê

or P τ
Ê

depending on the deterministic specification, is given by

P c
Ê
, P τ

Ê
=
−2
∑N

i=1 log πi − 2N√
4N

, (18)

where πi is the p-value of the ADF test for the i-th cross-section. These two panel unit root

test statistics have standard normal limiting distributions.

Depending on whether there is just one, or several common factors, Bai and Ng (2004a)

suggest to use either an ADF test based on up to p lags, or a rank test for F̂t. Denote the

t-statistic for the unit root hypothesis as ADF c
F̂

when only a constant is accounted for, and as

ADF τ
F̂

in the linear trend case. Then, Bai and Ng (2004a) derive their limiting distributions,

9In principal, also an IPS-type test using a standardized average of the above described t-statistics should
be possible. See also Bai and Ng (2006).
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which coincide with the DF distributions for the cases where only a constant, or a constant

and a linear trend are included in the ADF estimation. The asymptotic 5% critical values

are -2.86 and -3.41, respectively.

If there are K > 1 common factors, Bai and Ng (2004a) suggest an iterative procedure,

comparable to the Johansen trace test for cointegration to select k1. They use demeaned or

de-trended factor estimates, depending on whether (13) contains just a constant, or a constant

and linear trend. Define F̃t = F̂t− ¯̂
Ft with ¯̂

Ft = 1
T−2

∑T
t=2 F̂t in the former case. In the latter,

let F̃t denote the residuals from a regression of F̂t on a constant and linear trend. Using F̃t,

the following steps describe the proposed test.

Starting with m = K,

1. Let β̂⊥ be the m eigenvectors associated with the m largest eigenvalues of 1
T 2

∑T
t=2 F̃tF̃

′
t .

Let X̂t = β̂′⊥F̃t. Two statistics can be considered:

2. (a) Let K(j) = 1− j
J+1 , j = 1, . . . , J ;

i. Let ξ̂t be the residuals from estimating a VAR(1) in X̂t, and let

Σ̂1 =
J∑

j=1

K(j)
( 1
T

T∑
t=2

ξ̂t−j ξ̂
′
t

)
.

ii. Let ν̂c(m) be the smallest eigenvalue of

Φ̂c(m) =
1
2

[ T∑
t=2

(X̂tX̂
′
t−1 + X̂t−1X̂

′
t)− T (Σ̂1 + Σ̂′

1)
]( T∑

t=2

X̂t−1X̂
′
t−1

)−1
.

iii. Denote T [ν̂c(m)− 1] as MQc
c(m) in the constant only case, or as MQτ

c (m) in

the linear trend case.

(b) For p fixed that does not depend on N or T ,

i. Estimate a Var(p) in ∆X̂t in order to obtain Π̂(L) = Im − Π̂1L− · · · − Π̂pL
P .

Filter X̂t by Π̂(L) to get x̂t = Π̂(L)X̂t.

ii. Let ν̂f (m) be the smallest eigenvalue of

Φ̂f (m) =
1
2

[ T∑
t=2

(x̂tx̂
′
t−1 + x̂t−1x̂

′
t)
]( T∑

t=2

x̂t−1x̂
′
t−1

)−1
.

iii. Denote T [ν̂f (m)− 1] as MQc
f (m) in the constant only case, or as MQτ

f (m) in

the linear trend case.

3. If H0 : k1 = m is rejected, set m = m− 1 and return to Step 1. Otherwise, set k̂1 = m

and stop.

For the MQc,τ
c and MQc,τ

f statistics described above, Bai and Ng (2004a) derive limiting

distributions, which are again non-standard, and they provide 1%, 5%, and 10% critical

values for all four statistics and for various values of m.
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The PANIC procedure has the advantage that the estimated common factors and idio-

syncratic components are consistent whether they are stationarity or non-stationarity. This

is due to the practice of estimating the unobserved components from the first-differenced (or

de-trended) data, and re-accumulating the estimates to remove the effect of possible overdif-

ferencing if the factors or errors are stationary. Hence, the obtained estimates could also be

used for stationarity tests, which is discussed in Bai and Ng (2004b).

2.4 Alternative panel unit root tests in the presence of cross-sectional de-

pendencies

The three approaches to panel unit root testing presented in the previous sections explicitly

account for the common factors employed to model the cross-sectional dependence in the data

by using methods that require large N to be valid. In this section we introduce alternative

panel unit root tests which do not necessarily exploit the common factor structure, and could

provide alternatives to the aforementioned tests in small N panels. In particular, we will

consider two test statistics proposed by Breitung and Das (2006) and the tests proposed by

Sul (2006).

Breitung and Das (2006)

Breitung and Das (2006) study the behaviour of several panel unit root tests when cross-

sectional dependence in the data is present in the form of a common factor. The DGP they

employ is similar to that of Bai and Ng (2004a) presented in Section 2.3 Equations (13) to

(15). However, Breitung and Das (2006) focus on the special case where (14) can is replaced

by

Ft = ρFt−1 + ft,

with the scalar first order autoregressive parameter |ρ| ≤ 1. They consider test statistics on

the “reduced form” regression equation below, which is obtained when δi = δ for all i and

ρ = δ:

∆Yt = φYt−1 + ut, (19)

where ∆Yt = (∆Y1,t, . . . ,∆YN,t), Yt−1 = (Y1,t−1, . . . , YN,t−1), ut = (u1,t, . . . , uN,t) with ui,t =

λift + ei,t and φ = (δ− 1). The deterministic component in (13) has been assumed to be zero

in this case. Breitung and Das (2006) particularly consider a robust OLS t-statistic, trob and

a GLS t-statistic tgls to test for the unit root null hypothesis φ = 0 against the homogenous

alternative φ < 0. The robust OLS statistic is now given by

trob =
∑T

t=1 Y ′
t−1∆Yt∑T

t=1 Y ′
t−1Ω̂Yt−1

,
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with Ω̂ =
∑T

t=1 ûtû
′
t where ût = ∆Yt − φ̂Yt−1 are the OLS residuals. The GLS statistic, tgls,

is given by

tgls =
∑T

t=1 Y ′
t−1Ω̂

−1∆Yt∑T
t=1 Y ′

t−1Ω̂−1Yt−1

.

Note that this statistic can only be computed for T > N , as otherwise Ω̂ is singular. Also,

if a common factor structure is assumed for the data, one could exploit this in for the GLS

statistic by taking the factor structure into account when estimating the covariance matrix

Ω. For the static factor model with orthonormal factors, Ω = ΛΛ′ + Σ, where Λ is the N × k

matrix of factor loadings and Σ is the covariance matrix of the idiosyncratic innovations.

Estimates of Λ and Σ can be obtained using a principal component approach as in Bai and

Ng (2004a) or Moon and Perron (2004). If there is higher order serial correlation present in

the residuals, a Newey-West type estimator for Ω can be employed, or an ADF regression

estimated in the first step.

Breitung and Das (2006) consider 3 cases in their analysis, where the reduced form (19) is

misspecified in cases 2 and 3, namely an I(1) common factor combined with I(1) idiosyncratic

components, an I(1) common factor and I(0) idiosyncratic components (cross-member coin-

tegration) and the case where a unit root is present in the idiosyncratic component but the

common factor is I(0). If N3

T → 0, tgls is asymptotically normally distributed in the first and

third case, while it diverges in the second case. trob converges to a Dickey-Fuller distribution

in the first case if there is a single common factor. It is equivalent to an ADF test on the first

principal component of Yt in that case. In the other cases, the test is not valid.

Sul (2006)

Sul (2006) proposes to use recursive mean adjustment for panel unit root tests to increase their

power. Similar to Moon and Perron (2004), Sul (2006) models cross-sectional dependence by

employing a common factor structure for the error term. The DGP is similar to that given

in Equations (7) and (8). To account for the cross-sectional dependence, Sul (2006) suggests

a (feasible) GLS statistic to test for the unit root null hypothesis δi = 1 for all i against the

heterogenous alternative δi < 1 for some i in

Yi,t = (1− δi)µi + δiYi,t−1 + ui,t, (20)

The test procedure follows multiple steps, where the regression can be augmented by lagged

first differences of Yi,t to account for higher order serial correlation in the residuals:

1. Run the following regression for each unit individually

Yi,t − ci,t = δi(Yi,t−1 − ci,t−1) +
pi∑

j=1

ϕij∆Yi,t−j + εi,t, (21)

where ci,t = (t− 1)−1
∑t−1

s=1 Yi,s is the recursive mean, to obtain the LS estimator δ̂i.
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2. If δ̂i > 1 set δ̂i = 1 and run the regression

Yi,t − δ̂iYi,t−1 = ai +
p∑

j=1

ϕij∆Yi,t−j + εi,t. (22)

Construct the sample covariance matrix Ω̂ = (T − p − 1)−1
∑T

t=p+1 ε̂tε̂
′
t, where ε̂t =

(ε̂1,t, . . . , ε̂N,t)′ are the vectors of residuals from the previous regression.

3. Project (Yi,t − ci,t) and (Yi,t−1 − ci,t−1) on the lagged first differences

(Yi,t − ci,t) =
p∑

j=1

φij∆Yi,t−j + ξi,t,

(Yi,t−1 − ci,t−1) =
p∑

j=1

ζij∆Yi,t−j + ξi,t−1.

4. Define ω̂′ij as the ijth element of Ω̂−1, one can now obtain the pooled FGLS estimator

of δ and the associated t-statistic as

δ̂fglsrma =

∑N
i=1

∑N
j=1 ω̂′ij

∑T
t=p+1 ξ̂i,t−1ξ̂j,t∑N

i=1

∑N
j=1 ω̂′ij

∑T
t=p+1 ξ̂2

i,t−1

, (23)

tfglsrma =
δ̂fglsrma − 1√∑N

i=1

∑N
j=1 ω̂′ij

∑T
t=p+1 ξ̂2

i,t−1

. (24)

Sul (2006) shows that the tfglsrma converges to a Dickey-Fuller distribution, and he provides

finite sample critical values to account for finite sample bias.

Similar to Breitung and Das (2006), Sul’s (2006) tfglsrma effectively tests for a unit root

in the data. To test for a unit root in the common component, Sul (2006) proposes to

apply a recursive mean adjusted ADF test to the cross-sectional averages of the data, Ȳt =

N−1
∑N

i=1 Yi,t. Following Hansen (1995), he further suggests to augment this test using

covariates to increase power. The steps of the procedure are similar to the ones outlined

above, and the resulting t-statistic is denoted as tcrma. Sul (2006) provides some evidence

that his test is precise and powerful, especially when T is larger than N , a case for which it

has been designed.

2.5 Differences and similarities

This section discusses differences and similarities of the panel unit root tests relying on a

factor structure, presented in Sections 2.1, 2.2 and 2.3. As should have become clear, the

Bai and Ng (2004a) approach is broader than that of Pesaran (2005) and Moon and Perron

(2004), which are basically identical in terms of the assumed dynamic structure of the data,

but differ in terms of tests performed and test statistics used. While Bai and Ng (2004a)

allow the non-stationarity of the data to come from common or idiosyncratic sources, the
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Pesaran (2005) and Moon and Perron (2004) approaches assume common and idiosyncratic

stochastic trends under the null hypothesis.

This point becomes obvious when we look at the restrictions the different DGPs place

on the model given in (1). Pesaran (2005) implicitly restricts the dependence of the data

on the common shocks, Di(L), and on the idiosyncratic shocks, Ci(L) to ∆i(L)Φ(L), where

∆i(L) =
∑∞

j=0 δj
i L

j and Φ(L) is the inverse of the lag polynomial of the composite error

term. The restrictions implied by Moon and Perron (2004) require Dim(L) to be the mth

element of ∆i(L)λ′iΦ(L) and Ci(L) to be equal to ∆i(L)Γi(L). Now, under the unit root null

hypothesis, δi = 1 for all i and so ∆i(L) becomes the partial sum operator. The assumptions

made on the lag polynomials Φ(L) and Γi(L) then assure that all partial sums contain a unit

root10. Bai and Ng’s (2004a) assumptions restrict (1) such that Dim(L) = λiΦm(L)
∑∞

j=0 Lj ,

where Φm(L) is the mth column of Φ(L), and Ci(L) = ∆i(L)Γi(L). The assumptions on Γi(L)

ensure that the idiosyncratic part of the data will contain a unit root if δi = 1, while the

assumptions on Φ(L) guaranty k1 common stochastic trend. Hence, under the DGPs assumed

by Pesaran (2005) and Moon and Perron (2004) the order of integration is the same for the

idiosyncratic and the common component of the data, while Bai and Ng (2004a) allow them

to differ.

Consequently, Pesaran’s (2005) Moon and Perron’s (2004) null hypothesis corresponds to

a special case of Bai and Ng’s (2004a) setup, namely where k1 ≥ 1 and all idiosyncratic errors

are I(1). Bai and Ng (2004a) do not explicitly define null and alternative hypotheses for their

analysis. Their methodology enables one to separately test different properties of the data

at hand. Due to consistent estimation of the (unobserved) common factors and idiosyncratic

errors, it is possible to determine the source of observed non-stationarity. Also, instead of

formulating a rather general alternative like some Yi,t are stationary (as do the other two

approaches), the PANIC approach supplies the tools to assess which data series and which

data components are I(0) and I(1).

As already mentioned, Pesaran (2005) and Moon and Perron (2004) assume the same order

of integration for the common factor and idiosyncratic component. That is, the common factor

and idiosyncratic processes are either both unit root processes or both stationary. One might

expect that this assumption has a positive impact on the power of the tests. However, the

tests are implemented in such a way that they in fact test for a unit root in the idiosyncratic

components. Pesaran’s (2005) test statistics account for the common factor by including the

cross-sectional mean of Yi,t and its first difference, whereas Moon and Perron (2004) defactor

the data prior to testing. This has been shown by Breitung and Das (2006) and forcefully

argued by Bai and Ng (2006).

The CIPS test of Pesaran (2005), the tests of Moon and Perron (2004) and the P c,τ

Ê

statistics of Bai and Ng (2004a) have the same null hypothesis, namely that the defactored

data are unit root processes for all i. Also, all three approached use a heterogenous alternative,

10Although Moon and Perron (2004) allow rank(Φ(1)) < K, they assume at least one integrated common
factor under the null.
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namely that some series have a unit root and some do not. However, Moon and Perron (2004)

use a pooled estimator of the first order autoregressive coefficient δi in the construction of

their statistics. The individual specific CADF test of Pesaran (2005) and the ADF c,τ

Ê
tests

of Bai and Ng (2004a) for a unit root in the idiosyncratic component for a given i, and the

alternative hypothesis is stationarity of that component.

All three type of tests are designed for large N and T due to the estimation of the

common factor(s) either by using principle components or by including the cross-sectional

mean as proposed by Pesaran (2005).

The three approaches also differ in the way they treat cointegration. While Pesaran (2005)

and Moon and Perron (2004) exclude the possibility of cointegration among the Yi,t, as well

as between the observed data and the common factors, Bai and Ng (2004a) include both

possibilities in their model. In particular, if k1 ≥ 1 and Ei,t is stationary for some i, then the

observed data and the common factors are cointegrated for those i with cointegrating vector

(1,−λ′i)
′. Furthermore, if all idiosyncratic errors are I(0), then the orthogonalization matrix

used by Moon and Perron (2004) to eliminate the common factors, QΛ, serves as cointegration

matrix for the Yi,t. So, Bai and Ng’s (2004a) procedure can be used as a cointegration test11,

using the null hypothesis k1 ≥ 1 and all idiosyncratic errors are stationary12.

Deterministic components are also treated differently in the three papers. While Pesaran

(2005) and Bai and Ng (2004a) suggest tests for models that include either a constant or a

linear trend, Moon and Perron (2004) propose their test only in the presence of a restricted

constant. Their analysis concludes that the test has no local power in the presence of unre-

stricted deterministic components. The local power properties of the Pesaran’s (2005) and

Bai and Ng’s (2004a) test statistics have not been analyzed analytically so far.

The factor structure used by all three approaches is a convenient form to model cross-

correlation, or even cointegration between panel members. Therefore, the (necessary for

pooled testing) assumption of independence between the elements of F and E is far less

restrictive than the assumption of independent cross-sections, underlying the IPS and LLC

test. In terms of computational burden, all procedures are rather easy to implement. Pesaran

(2005) provides tables with critical values for his tests. The PANIC procedure of Bai and

Ng (2004a) also requires some tabulated critical values for the rank test statistics MQc
(·) and

MQf
(·), as well as for the ADF τ

Êi,t
statistic. Also, a procedure to calculate the p-values of

ADF c
Êi,t

and ADF τ
Êi,t

is needed to implement the suggested pooled tests.

An important aspect in application is the selection of the number of common factors

K, in particular for the tests presented in Sections 2.2 and 2.3, as they rely on consistent

estimation of the factor structure used to model cross-sectional correlation. For that purpose,

the number of common factors K has to be estimated. This is discussed in Bai and Ng (2002)

11What is meant here is a cointegration test between panel members, in contrast to panel cointegration tests.
The latter ones are used to test for cointegration between several variables for the same i.

12Note that the null hypothesis for the ADF tests using the estimated error terms remains that of non-
stationarity. Rejecting the unit root hypothesis for all i is thus one part of not rejecting cointegration between
panel members.
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for a factor model as given by (13) with stationary errors, and also briefly treated in Moon

and Perron (2004).

The statistics introduced in Section 2.4 provide an alternative to panel unit root testing

for DGPs with cross-sectional dependence, which assume a common factor structure but do

not exploit it to its full extend. Breitung and Das’s (2006) statistics test the homogenous

unit root null hypothesis against the homogenous stationary alternative, while Sul (2006)

considers the same null but allows for heterogeneity under the alternative. For the DGPs in

(19) and (20), the GLS statistics which effectively test for a unit root in the data have the

drawback that they are only feasible when N < T .

3 Small sample performance: Monte Carlo results

3.1 Monte Carlo simulation setup

In this section we study the small sample performance of the tests proposed by Pesaran (2005),

Moon and Perron (2004) and Bai and Ng (2004a) for various types of DGPs. Furthermore,

we consider the robust OLS t-test trob and the GLS t-test tGLS described in Breitung and Das

(2006) and the recursive mean adjusted FGLS test tρrmagls and the recursive mean adjusted

test for the average data proposed by Sul (2006). All considered DGPs are special cases of

(1) and with one exception have the following structure which corresponds to Bai and Ng’s

(2004a) framework:

Yi,t = λ′iFt + Ei,t,

Fm,t = ϕFm,t−1 + fm,t,

Ei,t = δiEi,t−1 + ei,t, (25)

with i = 1, . . . , N , t = 1, . . . , T and m = 1, . . . ,K. We consider three different values for N

and T each, namely 20, 50 and 100. The method of principle components estimates the space

spanned by the common factors when N is large. We have chosen N and T at least equal

to 20 to assure that common factors are estimated with sufficient precision or approximated

reasonably well by cross-sectional averages. Notice that the regularity condition N 6= T

needed for some tests is not satisfied in some cases. First a single common factor is considered,

which is generated by a first order autoregression, or a random walk when ϕ = 1. We also

consider the case of two common factors which are generated using the same parameter values

for ϕ and σ2
f , but different drawings for the error terms. The idiosyncratic terms Ei,t are also

generated by a first order autoregression or random walk with first order moving average,

depending on whether or not δi = 1.

In addition, a DGP as assumed by Pesaran (2005) and Moon and Perron (2004) is used:

Yi,t = δiYi,t−1 + ui,t,

ui,t = λift + ei,t. (26)
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In (25) and (26) the error terms are generated as MA(1) processes such that

fm,t = ηm,t + γmηm,t−1,

ei,t = εi,t + ρiεi,t−1.

The shocks are drawn from independent normal distributions, such that ηt ∼ i.i.d.N(0,Σ2
f ),

with Σ2
f = σ2

fIK , and εi,t ∼ i.i.d.N(0, 1). We consider three different values for the signal-to-

noise ratio, such that σ2
f = 0.5, 1 and 2. The MA parameters γm and ρi are independently,

uniformly distributed on [0.2, 0.5]. The factor loading λi are uniformly distributed on [−1, 3]13.

Three different types of non-stationarity are considered as null hypothesis, as well as

different settings for the stationary alternative hypothesis. In particular, we consider the

following 5 cases, where 1 to 4 use the DGP given by (25) and 5 uses DGP (26)14:

1. Common and idiosyncratic unit roots

HA
0 : ϕ = 1, and δi = 1 for all i.

2. Common unit root, nearly stationary idiosyncratic components

HB
0 : ϕ = 1, and δi ∼ U [0.8, 1] for all i,

3. Stationary common component, integrated idiosyncratic components

HC
0 : ϕ = 0.95, and δi = 1 for all i,

4. Stationary common and idiosyncratic components

HA
A : ϕ = 0.95 and δi ∼ U [0.8, 1].

5. Stationary data using a DGP as given by (26) with heterogenous roots

HE
A : δi ∼ U [0.8, 1] for all i.

The reported rejection frequencies are based on 5% nominal size. For Pesaran’s (2005)

CADF and CIPS we use the critical values reported in Tables 1b and 3b of his paper.

Results for Moon and Perron’s (2004) statistics and Bai and Ng’s (2004a) P c
Ê

statistic are

based on a critical value from the standard normal distribution. Rejection frequencies of the

ADF c
Ê

and ADF c
F̂

statistics are obtained using the critical values from DF distributions for

13Consistency of the test procedure of Pesaran (2005) requires a non-zero mean for the factor loadings. This
assumption is not necessary for the other approaches.

14Please note that under setup 1 (25) and (26) are equivalent. In cases 2, 4 and 5 we have stationarity
provided δi 6= 0.
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the no constant and constant only cases, respectively. Critical values for the MQc
c and MQc

f

are provided in Table 1 of Bai and Ng (2004a).

Similar to Moon and Perron (2004), we use the Andrews-Monahan (1992) estimator em-

ploying the quadratic spectral kernel in the estimation of the nuisance parameters for the t∗a

and t∗b statistics. For Bai and Ng’s (2004a) ADF c
Ê

and ADF c
F̂

and Pesaran’s (2005) CADF

and CIPS we use the Akaike information criterion (AIC) to determine the lag length, start-

ing with a maximum lag length of pmax = 6. For the test of Sul (2006) and Breitung and

Das (2006) we use the Bayesian information criterion (BIC). For the MQc
c statistic we use

the Bartlett kernel with a bandwidth as suggested in Andrews (1991). The lag length for the

MQc
f statistic is determined using the criteria proposed by Aznar and Salvador (2002).

3.2 Monte Carlo results

A general finding is that the presence of serial correlation15 leads to size distortions for almost

all statistics when T is small, which can be quite strong in some cases and even persist for

T = 100. For a single common factor, the signal-to-noise ratio seems to have little to no

effect on the tests proposed by Pesaran (2005) and Bai and Ng (2004a). For 2 common

factors in the DGP, Bai and Ng’s (2004a) MQc
c and MQc

f statistics usually select maximum

possible number of common stochastic trends, leading to low size and low power for these

tests when the auto-regressive root is close to unity. The GLS statistics of Breitung and

Das (2006) and Sul (2006) behave quite similarly. Sul’s (2006) tcrma statistic applied to the

cross-sectional averages of the data shows a bad performance, with huge size distortions but

small power for all combinations of N and T . Furthermore, of the considered test procedures

only the approach suggested by Bai and Ng (2004a) can detect a unit root resulting only from

non-stationary common factors.

The results in Table 1 are obtained for the case where a unit root is present in the

common factor and in all idiosyncratic errors. Both statistics proposed by Pesaran (2005),

the CADF 16 and the CIPS test show size distortions when T is small (20), which are stronger

for the CIPS test. As T increases those size distortions are reduced, and for T = 100 the

tests are only slightly over-sized for some combinations of N and T . Both statistics proposed

by Moon and Perron (2004) show slight size distortions which seem to increase with the

signal-to-noise ration. The size distortions are decreasing in T and higher for t∗b than for

t∗a. Bai and Ng’s ADF c
Ê

and ADF c
F̂

statistics for the extracted individual idiosyncratic error

series and the single common factor respectively, are oversized for small T (= 20) but size

distortions decrease as T gets large. The pooled statistic P c
Ê

has strong size distortions when

T is small and size seems to increase in N . For T = 100, size rages from 0.12 to 0.18 for the

different values of N . Breitung and Das’s (2006) trob is under-sized for small T with rejection

frequencies increasing in T but decreasing with N , leading to rejection frequencies between

15Results for the case of i.i.d. N(0, 1) error terms ei,t and fT in (25) are not included in this version of the
paper. They are are available at http://www.personeel.unimaas.nl/J.Urbain/.

16Entries for the CADF-statistics are average rejection frequencies of the individual unit root tests.
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0.00 and 0.10. The tgls has a size of about 0.05 for N = 20 and is under-sized for N = 50.

Sul’s Tρfglsrma tests behaves similarly, but rejection frequencies are slightly higher with a size

above 0.05 for T = 50. The tcrma test for the cross-sectional averages has a size between 0.50

and 0.55.

Insert Tables 1-2 about here

Table 2 considers the case of a unit root in the common factor and near-unit roots in the

idiosyncratic factors, i.e. the case of cross-member cointegration. Pesaran’s (2005) CADF

statistic has an average rejection frequency of about 0.32 for T = 20 and between 0.17 and

0.21 for larger T . The rejection frequencies of the CIPS test are high and go to 1 for large N

and T . Both statistics proposed by Moon and Perron (2004) have rejection frequencies of 1 for

T > 50. Bai and Ng’s ADF c
Ê

statistic has an average power increasing from about 0.23 to 0.48

as both N and T increase. The pooled P c
Ê

test has a power of 1 for almost all combinations

of N and T considered. The ADF c
F̂

tests has some size distortions, but rejection frequencies

decrease from about 0.40 for T = 20 to 0.07 to 0.10 for T = 100. Rejection frequencies for

Breitung and Das’s (2006) trob statistics decrease for higher signal-to-noise ratios, whereas

they increase with T . The tgls statistic has relatively high rejection frequencies (close to or

above 0.90 for N = 50, T = 100), increasing with N and T . Sul’s (2006) tρfglrma statistic

behaves similarly but has slightly lower rejection frequencies. Rejection frequencies for tcrma

are between 0.56 and 0.66.

Insert Table 3 about here

Table 3 covers the case of integrated idiosyncratic errors combined with a stationary

common factor. The statistics proposed by Pesaran (2005) and Moon and Perron (2004)

behave similar to the case of I(1) idiosyncratic and common component (Table 1), but size is

slightly reduced for the CIPS test, which is now under-sized for T = 100, while t∗a and T ∗b

have slightly higher rejection frequencies. Also, Bai and Ng’s (2004a) ADF c
Ê

and P c
Ê

tests

have sizes close to the one shown in Table 1. The power of the ADF c
F̂

is smaller than 0.20

for T ≥ 50. Breitung and Das’s (2006) trob test has size increasing in T but decreasing in N

and the signal-to-noise ratio. The tgls and Sul’s (2006) tfglsrma tests are slightly over-sized

for N = 20 and under-sized for N = 50, where the size for the later is slightly higher. The

tcrma test again has rejection frequencies of about 0.50.

Insert Tables 4-5 about here

Tables 4 and 5 consider stationary data. For Table 4 the DGP is given by (25) with I(0)

idiosyncratic and common components. Pesaran’s (2005) CADF has low power while the

power of the CIPS test is relatively high and increasing in N , reaching 1 for N,T = 100.

Moon and Perron’s (2004) tests both have power of 1 for most considered combinations of

N and T . The average power of Bai and Ng’s (2004a) ADF c
Ê

is relatively low (0.52 for
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N,T = 100) while the pooled test P c
Ê

has a power of 1 for N > 20 or T > 20. The power of

the ADF c
F̂

is low. Breitung and Das’s (2006) trob has power increasing in T but decreasing

in N and the signal-to-noise ratio. The two considered GLS statistics, tgls and Sul’s (2006)

tfglsrma have a high power, which is (close to) 1 for T = 100. Rejection frequencies for the

tcrma tests are between 0.56 and 0.67.

Table 5 considers stationary data generated using (26). The results are similar to Table

4 for mosts tests. However, the power for Moon and Perron’s (2004) t∗a and t∗b is slightly

reduced for higher signal-to-noise ratios. Bai and Ng’s (2004a) ADF c
F̂

has a higher power

now, but it is still relatively low. Rejection frequencies for Sul’s tcrma test are reduced as well,

in particular for N = 50 where power is even below the nominal 5% size for a signal-to-noise

ratio of 2.

Tables 5 to 10 present the results of the simulations with 2 common factors. We no longer

report the results for Bai and Ng’s (2004a) ADF c
Ê

statistic as they are basically identical

to those obtained for the single common factor case. For the two rank statistics MQc
c and

MQc
f we report the proportion of replications for cases where the true number of common

stochastic trends were selected, i.e. for which k̂1 = 2 if ϕ = 1 or k̂1 = 0 otherwise. For

both statistics we use the simulated 5% critical values reported by Bai and Ng (2004a). The

number of common factors is assumed to be known and is used in the derivation of the Moon

and Perron (2004) and Bai and Ng (2004a) statistics. Pesaran (2005) only considers the

case K = 1 for his procedure, so the results reported for the CADF and CIPS statistics

indicate their robustness to this assumption. Although Breitung and Das’s (2006) consider

the possibility of accounting for the factor structure when estimating the covariance matrix

for the GLS statistic, we employ the more general version where the factor structure is not

imposed.

Table 6 presents the findings for the combination of two common stochastic tends with

non-stationary idiosyncratic errors. Pesaran’s (2005) CADF statistic has slightly higher size

than in the single factor case, but the pooled CIPS statistic experiences size distortion that

increase in N as well as in the signal-to-noise ratio. The t∗a and t∗b statistics of Moon and

Perron (2004) behave similar to K = 1 but size distortions are slightly decreased. Bai and

Ng’s (2004a) P c
Ê

statistic now has smaller size distortions for T = 20 than in the single

common factor case. Their two rank statistics MQc
c and MQc

f show good properties with a

frequency close to 1 of selecting the correct number of common stochastic trends. Results for

the tests of Breitung and Das (2006) and Sul (2006) are similar to those derived for a single

common factor.

The combination of non-stationary common factors with stationary idiosyncratic errors is

considered in Table 7. In this setup there is again cross-member cointegration in the panel,

but with two common trends driving the non-stationarity. As in the single factor case the

Moon and Perron (2004) statistics have high rejection frequencies which are mostly close to

1 for T ≥ 50. The P c
Ê

statistic now has still high power but it is slightly reduced for small

N,T, when compared to the single factor case. Also, the two rank statistics select the correct
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number of I(1) factors for all considered sample sizes. The CADF and CIPS tests have

reduced rejection frequencies when compared to the single common factor case (Table 2).

Rejection rates for the CIPS test are also decreasing as the signal-to-noise ratio increases.

It seems that de-factoring the data by augmenting the ADF-regression with cross-sectional

averages no longer removes the common trends completely. Again, the results for the tests of

Breitung and Das (2006) and Sul (2006) are similar to those obtained for K = 1.

Insert Tables 6-7 about here

Table 8 considers the case of non-stationary idiosyncratic errors combined with stationary

common factors. The statistics of Pesaran (2005) and Moon and Perron (2004) based on

de-factored data now have slightly higher sizes than in the single factor case. Also, rejection

frequencies for the t∗a, t∗b and CIPS tests now increase with the signal-to-noise ratio. The P c
Ê

statistic of Bai and Ng (2004a) has a slightly reduced rejection frequency but is still over-sized.

The rank statistics MQc
c and MQc

f however fail to reject common stochastic trends. Sizes

for the tests proposed by Breitung and Das (2006) and for Sul’s (2006) tfglsrma are slighly

increased when compared to the single common factor case.

Insert Tables 8 about here

Power results for the stationary DGPs we consider are presented in Tables 9 and 10. Table

9 give the results when the DGP given in (25) is employed. For Pesaran’s CADF and CIPS

statistics power is reduced when compared to the one common factor case, and furthermore

the power for the CIPS test decreases as the signal-to-noise ratio increases. The t∗a, t∗b and

P c
Ê

tests have high power which is 1 for T > 20, while the rank tests MQc
c and MQc

f fail to

reject non-stationarity for the extracted common factors. The power decrease of the trob test

as the signal-to-noise ratio increases is stronger than in the single factor case, while the 2 GLS

statistics have good power. When the DGP given in (26) is used (Table 10), the power of

the CIPS and trob tests is increased, while the two statistics proposed by Moon and Perron

(2004) and the two GLS tests have slightly reduced power. Also, the rejection frequencies for

Sul’s tcrma is reduced, even below the nominal 5% level in some cases.

Insert Tables 9-10 about here

Tables 11-15 present results for the tests of Moon and Perron (2004) and Bai and Ng

(2004a) where the DGP contains 2 common factors, but we have misspecified the number of

common factors in the estimation by setting it either equal to 1 (l.h.s. panel) or to 3 (r.h.s.

panel). As for the one factor case, the ADF c
F̂

for the extracted common factor has some size

distortions and low power. The rank tests MQc
c and MQc

f fail to detect the true number of

common stochastic trends and usually select the maximum possible number (k̂1 = 3). For

the P c
Ê

size distortions are lower and power is higher when too many factors are extracted

than when too few factors are accounted for. Similarly, for Moon and Perron’s (2004) test
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power is better when the number of common factors is overestimated. Both tests experience

increased size distortions, but these are better for small N when only a single common factor

is included in the estimation and better for large N when 3 factors are incorrectly accounted

for.

Insert Tables 11-15 about here

From the Monte Carlo simulations, several general conclusions can be drawn. The presence

of serial correlation in the error term leads to size distortions which can be quite large in small

samples. The Moon and Perron (2004) tests appear to be somewhat more powerful than

the Pesaran’s (2005) CIPS test. In general, both types of tests have similar small sample

behavior. The t∗a test of Moon and Perron (2004) has less size distortions than the t∗b test.

To test for the presence of a unit root in the idiosyncratic components, the P c
Ê

test of

Bai and Ng (2004a) should be preferred to their ADF c
Ê

test. If the unit root in the data

in fact is due to a unit root in the common factors, only the Bai and Ng (2004a) tests have

decent properties. The tests put forward by Pesaran (2005) and Moon and Perron (2004)

are designed to test for the presence of unit roots in the de-factored data. In the case of

cross-sectional dependencies due to a single common factor, the two types of procedures have

similar small sample properties. Whereas Pesaran’s (2005) tests account for the effect of this

common factor by including cross-sectional averages (of first differences and lagged levels)

in the regression yielding the CADF statistic, Moon and Perron (2004) compute their test

statistics using de-factored data. While the Moon-Perron approach applies to the multi-

factor case, augmenting regressions with cross-sectional averages will not fully account for

the presence of several factors. Therefore, in the presence of one common factor Pesaran’s

(2005) tests might be preferred, given that they can be computed in a straightforward way and

that they have similar small sample properties to the Moon and Perron (2004) procedures. In

multi-factor settings the latter tests are to be preferred. In that case, including cross-sectional

means will not lead to the elimination of all cross-sectional dependency, so that a central limit

theorem might not apply. As shown, the CADF and CIPS tests suffer from size distortions

and reduced power. Another difference between Pesaran (2005) and Moon and Perron (2004)

is that Pesaran’s (2005) CIPS test pools the statistics whereas Moon and Perron (2004) use

a pooled estimator to base their statistics on.

The Bai and Ng (2004a) tests have been proposed for a different purpose. They provide

tools to find out whether there are unit roots in the common factors and/or in the idiosyncratic

components. However, their tests for common stochastic trends, i.e. ADF c
F̂
, MQc

c and MQc
f

have low power.

The GLS statistics by Breitung and Das (2006) and by Sul (2006) which do not rely on

modelling the cross-sectional correlation using a factor models have good properties but fail

to detect a unit root introduced only through the common factors in the data.

We have not studied the issue of which test to choose if the common factor model repre-

sentation is not appropriate to describe cross-sectional dependence. Bootstrap unit root tests
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might be used in such an instance, but this question is left for future research.

4 An illustrative application: Testing for PPP using the new

approaches

This section presents an application of the new panel unit root tests described in Section 2

to illustrate their use in an empirical study of the validity of purchasing power parity (PPP).

For this purpose we consider the potential existence of a unit root in real exchange rate series

that are constructed as

Yi,t = si,t − p∗t + pi,t, (27)

where si,t is the ln of country i’s nominal exchange rate versus some numeraire currency, p∗t

is the ln of the aggregate price level in the numeraire country, and pi,t is the ln of country i’s

domestic aggregate price level.

The numerous analyzes of PPP in the literature do not come to a common conclusion with

respect to PPP. Some studies report stronger rejection of the unit root null, if the German

Mark instead of the US Dollar is used as a numeraire currency. Also, studies using univariate

unit root or cointegration tests reject it, while tests using panel methods as the LLC or IPS

test tend to find evidence in favor of PPP, see for example Oh (1996). However, as was already

discussed in the introduction, several studies have analyzed the properties of early panel unit

root tests in the presence of cross-sectional dependence since then, and argued against their

use for PPP tests. Lyhagen (2000) analytically derives the cross-correlation structure in a

panel of real exchange rates, constructed with a common numeraire country. He also derives

the effect of the common stochastic trend in the data introduced by the numeraire on the

limiting distributions of various panel statistics. In Monte Carlo simulations, he finds size

distortions similar to those reported by Banerjee et al. ((2004) and (2005)).

In the analysis presented in this section, monthly data from 14 European countries is

considered. The data set includes information on the nominal exchange rates of local currency

versus US Dollar ($US) for Austria, Denmark, Finland, France, Germany, Greece, Italy, the

Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the UK. Furthermore, the

Consumer Price Index (CPI) as a proxy for aggregate price levels is included for those 14

countries and the US. The sample includes monthly observations on all variables for the

period from February 1986 to September 2002, so 200 observations. For such a sample, one

can expect to find high correlation between panel units, due to a high degree of economic

integration and political co-operation. As far as monetary policy is concerned, the most

important mechanism of co-operation is the European Monetary System (EMS), to which

some panel members belong, and which finally led to the introduction of the Euro as a

common currency in some countries.

As a starting point of the analysis, the real exchange rate series are individually tested for

a unit root using an ADF test. The lag length p is set to 12 for all countries. The individual
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ADF statistics are shown in Table 16. Only for the UK, the unit root null can be rejected for

both real exchange rate series. Using the real exchange rate versus DM, also for Switzerland

the ADF test rejects at a 5% significance level. These findings are representative for those

of studies using univariate tests. The problem here is that it remains unclear whether the

non-rejection of the unit root is due to a failure of PPP, or the low power of the ADF test

against near unit root alternative.

Next, the panel unit root tests described in Section 2 are performed. For each test, it is

assumed that a single common factor is present in the data. Given that the real exchange rate

series are constructed using a common base currency, this assumption seems reasonable. For

the tests of Pesaran (2005) and Moon and Perron (2004), the data representation in (2)-(3) is

assumed to be valid. The results of the CADFi tests suggested by Pesaran (2005) are given

in Table 16, and Table 17 presents Pesaran’s (2004) CIPS statistic and those proposed by

Moon and Perron (2004). Except for the French real exchange rate when measured against

the German Mark, the CADFi statistics fail to reject the unit root null. Also, the pooled

CIPS test does not reject the null in both panels. This provides some evidence against PPP.

The t∗a and t∗b statistics of Moon and Perron (2004) do not provide such a clear picture. While

the former one rejects PPP in both panels, the latter one does not reject it.

The results for the panel unit root tests proposed by Breitung and Das (2006) and by Sul

(2006) are given in Table 17. While both tests by Breitung and Das (2006) do not reject the

unit root null for both panels of real exchange rates, the tfglsrma test of Sul (2006) does reject

the unit root when real exchange rates are constructed with Germany as base country.

Insert Tables 16-17 about here

For the application of the Bai and Ng (2004a) procedure, it is assumed that the data can

be represented as in (13). With this representation, there is an interpretive problem. Clearly,

if both Ft and Ei,t are stationary, the real exchange rate is stationary and PPP holds in the

long run at least. Also, if both common and idiosyncratic components are I(1), PPP can be

rejected. But, if just the common factors are non-stationary the real exchange rate series are

pairwise cointegrated along the cross-section but individually non-stationary, so that PPP in

the usual sense does not hold between panel members and the base country. However, in the

special case λi = λj , the cointegrating vector for Y B
i,t and Y B

j,t is [1,−1], where the superscript

B denotes the base country. Then PPP holds between countries i and j, since

Y B
i,t − Y B

j,t = sB
i,t − sB

j,t + pi,t − pj,t = sj
i,t + pi,t − pj,t = Y j

i,t ∼ I(0). (28)

The results for the test statistics suggested by Bai and Ng (2004a) are presented in Table

17. Most of the individual test for the idiosyncratic errors, as well as the test for the common

factor reject the unit root. Also, the pooled error test rejects the unit root for both panels of

real exchange rates. This provides some evidence in favor of PPP.
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5 Conclusion

In this paper several panel unit root tests that account for cross section dependence assuming

or using a common factor structure have been proposed in the literature, notably Pesaran

(2004), Moon and Perron (2004) and Bai and Ng (2004a). There are often valid theoretical

and empirical reasons why a common factor structure can be expected to yield sensible results.

Therefore, panels with dynamic factors are of interest in economic modelling.

We have studied the three approaches to unit root testing in panels with dynamic factors,

compared them in terms of DGP, tests, null and alternative hypotheses. We have studied

the small sample behavior of the tests proposed in a common framework. We have discussed

their use in econometric modelling and compared them with the tests proposed by Breitung

and Das (2006) and Sul (2006). In addition, we have applied them in an empirical study of

purchasing power parity.

The main conclusions are:

• In the case where the observed non-stationarity is only due to a non-stationary common

factor, the individual series are pairwise cointegrated along the cross sectional dimen-

sion. Only the Bai and Ng (2004a) tests allow for this type of structure to be detected.

In this case, the other considered tests tend to systematically reject the unit root that

actually is present in the series.

• Pesaran’s (2005) CADF and CIPS tests are indeed designed for testing for unit roots in

the idiosyncratic components when cross-sectional dependence is due to a single common

factor. The pooled CIPS test has better power properties than the individual specific

CADF tests.

• The Moon and Perron (2004) tests which use de-factored data can account for multi-

ple common factors. Therefore, their use has to be recommended when cross-section

dependence is expected to be due to several common factors. The two tests proposed

by Moon and Perron (2004) are found to have similar small sample power, but the t∗a

statistic is found to have slightly smaller size distortions than the t∗b . They were found

to be more powerful than the Pesaran (2005) tests, which have the advantage to be easy

to compute.

• The Bai and Ng (2004a) tests are designed to separately test for the presence of unit

roots in the common factors and in the idiosyncratic components.

• From the Monte Carlo analysis, we conclude that the P c
Ê

tests is more powerful than

the ADF c
Ê

in detecting unit roots in the idiosyncratic components, although the former

can have strong size distortion when the time dimension of the panel is small.

• The ADF c
F̂

for testing for the presence of unit roots in a single common factor is found

to have low power. Similarly, in a multi-factor setting, the MQc
c and MQc

f tests fail to

distinguish high but stationary serial correlation from non-stationarity in the common
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factors. For the one factor model, Bai and Ng’s (2004) ADFcF̂ test has better size than

Sul’s (2006) tcrma test except when N is small and T is large, although the rejection

frequencies are much higher than the nominal size.

• When the number of common factors is unknown and has to be selected, it is less

harmful to include too many factors than too few in the test procedures of Bai and Ng

(2004a) and Moon and Perron (2004).

• The considered GLS tests by Breitung and Das (2006) and Sul (2006) can be computed,

i.e. when N < T . They provide good alternatives to test for unit roots in the data

when the nonstationarity does not only come from the common factors. In the presence

of cross-member cointegration the tests diverge.

As the tests by Pesaran (2005), Moon and Perron (2004) and the ADF c
Ê

and P c
Ê

by Bai

and Ng (2004a) test for the presence of a unit root in the idiosyncratic components, it is

worthwhile to compare their small sample properties.

• In the one-factor model, under the null hypothesis of a unit root in the idiosyncratic

component, all tests perform well or reasonably well. The P c
Ê

test of Bai and Ng (2004a)

over-rejects the null when the common factor is nonstationary.

• In the two-factor model with K̂ = K = 2, surprisingly the CADF test of of Pesaran

(2005) has a reasonable size. The P c
Ê

test by Bai and Ng (2004a) has a reasonable size

as well when the common factors have a near-unit root.

• In the two-factor model with K̂ = 1 and with nonstationary common factors or with

K̂ = 3 and near-unit root common factor processes, the ADF c
Ê

test has a size close to

the nominal one. The other tests are oversized. In other cases, all tests appear to be

oversized.

• For all models considered, the P c
Ê

test by Bai and Ng (2004a) has power one or close to

one. The power of the tests by Moon and Perron (2004) is in general somewhat lower

than that of the P c
Ê

test. The power of the tests by Pesaran (2005) and of the ADF c
Ê

test of Bai and Ng (2004a) is much lower in most instances, however Pesaran’s (2005)

CADF test and Bai and Ng’s (2004a) ADF c
Ê

test are individual specific statistics. In

terms of finite sample power, the P c
Ê

test of Bai and Ng (2004a) and the tests of Moon

and Perron (2004) seem to be the preferred choice on the basis of this Monte Carlo

study.
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Table 1: Finite sample (average) rejection rates for Pesaran’s (2005) CADF and CIPS statistics, Moon
and Perron’s (2004) t∗a and t∗b statistics, Bai and Ng’s (2004a) ADF c

Ê
, P c

Ê
, and ADF c

F̂
statistics, Breitung

and Das’s (2006) trob and tgls statistics, and Sul’s (2006) tfglsrma and tcrma statistics.

σ2
f

σ2
e

N T CADF CIPS t∗a t∗b ADF c
Ê

P c
Ê

ADF c
F̂

trob tgls tfglsrma tcrma

0.5 20 20 0.28 0.53 0.06 0.15 0.16 0.64 0.38 0.01 - - -
0.5 20 50 0.12 0.16 0.07 0.13 0.07 0.15 0.14 0.07 0.04 0.07 0.52
0.5 20 100 0.07 0.07 0.08 0.15 0.06 0.12 0.08 0.07 0.04 0.05 0.55
0.5 50 20 0.28 0.59 0.06 0.12 0.16 0.86 0.37 0.00 - - -
0.5 50 50 0.12 0.16 0.04 0.10 0.07 0.21 0.14 0.03 - - -
0.5 50 100 0.07 0.07 0.05 0.10 0.06 0.15 0.08 0.07 0.00 0.01 0.50
0.5 100 20 0.28 0.64 0.03 0.07 0.16 0.96 0.35 0.00 - - -
0.5 100 50 0.12 0.16 0.04 0.07 0.07 0.29 0.13 0.00 - - -
0.5 100 100 0.07 0.05 0.05 0.07 0.06 0.17 0.09 0.04 - - -

1 20 20 0.28 0.52 0.09 0.17 0.16 0.64 0.37 0.02 - - -
1 20 50 0.12 0.16 0.08 0.14 0.07 0.15 0.15 0.08 0.05 0.08 0.50
1 20 100 0.07 0.07 0.09 0.15 0.06 0.12 0.08 0.09 0.05 0.05 0.55
1 50 20 0.28 0.59 0.11 0.18 0.16 0.86 0.37 0.00 - - -
1 50 50 0.12 0.16 0.06 0.12 0.07 0.20 0.14 0.03 - - -
1 50 100 0.07 0.07 0.06 0.12 0.06 0.14 0.07 0.08 0.00 0.01 0.50
1 100 20 0.28 0.64 0.09 0.13 0.16 0.96 0.35 0.00 - - -
1 100 50 0.12 0.16 0.05 0.08 0.07 0.28 0.13 0.00 - - -
1 100 100 0.07 0.05 0.05 0.08 0.06 0.18 0.09 0.03 - - -
2 20 20 0.28 0.53 0.14 0.22 0.16 0.64 0.38 0.04 - - -
2 20 50 0.12 0.15 0.09 0.16 0.07 0.15 0.14 0.09 0.06 0.10 0.51
2 20 100 0.07 0.08 0.09 0.16 0.06 0.12 0.08 0.10 0.06 0.07 0.53
2 50 20 0.28 0.59 0.22 0.28 0.16 0.86 0.38 0.01 - - -
2 50 50 0.12 0.15 0.09 0.14 0.07 0.21 0.15 0.03 - - -
2 50 100 0.07 0.07 0.08 0.13 0.06 0.14 0.07 0.08 0.01 0.03 0.50
2 100 20 0.28 0.64 0.21 0.25 0.16 0.96 0.35 0.00 - - -
2 100 50 0.12 0.16 0.08 0.13 0.07 0.28 0.13 0.00 - - -
2 100 100 0.07 0.05 0.06 0.10 0.06 0.18 0.09 0.02 - - -

The single common factor is I(1) and idiosyncratic components are I(1). Rejection probabilities are based on 5% cutoff
values from Pesaran (2005), Tables 1b and 3b , 5% cutoff values of the standard normal distribution, or 5% Dickey-Fuller
critical values for the test statistics as specified in the text.
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Table 2: Finite sample (average) rejection rates for Pesaran’s (2005) CADF and CIPS statistics, Moon
and Perron’s (2004) t∗a and t∗b statistics, Bai and Ng’s (2004a) ADF c

Ê
, P c

Ê
, and ADF c

F̂
statistics, Breitung

and Das’s (2006) trob and tgls statistics, and Sul’s (2006) tfglsrma and tcrma statistics.

σ2
f

σ2
e

N T CADF CIPS t∗a t∗b ADF c
Ê

P c
Ê

ADF c
F̂

trob tgls tfglsrma tcrma

0.5 20 20 0.32 0.68 0.81 0.91 0.23 0.94 0.41 0.11 - - -
0.5 20 50 0.17 0.54 0.99 1.00 0.25 1.00 0.15 0.38 0.68 0.60 0.60
0.5 20 100 0.18 0.85 1.00 1.00 0.44 1.00 0.07 0.35 0.85 0.87 0.66
0.5 50 20 0.31 0.78 0.97 0.99 0.23 1.00 0.40 0.13 - - -
0.5 50 50 0.18 0.71 1.00 1.00 0.26 1.00 0.13 0.40 - - -
0.5 50 100 0.19 0.98 1.00 1.00 0.46 1.00 0.09 0.53 0.93 0.90 0.62
0.5 100 20 0.32 0.86 0.98 0.99 0.24 1.00 0.38 0.12 - - -
0.5 100 50 0.19 0.80 1.00 1.00 0.27 1.00 0.14 0.30 - - -
0.5 100 100 0.21 1.00 1.00 1.00 0.48 1.00 0.09 0.39 - - -

1 20 20 0.32 0.68 0.82 0.92 0.23 0.94 0.40 0.09 - - -
1 20 50 0.17 0.55 0.99 1.00 0.25 1.00 0.14 0.28 0.66 0.57 0.58
1 20 100 0.18 0.85 1.00 1.00 0.44 1.00 0.07 0.25 0.83 0.84 0.61
1 50 20 0.31 0.79 0.96 0.98 0.23 1.00 0.38 0.10 - - -
1 50 50 0.18 0.71 1.00 1.00 0.26 1.00 0.13 0.26 - - -
1 50 100 0.19 0.98 1.00 1.00 0.46 1.00 0.09 0.37 0.91 0.86 0.59
1 100 20 0.32 0.86 0.97 0.98 0.24 1.00 0.38 0.08 - - -
1 100 50 0.19 0.81 1.00 1.00 0.27 1.00 0.14 0.17 - - -
1 100 100 0.21 1.00 1.00 1.00 0.48 1.00 0.09 0.22 - - -
2 20 20 0.32 0.69 0.82 0.92 0.23 0.94 0.40 0.08 - - -
2 20 50 0.17 0.55 1.00 1.00 0.25 1.00 0.15 0.19 0.65 0.57 0.56
2 20 100 0.18 0.86 1.00 1.00 0.44 1.00 0.08 0.19 0.82 0.83 0.59
2 50 20 0.31 0.78 0.96 0.98 0.24 1.00 0.37 0.08 - - -
2 50 50 0.18 0.71 1.00 1.00 0.26 1.00 0.13 0.18 - - -
2 50 100 0.19 0.98 1.00 1.00 0.46 1.00 0.10 0.24 0.89 0.83 0.57
2 100 20 0.32 0.86 0.97 0.98 0.24 1.00 0.37 0.05 - - -
2 100 50 0.19 0.81 1.00 1.00 0.27 1.00 0.13 0.09 - - -
2 100 100 0.21 1.00 1.00 1.00 0.48 1.00 0.10 0.11 - - -

The single common factor is I(1) and idiosyncratic components are I(0). Rejection probabilities are based on 5% cutoff
values from Pesaran (2005), Tables 1b and 3b , 5% cutoff values of the standard normal distribution, or 5% Dickey-Fuller
critical values for the test statistics as specified in the text.
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Table 3: Finite sample (average) rejection rates for Pesaran’s (2005) CADF and CIPS statistics, Moon
and Perron’s (2004) t∗a and t∗b statistics, Bai and Ng’s (2004a) ADF c

Ê
, P c

Ê
, and ADF c

F̂
statistics, Breitung

and Das’s (2006) trob and tgls statistics, and Sul’s (2006) tfglsrma and tcrma statistics.

σ2
f

σ2
e

N T CADF CIPS t∗a t∗b ADF c
Ê

P c
Ê

ADF c
F̂

trob tgls tfglsrma tcrma

0.5 20 20 0.27 0.47 0.08 0.16 0.16 0.62 0.40 0.01 - - -
0.5 20 50 0.11 0.10 0.09 0.14 0.07 0.12 0.18 0.15 0.06 0.10 0.49
0.5 20 100 0.06 0.02 0.10 0.17 0.06 0.12 0.19 0.25 0.06 0.07 0.51
0.5 50 20 0.27 0.55 0.07 0.14 0.16 0.84 0.40 0.00 - - -
0.5 50 50 0.11 0.08 0.06 0.11 0.07 0.20 0.17 0.08 - - -
0.5 50 100 0.05 0.01 0.06 0.11 0.06 0.12 0.19 0.19 0.00 0.01 0.53
0.5 100 20 0.27 0.59 0.04 0.09 0.16 0.95 0.41 0.00 - - -
0.5 100 50 0.11 0.06 0.05 0.08 0.07 0.25 0.16 0.00 - - -
0.5 100 100 0.06 0.01 0.05 0.08 0.06 0.15 0.18 0.14 - - -

1 20 20 0.27 0.47 0.13 0.21 0.16 0.61 0.41 0.02 - - -
1 20 50 0.11 0.10 0.11 0.17 0.07 0.12 0.19 0.20 0.07 0.10 0.49
1 20 100 0.06 0.02 0.12 0.19 0.06 0.12 0.19 0.36 0.07 0.09 0.51
1 50 20 0.27 0.55 0.17 0.24 0.16 0.84 0.40 0.00 - - -
1 50 50 0.11 0.08 0.09 0.15 0.07 0.20 0.17 0.09 - - -
1 50 100 0.05 0.01 0.08 0.14 0.06 0.12 0.19 0.28 0.01 0.02 0.52
1 100 20 0.27 0.58 0.13 0.19 0.16 0.95 0.40 0.00 - - -
1 100 50 0.11 0.06 0.08 0.11 0.07 0.25 0.16 0.00 - - -
1 100 100 0.06 0.01 0.07 0.10 0.06 0.15 0.19 0.13 - - -
2 20 20 0.27 0.46 0.21 0.27 0.16 0.61 0.41 0.04 - - -
2 20 50 0.12 0.10 0.16 0.21 0.07 0.12 0.18 0.23 0.08 0.12 0.48
2 20 100 0.06 0.02 0.17 0.24 0.06 0.12 0.18 0.44 0.08 0.12 0.50
2 50 20 0.27 0.55 0.31 0.36 0.16 0.84 0.40 0.01 - - -
2 50 50 0.11 0.08 0.18 0.23 0.07 0.19 0.16 0.09 - - -
2 50 100 0.05 0.01 0.16 0.21 0.06 0.12 0.20 0.35 0.01 0.05 0.51
2 100 20 0.27 0.57 0.31 0.35 0.16 0.95 0.40 0.00 - - -
2 100 50 0.11 0.06 0.18 0.22 0.07 0.25 0.16 0.01 - - -
2 100 100 0.06 0.00 0.13 0.18 0.06 0.14 0.19 0.12 - - -

The single common factor is I(0) and idiosyncratic components are I(1). Rejection probabilities are based on 5% cutoff
values from Pesaran (2005), Tables 1b and 3b , 5% cutoff values of the standard normal distribution, or 5% Dickey-Fuller
critical values for the test statistics as specified in the text.
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Table 4: Finite sample (average) rejection rates for Pesaran’s (2005) CADF and CIPS statistics, Moon
and Perron’s (2004) t∗a and t∗b statistics, Bai and Ng’s (2004a) ADF c

Ê
, P c

Ê
, and ADF c

F̂
statistics, Breitung

and Das’s (2006) trob and tgls statistics, and Sul’s (2006) tfglsrma and tcrma statistics.

σ2
f

σ2
e

N T CADF CIPS t∗a t∗b ADF c
Ê

P c
Ê

ADF c
F̂

trob tgls tfglsrma tcrma

0.5 20 20 0.31 0.65 0.89 0.96 0.23 0.94 0.44 0.15 - - -
0.5 20 50 0.16 0.48 1.00 0.99 0.26 1.00 0.18 0.72 0.88 0.79 0.61
0.5 20 100 0.16 0.75 1.00 1.00 0.48 1.00 0.17 0.95 1.00 1.00 0.67
0.5 50 20 0.30 0.74 0.99 1.00 0.24 1.00 0.41 0.20 - - -
0.5 50 50 0.17 0.58 1.00 1.00 0.27 1.00 0.17 0.78 - - -
0.5 50 100 0.17 0.95 1.00 1.00 0.49 1.00 0.22 0.98 0.99 0.99 0.64
0.5 100 20 0.31 0.82 1.00 1.00 0.24 1.00 0.41 0.18 - - -
0.5 100 50 0.17 0.69 1.00 1.00 0.29 1.00 0.19 0.62 - - -
0.5 100 100 0.19 1.00 1.00 1.00 0.52 1.00 0.16 0.95 - - -

1 20 20 0.31 0.64 0.91 0.96 0.23 0.94 0.43 0.13 - - -
1 20 50 0.16 0.48 1.00 1.00 0.26 1.00 0.17 0.56 0.88 0.79 0.58
1 20 100 0.16 0.74 1.00 1.00 0.48 1.00 0.17 0.85 1.00 1.00 0.62
1 50 20 0.30 0.73 0.99 1.00 0.24 1.00 0.41 0.16 - - -
1 50 50 0.17 0.59 1.00 1.00 0.27 1.00 0.17 0.57 - - -
1 50 100 0.17 0.95 1.00 1.00 0.49 1.00 0.20 0.93 0.99 0.98 0.61
1 100 20 0.31 0.82 1.00 1.00 0.24 1.00 0.41 0.12 - - -
1 100 50 0.17 0.69 1.00 1.00 0.29 1.00 0.18 0.39 - - -
1 100 100 0.19 1.00 1.00 1.00 0.52 1.00 0.15 0.76 - - -
2 20 20 0.31 0.65 0.91 0.96 0.23 0.94 0.43 0.13 - - -
2 20 50 0.16 0.47 1.00 1.00 0.26 1.00 0.18 0.44 0.89 0.80 0.56
2 20 100 0.16 0.75 1.00 1.00 0.48 1.00 0.17 0.73 1.00 1.00 0.58
2 50 20 0.30 0.73 0.99 1.00 0.24 1.00 0.40 0.12 - - -
2 50 50 0.17 0.60 1.00 1.00 0.27 1.00 0.17 0.40 - - -
2 50 100 0.17 0.95 1.00 1.00 0.49 1.00 0.20 0.80 0.99 0.98 0.58
2 100 20 0.31 0.82 1.00 1.00 0.24 1.00 0.42 0.08 - - -
2 100 50 0.17 0.69 1.00 1.00 0.29 1.00 0.18 0.24 - - -
2 100 100 0.19 1.00 1.00 1.00 0.52 1.00 0.16 0.55 - - -

The single common factor is I(0) and idiosyncratic components are I(0). Rejection probabilities are based on 5% cutoff
values from Pesaran (2005), Tables 1b and 3b , 5% cutoff values of the standard normal distribution, or 5% Dickey-Fuller
critical values for the test statistics as specified in the text.
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Table 5: Finite sample (average) rejection rates for Pesaran’s (2005) CADF and CIPS statistics, Moon
and Perron’s (2004) t∗a and t∗b statistics, Bai and Ng’s (2004a) ADF c

Ê
, P c

Ê
, and ADF c

F̂
statistics, Breitung

and Das’s (2006) trob and tgls statistics, and Sul’s (2006) tfglsrma and tcrma statistics.

σ2
f

σ2
e

N T CADF CIPS t∗a t∗b ADF c
Ê

P c
Ê

ADF c
F̂

trob tgls tfglsrma tcrma

0.5 20 20 0.30 0.63 0.82 0.92 0.22 0.91 0.46 0.21 - - -
0.5 20 50 0.16 0.38 0.98 0.99 0.24 0.99 0.25 0.83 0.86 0.77 0.59
0.5 20 100 0.17 0.77 1.00 1.00 0.42 1.00 0.30 0.99 1.00 1.00 0.60
0.5 50 20 0.29 0.70 0.97 0.98 0.23 0.99 0.42 0.23 - - -
0.5 50 50 0.16 0.54 1.00 1.00 0.24 1.00 0.21 0.82 - - -
0.5 50 100 0.17 0.97 1.00 1.00 0.43 1.00 0.29 0.98 0.99 0.92 0.13
0.5 100 20 0.30 0.77 0.98 0.99 0.23 1.00 0.43 0.25 - - -
0.5 100 50 0.16 0.59 0.99 0.99 0.25 1.00 0.26 0.78 - - -
0.5 100 100 0.19 1.00 1.00 1.00 0.45 1.00 0.35 0.97 - - -

1 20 20 0.30 0.60 0.78 0.85 0.22 0.90 0.45 0.18 - - -
1 20 50 0.16 0.39 0.96 0.97 0.22 0.97 0.26 0.74 0.84 0.73 0.54
1 20 100 0.18 0.80 1.00 1.00 0.39 1.00 0.31 0.97 1.00 0.99 0.52
1 50 20 0.29 0.70 0.94 0.96 0.23 1.00 0.41 0.19 - - -
1 50 50 0.16 0.54 0.98 0.98 0.22 1.00 0.20 0.64 - - -
1 50 100 0.18 0.97 0.99 0.99 0.40 1.00 0.29 0.92 0.96 0.81 0.05
1 100 20 0.30 0.77 0.92 0.94 0.23 1.00 0.42 0.17 - - -
1 100 50 0.16 0.59 0.96 0.97 0.24 1.00 0.25 0.55 - - -
1 100 100 0.20 1.00 0.98 0.98 0.41 1.00 0.34 0.88 - - -
2 20 20 0.30 0.58 0.72 0.78 0.21 0.88 0.44 0.19 - - -
2 20 50 0.17 0.42 0.89 0.91 0.21 0.92 0.26 0.63 0.77 0.66 0.49
2 20 100 0.21 0.85 0.98 0.98 0.35 1.00 0.31 0.93 0.99 0.94 0.41
2 50 20 0.29 0.68 0.88 0.90 0.22 0.99 0.41 0.15 - - -
2 50 50 0.17 0.54 0.93 0.94 0.21 0.99 0.20 0.50 - - -
2 50 100 0.19 0.97 0.97 0.97 0.36 1.00 0.29 0.81 0.90 0.65 0.01
2 100 20 0.29 0.77 0.84 0.85 0.22 1.00 0.42 0.12 - - -
2 100 50 0.16 0.60 0.88 0.88 0.21 0.99 0.25 0.39 - - -
2 100 100 0.21 1.00 0.92 0.92 0.36 1.00 0.34 0.72 - - -

I(0) data generated by a Pesaran DGP. Rejection probabilities are based on 5% cutoff values from Pesaran (2005), Tables
1b and 3b , 5% cutoff values of the standard normal distribution, or 5% Dickey-Fuller critical values for the test statistics
as specified in the text.
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Table 6: Finite sample (average) rejection rates for Pesaran’s (2005) CADF and CIPS statistics,
Moon and Perron’s (2004) t∗a and t∗b statistics, Bai and Ng’s (2004a) P c

Ê
statistic, Breitung and Das’s

(2006) trob and tgls statistics, and Sul’s (2006) tfglsrma and tcrma statistics. Proportions of repetitions
when Bai and Ng’s (2004a) MQc

c and MQc
f statistics chose the correct number of common stochastic

trends.

σ2
f

σ2
e

N T CADF CIPS t∗a t∗b P c
Ê

MQc
c MQc

f trob tgls tfglsrma tcrma

0.5 20 20 0.31 0.54 0.09 0.18 0.36 1.00 1.00 0.02 - - -
0.5 20 50 0.15 0.26 0.07 0.15 0.15 1.00 1.00 0.06 0.05 0.08 0.50
0.5 20 100 0.08 0.19 0.08 0.16 0.10 1.00 1.00 0.08 0.04 0.04 0.56
0.5 50 20 0.30 0.60 0.09 0.15 0.51 1.00 1.00 0.00 - - -
0.5 50 50 0.14 0.29 0.04 0.10 0.16 1.00 1.00 0.03 - - -
0.5 50 100 0.08 0.20 0.06 0.12 0.12 1.00 1.00 0.07 0.00 0.01 0.53
0.5 100 20 0.30 0.61 0.07 0.14 0.67 1.00 1.00 0.00 - - -
0.5 100 50 0.14 0.29 0.04 0.08 0.23 1.00 1.00 0.00 - - -
0.5 100 100 0.08 0.23 0.03 0.06 0.13 1.00 1.00 0.03 - - -

1 20 20 0.32 0.53 0.11 0.20 0.35 1.00 1.00 0.02 - - -
1 20 50 0.15 0.30 0.08 0.15 0.14 1.00 1.00 0.08 0.05 0.09 0.50
1 20 100 0.09 0.24 0.10 0.16 0.10 1.00 1.00 0.08 0.04 0.05 0.56
1 50 20 0.31 0.59 0.14 0.22 0.51 1.00 1.00 0.00 - - -
1 50 50 0.15 0.34 0.05 0.11 0.16 1.00 1.00 0.04 - - -
1 50 100 0.08 0.25 0.06 0.13 0.12 1.00 1.00 0.08 0.01 0.02 0.53
1 100 20 0.31 0.60 0.12 0.20 0.67 1.00 1.00 0.00 - - -
1 100 50 0.14 0.33 0.06 0.10 0.22 1.00 1.00 0.00 - - -
1 100 100 0.08 0.28 0.04 0.07 0.13 1.00 1.00 0.02 - - -
2 20 20 0.33 0.55 0.16 0.24 0.35 1.00 1.00 0.04 - - -
2 20 50 0.15 0.34 0.09 0.16 0.15 1.00 1.00 0.08 0.06 0.09 0.48
2 20 100 0.09 0.29 0.10 0.17 0.11 1.00 1.00 0.09 0.06 0.06 0.55
2 50 20 0.33 0.60 0.20 0.27 0.51 1.00 1.00 0.02 - - -
2 50 50 0.15 0.38 0.07 0.13 0.16 1.00 1.00 0.03 - - -
2 50 100 0.08 0.30 0.07 0.14 0.12 1.00 1.00 0.09 0.01 0.03 0.52
2 100 20 0.33 0.60 0.19 0.26 0.68 1.00 1.00 0.00 - - -
2 100 50 0.14 0.37 0.10 0.13 0.23 1.00 1.00 0.01 - - -
2 100 100 0.09 0.34 0.05 0.08 0.12 1.00 1.00 0.02 - - -

The data contains 2 common factors. Common factors are I(1) and idiosyncratic components are I(1). Rejection
probabilities are based on 5% cutoff values from Pesaran (2005), Tables 1b and 3b , 5% cutoff values of the standard
normal distribution, or 5% Dickey-Fuller critical values for the test statistics as specified in the text.
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Table 7: Finite sample (average) rejection rates for Pesaran’s (2005) CADF and CIPS statistics,
Moon and Perron’s (2004) t∗a and t∗b statistics, Bai and Ng’s (2004a) P c

Ê
statistic, Breitung and Das’s

(2006) trob and tgls statistics, and Sul’s (2006) tfglsrma and tcrma statistics. Proportions of repetitions
when Bai and Ng’s (2004a) MQc

c and MQc
f statistics chose the correct number of common stochastic

trends.

σ2
f

σ2
e

N T CADF CIPS t∗a t∗b P c
Ê

MQc
c MQc

f trob tgls tfglsrma tcrma

0.5 20 20 0.32 0.60 0.71 0.85 0.77 1.00 1.00 0.08 - - -
0.5 20 50 0.17 0.45 0.99 1.00 0.99 1.00 1.00 0.25 0.62 0.54 0.55
0.5 20 100 0.14 0.54 1.00 1.00 1.00 1.00 1.00 0.28 0.85 0.85 0.63
0.5 50 20 0.33 0.67 0.88 0.94 0.98 1.00 1.00 0.08 - - -
0.5 50 50 0.17 0.54 1.00 1.00 1.00 1.00 1.00 0.21 - - -
0.5 50 100 0.14 0.60 1.00 1.00 1.00 1.00 1.00 0.28 0.86 0.85 0.55
0.5 100 20 0.33 0.71 0.96 0.98 1.00 1.00 1.00 0.09 - - -
0.5 100 50 0.17 0.54 1.00 1.00 1.00 1.00 1.00 0.17 - - -
0.5 100 100 0.13 0.61 1.00 1.00 1.00 1.00 1.00 0.27 - - -

1 20 20 0.33 0.59 0.71 0.85 0.78 1.00 1.00 0.07 - - -
1 20 50 0.16 0.44 1.00 1.00 0.99 1.00 1.00 0.18 0.58 0.54 0.51
1 20 100 0.13 0.48 1.00 1.00 1.00 1.00 1.00 0.18 0.83 0.83 0.60
1 50 20 0.33 0.63 0.88 0.93 0.98 1.00 1.00 0.05 - - -
1 50 50 0.17 0.51 1.00 1.00 1.00 1.00 1.00 0.14 - - -
1 50 100 0.12 0.55 1.00 1.00 1.00 1.00 1.00 0.20 0.82 0.82 0.53
1 100 20 0.34 0.68 0.94 0.97 1.00 1.00 1.00 0.06 - - -
1 100 50 0.16 0.51 1.00 1.00 1.00 1.00 1.00 0.09 - - -
1 100 100 0.12 0.54 1.00 1.00 1.00 1.00 1.00 0.14 - - -
2 20 20 0.34 0.57 0.71 0.84 0.79 1.00 1.00 0.05 - - -
2 20 50 0.16 0.44 1.00 1.00 0.99 1.00 1.00 0.15 0.58 0.54 0.51
2 20 100 0.12 0.45 1.00 1.00 1.00 1.00 1.00 0.14 0.83 0.83 0.57
2 50 20 0.34 0.61 0.87 0.93 0.99 1.00 1.00 0.04 - - -
2 50 50 0.17 0.50 1.00 1.00 1.00 1.00 1.00 0.09 - - -
2 50 100 0.12 0.50 1.00 1.00 1.00 1.00 1.00 0.14 0.79 0.80 0.52
2 100 20 0.35 0.65 0.94 0.97 1.00 1.00 1.00 0.04 - - -
2 100 50 0.16 0.50 1.00 1.00 1.00 1.00 1.00 0.05 - - -
2 100 100 0.11 0.48 1.00 1.00 1.00 1.00 1.00 0.09 - - -

The data contains 2 common factors. Common factors are I(1) and idiosyncratic components are I(0). Rejection
probabilities are based on 5% cutoff values from Pesaran (2005), Tables 1b and 3b , 5% cutoff values of the standard
normal distribution, or 5% Dickey-Fuller critical values for the test statistics as specified in the text.
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Table 8: Finite sample (average) rejection rates for Pesaran’s (2005) CADF and CIPS statistics,
Moon and Perron’s (2004) t∗a and t∗b statistics, Bai and Ng’s (2004a) P c

Ê
statistic, Breitung and Das’s

(2006) trob and tgls statistics, and Sul’s (2006) tfglsrma and tcrma statistics. Proportions of repetitions
when Bai and Ng’s (2004a) MQc

c and MQc
f statistics chose the correct number of common stochastic

trends.

σ2
f

σ2
e

N T CADF CIPS t∗a t∗b P c
Ê

MQc
c MQc

f trob tgls tfglsrma tcrma

0.5 20 20 0.31 0.53 0.12 0.21 0.30 0.00 0.00 0.03 - - -
0.5 20 50 0.14 0.20 0.09 0.17 0.12 0.00 0.00 0.17 0.07 0.11 0.51
0.5 20 100 0.08 0.10 0.11 0.17 0.09 0.00 0.00 0.32 0.07 0.07 0.54
0.5 50 20 0.30 0.58 0.12 0.21 0.43 0.00 0.00 0.00 - - -
0.5 50 50 0.13 0.19 0.06 0.13 0.12 0.00 0.00 0.08 - - -
0.5 50 100 0.07 0.06 0.08 0.15 0.10 0.00 0.00 0.32 0.00 0.01 0.53
0.5 100 20 0.30 0.60 0.11 0.17 0.59 0.00 0.00 0.00 - - -
0.5 100 50 0.13 0.23 0.07 0.10 0.17 0.00 0.00 0.00 - - -
0.5 100 100 0.08 0.09 0.05 0.09 0.11 0.00 0.00 0.19 - - -

1 20 20 0.32 0.54 0.16 0.26 0.30 0.00 0.00 0.05 - - -
1 20 50 0.14 0.24 0.13 0.21 0.12 0.00 0.00 0.23 0.08 0.13 0.51
1 20 100 0.08 0.15 0.15 0.20 0.10 0.00 0.00 0.43 0.07 0.08 0.54
1 50 20 0.31 0.59 0.23 0.33 0.42 0.00 0.00 0.01 - - -
1 50 50 0.14 0.26 0.12 0.20 0.11 0.00 0.00 0.09 - - -
1 50 100 0.07 0.12 0.14 0.21 0.10 0.00 0.00 0.42 0.01 0.03 0.52
1 100 20 0.31 0.59 0.25 0.32 0.59 0.00 0.00 0.00 - - -
1 100 50 0.14 0.31 0.15 0.19 0.16 0.00 0.00 0.02 - - -
1 100 100 0.08 0.18 0.12 0.17 0.11 0.00 0.00 0.15 - - -
2 20 20 0.34 0.57 0.24 0.33 0.29 0.00 0.00 0.08 - - -
2 20 50 0.15 0.30 0.19 0.26 0.11 0.00 0.00 0.26 0.09 0.16 0.51
2 20 100 0.09 0.21 0.22 0.26 0.09 0.00 0.00 0.51 0.10 0.14 0.53
2 50 20 0.33 0.60 0.33 0.41 0.42 0.00 0.00 0.03 - - -
2 50 50 0.15 0.33 0.26 0.32 0.11 0.00 0.00 0.12 - - -
2 50 100 0.08 0.22 0.30 0.35 0.10 0.00 0.00 0.48 0.02 0.07 0.51
2 100 20 0.33 0.60 0.37 0.44 0.60 0.00 0.00 0.01 - - -
2 100 50 0.14 0.37 0.33 0.37 0.17 0.00 0.00 0.06 - - -
2 100 100 0.08 0.27 0.30 0.34 0.11 0.00 0.00 0.22 - - -

The data contains 2 common factors. Common factors are I(0) and idiosyncratic components are I(1). Rejection
probabilities are based on 5% cutoff values from Pesaran (2005), Tables 1b and 3b , 5% cutoff values of the standard
normal distribution, or 5% Dickey-Fuller critical values for the test statistics as specified in the text.
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Table 9: Finite sample (average) rejection rates for Pesaran’s (2005) CADF and CIPS statistics,
Moon and Perron’s (2004) t∗a and t∗b statistics, Bai and Ng’s (2004a) P c

Ê
statistic, Breitung and Das’s

(2006) trob and tgls statistics, and Sul’s (2006) tfglsrma and tcrma statistics. Proportions of repetitions
when Bai and Ng’s (2004a) MQc

c and MQc
f statistics chose the correct number of common stochastic

trends.

σ2
f

σ2
e

N T CADF CIPS t∗a t∗b P c
Ê

MQc
c MQc

f trob tgls tfglsrma tcrma

0.5 20 20 0.32 0.59 0.86 0.94 0.77 0.00 0.00 0.14 - - -
0.5 20 50 0.17 0.46 1.00 1.00 1.00 0.00 0.00 0.65 0.92 0.80 0.57
0.5 20 100 0.15 0.64 1.00 1.00 1.00 0.00 0.00 0.93 1.00 1.00 0.68
0.5 50 20 0.33 0.69 0.98 0.99 0.98 0.00 0.00 0.15 - - -
0.5 50 50 0.18 0.56 1.00 1.00 1.00 0.00 0.00 0.60 - - -
0.5 50 100 0.16 0.73 1.00 1.00 1.00 0.00 0.00 0.94 1.00 1.00 0.58
0.5 100 20 0.33 0.72 1.00 1.00 1.00 0.00 0.00 0.18 - - -
0.5 100 50 0.17 0.55 1.00 1.00 1.00 0.00 0.00 0.58 - - -
0.5 100 100 0.14 0.73 1.00 1.00 1.00 0.00 0.00 0.94 - - -

1 20 20 0.33 0.59 0.86 0.96 0.79 0.00 0.00 0.13 - - -
1 20 50 0.17 0.47 1.00 1.00 1.00 0.00 0.00 0.51 0.92 0.81 0.54
1 20 100 0.14 0.62 1.00 1.00 1.00 0.00 0.00 0.84 1.00 1.00 0.63
1 50 20 0.34 0.67 0.98 0.99 0.98 0.00 0.00 0.11 - - -
1 50 50 0.18 0.53 1.00 1.00 1.00 0.00 0.00 0.44 - - -
1 50 100 0.14 0.68 1.00 1.00 1.00 0.00 0.00 0.84 1.00 1.00 0.56
1 100 20 0.35 0.69 0.99 1.00 1.00 0.00 0.00 0.13 - - -
1 100 50 0.17 0.54 1.00 1.00 1.00 0.00 0.00 0.41 - - -
1 100 100 0.15 0.67 1.00 1.00 1.00 0.00 0.00 0.78 - - -
2 20 20 0.35 0.58 0.87 0.95 0.78 0.00 0.00 0.12 - - -
2 20 50 0.17 0.47 1.00 1.00 1.00 0.00 0.00 0.28 0.93 0.81 0.52
2 20 100 0.14 0.59 1.00 1.00 1.00 0.00 0.00 0.43 1.00 1.00 0.59
2 50 20 0.35 0.65 0.98 0.99 0.98 0.00 0.00 0.09 - - -
2 50 50 0.18 0.53 1.00 1.00 1.00 0.00 0.00 0.12 - - -
2 50 100 0.14 0.63 1.00 1.00 1.00 0.00 0.00 0.29 1.00 0.99 0.54
2 100 20 0.35 0.65 0.99 1.00 1.00 0.00 0.00 0.11 - - -
2 100 50 0.17 0.53 1.00 1.00 1.00 0.00 0.00 0.16 - - -
2 100 100 0.13 0.63 1.00 1.00 1.00 0.00 0.00 0.29 - - -

The data contains 2 common factors. Common factors are I(0) and idiosyncratic components are I(0). Rejection
probabilities are based on 5% cutoff values from Pesaran (2005), Tables 1b and 3b , 5% cutoff values of the standard
normal distribution, or 5% Dickey-Fuller critical values for the test statistics as specified in the text.
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Table 10: Finite sample (average) rejection rates for Pesaran’s (2005) CADF and CIPS statistics,
Moon and Perron’s (2004) t∗a and t∗b statistics, Bai and Ng’s (2004a) P c

Ê
statistic, Breitung and Das’s

(2006) trob and tgls statistics, and Sul’s (2006) tfglsrma and tcrma statistics. Proportions of repetitions
when Bai and Ng’s (2004a) MQc

c and MQc
f statistics chose the correct number of common stochastic

trends.

σ2
f

σ2
e

N T CADF CIPS t∗a t∗b P c
Ê

MQc
c MQc

f trob tgls tfglsrma tcrma

0.5 20 20 0.32 0.58 0.77 0.88 0.71 0.00 0.00 0.19 - - -
0.5 20 50 0.17 0.44 0.96 0.98 0.94 0.00 0.00 0.78 0.86 0.74 0.45
0.5 20 100 0.18 0.76 1.00 1.00 1.00 0.00 0.00 0.98 1.00 0.99 0.39
0.5 50 20 0.32 0.69 0.94 0.97 0.96 0.00 0.00 0.23 - - -
0.5 50 50 0.18 0.57 1.00 1.00 1.00 0.00 0.00 0.80 - - -
0.5 50 100 0.19 0.89 1.00 1.00 1.00 0.00 0.00 0.98 0.99 0.93 0.09
0.5 100 20 0.32 0.73 0.97 0.98 1.00 0.00 0.00 0.26 - - -
0.5 100 50 0.17 0.57 1.00 1.00 1.00 0.00 0.00 0.76 - - -
0.5 100 100 0.18 0.90 1.00 1.00 1.00 0.00 0.00 0.98 - - -

1 20 20 0.33 0.57 0.69 0.78 0.65 0.00 0.00 0.18 - - -
1 20 50 0.17 0.44 0.90 0.93 0.88 0.00 0.00 0.68 0.79 0.69 0.37
1 20 100 0.18 0.73 0.99 0.99 0.99 0.00 0.00 0.94 0.99 0.97 0.25
1 50 20 0.33 0.68 0.88 0.92 0.92 0.00 0.00 0.17 - - -
1 50 50 0.18 0.56 0.98 0.99 1.00 0.00 0.00 0.66 - - -
1 50 100 0.19 0.84 1.00 1.00 1.00 0.00 0.00 0.94 0.97 0.82 0.03
1 100 20 0.33 0.69 0.91 0.92 0.98 0.00 0.00 0.20 - - -
1 100 50 0.17 0.57 0.99 0.99 1.00 0.00 0.00 0.58 - - -
1 100 100 0.18 0.81 1.00 1.00 1.00 0.00 0.00 0.91 - - -
2 20 20 0.34 0.58 0.59 0.67 0.59 0.00 0.00 0.18 - - -
2 20 50 0.17 0.45 0.79 0.80 0.75 0.00 0.00 0.59 0.71 0.60 0.28
2 20 100 0.19 0.71 0.95 0.95 0.95 0.00 0.00 0.90 0.96 0.90 0.16
2 50 20 0.35 0.66 0.80 0.84 0.88 0.00 0.00 0.14 - - -
2 50 50 0.18 0.57 0.95 0.95 0.99 0.00 0.00 0.52 - - -
2 50 100 0.20 0.80 0.99 0.99 1.00 0.00 0.00 0.89 0.92 0.62 0.01
2 100 20 0.35 0.66 0.82 0.84 0.95 0.00 0.00 0.16 - - -
2 100 50 0.18 0.57 0.93 0.93 1.00 0.00 0.00 0.48 - - -
2 100 100 0.19 0.81 0.98 0.98 1.00 0.00 0.00 0.81 - - -

The data contains 2 common factors. I(0) data generated by a Pesaran DGP. Rejection probabilities are based on
5% cutoff values from Pesaran (2005), Tables 1b and 3b , 5% cutoff values of the standard normal distribution, or 5%
Dickey-Fuller critical values for the test statistics as specified in the text.
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Table 11: Finite sample (average) rejection rates for Moon and Perron’s (2004) t∗a and t∗b
statistics, and Bai and Ng’s (2004a) ADF c

Ê
, P c

Ê
, and ADF c

F̂
statistics, the proportions of

repetitions when Bai and Ng’s (2004a) MQc
c and MQc

f statistics chose the correct number
of common stochastic trends, when the number of common factors is misspecified.

K̂ = 1 K̂ = 3
σ2
f

σ2
e

N T t∗a t∗b ADF c
Ê

P c
Ê

ADF c
F̂

t∗a t∗b P c
Ê

MQc
c MQc

f

0.5 20 20 0.20 0.17 0.16 0.62 0.40 0.18 0.31 0.61 0.00 0.01
0.5 20 50 0.21 0.16 0.07 0.22 0.12 0.11 0.22 0.16 0.00 0.00
0.5 20 100 0.22 0.16 0.06 0.17 0.08 0.11 0.21 0.12 0.00 0.00
0.5 50 20 0.22 0.21 0.16 0.79 0.39 0.29 0.37 0.83 0.00 0.01
0.5 50 50 0.24 0.21 0.07 0.27 0.12 0.18 0.25 0.19 0.00 0.00
0.5 50 100 0.27 0.22 0.06 0.21 0.09 0.15 0.22 0.13 0.00 0.00
0.5 100 20 0.32 0.28 0.16 0.86 0.38 0.29 0.34 0.92 0.00 0.01
0.5 100 50 0.37 0.30 0.07 0.39 0.14 0.20 0.25 0.30 0.00 0.00
0.5 100 100 0.39 0.32 0.06 0.34 0.10 0.12 0.15 0.18 0.00 0.00

1 20 20 0.31 0.20 0.16 0.58 0.40 0.25 0.36 0.61 0.00 0.01
1 20 50 0.32 0.16 0.07 0.25 0.12 0.18 0.29 0.16 0.00 0.00
1 20 100 0.32 0.16 0.06 0.21 0.08 0.15 0.27 0.13 0.00 0.00
1 50 20 0.38 0.30 0.16 0.75 0.39 0.37 0.43 0.82 0.00 0.01
1 50 50 0.38 0.28 0.07 0.32 0.13 0.25 0.34 0.19 0.00 0.00
1 50 100 0.41 0.29 0.06 0.26 0.09 0.22 0.30 0.12 0.00 0.00
1 100 20 0.45 0.36 0.16 0.78 0.38 0.37 0.41 0.92 0.00 0.01
1 100 50 0.48 0.38 0.07 0.42 0.14 0.30 0.34 0.30 0.00 0.00
1 100 100 0.50 0.40 0.06 0.38 0.10 0.22 0.26 0.18 0.00 0.00
2 20 20 0.38 0.19 0.16 0.56 0.40 0.29 0.39 0.62 0.00 0.01
2 20 50 0.41 0.15 0.07 0.29 0.12 0.23 0.34 0.16 0.00 0.00
2 20 100 0.41 0.14 0.06 0.26 0.09 0.21 0.31 0.13 0.00 0.00
2 50 20 0.47 0.32 0.16 0.70 0.38 0.41 0.46 0.82 0.00 0.00
2 50 50 0.47 0.28 0.07 0.33 0.13 0.32 0.38 0.20 0.00 0.00
2 50 100 0.49 0.30 0.06 0.32 0.08 0.29 0.35 0.12 0.00 0.00
2 100 20 0.50 0.38 0.16 0.69 0.38 0.41 0.44 0.91 0.00 0.01
2 100 50 0.52 0.37 0.07 0.42 0.14 0.35 0.38 0.30 0.00 0.00
2 100 100 0.53 0.38 0.07 0.39 0.10 0.28 0.33 0.18 0.00 0.00

The data contains 2 common factors. Common factors are I(1) and idiosyncratic components are I(1).
Rejection probabilities are based on 5% cutoff values from Pesaran (2005), Tables 1b and 3b , 5% cutoff values
of the standard normal distribution, or 5% Dickey-Fuller critical values for the test statistics as specified in
the text.
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Table 12: Finite sample (average) rejection rates for Moon and Perron’s (2004) t∗a and t∗b
statistics, and Bai and Ng’s (2004a) ADF c

Ê
, P c

Ê
, and ADF c

F̂
statistics, the proportions of

repetitions when Bai and Ng’s (2004a) MQc
c and MQc

f statistics chose the correct number
of common stochastic trends, when the number of common factors is misspecified.

K̂ = 1 K̂ = 3
σ2
f

σ2
e

N T t∗a t∗b ADF c
Ê

P c
Ê

ADF c
F̂

t∗a t∗b P c
Ê

MQc
c MQc

f

0.5 20 20 0.54 0.55 0.20 0.76 0.38 0.58 0.77 0.82 0.00 0.01
0.5 20 50 0.65 0.63 0.16 0.66 0.14 0.98 1.00 0.96 0.00 0.00
0.5 20 100 0.71 0.69 0.21 0.73 0.08 1.00 1.00 1.00 0.00 0.00
0.5 50 20 0.65 0.65 0.20 0.88 0.40 0.78 0.88 0.99 0.00 0.02
0.5 50 50 0.71 0.69 0.16 0.73 0.14 1.00 1.00 1.00 0.00 0.00
0.5 50 100 0.75 0.74 0.22 0.81 0.10 1.00 1.00 1.00 0.00 0.00
0.5 100 20 0.71 0.71 0.20 0.92 0.37 0.88 0.93 1.00 0.00 0.02
0.5 100 50 0.77 0.75 0.15 0.77 0.13 1.00 1.00 1.00 0.00 0.00
0.5 100 100 0.80 0.79 0.21 0.84 0.08 1.00 1.00 1.00 0.00 0.00

1 20 20 0.50 0.45 0.19 0.69 0.38 0.58 0.77 0.84 0.00 0.01
1 20 50 0.58 0.51 0.14 0.56 0.15 0.98 1.00 0.96 0.00 0.00
1 20 100 0.63 0.55 0.18 0.61 0.08 1.00 1.00 1.00 0.00 0.00
1 50 20 0.59 0.55 0.19 0.79 0.39 0.76 0.86 0.99 0.00 0.01
1 50 50 0.61 0.58 0.14 0.64 0.14 1.00 1.00 1.00 0.00 0.00
1 50 100 0.66 0.61 0.19 0.70 0.09 1.00 1.00 1.00 0.00 0.00
1 100 20 0.66 0.62 0.20 0.83 0.37 0.86 0.92 1.00 0.00 0.01
1 100 50 0.67 0.62 0.13 0.66 0.12 1.00 1.00 1.00 0.00 0.00
1 100 100 0.71 0.67 0.18 0.73 0.08 1.00 1.00 1.00 0.00 0.00
2 20 20 0.48 0.34 0.18 0.61 0.38 0.58 0.76 0.85 0.00 0.01
2 20 50 0.53 0.37 0.13 0.47 0.14 0.99 1.00 0.97 0.00 0.00
2 20 100 0.56 0.41 0.15 0.52 0.08 1.00 1.00 1.00 0.00 0.00
2 50 20 0.55 0.45 0.19 0.70 0.39 0.75 0.86 0.99 0.00 0.02
2 50 50 0.56 0.46 0.12 0.54 0.14 1.00 1.00 1.00 0.00 0.00
2 50 100 0.60 0.47 0.15 0.58 0.09 1.00 1.00 1.00 0.00 0.00
2 100 20 0.61 0.54 0.19 0.73 0.37 0.84 0.91 1.00 0.00 0.02
2 100 50 0.62 0.53 0.12 0.56 0.12 1.00 1.00 1.00 0.00 0.00
2 100 100 0.65 0.56 0.15 0.64 0.08 1.00 1.00 1.00 0.00 0.00

The data contains 2 common factors. Common factors are I(1) and idiosyncratic components are I(0).
Rejection probabilities are based on 5% cutoff values from Pesaran (2005), Tables 1b and 3b , 5% cutoff values
of the standard normal distribution, or 5% Dickey-Fuller critical values for the test statistics as specified in
the text.
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Table 13: Finite sample (average) rejection rates for Moon and Perron’s (2004) t∗a and t∗b
statistics, and Bai and Ng’s (2004a) ADF c

Ê
, P c

Ê
, and ADF c

F̂
statistics, the proportions of

repetitions when Bai and Ng’s (2004a) MQc
c and MQc

f statistics chose the correct number
of common stochastic trends, when the number of common factors is misspecified.

K̂ = 1 K̂ = 3
σ2
f

σ2
e

N T t∗a t∗b ADF c
Ê

P c
Ê

ADF c
F̂

t∗a t∗b P c
Ê

MQc
c MQc

f

0.5 20 20 0.29 0.25 0.17 0.65 0.42 0.30 0.44 0.57 0.00 0.00
0.5 20 50 0.39 0.31 0.09 0.30 0.17 0.27 0.41 0.13 0.00 0.00
0.5 20 100 0.49 0.40 0.08 0.33 0.16 0.27 0.39 0.10 0.00 0.00
0.5 50 20 0.36 0.33 0.16 0.83 0.42 0.50 0.58 0.80 0.00 0.00
0.5 50 50 0.46 0.41 0.08 0.41 0.16 0.56 0.62 0.15 0.00 0.00
0.5 50 100 0.60 0.55 0.08 0.45 0.18 0.56 0.63 0.10 0.00 0.00
0.5 100 20 0.49 0.44 0.17 0.92 0.41 0.55 0.59 0.90 0.00 0.00
0.5 100 50 0.67 0.60 0.09 0.62 0.20 0.63 0.67 0.25 0.00 0.00
0.5 100 100 0.81 0.75 0.09 0.68 0.20 0.68 0.74 0.15 0.00 0.00

1 20 20 0.45 0.29 0.17 0.63 0.42 0.42 0.54 0.57 0.00 0.00
1 20 50 0.62 0.38 0.10 0.39 0.17 0.52 0.63 0.14 0.00 0.00
1 20 100 0.77 0.52 0.10 0.48 0.15 0.59 0.69 0.10 0.00 0.00
1 50 20 0.56 0.45 0.17 0.82 0.41 0.62 0.66 0.79 0.00 0.00
1 50 50 0.74 0.58 0.09 0.50 0.16 0.76 0.80 0.15 0.00 0.00
1 50 100 0.89 0.78 0.09 0.63 0.18 0.89 0.92 0.11 0.00 0.00
1 100 20 0.64 0.55 0.17 0.87 0.41 0.67 0.69 0.90 0.00 0.00
1 100 50 0.85 0.77 0.10 0.68 0.19 0.81 0.83 0.24 0.00 0.00
1 100 100 0.97 0.92 0.10 0.82 0.20 0.94 0.94 0.14 0.00 0.00
2 20 20 0.56 0.29 0.18 0.61 0.43 0.48 0.59 0.56 0.00 0.00
2 20 50 0.76 0.39 0.10 0.49 0.17 0.66 0.74 0.13 0.00 0.00
2 20 100 0.94 0.58 0.12 0.65 0.16 0.82 0.87 0.10 0.00 0.00
2 50 20 0.65 0.47 0.18 0.79 0.40 0.65 0.69 0.79 0.00 0.00
2 50 50 0.84 0.64 0.10 0.58 0.16 0.83 0.86 0.15 0.00 0.00
2 50 100 0.97 0.88 0.11 0.77 0.17 0.95 0.95 0.11 0.00 0.00
2 100 20 0.70 0.55 0.17 0.81 0.41 0.71 0.74 0.90 0.00 0.00
2 100 50 0.90 0.77 0.11 0.72 0.19 0.87 0.89 0.24 0.00 0.00
2 100 100 0.99 0.95 0.13 0.89 0.19 0.97 0.97 0.14 0.00 0.00

The data contains 2 common factors. Common factors are I(0) and idiosyncratic components are I(1).
Rejection probabilities are based on 5% cutoff values from Pesaran (2005), Tables 1b and 3b , 5% cutoff values
of the standard normal distribution, or 5% Dickey-Fuller critical values for the test statistics as specified in
the text.
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Table 14: Finite sample (average) rejection rates for Moon and Perron’s (2004) t∗a and t∗b
statistics, and Bai and Ng’s (2004a) ADF c

Ê
, P c

Ê
, and ADF c

F̂
statistics, the proportions of

repetitions when Bai and Ng’s (2004a) MQc
c and MQc

f statistics chose the correct number
of common stochastic trends, when the number of common factors is misspecified.

K̂ = 1 K̂ = 3
σ2
f

σ2
e

N T t∗a t∗b ADF c
Ê

P c
Ê

ADF c
F̂

t∗a t∗b P c
Ê

MQc
c MQc

f

0.5 20 20 0.72 0.73 0.21 0.84 0.42 0.74 0.92 0.83 0.00 0.00
0.5 20 50 0.96 0.96 0.23 0.93 0.17 1.00 1.00 0.99 0.00 0.00
0.5 20 100 1.00 1.00 0.43 1.00 0.19 1.00 1.00 1.00 0.00 0.00
0.5 50 20 0.84 0.83 0.22 0.93 0.43 0.93 0.98 0.99 0.00 0.00
0.5 50 50 0.99 0.99 0.23 0.98 0.17 1.00 1.00 1.00 0.00 0.00
0.5 50 100 1.00 1.00 0.43 1.00 0.18 1.00 1.00 1.00 0.00 0.00
0.5 100 20 0.87 0.97 0.22 0.97 0.40 0.99 0.99 1.00 0.00 0.00
0.5 100 50 1.00 1.00 0.22 0.98 0.16 1.00 1.00 1.00 0.00 0.00
0.5 100 100 1.00 1.00 0.42 1.00 0.17 1.00 1.00 1.00 0.00 0.00

1 20 20 0.68 0.62 0.21 0.78 0.42 0.75 0.92 0.83 0.00 0.00
1 20 50 0.93 0.89 0.23 0.87 0.17 1.00 1.00 0.99 0.00 0.00
1 20 100 1.00 1.00 0.40 1.00 0.19 1.00 1.00 1.00 0.00 0.00
1 50 20 0.77 0.72 0.22 0.88 0.43 0.93 0.97 0.99 0.00 0.00
1 50 50 0.97 0.96 0.22 0.94 0.17 1.00 1.00 1.00 0.00 0.00
1 50 100 1.00 1.00 0.40 1.00 0.18 1.00 1.00 1.00 0.00 0.00
1 100 20 0.81 0.78 0.21 0.90 0.41 0.98 0.99 1.00 0.00 0.00
1 100 50 0.98 0.97 0.21 0.95 0.16 1.00 1.00 1.00 0.00 0.00
1 100 100 1.00 1.00 0.39 1.00 0.17 1.00 1.00 1.00 0.00 0.00
2 20 20 0.65 0.50 0.21 0.72 0.42 0.75 0.92 0.84 0.00 0.00
2 20 50 0.91 0.76 0.22 0.80 0.17 1.00 1.00 0.99 0.00 0.00
2 20 100 0.99 0.98 0.38 0.98 0.19 1.00 1.00 1.00 0.00 0.00
2 50 20 0.73 0.62 0.21 0.79 0.43 0.92 0.97 0.99 0.00 0.00
2 50 50 0.95 0.87 0.21 0.88 0.17 1.00 1.00 1.00 0.00 0.00
2 50 100 1.00 0.99 0.38 1.00 0.18 1.00 1.00 1.00 0.00 0.00
2 100 20 0.77 0.67 0.21 0.83 0.40 0.98 0.99 1.00 0.00 0.00
2 100 50 0.96 0.93 0.20 0.90 0.16 1.00 1.00 1.00 0.00 0.00
2 100 100 1.00 1.00 0.37 1.00 0.17 1.00 1.00 1.00 0.00 0.00

The data contains 2 common factors. Common factors are I(0) and idiosyncratic components are I(0).
Rejection probabilities are based on 5% cutoff values from Pesaran (2005), Tables 1b and 3b , 5% cutoff values
of the standard normal distribution, or 5% Dickey-Fuller critical values for the test statistics as specified in
the text.
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Table 15: Finite sample (average) rejection rates for Moon and Perron’s (2004) t∗a and t∗b
statistics, and Bai and Ng’s (2004a) ADF c

Ê
, P c

Ê
, and ADF c

F̂
statistics, the proportions of

repetitions when Bai and Ng’s (2004a) MQc
c and MQc

f statistics chose the correct number
of common stochastic trends, when the number of common factors is misspecified.

K̂ = 1 K̂ = 3
σ2
f

σ2
e

N T t∗a t∗b ADF c
Ê

P c
Ê

ADF c
F̂

t∗a t∗b P c
Ê

MQc
c MQc

f

0.5 20 20 0.72 0.71 0.22 0.87 0.45 0.71 0.88 0.79 0.00 0.00
0.5 20 50 0.93 0.92 0.26 0.97 0.27 0.96 0.98 0.91 0.00 0.00
0.5 20 100 0.99 0.99 0.46 1.00 0.40 1.00 1.00 1.00 0.00 0.00
0.5 50 20 0.88 0.88 0.23 0.97 0.46 0.91 0.96 0.97 0.00 0.00
0.5 50 50 0.99 0.99 0.26 1.00 0.27 1.00 1.00 1.00 0.00 0.00
0.5 50 100 1.00 1.00 0.48 1.00 0.37 1.00 1.00 1.00 0.00 0.00
0.5 100 20 0.92 0.92 0.23 0.99 0.42 0.95 0.97 1.00 0.00 0.00
0.5 100 50 1.00 1.00 0.25 1.00 0.22 1.00 1.00 1.00 0.00 0.00
0.5 100 100 1.00 1.00 0.46 1.00 0.32 1.00 1.00 1.00 0.00 0.00

1 20 20 0.67 0.60 0.22 0.83 0.44 0.71 0.84 0.75 0.00 0.00
1 20 50 0.89 0.81 0.25 0.94 0.27 0.93 0.96 0.84 0.00 0.00
1 20 100 0.98 0.96 0.45 1.00 0.40 1.00 1.00 0.99 0.00 0.00
1 50 20 0.83 0.77 0.47 0.93 0.46 0.89 0.93 0.96 0.00 0.00
1 50 50 0.99 0.98 0.27 0.99 0.27 0.99 1.00 1.00 0.00 0.00
1 50 100 1.00 1.00 0.37 1.00 0.36 1.00 1.00 1.00 0.00 0.00
1 100 20 0.87 0.84 0.22 0.96 0.43 0.92 0.95 0.99 0.00 0.00
1 100 50 1.00 0.99 0.24 0.99 0.22 1.00 1.00 1.00 0.00 0.00
1 100 100 1.00 1.00 0.47 1.00 0.31 1.00 1.00 1.00 0.00 0.00
2 20 20 0.62 0.45 0.21 0.77 0.44 0.72 0.83 0.71 0.00 0.00
2 20 50 0.84 0.63 0.24 0.90 0.27 0.92 0.95 0.77 0.00 0.00
2 20 100 0.96 0.85 0.44 1.00 0.39 0.99 0.99 0.97 0.00 0.00
2 50 20 0.78 0.66 0.22 0.87 0.46 0.88 0.93 0.95 0.00 0.00
2 50 50 0.88 0.93 0.24 0.97 0.27 0.99 1.00 0.99 0.00 0.00
2 50 100 1.00 1.00 0.45 1.00 0.35 1.00 1.00 1.00 0.00 0.00
2 100 20 0.84 0.75 0.22 0.90 0.43 0.93 0.95 0.99 0.00 0.00
2 100 50 0.98 0.96 0.23 0.97 0.22 1.00 1.00 1.00 0.00 0.00
2 100 100 1.00 1.00 0.43 1.00 0.31 1.00 1.00 1.00 0.00 0.00

The data contains 2 common factors. I(0) data generated by a Pesaran DGP. Rejection probabilities are
based on 5% cutoff values from Pesaran (2005), Tables 1b and 3b , 5% cutoff values of the standard normal
distribution, or 5% Dickey-Fuller critical values for the test statistics as specified in the text.
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Table 16: Unit root test statistics for individual series of real exchange rates.

ADFi CADFi ADF c
Ê

Country
Austria
Denmark
Finland
France
Germany
Greece
Italy
NL
Norway
Portugal
Spain
Sweden
Switzerland
UK
factor

Y $
i,t Y DM

i,t

-1.4546 -1.9706
-1.7667 -1.8571
-1.4707 -1.7878
-1.3803 -1.9697
-1.3537 -
-1.3602 -2.0247
-1.1971 -1.9952
-1.8189 -1.1789
-1.6895 -1.8398
-1.9609 -1.9522
-1.0189 -1.9702
-1.3288 -1.9717
-2.0188 −3.0893∗∗

−3.2172∗∗ −2.8032∗

- -

Y $
i,t Y DM

i,t

-1.4507 -1.7930
-2.6133 -2.3326
-0.8203 -1.5242
-2.1514 −3.5277∗∗

-1.6298 -
-1.2353 -2.4531
-1.5815 -2.2758
-1.8504 0.4805
-1.4439 -2.4683
-0.6468 -1.5935
-0.6811 -1.2196
-2.3255 -1.5175
-1.9543 -2.4054
-1.7646 -2.7754

- -

Y $
i,t Y DM

i,t

−2.0148∗∗ -1.0179
−2.5865∗∗ −12.3785∗∗

−1.7758∗ −14.8259∗∗

−5.3264∗∗ −7.9788∗∗

−8.1950∗∗ -
-0.1947 -0.5564
−1.9926∗∗ −3.4528∗∗

−12.4864∗∗ −2.4592∗∗

−3.2075∗∗ −2.6420∗∗

-1.3352 −2.2390∗∗

−1.6539∗ -1.5992
−13.3224∗∗ −10.7084∗∗

−2.8777∗∗ −14.4867∗∗

−3.7003∗∗ −12.4749∗∗

−7.6314∗∗ −7.749∗∗

∗ indicates rejection at 10% significance level;

∗∗ indicates rejection at 5% significance level.

Table 17: Pooled unit root test statistics panels of real exchange rates.

Pesaran (2005) Moon and Perron (2004) Bai and Ng (2004a)
CIPS t∗a t∗b P c

Ê

q$
i,t -1.5821 -0.0027 −1.9418∗∗ 16.6123∗∗

qDM
i,t -1.9543 -0.3720 −392.624∗∗ 18.4179∗∗

Breitung and Das (2006) Sul (2006)
trob tgls tfglsrma

q$
i,t -0.0752 -1.2160 0.5708

qDM
i,t -0.3227 -0.9335 −4.0404∗∗

∗ indicates rejection at 10% significance level;

∗∗ indicates rejection at 5% significance level.


