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Abstract

The purpose of this paper is to present examples which show that deterministic and stochastic scheduling
problems often have a surprisingly different behavior. In particular, it demonstrates some seemingly counterintu-
itive properties of optimal scheduling policies for stochastic machine scheduling problems.

1 Introduction It becomes known upon completion of the job. Only the
distribution of the corresponding random variaBleis

The paper addresses stochastic parallel machgieen beforehand. Le® = (Py,...,P,) denote the vec-
scheduling problems with the objective to minimize thr of random variables for the processing times, and
total weighted completion time in expectation. Madenote byp= (ps, ..., pn) @ particular realization of the
chine scheduling problems play an important role in vgsrocessing times. By[B;] we denote the expected pro-
ious applications from the areas of operations researchssing time of a joh. We assume that the processing
management science, and computer science. The tttaes of the jobs are stochastically independent.
weighted completion time objective is of particular im-  |n fact, the twist from deterministic to stochastic
portance in scheduling environments where many jopfocessing times changes the nature of the schedul-
are to be scheduled on a limited number of machingsg problem considerably. The solution of a stochas-
and a good average performance is desired. Examplesscheduling problem is no longer a simple schedule,
for such a scheduling situation are problems that ariggit a so-calledscheduling policy We adopt the notion
e.g., in compiler optimization (Chekuri, Johnson, Mobf scheduling policies as proposed byMing, Rader-
wani, Natarajan, Rau, and Schlansker 1996) and in pafacher, and Weiss (1984). Roughly spoken, a schedul-
allel computing (Chakrabarti and Muthukrishnan 1996hg policy makes scheduling decisions at certain deci-

Denote by = {1,...,n} a set of jobs with process-sion timest, and these decisions are based upon the ob-
ing requirementg;, j = 1,...,n, which must be sched-served past up to tinteas well as the a priori knowledge
uled onm parallel, identical machines. Each machinef the input data of the problem. The policy, however,
can handle only one job at a time, and the jobs can Bg!st not anticipate information about the future, such
scheduled on any of the machines. Once the procesg¥ghe actual realizationg of the processing times of
of a job is started on one machine, it must be proces$b@ jobs which have not yet been completed by ttme
without preemption on this machine. In addition to th& scheduling policy is calledptimalif it minimizes the
limited number of available machines, sometimes algbjective function value in expectation. In the classi-
precedence constraints must be respected. In that cz&léhree-field notation of Graham, Lawler, Lenstra, and
a partial order(V, <) is given, and whenevér< j the Rinnooy Kan (1979), the problem of minimizing the ex-
start of jobj must not occur earlier then the completiopected total weighted completion time can be denoted
of jobi. We consider the objective to minimize the taby PpredE[y w;jCj].
tal weighted completion tim§ j, w; Cj, wherew; is a The purpose of the paper is to present examples
non-negative weight ar@d; denotes the completion timewhich demonstrate some seemingly counterintuitive
of job j. In the stochastic model, it is assumed that thoperties of stochastic scheduling problems. This par-
processing timep; of a job j is not known in advance.ticularly includes an example which shows that it may



https://core.ac.uk/display/6941668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be even beneficial taot use the available machingobsS(p) = (Si(p),...,S(P)),

capacity to its full extent, but rather wait and leave n
machinesdeliberately idle The reason for this phe- Mn:RY —RY, p— S(p).
nomenon is the gain of information that occurs ov

r . . .
. . . ?t turns out that the dynamic properties of schedulin
time, counter-balancing the loss of efficiency. y brop g

policies can also be described analytically; we refer to

In fact, the examples shed a somehow discouragif@nring et al. (1984) for more details.
light on stochastic scheduling problems: The analysis of L&t us briefly fix some additional notation. A job
deterministic counterparts is often not very helpful, arfdl c@lledavailableat a timet if all predecessors have
optimal scheduling policies for stochastic models m&gen completed by A policy that starts jobs only at
be hopelessly complex, let alone their precise analy§Rmpletion times of other jobs (or at time 0) is called

in terms of typical performance criteria such as the e¥lementaryit is characterized by the fact thiagn =
pected objective function valtie at any decision time. The simplest type of elementary

scheduling policies arkst schedulingpolicies. Given

is a priority list of jobs, and at any time as many avail-

able jobs as possible are scheduled greedily in the or-

der given by the list. In a deterministic setting, Graham

(1966) analyzed this algorithm for the makespan objec-
Let us specify the above sketched dynamic view dive, in fact the earliest paper on worst case analysis of

scheduling policies more precisely. Tétateof the sys- a polynomial time algorithm for an NP-hard combinato-

tem at any time is given by the time itself as well rial optimization problem. Algorithm 1 gives the precise

as the conditional distributions of the jobs’ processirgscription for the stochastic setting.

times, which depend on the observaastup to timet.

The past at a time is given by the set of jobs whicChyjgqrithm 1: Graham's list scheduling algorithm.

have already been completed tytogether with their

start and processing times, and the set of jobs which

have been started befaréut have not been completed

by t, together with their start times. Thection of a

scheduling policy at a timé consists of a set of jobs

B(t) CV and a tentative decision tinign; > t. The set

2 Preliminaries

initialize t «— O;

while there are unscheduled jobs in listdo

let | be the first unscheduled job in lit
which is available at time (if any);

if such a job j exists and a machine is idle at
time tthen

B(t_) is the_ s_et of jobs that are started _at t.|m§'he ten- schedule jofj at timet on any of the idle
tative decision timeen is the latest point in time when machines:
the next action of the policy takes place, given that no else

augment to the next time when a ma-

andten; = o implies that the next action of the policy chine falls idle (if necessary, updat

takes place when the next job ends. The action of a L
policy at any timet must only depend on the state of
the system at timeg; this is thenon-anticipatorycon- If the list is the same over the whole planning hori-
straint. The definition oB(t) must respect potentialzon the list scheduling policy is callestatic other-
precedence constraints and the number of available mése it is calleddynamic(Pinedo 2002). Prominent in-
chines att. The times when a policy takes its actionstances of static list scheduling policies are LEPT and
are calleddecision times Given an action of a policy SEPT, longest respectively shortest expected process-
at a decision time, the next decision time ifen; Or ing time first, as well WSEPT, the weighted version of
the time of the next job completion, whatever occuSEPT where the priorities of jobs are according to non-
first. Depending on the action of the policy, the statéecreasing ratios[B;]/w;. It follows, e.g.from an ex-

at the next decision time is realized according to tlzemple with exponentially distributed processing times
probability distributions of the jobs’ processing timedy Kampke (1987, Ex. 2), that dynamic list scheduling
A scheduling policyl1 can be seen as a function whiclpolicies may yield a better expected performance than
maps processing timgs= (p,..., Pn) to start times of any static list scheduling policy.

job ends beforéient. Notice thatB(t) may be empty, L

1The difficulty of the latter problem was impressively underlined by Hagstrom (1988), who showed among other things that the computation
of the expected makespar@nay is a #P-hard problem even for a simple class of stochastic, finite-discrete PERT problems.



Irrespective of the fact wether a list scheduling polf machine restrictions take effect, however, this need no
icy is static or dynamic, it is alwaygreedyin the sense longer be true. The following example illuminates this
that the machines are never left deliberately idle. Tleffect.

following is thus a folklore observation. ) _ )
Example 3.2. Consider a family of instances of

Observation 2.1. Any scheduling policy that avoids deP|prqu[zwj Cj] with n=m+ 2 jobs. Jobs j=
liberate idle times is & possibly dynamiclist schedul- 1 ... n— 1 have independent, identically distributed
ing policy of the Graham type. processing times according to the following two-point

In particular, any policy which avoids deliberate ididistribution: p; =1 with probability1 — (logm)/m, and
times is elementary. Let us call policies which avoifli = 1/m with probability (logm)/m. Job n has a de-
deliberate idle timeille time free terministic processing time df/m. There are prece-

dence constraints k nforall j=1,...,n— 1. More-
over,w =0forall j=1,...,n—1,and wy = 1. Then
3 Deterministic and stochastic schedul- consider the policy that schedules m jobs at tirand
ing the remaining two jobs as early as possible. With proba-
bility (1— (logm)/m)™ 1 the objective function value is
Instead of analyzing a stochastic problem, it @+ 1/m. With probability((logm)/m)™ 1 the objective
tempting to consider a corresponding deterministignction value is3/m. In all other cases it is at most
counterpart instead by letting; := E[P;] be the deter- 1-+2/m. Hence,
ministic processing times of the jobs. Let us give two
simple examples which demonstrate that this is not necelywc < (2+ %) (1- '(’%")m“
essarily helpful. N (m)mﬂ

m m
Example 3.1 (Mdhring and Radermacher 1989). N (1+%) (17 (17 lo%m)”“{ (lo%m)m“),
Consider a family of instances BfpredE[y w; Cj] with
n=m+1jobs. All jobs j=1,...,n—1 have indepen- The right hand side convergestdor m— oo, since for
dent, exponentially distributed processing times with pany x> 0 and m> €, we haved < (1— (logm)/m)™ <
rametershj; = 1. Job n has a deterministic processingl —x/m)™ < e *. For the corresponding deterministic

time of1/m. Moreover, w=O0forall j =1,...,n—1, instance, howevef w;C; — 2 for m — . O

and w, = 1. There are precedence constraints j for o

all j=1,...,n—1 Itis obviously optimal to start ev- Hence, the deterministic counterpart does not even
ery job as early as possible. Elementary calculatiod€!d @ lower bound on the expected objective function
yield E[s w; Cj] = (Zm 11/1) +1/m 0 as m— e value of the stochastic problem. In fact, Examples 3.1
butyw;C; = 1+ 1/mJ;or the corresponding determin-@nd 3.2 suggest that the analysis of deterministic coun-
istic counterpart. terparts of stochastic scheduling problems is generally

of limited value.
In other words, the deterministic counterpart under-

estimates the the expected objective function value of
the stochastic problem by an arbitrarily large factor & When greediness fails
mincreases. )

Example 3.1 suggests that the deterministic coun- 'The pre.sencg of precedence constralrlts can mal'<e
terpart of a stochastic scheduling problem could at |eg5et||bera_te idle times .|ndeed nece_ssary n stpchasﬂc
provide a lower bound on the expected objective Valu%:_hedullng. The following example illustrates this.

Due to Jensen’s inequality this is in fact the case if tl@(ample 4.1.Consider an instance d|predE (5 w;Cj]
machine restrictions do not take effect, like in the abo‘dﬁth 4jobs and 2 machines. All jobs have expon:enéially

example, and if the objective function is convex (hercﬁstributed processing times, jolis— 3 with parame-
itis even linear); see Fulkerson (1962) obMing and ., 1, and job4 with parameterl/k, k> 0. There are

Radermacher (1989). The reason is that the Completi&%cedence constraints < 2 and 1 < 3. Moreover
times of jobs are random variables which are compos\ﬁtlj: Ws = 0, while wo = ws = 1.

of summation and/or maxima of the random variables
for the jobs’ processing times. Thus the objective func- The only optimal scheduling policy is to start with
tion is a convex function of the jobs’ processing timefob 1 at time 0, leave the second machine deliberately



idle, and start jobs 2 and 3 at the end of job 1. Eveity, does not exist. Admittedly, the example builds on
tually job 4 is scheduled when a machine falls idlsomewnhat artificial finite discrete processing time distri-
This policy yields EY w; C;] = 4. If one uses Graham’sbutions. Nevertheless, to the best of the author’s knowl-
list scheduling algorithm instead, jobs 1 and 4 will bedge it is the first example showing that optimal idle
started at time 0, irrespective of the priority list. The extme free policies need not exist for the total weighted
pected start time of the job scheduled latest, w.l.0.g. a®mpletion time objective. The following is the crucial
sume that this is job 3, is-L (k/(k+1))2. (This follows building block of the instance.

from elementary calculations: 3 is started at tiGyeif
y Oy Example 4.2. There are4 jobs. Jobsl and 2 have

C1 >Csand attime mifCy,Cy} if C1 < C4.) Thisyields ] . .
E[sw;Cj] = 4+ (k/(k+1))2 — 5 for k — e, Observe weights w = w, = 1 and (deterministi¢ processing
that the greedy list scheduling algorithm also perforrr%n iskgkzpsz : 1'|NJO_IP; 3and4 h.a vet.we|ghts 3/:
worse for the case that@k < 1, so even if job 4 has gV =" 7 < o © processmg Imess@nd
of these jobs are eithet, with probability 1 — 1/k3, or

smaller expected processing time than job 1 it is better,” ", _ . 3 .
not scheduled in the beginning on the idle machine. ét(l_ k®+ L with probability 1/k", independent of each

is not hard to extend this example to more than 2 m.at-her' (The e)fpec.:tedl proce;s!ng time of jdband 4
. . is 2k.) The objective is to minimize the expected total
chines, yet the idea should be clear.) . o
weighted completion timg[y w; Cj]. O
As long as there are no precedence constraints, how-

ever, there seems to be little reason to not use the ffimma 4.3. For the4jobs in Example 4.2, the order in
machine capacity at any time. Nevertheless, an exaffich the jobs are started in an optimal scheduling pol-
ple by Mohring et al. (1985, Ex. 4.2.5), also reproi_cy is different in dependence on the number of available
duced in Mohring and Radermacher (1985, Ex. 5.7) arfgachines.

Kampke (1987, Ex. 3), shows that an optimal idle timsroof. First consider the situation that the jobs are to
free policy need not exist even for problem&hout pe scheduled on a single machine. Then, any opti-
precedence constraints. Their example uses expongR scheduling policy is according to the WSEPT rule
tially distributed processing times, however, it builds OfRothkopf 1966), say in the order,23,4. The ex-

a somewhat artificial objective function that is not 3Sected objective value iské+ 4k + 3. If one of jobs
simple as the total weighted completion time consig-or 4 is scheduled first, this leads to an expected objec-
ered here. The objective function in their example {§e value of at leastl® + 6k + 3: a difference of R. If
constructed in such a way that certain pairs of jobs 3bs 1 — 4 are to be scheduled on two machines, a case
better not scheduled in parallel. Although this ObjeCtI\@nawsis of Graham’s list scheduling according to the or-
function is specifically designed to force the policy tger 34,1, 2 shows that the expected objective value is
use deliberate idle times, it is nevertheless regular aﬁl@+4+o(1). A tedious but straightforward case anal-
additivé’. For such objective functions, given exponeRysis shows that any policy which does not start with jobs
tially distributed processing times, it is known that ag and 4 leads to an expected objective value of at least
optimal policy always exists within the class of so-callegl2 | k3 o(1); a difference ok— 1—0(1). In other

set policiegMohring et al. 1985). This is a subclass fgrgs; in dependence on the available number of ma-
elementary policies where the action at any timsay  chines, the optimal scheduling policies for the jobs are

only depend on the set of jobs completed layd the set i, fact oppositional. 0
of jobs that is still in process &t but not on the realiza-
tions of processing timeg; or the timet itself (Mdhring Next follows a family of instances for|FE [y w; Cj]

etal. 1985). Their example thus demonstrates that, #ith finite discrete processing times which shows that

though an optimal set policy exists, it is not necessari? optimal idle time free policy, and even an optimal
idle time free. elementary policy, need not exist.

We next present a family of instances for the tot&xample 4.4. Consider a family of instances of
weighted completion time objective. It uses finite dif?||E[Y w;C;] with 5 jobs and m=2 machines. Job%—
crete processing times and shows that an optimal idlare the same as in Example 4.2, using the same param-
time free policy, and even an optimal elementary patter k> 5. The processing time of jobis either1/k>

2An objective functiony : IR — IR is regular if C > C' yieldsy(C) > y(C'), whereC,C’' € IR"} are vectors of completion times. It is
additiveif it can be described by a non-decreasing set funagio#” — IR., the cost rate, wherg(W) is the holding cost for any time when
the subset of job¥/ is not yet completed. The total weighted completion tipne; C; is regular and additive, witg(W) = 3 jewWj, W CV.
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or k®, each with probabilityl /2. Moreover, job5 has a scheduling of the remaining jobs must start at tirjik®1
weight of2k®. The objective is again to minimize the exfrespective of the processing time of job 5. O

pected total weighted completion tirg¢y w;C;]. O o )
The main idea of Example 4.4 is on the one hand

The idea of this example is the following: Due to itshe gain of information which can be achieved by leav-
comparatively large weight, job 5 must be schedulediaty one machine idle and on the other hand the fact that
timet = 0. It either blocks one machine almost forevehis information is meaningful for the future: The gain
(time k®), or idles the machine after a negligible smagf information allows better scheduling decisions which
amount of time (time 1k°), each with probability 12. reduce the expected objective value. Moreover, the ad-
On a single machine, any optimal policy of the 4 othejitional cost that is caused by the deliberate idle time is
jobs must schedule 1 and 2 before 3 and 4. On two Miegligible compared to the gain. It can be conjectured
chines, however, any optimal policy of the 4 other johfat such nasty examples do not exist if the processing
must schedule 3 and 4 before 1 and 2. In this situationithes are exponential: the only information that can be
is the only optimal policy to schedule job 5 attime O gathered is the question which of the jobs ends next, and
and leave the second machine idle. From tiri®Ion  this random event is again exponentially distributed. In
the actual processing time of job 5 is known. In othghe case of 2 machines, the gain of information by leav-
words, it is known if one or two machines are availabl@g one machine idle is obviously useless, since there is
for the remaining 4 jobs, hence they can be schedulggly one job in process. This even holds for any regular
optimally from time ¥/k° on. and additive objective functiop: IR? — IR,

Theorem 4.5. For the jobs in Example 4.4, any opti-proposition 4.6. Consider any instance oP|[E[y]
mal scheduling policy is not idle time free, and not evgghere the jobs have exponentially distributed process-
elementary. ing times andy is any regular and additive objective

Proof. Consider the given instance and a policy th&t‘nc"ion- Ifthe number Of_m_achir_leSZSthen there ex-
schedules job 5 at time 0, leaves a machine idle urf§iS @n optimal policy that is idle time free, and particu-
time 1/k%, and then, depending on the realization of tHarly elementary.

processing time of job 5, optimally schedules the 1gs,q¢ | et us give the main idea only; see also (Uetz
maining 4 jobs. The maximal total processing time Jyg1) |t can be shown that a poliEythat leaves a ma-
the remaining 4 IObS_'SM _-2k3+4, ‘Hence, if job 5 ine deliberately idle at time 0 can be replaced by an-
turns out to be long (timk®), irrespective of the rea"za'other policy’, with expected objective value at most
tions of the processing times of the remaining jobs, theég large, which does not leave a machine deliberately
is only one machine available for them, sifce 5. If 6 pefore first job completion. The claim then follows
job 5 tums out to be short (time/&%), there are two by induction. Say schedules some jdkat time 0 and
machines available. With the above observations, 18 es the second machine deliberately idle. Upon com-
expected total weighted completion time of this po"%letion of jobi at least one job is scheduled By say
is K+ 5k% + 2k+ 7/2+ 0(1). _ ) job j. Policy M’ schedules both joband jobj at time 0
Next, observe that any idle time free or elemeny,y imyates] henceforth. This is indeed possible due
tary policy that schedules job 5 not at time 0, can onfy e tact that the processing times are exponential and
schedule it at time 1 or later. This, however, yieldg, ;s memory-less. It remains to be shown that the ex-
ar] expected ob.Ject|ve value of a.t leSt- 2 — O(_l)' pected objective value ¢1’ is no larger than the one of
Sincek 2 5, th_'s cannot be .optlmal. _SO consider f1. This is a bit technical but straightforward; the proof
scheduling policy that greedily starts job 5 and SOMey,4sed on the memory-less property of the exponential

other job at time 0. Then, with probability/2 it tums - yistrinution and it requires that the objective function is
out at time ¥k® that this decision was not the Opt'ma}egular and additive. 0

one. According to the above argumentation, this yields

an expected total weighted completion time of at least Notice that the proposition is not necessarily true for
k& + 5k% + (5/2)k + 3 — 0(1), which cannot be optimal problems with precedence constraints, as was demon-
either. In other words, any optimal policy is not idlestrated in Example 4.1. Moreover, it follows directly
time free, since it must leave one machine idle until tinfeom Mohring et al. (1985) that among all optimal idle
1/k® to make the right decision. It is now obvious thaime free policies there is also a set policy. Finally, it fol-
an optimal policy cannot be elementary either, since tleavs from the Example of Empke (1987, Ex. 2) that in



general, the optimal (set-type and idle time free) policy Graham, R. L. (1969). Bounds on multiprocess-
must be dynamic. ing timing anomaliesSIAM Journal on Applied
Mathematics 17416—429.

Graham, R. L., E. L. Lawler, J. K. Lenstra, and
A. H. G. Rinnooy Kan (1979). Optimization and

Given that the processing times are exponential, it is approximation in deterministic sgquencing and
still an open problem to characterize the objective func- ~ Scheduling: A surveyAnnals of Discrete Math-

5 Final remark

tions for which Proposition 4.6 holds if number of ma- ~ €matics 5287-326.
chines is more than 2. It was conjectured byhving Hagstrom, J. N. (1988). Computational complexity
et al. (1985) that convexity of the objective functign of PERT problemsNetworks 18139-147.

which is equivalent to submodularity of the underlying Kampke, T. (1987). On the optimality of static pri-
cost rate, suffices to guarantee the existence of optimal

e . i . ority policies in stochastic scheduling on paral-
(set) policies which are idle time free. However, the

lel machinesJournal of Applied Probability 24

problem is still open even for the linear objective func- 430—448.
tion 3 w;C;j. In the words of Mhring and Radermacher .
(1985, p. 127), thisleliberate idlenesproblem Mohring, R. H. and F. J. Radermacher (1985). In-

troduction to stochastic scheduling problems. In
K. Neumann and D. Pallaschke (Ed€pntribu-
problems in nonpreemptive models in the tions to Operations Research — Proceedings of
framework of stochastic scheduling prob- the Conference on Operations ResearCier-
lems. ” wolfach, Germany, Volume 240 dfecture Notes
in Economics and Mathematical Systepys. 72—
130. Berlin: Springer.
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The order-theoretic approach to scheduling: The
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“[...] seems to be one of the deep open
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