
When greediness fails: Examples from stochastic scheduling

Marc Uetz
Faculty of Economics and Business Administration, Quantitative Economics, Universiteit Maastricht,

6200 MD Maastricht, The Netherlands, m.uetz@ke.unimaas.nl

Abstract

The purpose of this paper is to present examples which show that deterministic and stochastic scheduling
problems often have a surprisingly different behavior. In particular, it demonstrates some seemingly counterintu-
itive properties of optimal scheduling policies for stochastic machine scheduling problems.

1 Introduction

The paper addresses stochastic parallel machine
scheduling problems with the objective to minimize the
total weighted completion time in expectation. Ma-
chine scheduling problems play an important role in var-
ious applications from the areas of operations research,
management science, and computer science. The total
weighted completion time objective is of particular im-
portance in scheduling environments where many jobs
are to be scheduled on a limited number of machines,
and a good average performance is desired. Examples
for such a scheduling situation are problems that arise,
e.g., in compiler optimization (Chekuri, Johnson, Mot-
wani, Natarajan, Rau, and Schlansker 1996) and in par-
allel computing (Chakrabarti and Muthukrishnan 1996).

Denote byV = {1, . . . ,n} a set of jobs with process-
ing requirementsp j , j = 1, . . . ,n, which must be sched-
uled onm parallel, identical machines. Each machine
can handle only one job at a time, and the jobs can be
scheduled on any of the machines. Once the processing
of a job is started on one machine, it must be processed
without preemption on this machine. In addition to the
limited number of available machines, sometimes also
precedence constraints must be respected. In that case
a partial order(V,≺) is given, and wheneveri ≺ j the
start of job j must not occur earlier then the completion
of job i. We consider the objective to minimize the to-
tal weighted completion time∑ j∈V w j Cj , wherew j is a
non-negative weight andCj denotes the completion time
of job j. In the stochastic model, it is assumed that the
processing timep j of a job j is not known in advance.

It becomes known upon completion of the job. Only the
distribution of the corresponding random variablePj is
given beforehand. LetP = (P1, . . . ,Pn) denote the vec-
tor of random variables for the processing times, and
denote byp= (p1, . . . , pn) a particular realization of the
processing times. By E[Pj] we denote the expected pro-
cessing time of a jobj. We assume that the processing
times of the jobs are stochastically independent.

In fact, the twist from deterministic to stochastic
processing times changes the nature of the schedul-
ing problem considerably. The solution of a stochas-
tic scheduling problem is no longer a simple schedule,
but a so-calledscheduling policy. We adopt the notion
of scheduling policies as proposed by Möhring, Rader-
macher, and Weiss (1984). Roughly spoken, a schedul-
ing policy makes scheduling decisions at certain deci-
sion timest, and these decisions are based upon the ob-
served past up to timet as well as the a priori knowledge
of the input data of the problem. The policy, however,
must not anticipate information about the future, such
as the actual realizationsp j of the processing times of
the jobs which have not yet been completed by timet.
A scheduling policy is calledoptimalif it minimizes the
objective function value in expectation. In the classi-
cal three-field notation of Graham, Lawler, Lenstra, and
Rinnooy Kan (1979), the problem of minimizing the ex-
pected total weighted completion time can be denoted
by P|prec|E[∑w j Cj].

The purpose of the paper is to present examples
which demonstrate some seemingly counterintuitive
properties of stochastic scheduling problems. This par-
ticularly includes an example which shows that it may

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6941668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be even beneficial tonot use the available machine
capacity to its full extent, but rather wait and leave
machinesdeliberately idle. The reason for this phe-
nomenon is the gain of information that occurs over
time, counter-balancing the loss of efficiency.

In fact, the examples shed a somehow discouraging
light on stochastic scheduling problems: The analysis of
deterministic counterparts is often not very helpful, and
optimal scheduling policies for stochastic models may
be hopelessly complex, let alone their precise analysis
in terms of typical performance criteria such as the ex-
pected objective function value1.

2 Preliminaries

Let us specify the above sketched dynamic view on
scheduling policies more precisely. Thestateof the sys-
tem at any timet is given by the timet itself as well
as the conditional distributions of the jobs’ processing
times, which depend on the observedpastup to timet.
The past at a timet is given by the set of jobs which
have already been completed byt, together with their
start and processing times, and the set of jobs which
have been started beforet but have not been completed
by t, together with their start times. Theaction of a
scheduling policy at a timet consists of a set of jobs
B(t) ⊆V and a tentative decision timettent > t. The set
B(t) is the set of jobs that are started at timet. The ten-
tative decision timettent is the latest point in time when
the next action of the policy takes place, given that no
job ends beforettent. Notice thatB(t) may be empty,
and ttent = ∞ implies that the next action of the policy
takes place when the next job ends. The action of a
policy at any timet must only depend on the state of
the system at timet; this is thenon-anticipatorycon-
straint. The definition ofB(t) must respect potential
precedence constraints and the number of available ma-
chines att. The times when a policy takes its actions
are calleddecision times. Given an action of a policy
at a decision timet, the next decision time isttent or
the time of the next job completion, whatever occurs
first. Depending on the action of the policy, the state
at the next decision time is realized according to the
probability distributions of the jobs’ processing times.
A scheduling policyΠ can be seen as a function which
maps processing timesp = (p1, . . . , pn) to start times of

jobsS(p) = (S1(p), . . . ,Sn(p)),

Π : IRn
+→ IRn

+, p
Π−→ S(p) .

It turns out that the dynamic properties of scheduling
policies can also be described analytically; we refer to
Möhring et al. (1984) for more details.

Let us briefly fix some additional notation. A job
is calledavailable at a timet if all predecessors have
been completed byt. A policy that starts jobs only at
completion times of other jobs (or at time 0) is called
elementary; it is characterized by the fact thatttent = ∞
at any decision time. The simplest type of elementary
scheduling policies arelist schedulingpolicies. Given
is a priority list of jobs, and at any time as many avail-
able jobs as possible are scheduled greedily in the or-
der given by the list. In a deterministic setting, Graham
(1966) analyzed this algorithm for the makespan objec-
tive, in fact the earliest paper on worst case analysis of
a polynomial time algorithm for an NP-hard combinato-
rial optimization problem. Algorithm 1 gives the precise
description for the stochastic setting.

Algorithm 1: Graham’s list scheduling algorithm.
initialize t← 0;
while there are unscheduled jobs in list Ldo

let j be the first unscheduled job in listL
which is available at timet (if any);
if such a job j exists and a machine is idle at
time t then

schedule jobj at timet on any of the idle
machines;

else
augmentt to the next time when a ma-
chine falls idle (if necessary, updateL);

If the list is the same over the whole planning hori-
zon the list scheduling policy is calledstatic, other-
wise it is calleddynamic(Pinedo 2002). Prominent in-
stances of static list scheduling policies are LEPT and
SEPT, longest respectively shortest expected process-
ing time first, as well WSEPT, the weighted version of
SEPT where the priorities of jobs are according to non-
decreasing ratios E[Pj]/w j . It follows, e.g. from an ex-
ample with exponentially distributed processing times
by Kämpke (1987, Ex. 2), that dynamic list scheduling
policies may yield a better expected performance than
any static list scheduling policy.

1The difficulty of the latter problem was impressively underlined by Hagstrom (1988), who showed among other things that the computation
of the expected makespan E[Cmax] is a #P-hard problem even for a simple class of stochastic, finite-discrete PERT problems.

2

Irrespective of the fact wether a list scheduling pol-
icy is static or dynamic, it is alwaysgreedyin the sense
that the machines are never left deliberately idle. The
following is thus a folklore observation.

Observation 2.1. Any scheduling policy that avoids de-
liberate idle times is a(possibly dynamic) list schedul-
ing policy of the Graham type.

In particular, any policy which avoids deliberate idle
times is elementary. Let us call policies which avoid
deliberate idle timesidle time free.

3 Deterministic and stochastic schedul-
ing

Instead of analyzing a stochastic problem, it is
tempting to consider a corresponding deterministic
counterpart instead by lettingp j := E[Pj] be the deter-
ministic processing times of the jobs. Let us give two
simple examples which demonstrate that this is not nec-
essarily helpful.

Example 3.1 (Möhring and Radermacher 1989).
Consider a family of instances ofP|prec|E[∑w j Cj] with
n = m+1 jobs. All jobs j= 1, . . . ,n−1 have indepen-
dent, exponentially distributed processing times with pa-
rametersλ j = 1. Job n has a deterministic processing
time of1/m. Moreover, wj = 0 for all j = 1, . . . ,n−1,
and wn = 1. There are precedence constraints j≺ n for
all j = 1, . . . ,n−1. It is obviously optimal to start ev-
ery job as early as possible. Elementary calculations
yield E[∑w j Cj] =

(
∑m

j=11/ j
)
+ 1/m→∞ as m→ ∞,

but ∑w j Cj = 1+1/m for the corresponding determin-
istic counterpart.

In other words, the deterministic counterpart under-
estimates the the expected objective function value of
the stochastic problem by an arbitrarily large factor as
m increases.

Example 3.1 suggests that the deterministic coun-
terpart of a stochastic scheduling problem could at least
provide a lower bound on the expected objective value.
Due to Jensen’s inequality this is in fact the case if the
machine restrictions do not take effect, like in the above
example, and if the objective function is convex (here
it is even linear); see Fulkerson (1962) or Möhring and
Radermacher (1989). The reason is that the completion
times of jobs are random variables which are composed
of summation and/or maxima of the random variables
for the jobs’ processing times. Thus the objective func-
tion is a convex function of the jobs’ processing times.

If machine restrictions take effect, however, this need no
longer be true. The following example illuminates this
effect.

Example 3.2. Consider a family of instances of
P|prec|E[∑w j Cj] with n = m+ 2 jobs. Jobs j=
1, . . . ,n− 1 have independent, identically distributed
processing times according to the following two-point
distribution: pj = 1 with probability1−(logm)/m, and
p j = 1/m with probability(logm)/m. Job n has a de-
terministic processing time of1/m. There are prece-
dence constraints j≺ n for all j = 1, . . . ,n−1. More-
over, wj = 0 for all j = 1, . . . ,n−1, and wn = 1. Then
consider the policy that schedules m jobs at time0 and
the remaining two jobs as early as possible. With proba-
bility (1−(logm)/m)m+1 the objective function value is
2+1/m. With probability((logm)/m)m+1 the objective
function value is3/m. In all other cases it is at most
1+2/m. Hence,

E[∑w j Cj] 6
(

2+
1
m

)(
1− logm

m

)m+1

+
3
m

(logm
m

)m+1

+
(

1+
2
m

)(
1−

(
1− logm

m

)m+1
−

(logm
m

)m+1)
.

The right hand side converges to1 for m→∞, since for
any x> 0 and m> ex, we have0 6 (1− (logm)/m)m 6
(1−x/m)m 6 e−x. For the corresponding deterministic
instance, however,∑w j Cj → 2 for m→ ∞.

Hence, the deterministic counterpart does not even
yield a lower bound on the expected objective function
value of the stochastic problem. In fact, Examples 3.1
and 3.2 suggest that the analysis of deterministic coun-
terparts of stochastic scheduling problems is generally
of limited value.

4 When greediness fails

The presence of precedence constraints can make
deliberate idle times indeed necessary in stochastic
scheduling. The following example illustrates this.

Example 4.1.Consider an instance ofP|prec|E[∑w j Cj]
with 4 jobs and 2 machines. All jobs have exponentially
distributed processing times, jobs1− 3 with parame-
ter 1, and job4 with parameter1/k, k> 0. There are
precedence constraints1 ≺ 2 and 1 ≺ 3. Moreover,
w1 = w4 = 0, while w2 = w3 = 1.

The only optimal scheduling policy is to start with
job 1 at time 0, leave the second machine deliberately

3

idle, and start jobs 2 and 3 at the end of job 1. Even-
tually job 4 is scheduled when a machine falls idle.
This policy yields E[∑w j Cj] = 4. If one uses Graham’s
list scheduling algorithm instead, jobs 1 and 4 will be
started at time 0, irrespective of the priority list. The ex-
pected start time of the job scheduled latest, w.l.o.g. as-
sume that this is job 3, is 1+(k/(k+1))2. (This follows
from elementary calculations: 3 is started at timeC1 if
C1 >C4 and at time min{C2,C4} if C1 <C4.) This yields
E[∑w j Cj] = 4+(k/(k+1))2→ 5 for k→ ∞. Observe
that the greedy list scheduling algorithm also performs
worse for the case that 0< k < 1, so even if job 4 has a
smaller expected processing time than job 1 it is better
not scheduled in the beginning on the idle machine. (It
is not hard to extend this example to more than 2 ma-
chines, yet the idea should be clear.)

As long as there are no precedence constraints, how-
ever, there seems to be little reason to not use the full
machine capacity at any time. Nevertheless, an exam-
ple by Möhring et al. (1985, Ex. 4.2.5), also repro-
duced in M̈ohring and Radermacher (1985, Ex. 5.7) and
Kämpke (1987, Ex. 3), shows that an optimal idle time
free policy need not exist even for problemswithout
precedence constraints. Their example uses exponen-
tially distributed processing times, however, it builds on
a somewhat artificial objective function that is not as
simple as the total weighted completion time consid-
ered here. The objective function in their example is
constructed in such a way that certain pairs of jobs are
better not scheduled in parallel. Although this objective
function is specifically designed to force the policy to
use deliberate idle times, it is nevertheless regular and
additive2. For such objective functions, given exponen-
tially distributed processing times, it is known that an
optimal policy always exists within the class of so-called
set policies(Möhring et al. 1985). This is a subclass of
elementary policies where the action at any timet may
only depend on the set of jobs completed byt and the set
of jobs that is still in process att, but not on the realiza-
tions of processing timesp j or the timet itself (Möhring
et al. 1985). Their example thus demonstrates that, al-
though an optimal set policy exists, it is not necessarily
idle time free.

We next present a family of instances for the total
weighted completion time objective. It uses finite dis-
crete processing times and shows that an optimal idle
time free policy, and even an optimal elementary pol-

icy, does not exist. Admittedly, the example builds on
somewhat artificial finite discrete processing time distri-
butions. Nevertheless, to the best of the author’s knowl-
edge it is the first example showing that optimal idle
time free policies need not exist for the total weighted
completion time objective. The following is the crucial
building block of the instance.

Example 4.2. There are4 jobs. Jobs1 and 2 have
weights w1 = w2 = 1 and (deterministic) processing
times p1 = p2 = 1. Jobs3 and 4 have weights w3 =
w4 = k, k> 5, k∈ IN. The processing times p3 and p4

of these jobs are either1, with probability1−1/k3, or
2k4−k3 +1 with probability1/k3, independent of each
other. (The expected processing time of jobs3 and 4
is 2k.) The objective is to minimize the expected total
weighted completion timeE[∑w j Cj].

Lemma 4.3. For the4 jobs in Example 4.2, the order in
which the jobs are started in an optimal scheduling pol-
icy is different in dependence on the number of available
machines.

Proof. First consider the situation that the jobs are to
be scheduled on a single machine. Then, any opti-
mal scheduling policy is according to the WSEPT rule
(Rothkopf 1966), say in the order 1,2,3,4. The ex-
pected objective value is 6k2 + 4k+ 3. If one of jobs
3 or 4 is scheduled first, this leads to an expected objec-
tive value of at least 6k2 +6k+3; a difference of 2k. If
jobs 1 – 4 are to be scheduled on two machines, a case
analysis of Graham’s list scheduling according to the or-
der 3,4,1,2 shows that the expected objective value is
4k2 +4+o(1). A tedious but straightforward case anal-
ysis shows that any policy which does not start with jobs
3 and 4 leads to an expected objective value of at least
4k2 +k+3−o(1); a difference ofk−1−o(1). In other
words, in dependence on the available number of ma-
chines, the optimal scheduling policies for the jobs are
in fact oppositional.

Next follows a family of instances for P| |E[∑w j Cj]
with finite discrete processing times which shows that
an optimal idle time free policy, and even an optimal
elementary policy, need not exist.

Example 4.4. Consider a family of instances of
P| |E[∑w j Cj] with 5 jobs and m= 2 machines. Jobs1 –
4are the same as in Example 4.2, using the same param-
eter k> 5. The processing time of job5 is either1/k5

2An objective functionγ : IRn
+ → IR+ is regular if C > C′ yields γ(C) > γ(C′), whereC,C′ ∈ IRn

+ are vectors of completion times. It is
additiveif it can be described by a non-decreasing set functiong : 2V → IR+, the cost rate, whereg(W) is the holding cost for any time when
the subset of jobsW is not yet completed. The total weighted completion time∑w j Cj is regular and additive, withg(W) = ∑ j∈W w j , W ⊆V.

4

or k5, each with probability1/2. Moreover, job5 has a
weight of2k3. The objective is again to minimize the ex-
pected total weighted completion timeE[∑w j Cj].

The idea of this example is the following: Due to its
comparatively large weight, job 5 must be scheduled at
time t = 0. It either blocks one machine almost forever
(time k5), or idles the machine after a negligible small
amount of time (time 1/k5), each with probability 1/2.
On a single machine, any optimal policy of the 4 other
jobs must schedule 1 and 2 before 3 and 4. On two ma-
chines, however, any optimal policy of the 4 other jobs
must schedule 3 and 4 before 1 and 2. In this situation it
is the only optimal policy to schedule job 5 at timet = 0
and leave the second machine idle. From time 1/k5 on
the actual processing time of job 5 is known. In other
words, it is known if one or two machines are available
for the remaining 4 jobs, hence they can be scheduled
optimally from time 1/k5 on.

Theorem 4.5. For the jobs in Example 4.4, any opti-
mal scheduling policy is not idle time free, and not even
elementary.

Proof. Consider the given instance and a policy that
schedules job 5 at time 0, leaves a machine idle until
time 1/k5, and then, depending on the realization of the
processing time of job 5, optimally schedules the re-
maining 4 jobs. The maximal total processing time of
the remaining 4 jobs is 4k4− 2k3 + 4. Hence, if job 5
turns out to be long (timek5), irrespective of the realiza-
tions of the processing times of the remaining jobs, there
is only one machine available for them, sincek > 5. If
job 5 turns out to be short (time 1/k5), there are two
machines available. With the above observations, the
expected total weighted completion time of this policy
is k8 +5k2 +2k+7/2+o(1).

Next, observe that any idle time free or elemen-
tary policy that schedules job 5 not at time 0, can only
schedule it at time 1 or later. This, however, yields
an expected objective value of at leastk8 + 2k3−o(1).
Since k > 5, this cannot be optimal. So consider a
scheduling policy that greedily starts job 5 and some
other job at time 0. Then, with probability 1/2 it turns
out at time 1/k5 that this decision was not the optimal
one. According to the above argumentation, this yields
an expected total weighted completion time of at least
k8 + 5k2 +(5/2)k+ 3−o(1), which cannot be optimal
either. In other words, any optimal policy is not idle
time free, since it must leave one machine idle until time
1/k5 to make the right decision. It is now obvious that
an optimal policy cannot be elementary either, since the

scheduling of the remaining jobs must start at time 1/k5,
irrespective of the processing time of job 5.

The main idea of Example 4.4 is on the one hand
the gain of information which can be achieved by leav-
ing one machine idle and on the other hand the fact that
this information is meaningful for the future: The gain
of information allows better scheduling decisions which
reduce the expected objective value. Moreover, the ad-
ditional cost that is caused by the deliberate idle time is
negligible compared to the gain. It can be conjectured
that such nasty examples do not exist if the processing
times are exponential: the only information that can be
gathered is the question which of the jobs ends next, and
this random event is again exponentially distributed. In
the case of 2 machines, the gain of information by leav-
ing one machine idle is obviously useless, since there is
only one job in process. This even holds for any regular
and additive objective functionγ : IRn

+→ IR+.

Proposition 4.6. Consider any instance ofP| |E[γ]
where the jobs have exponentially distributed process-
ing times andγ is any regular and additive objective
function. If the number of machines is2, then there ex-
ists an optimal policy that is idle time free, and particu-
larly elementary.

Proof. Let us give the main idea only; see also (Uetz
2001). It can be shown that a policyΠ that leaves a ma-
chine deliberately idle at time 0 can be replaced by an-
other policyΠ′, with expected objective value at most
as large, which does not leave a machine deliberately
idle before first job completion. The claim then follows
by induction. SayΠ schedules some jobi at time 0 and
leaves the second machine deliberately idle. Upon com-
pletion of job i at least one job is scheduled byΠ, say
job j. PolicyΠ′ schedules both jobi and job j at time 0
and simulatesΠ henceforth. This is indeed possible due
to the fact that the processing times are exponential and
thus memory-less. It remains to be shown that the ex-
pected objective value ofΠ′ is no larger than the one of
Π. This is a bit technical but straightforward; the proof
is based on the memory-less property of the exponential
distribution and it requires that the objective function is
regular and additive.

Notice that the proposition is not necessarily true for
problems with precedence constraints, as was demon-
strated in Example 4.1. Moreover, it follows directly
from Möhring et al. (1985) that among all optimal idle
time free policies there is also a set policy. Finally, it fol-
lows from the Example of K̈ampke (1987, Ex. 2) that in

5

general, the optimal (set-type and idle time free) policy
must be dynamic.

5 Final remark

Given that the processing times are exponential, it is
still an open problem to characterize the objective func-
tions for which Proposition 4.6 holds if number of ma-
chines is more than 2. It was conjectured by Möhring
et al. (1985) that convexity of the objective functionγ,
which is equivalent to submodularity of the underlying
cost rate, suffices to guarantee the existence of optimal
(set) policies which are idle time free. However, the
problem is still open even for the linear objective func-
tion ∑w j Cj . In the words of M̈ohring and Radermacher
(1985, p. 127), thisdeliberate idlenessproblem

“ [. . .] seems to be one of the deep open
problems in nonpreemptive models in the
framework of stochastic scheduling prob-
lems. ”

Acknowledgements. The author is partially sup-
ported by a grant of METEOR, the Maastricht research
school of Economics of TEchnology and ORganiza-
tions.

References

Chakrabarti, S. and S. Muthukrishnan (1996). Re-
source scheduling for parallel database and sci-
entific applications. InProceedings of the 8th
Annual ACM Symposium on Parallel Algorithms
and Architectures, Padua, Italy, pp. 329–335.

Chekuri, C., R. Johnson, R. Motwani, B. Natarajan,
B. Rau, and M. Schlansker (1996). An analysis of
profile-driven instruction level parallel schedul-
ing with application to super blocks. InProceed-
ings of the 29th Annual IEEE/ACM International
Symposium on Microarchitecture,Paris (France),
pp. 58–69.

Fulkerson, D. R. (1962). Expected critical path
length in PERT networks.Operations Re-
search 10, 808–817.

Graham, R. L. (1966). Bounds for certain multipro-
cessing anomalies.Bell System Technical Jour-
nal 45, 1563–1581. see also (Graham 1969).

Graham, R. L. (1969). Bounds on multiprocess-
ing timing anomalies.SIAM Journal on Applied
Mathematics 17, 416–429.

Graham, R. L., E. L. Lawler, J. K. Lenstra, and
A. H. G. Rinnooy Kan (1979). Optimization and
approximation in deterministic sequencing and
scheduling: A survey.Annals of Discrete Math-
ematics 5, 287–326.

Hagstrom, J. N. (1988). Computational complexity
of PERT problems.Networks 18, 139–147.

Kämpke, T. (1987). On the optimality of static pri-
ority policies in stochastic scheduling on paral-
lel machines.Journal of Applied Probability 24,
430–448.

Möhring, R. H. and F. J. Radermacher (1985). In-
troduction to stochastic scheduling problems. In
K. Neumann and D. Pallaschke (Eds.),Contribu-
tions to Operations Research — Proceedings of
the Conference on Operations Research,Ober-
wolfach, Germany, Volume 240 ofLecture Notes
in Economics and Mathematical Systems, pp. 72–
130. Berlin: Springer.

Möhring, R. H. and F. J. Radermacher (1989).
The order-theoretic approach to scheduling: The
stochastic case. In R. Słowiński and J. Wȩglarz
(Eds.), Advances in Project Scheduling, Vol-
ume 9 ofStudies in Production and Engineering
Economics, Chapter 4, pp. 497–531. Amsterdam:
Elsevier.

Möhring, R. H., F. J. Radermacher, and G. Weiss
(1984). Stochastic scheduling problems I: Gen-
eral strategies.ZOR - Zeitschrift f̈ur Operations
Research 28, 193–260.

Möhring, R. H., F. J. Radermacher, and G. Weiss
(1985). Stochastic scheduling problems II: Set
strategies.ZOR - Zeitschrift f̈ur Operations Re-
search 29, 65–104.

Pinedo, M. (2002).Scheduling: Theory, Algorithms,
and Systems(2 ed.). Upper Saddle River (NJ):
Prentice-Hall.

Rothkopf, M. H. (1966). Scheduling with random
service times.Management Science 12, 703–713.

Uetz, M. (2001).Algorithms for Deterministic and
Stochastic Scheduling. Ph. D. thesis, Institut
für Mathematik, Technische Universität Berlin,
Berlin, Germany. Published: Cuvillier Verlag,
Göttingen, Germany.

6

