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Abstract

Given a family of linear budget sets, an allocation is equal oppor-
tunity equivalent (Thomson, 1994) if there exists a common budget
set such that each agent is indi¤erent between the bundle that he gets
and the best bundle he can obtain in the choice set. We �rst study the
robustness properties of equal opportunity equivalent correspondences
with respect to change in preferences. We impose independence to
irrelevant preference changes and connect this property with the im-
plementation of rules via some game-theoretic solution concept. We
provide an equivalence result with the equal-income Walrasian rule.
Next, we study robustness with respect to change in the number of
agents and derive a characterization of the equal-income Walrasian
rule. Our results provide additional justi�cations for the equal-division
of resources as a �rst step toward fairness.

Keywords: Fair allocations, Equal-income Walrasian solution, Equal-
budget choice equivalence, Robustness, Implementability via some game the-
oretical solution concept.
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1 Introduction

The literature on fair allocations is concerned with the division of several
goods among agents with identical claims on the goods but di¤erent prefer-
ences. The model we use in this paper is that of exchange economies with
a variable number N of agents and L in�nitely divisible goods. An alloca-
tion rule that is central in this context is the equal-income Walrasian rule.
Our position on fairness in this paper is that of equality of choice (Thom-
son, 1994). Given a family of choice sets, an allocation is fair if there exists
a common choice set in that family such that each agent is indi¤erent be-
tween the bundle he is assigned and the best bundle he can obtain in the
choice set.1 This fairness property is termed equal-opportunity equivalence.2

This notion generalizes many concepts used in the literature on fair alloca-
tions by appropriately choosing the family of choice sets B. For instance, if
B =

�
x0 : x0 2 RL+

	
, then the set of allocations that are equal-opportunity

equivalent with respect to B is the egalitarian equivalent rule introduced by
Pazner and Schmeidler (1978). Next, if B =

�
x : x 2 RLn+

	
, the set of alloca-

tions that are equal-opportunity equivalent with respect to B is the envy-free
rule introduced by Foley (1968). Families of such choice sets may be of
di¤erent dimensions and are indeed numerous.
We are interested in the family of linear choice sets. Given a common

reference bundle �, a family of linear choice sets is parametrized by price
vectors. An allocation rule is equal-budget choice equivalent with respect to
a family of linear choice sets indexed by � if, for each preference pro�le, for
each allocation x that the rule selects, there exists a price vector and a choice
set such that each agent is indi¤erent between the bundle he gets at x and
the best bundle he can a¤ord in the common choice set.
Equal-budget choice equivalence combines idea of egalitarian-equivalence

with that of equal-opportunity andWalrasian equilibrium. To �x ideas about
the equal-budget choice equivalent allocation rules generated by such families,
let � be the point of equal division of the aggregate endowment. Then, the
equal-budget choice equivalent allocation rule generated is the equal-income

1See also Nicolò and Perea (2005).
2In addition to the notion of equal-opportunity equivalence, Thomson (1994) �rst intro-

duces the notion of equal-opportunity. The former obviously gives allocation rules that, in
general, selects more allocations than the latter. Moreover, the former combines the idea
of equal-opportunities with that of egalitarian-equivalence.
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Walrasian rule.3 It has often been advocated that the point of equal division
of resources is a �rst step towards equity and fairness. We wish to provide
additional support to this claim.
We complement fairness with three robustness requirements, the �rst one

with respect to changes in preferences and the other two with respect to
changes in the number of agents when the feasible set is modi�ed in an
appropriate way. The former requirement is called independence to irrelevant
preference changes. It simply states the invariance of an allocation rules
with respect to change in preferences occurring only outside of the feasible
set. It is a very weak property, weaker than Gevers monotonicity (see Gevers,
1986). Interestingly, this property has a clear link with the decentralization of
allocation rules �i.e. their full implementation. After all, once rules satisfying
desirable properties have been identi�ed, the objective of a planner is to check
whether there exist institutions�non-cooperative games�through which these
allocation rules emerge as the equilibrium set of such games.
In fact, independence to irrelevant preference changes is a necessary con-

dition for the implementation of a rule via some game-theoretic solution con-
cept. We emphasize this connection and show that when preferences are
continuous, monotonic and convex, then no allocation rule satis�es this re-
quirement except when � belongs to the set of corners of the Edgeworth box.
Thus, under this preference domain, the equal-income Walrasian rule is not
implementable via any solution concept. However, by adding di¤erentiabil-
ity, it becomes implementable in subgame perfect equilibrium. We show that
the only rule that satis�es equal-budget choice equivalence, independence to
irrelevant change in preferences and neutrality is the equal-income Walrasian
rule.
Next, the second robustness property we study is termed consistency (see

Thomson, 1988). We show that the only rule that satis�es equal-budget choice
equivalence and consistency is the equal-income Walrasian rule.
Finally, our last property is called replication invariance (see Thomson,

1988). We show that a Pareto e¢ cient selection of an equal-budget choice
equivalent rule satis�es consistency and replication invariance if and only if
it is a subrule of the equal-income Walrasian rule. This result is in line with
Theorem 3 in Thomson (1988).
The paper proceeds as follows. In section two, we introduce the necessary

de�nitions and notations. Section three presents the main results and o¤ers

3See Proposition 1 in section 3 for a formal proof of this statement.
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some concluding remarks.

2 De�nitions and notations

There are L in�nitely divisible goods, L � 2, and a �nite set of agents
N = f1; 2; :::; ng drawn from an in�nite population N , with n � 2. The
consumption set of each agent i 2 N is RL+. For each agent i 2 N , Ri is the
complete and transitive binary relation on RL+ indicating (weak) preferences.
The associated strict preference and indi¤erence relations are denoted by Pi
and Ii, respectively. The set of possible preferences of each agent i 2 N
is de�ned by Ri. Denote by RN =

Q
i2N Ri the set of possible preference

pro�les. A typical preference pro�le is R = (Ri)i2N 2 RN . For each R 2 RN

and each M � N , let RM = (Ri)i2M .
We take as given the aggregate endowment �! � 0.4 Once the set of

agents is �xed, �! is also �xed across preference pro�les. An economy is thus
simply a list of preference relations and an aggregate endowment. Formally,
given N , an economy is a list (R; �!) 2 E = fRN �RL+: n 2 Ng. We consider
two classes of preferences that de�ne two domains of economies ENC and E

N
D .

5

Class of preferences RN
C : For each agent i 2 N , each Ri 2 Ri is

continuous, convex and monotonic.6

Class of preferences RN
D : For each agent i 2 N , each Ri 2 Ri is

convex, monotonic and representable by a di¤erentiable utility function.

Given an aggregate endowment �!, a (feasible) allocation is a list of bundle
(xi)i2N 2 RLn+ such that

P
xi � �!. Given an agent i 2 N , xli 2 R+ stands

for the quantity of good l received by agent i at bundle xi. For any allocation
x, and any M � N , let xM stand for the sub-allocation restricted to agents
in M . Likewise, let xNnM stand for the sub-allocation restricted to agents in
NnM .

4We order vectors with the usual conventions, �, >, �.
5RNC is the domain of classical preferences, while for RND is the subdomain of classical

preferences that are representable by a di¤erentiable utility function.
6A preference relation Ri de�ned over RL+ is convex if, for every xi and yi 2 RL+ such

that xi Pi yi, we have that �xi + (1� �)yi Pi yi for every � 2 (0; 1].
A preference relation Ri de�ned over RL+ is monotonic if, for each xi and yi 2 RL+,

xi � yi implies that xi Pi yi.
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Given �!, the set of feasible allocations A (�!) is,

A (�!) = fx 2 RLn+ :
X

xi � �!g:

Let Ai be the projection of A onto agent i�s consumption space. Formally,

Ai (�!) =
�
xi 2 RL+ : x`i 2 [0; �!`] for each ` = 1; :::; L

	
.

A bundle xi is a non-trivial corner of Ai (�!) if x`i = �!` and xki = 0 for
some `, k � L. We say that xi is a trivial corner of Ai if x`i = �!` for each
` = 1; :::; L or x`i = 0 for each ` = 1; :::; L.
An allocation x 2 A (�!) is a non-trivial corner of A (�!)�the Edgeworth

cube� if there exists i 2 N such that xi is a non-trivial corner of Ai (�!).
Trivial corners of A (�!) are de�ned in the same fashion. Let C(A (�!)) be
the set of non-trivial corners of the Edgeworth cube. Abusing language, we
say that a bundle xi is an element of C(A (�!)) if it is a non-trivial corner of
Ai (�!). From now on, we refer to non-trivial corners simply as corners. This
should cause no confusion.
Let �L�1 be the (L� 1)-dimensional simplex. For each agent i 2 N;

denote by Bi(p; �) the budget set generated by p 2 �L�1 and the bundle
� 2 Ai:

Bi(p; �) � fxi 2 Ai (�!) : p � xi � p � �g .
Given an agent i 2 N , a preference relation Ri 2 Ri and a bundle

xi 2 Ai (�!), de�ne LCi(xi; Ri) = fyi 2 Ai (�!) : xi Ri yig to be the lower
contour set at xi; UCi (xi; Ri) = fyi 2 Ai (�!) : yi Ri xig the upper contour
set at xi; SLCi (xi; Ri) = fyi 2 Ai (�!) : xi Pi yig the strict lower contour set
at xi and Ii(xi; Ri) = fyi 2 Ai (�!) : xi Ii yig, the indi¤erence curve through
xi.

We are interested in allocation rules satisfying several desirable properties.
An allocation rule f : E � A (�!) is a correspondence that associates to each
preference pro�le a set of allocations. Let argmaxRijBi(p;�) be the set of
maximizers of the preference relation Ri over the set Bi(p; �).

De�nition: The allocation x 2 A (�!) is an equal-income Walrasian al-
location for (R; �!) 2 EN if there exists p 2 �L�1 such that for all i 2 N;
xi 2 argmaxRijBi(p; �!n ):
The equal-income Walrasian correspondence WEE : EN � A (�!) asso-

ciates to each economy (R; �!) its set of equal-income Walrasian allocations.
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De�nition: Given (R; �!) 2 EN , the allocation x 2 A (�!) is Pareto
e¢ cient if there does not exist y 2 A (�!) such that yi Ri xi for each i 2 N
and yj Pj xj for some j 2 N .

Given (R; �!) 2 EN , an allocation x 2 A (�!) is derived from a choice set
B � RL+ if for each i 2 N we have that xi 2 B. De�ne by B a family of
choice sets.

De�nition: An allocation x 2 A (�!) is equal-opportunity equivalent rela-
tive to the family B for (R; �!) 2 EN if there exists B 2 B such that for each
i 2 N , xi Ii x�i for each x�i 2 argmaxRijB.

The family of choice sets we gave is very large. We will restrict our
attention to families of linear choice sets. A family of linear choice sets is
indexed by a bundle � = ��! � �! = (��!1 � �!1; :::; ��!L � �!L), with ��!` 2 [1; 0] for
each ` = 1; :::; L; and parametrized by price vectors p 2 �L�1.7 That is, once
a point � 2 RL+ has been �xed, the family of choice sets contains every budget
set generated by p 2 �L�1 and �. More formally, given � 2 RL+ and p 2
�L�1, let B�(p) �

�
z 2 RL+ : p � z � p � �

	
and B� �

�
B�(p) : p 2 �L�1	.

We are interested in several properties of allocation rules. Our �rst re-
quirement is an axiom of fairness.

Equal-budget choice equivalence: A solution f satis�es equal-budget
choice equivalence relative to B� if,
1) For each (R; �!) 2 EN , each x 2 f(R; �!) is equal-opportunity equivalent

relative to the family B� for (R; �!):
2) There does not exist an equal-opportunity equivalent allocation y rela-

tive to B� for (R; �!) such that y =2 f(R; �!).

Given �, let f� be the equal-budget choice equivalent allocation rule rel-
ative to B�. Our next property requires a form of robustness with respect
to change in preferences. It states the invariance of a rule to changes in
preferences occurring only outside of the feasible set of allocations.

Independence to irrelevant preference changes: A solution f sat-
is�es independence to irrelevant preference changes if and only if for each

7The reference point can be written as � or ��! � �!. For convenience, we use both
notations in the paper but it should not cause confusion.
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(R; �!), (R0; �!) 2 EN and x 2 f(R; �!),

[R 6= R0 and Ri \ Ai (�!) = R0i \ Ai (�!) for each i 2 N ] =) [x 2 f(R0; �!)].

Our third property states the robustness of a rule with respect to changes
in the number of agents when the feasible set is modi�ed in an appropriate
way. We de�ne the property directly with respect to rules f� : when a
group of agents leaves the economy, not only they modify the feasible set of
allocations, but they also modify the initial reference point �.

Consistency: An allocation rule f� satis�es consistency if and only if
for each (R; �!) 2 EN ; each x 2 f(R; �!), each M � N ,

xNnM 2 f��! �xNnM (RnRM ;
X

i2NnM

xi).

Consistency pertains to a decreasing number of agents. An allocation rule
is consistent if and only if any sub-allocation of a selected allocation is also
selected in the �reduced� economy de�ned by the corresponding subset of
agents and the set of allocations which can be considered as feasible for this
subset of agents. An allocation is feasible for a subset of agents if it is possible
to reach it while guaranteeing the selected consumption plans to each agent
outside the considered subset of agents. Notice in the de�nition how the
initial point � is also �scaled-down�. Recall that � = (��!1 � �!1; :::; ��!L � �!L).
The point ��! � �!NnM is,

��! � �!NnM =
�
��!1 � (�!1 � x1M); :::; ��!L � (�!L � xLM

�
).

We complement consistency with a robustness axiom that applies to sit-
uations in which the number of agents increases, and when the feasible set
is modi�ed in an appropriate way. Thomson (1988) de�nes four robustness
properties of rules with respect to an increase in the number agents. Among
these, the one that has been the object of most of the attention in the liter-
ature is replication invariance that we de�ne next.

Replication invariance: An allocation rule f� satis�es replication in-
variance if and only if for each (R; �!) 2 EN ; each x 2 f(R; �!) and each
� 2 N,

�x 2 f��! ���!(�R; ��!).
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Apart from fairness and robustness, a central authority�e.g. a planner�
is interested in the possibility of obtaining the allocations selected by the
rule as equilibrium outcomes of some non-cooperative game�i.e. through an
institution. Our point of view here is that decentralization entails full imple-
mentation of a solution. Before introducing the property of implementability
via some game-theoretic solution concept, let us add some necessary de�ni-
tions.

A game form or mechanism is a game tree with possibly simultaneous
moves.8 More formally, it is de�ned as an array � = (N; T; g) where N is the
set of players, T a game tree, and g is an outcome function that associates a
feasible allocation with each path of play. The set of nodes of the tree T is
denoted S. The initial node is s0. The set of terminal nodes of the tree T is
denoted Z. Let Mi be the set of strategies of player i, and let M s

i denote the
set of strategies available to player i at node s. Denote by M =

Q
iMi, the

set of strategy pro�les. Suppose the strategy pro�le m 2 M is played. Let
g(m)i stand for bundle obtained by agent i 2 N at the allocation prescribed
by the path induced by m, that is, g(m). Let g(m; s) denotes the outcome
corresponding to m starting at node s. As is common in the implementation
literature, we con�ne our attention to pure strategies.
For the de�nitions at hand, suppose that the only characteristics that

can vary are the preferences of agents. That is, the set of agents N and the
endowment �! are �xed. An economy then reduces to a preference pro�le
R 2 RN : Given an economy R 2 RN , the mechanism � de�nes a non-
cooperative game in extensive game form (�; R).
Let SC be a game theoretic solution concept. A solution concept describes

a set of predictions on how a game will be played, as a function of the agents�
preferences. For each R 2 RN , the set of SC-equilibrium outcomes of (�; R)
is denoted ESC(�; R).
A solution f is implementable in SC-equilibrium if and only if for each

R 2 RN , ESC(�; R) = f(R).

Examples of solutions concepts are numerous. To de�ne just a few, a
Nash equilibrium of (�; R) is a strategy pro�le m� 2 M such that for each

8Here, we consider static as well as sequential game forms. Since a static game form
can always be represented as a sequential game form with simultaneous moves, we choose
this more general de�nition that encompasses both cases.
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i 2 N
g(m�)i Ri g(mi;m

�
�i)i for each mi 2Mi.

A subgame perfect equilibrium of (�; R) is a strategy pro�le m� 2 M
such that for all s 2 SnZ and for all i 2 N ,

g(m�; s)i Ri g(mi;m
�
�i; s)i for each mi 2Mi.

But solutions concepts are not only limited to Nash equilibrium and its
re�nements. Solution concepts such as dominant strategies or undominated
strategies are also part of our general de�nition.9

Implementability via some game-theoretic solution concept: A
solution f satis�es implementability via some game-theoretic solution concept
if and only if there exists a game theoretic solution concept SC and a game
form � such that f is implementable by � via SC.

We close this section and give the de�nitions of Maskin monotonicity
(Maskin, 1999), a necessary condition for Nash implementation and Un-
changed contour independence (see Maniquet, 2003), a su¢ cient condition
for subgame perfect implementation.10

Maskin monotonicity: An allocation rule f is Maskin monotonic if
and only for each (R; �!); (R0; �!) 2 EN , and x 2 f(R; �!),

[LCi(Ri; xi) � LCi(R0i; xi) for each i 2 N ] =) [x 2 f(R0; �!)].

Unchanged contour independence: A SCC f satis�es unchanged con-
tour independence if and only if for each (R; �!); (R0; �!) 2 EN and x 2
f(R; �!),

[Ii(Ri; xi) \ Ai (�!) = Ii(R0i; xi) \ Ai (�!) for each i 2 N ] =) [x 2 f(R0; �!)].
9Our de�nition of solution concepts should be seen as encompassing any solution con-

cepts commonly used in the implementation literature since they all share a common
feature that will be explained in the next section: in order to break a equilibrium when
going from one preference pro�le to another, a change in preferences is needed.
10Bochet (2005b), also shows that if non-degenerate lotteries are permitted out of equi-

librium, then Maskin monotonicity and Nash implementation coincide.
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3 Properties of equal-budget choice equiva-
lent rules

In this section, we study equal-budget choice equivalent allocation rules. Al-
location rules are indexed by a number � and can be decomposed into three
categories that are speci�c to the region in which � is located. The �rst case
is when11,

� 2
n
0 < �0 < �! : �0 =2 C(A (�!)) and �0 6= �!

n

o
The second case is when12,

� 2 C(A(�!)):

Finally, the last case is when

� =
�!

n
.

When � is the point of equal-division, f� is equal-budget choice equivalent if
and only if it coincides with the equal-income Walrasian rule. We show this
result in the lemma below.

Lemma 1 (Thomson, 1994) Let the domain of preferences be RN
C . Con-

sider the family of linear choice sets B �!
n
. An allocation rule f� is equal-budget

choice equivalent if and only if f� = WEQ.
Proof : Let f be the equal-budget choice equivalent allocation rule with re-

spect to B �!
n
and let R, �! and x 2 f(R; �!) be given. By de�nition, there exists

p 2 �L�1 such that for each i 2 N , xi Ii x�i for each x�i 2 argmaxRijB �!
n
(p).

Our claim is that p � xi = p � � for each i 2 N , i.e. xi 2 argmaxRijB �!
n
(p). To

see this, observe �rst that by de�nition, we have that p �xi � p �x�i . Suppose,
contrary to our claim that for some i 2 N , p � xi > p � x�i . Summing across
agents, we obtain that

P
p � xi >

P
p � x�i = p � �!, a contradiction with the

feasibility of x as an allocation. Therefore, f � WEQ. The other inclusion is
obvious.
Q.E.D.

11We point out that for any � � �!
n , the allocation rule f is empty at each preference

pro�le.
12We voluntarily exclude the trivial corners f0g and f�!g as point of division since they

both deliver empty solutions.
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3.1 Robustness with Respect to Changes in Prefer-
ences and Implementation

We start this section by showing a clear connection between independence to
irrelevant preference changes and the decentralization of a rule. In fact, such
a robustness property is the most basic requirement for an allocation rule to
be implementable via some game-theoretic solution concept. In this section,
we �x the set of agents N and the endowment �!. A rule f is then a mapping
f : RN � A (�!). An economy is thus simply a preference pro�le R and a
class of economy is simply a set of preference pro�les RN .

Proposition 1: A solution f satis�es implementability via some game-
theoretic solution concept only if it satis�es independence to irrelevant pref-
erence changes.
Proof : Since f satis�es implementability via some game-theoretic solution

concept, there exists a solution concept SC and a game form � such that f
is implemented by � via SC. Fix a preference pro�le R 2 RN and x 2 f(R).
By implementability via some game-theoretical solution concept, there exists
m 2M that is an SC-equilibrium such that g (m) = x 2 ESC(�; R).
Consider a change in preferences when going from R to R0 with Ri\Ai =

R0i \ Ai for each i 2 N . Thus, for some j 2 N , Rj 6= R0j but for each i 2 N ,
Ri \ Ai = R0i \ Ai. The region where preferences determined that m was an
SC-equilibrium, and that x 2 ESC(�; R); still contains the exact same set
of preferences as in R. Therefore, if m was an SC-equilibrium under R, it
remains one under R0. As a consequence, we have that x 2 ESC(�; R0).
Q.E.D.

Proposition 1 states an obvious requirement for implementability via some
game theoretic solution concept. Information on preferences outside of the
feasible set cannot be used. The reason is that in order to break an equi-
librium when going from one preference pro�le to another, a change in pref-
erences is needed. For implementation via Nash equilibrium and any of its
re�nement, speci�c preference reversals are needed. For instance, implemen-
tation via Nash equilibrium requires that if x 2 f(R)nf(R0), there exists
i 2 N and yi 2 Ai such that xi Ri yi and yi P 0i xi. On the other hand, for
implementation via undominated strategies, if x 2 f(R)nf(R0) there exists
i 2 N and yi 2 Ai such that either xi Ri yi and yi P 0i xi, or xi Pi yi and xi I 0i

11



yi.13 Finally, implementation via subgame perfect equilibrium requires that
if x 2 f(R)nf(R0); there exists i 2 N , and yi, zi 2 Ai such that yi Ri zi and
zi Pi xi.
However preference changes outside of the feasible set cannot be tested

since they occur at allocations that are not feasible. Therefore, an allocation
rule sensitive to change in preferences outside of the feasible set can never
be implemented, and this whatever solution concept used.14

Next we show that when the domain is RN
C , the only equal-budget choice

equivalent rules that are not sensitive to a change in preferences occuring only
outside of the feasible set are the rules f� with � 2 C (A (�!)). Di¤erentiabil-
ity plays a crucial rule in the implementation of the equal-income Walrasian
rule. When indi¤erence curves can have kinks, the equal-income Walrasian
rule is not implementable via any solution concept. As expected, the prob-
lem comes from allocations that are at the boundary of the feasible set but
it goes beyond the classical impossibility result on the Nash implementation
of this rule.

Proposition 2: Suppose the class of preferences is RN
C . An equal-budget

choice equivalent allocation rule f� satis�es implementability if and only if
� 2 C(A(�!)): � 2 C(A(�!)):
Proof : The proof relies on a series of lemmas.

Lemma 1: Suppose that,

� 2
n
0 < �0 < �! : �0 =2 C(A (�!)) and �0 6= �!

n

o
.

The equal-budget choice equivalent allocation rule f� with respect to B� does
not satisfy implementability.
Proof : We use counter-examples to prove the claim. The examples we

construct are for � = �!
K
for K > n.15 The proof generalizes to any

� 2
n
0 < �0 < �! : �0 =2 C(A (�!)) and �0 6= �!

n

o
:

13See Jackson (1992) for a de�nition of implementation in undominated strategies.
14Notice also that such allocations rules cannot be virtually implemented either. For

a de�nition of Virtual Nash implementation, see for instance Abreu and Sen (2001) or
Bochet and Maniquet (2005).
15The case K < n is trivial. For any � � �!

n , the equal-budget choice equivalent
allocation rule with respect to B� is then empty at every preference pro�les. When � > �!

n ,
this is no longer true but the same type of examples we construct in the lemma can be
applied.
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Figure 1

We consider two agents-two goods exchange economy with two possible
preference pro�les R = (R1; R2) and R0 = (R01; R2). The preferences are
represented by utility functions as follows.
u1(�; R1) = min

�
x1 + y1; x1 +

1
K+1

y1 +
5K
K+1

	
u1(�; R01) = x1 + y1
u2(�) = (K + 1)x2 + y2
The endowment is �! = (4; 4).

For each K > n; when the pro�le is R, there exists an allocation z� 2
f �!
K
(R), that is equal-budget choice equivalent and for which (x1; 5) 2 argmaxR1jB �!

K
(p) =2

Ai, x1 > 0, for some i 2 N and p = (K; 1). The situation is depicted for the
case K = 4 in Figure 1 above.
There is an equal-budget choice equivalent allocation,

z� =

��
123

48
;
137

48

�
;

�
69

48
;
55

48

��
;

and argmaxR1jB �!
4
(p) =

�
5
12
; 5
�
. However, allocation z� is no longer equal-

budget choice equivalent with respect to B �!
4
(p) at R0: the indi¤erence curve

of agent 1 at the point
�
5
12
; 5
�
extends below B �!

4
(p) and hence

�
5
12
; 5
�
=2

argmaxR01jB �!
4
(p) =

�
0; 20

3

�
. Finally, observe that the preferences of agents
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inside the feasible set have not changed. The correspondence f �!
4
is not im-

plementable in any game theoretical solution concept. It is clear that the
same conclusion applies to any K > n.

The counter-examples we used were based on an extension of an indi¤er-
ence curve below the set B �!

K
(p) for agent 1 when going from R to R0. For

each K > n, the same conclusion remains true even if there is an expansion
of the lower contour set at z� outside of the feasible set. To see this, suppose
that there is also a third preference pro�le (R001; R2) at which preferences of
agent 1 are given by u1(�; R

00
1) = min

�
x1 + y1; x1 +

1
K+1

y1 +
4:5K
K+1

	
. As seen

in Figure 1, there is an expansion of the lower contour set for agent 1 when
going from R to R00 but the expansion occurs outside of the feasible set while
the preferences inside the feasible set remain unchanged. This shows that
the violation of implementability is not restricted to RN

C but also applies to
RN
D as well.
Finally, notice that the examples we have used are based on extension of

budget sets beyond the upper boundary of the Edgeworth box. For a point
� = (0; k) with k < �!2; the extension of the budget sets will occur on the
right boundary of the box. The same examples as we have constructed above
can be adapted to this case.
Q.E.D.

Lemma 2: Suppose the class of preferences is RN
C . The allocation rule

WEQ does not satisfy implementability
Proof: We adapt the counter example of lemma 1 to the case K = n = 2.

The aggregate endowment is �! = (4; 4). The preferences of agents are as
follows.
u1(�; R1) = min

�
x1 + y1; x1 +

1
3
y1 +

8
3

	
and u1(�; R01) = x1 + y1.

u2(�) = 2x2 + y2
When the pro�le is R, there exists an equal-income Walrasian equilibrium

(z�; p�) on the boundary of the feasible set with z� = ((1; 4); (3; 0)) and
p� = (2; 1).
The situation is depicted graphically in Figure 2 on the next page.
Allocation z� is no longer an equal-income Walrasian equilibrium under

R0. However, there exists no agent i and no pair xi, yi 2 Ai such that

xi Ri yi and yi P 0i xi.
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In conclusion, the equal-income Walrasian rule is not implementable in
any solution concept.16

Q.E.D.

Lemma 3: Suppose that � 2 C(A(�!)), then f� satis�es implementability.
Proof : Clearly, f� satis�es independence to irrelevant preference changes.

To see this, observe that whenever the common budget set extends outside
of the feasible set, then indi¤erence curves of agents never intersect. That
is, whenever given p 2 �L�1, the common budget set extends outside of the
feasible set, we have that \i2N fxi 2 B� (p)g 6= ;.
Though necessary, this condition is far from being su¢ cient. In fact,

it is enough to observe that for any such �; f� satis�es unchanged con-
tour independence, a su¢ cient condition for subgame perfect implementa-
tion.17 Given R 2 RN

C ;for each x 2 f� (R), there exists p 2 �L�1 such that
\i2N fxi 2 B� (p)g = ;, and for each i 2 N , xi Ii argmaxRijB�(p) 2 Ai.
Consider a pro�le R0 2 RN

C such that Ii(Ri; xi) \ Ai = Ii(R
0
i; xi) \ Ai for

each i 2 N . We have that for each i 2 N , zi 2 argmaxRijB�(p) ()
16Obviously, the same is true for any initial distribution of the aggregate endowment

di¤erent of equal-division: if the domain is RND; then the Walrasian correspondence is
not implementable in any solution concept (see Bochet, 2005a).
17Observe that if � 2 C(A(�!)), f� is not Maskin monotonic and hence not Nash imple-

mentable.

15



zi argmaxR
0
ijB�(p): Therefore, x 2 f(R0).

Q.E.D.
The combination of lemma 1 to 3 completes the proof of Proposition 2.

Proposition 3: Suppose the class of preferences is RN
D . An equal-budget

choice equivalent allocation rule f� satis�es implementability if and only if
� 2 C(A(�!)) [

�
�!
n

	
.

Proof : We have already shown in lemma 1 that even if preferences are
di¤erentiable and � 2

�
0 < �0 < �! : �0 =2 C(A (�!)) and �0 6= �!

n

	
, then f�

cannot satisfy equal-budget choice equivalence and implementability.
Finally, observe that WEQ now satis�es unchanged contour independence

(see Maniquet (2003) and Bochet (2005a)).18

Q.E.D.

Remark 1: Only a few allocation rules satisfy equal-budget choice equiva-
lence and implementability. By the �rst welfare theorem, WEQ only contains
Pareto e¢ cient allocations. This is clearly not the case when � 6= �!

n
. We

point out in passing that whenever � 6= �!
n
, there does not exist a Pareto e¢ -

cient and Nash implementable selection of the equal-budget choice equivalent
allocation rule f�.
Moreover, our point of view is that the boundary rules do not o¤er a

sensible approach to fairness. After all, when deciding how to �rst divide the
resources, the preferences of agents are in general unknown to the planner.
By discarding some goods, the planner goes against a principle of neutrality
with respect to goods. For instance suppose that there are two goods, food
and water. The planner should not decide to give water to agents but no
food to start with when both items are available. It implies that the name
of the goods should not matter. This is the familiar neutrality axiom de�ned
below.

Neutrality: An allocation rule f� satis�es neutrality if and only if for
each permutation � : L! L and each R 2 RN ,

x 2 f�(R) =) � � x 2 f��� (� �R) .

Based on this argument, a strengthening of proposition 3 with neutral-
ity would provide a simple �characterization�of the equal-income Walrasian

18Obviously, the equal-income Walrasian allocation rule is not implementable in domi-
nant strategies, in undominated strategies or in Nash equilibrium.
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rule. In addition, it provides a further justi�cation of equal-division of re-
sources as a �rst step towards fairness.

3.2 Robustness with Respect to Change in the Num-
ber of Agents

In this section we go back to the initial setting introduced in section 2, where
the number of agents in the economy can vary. We start with the study of
our second robustness property, consistency.19

Proposition 4: Suppose the class of economies is END . An allocation
rule f� satis�es consistency if and only if � = �!

n
.

Proof :
First part: The fact that WEQ satis�es consistency is well-known (see

Thomson, 1988). We recall its proof for the sake of completeness.
Take an economy (R, �!) 2 END and �x x 2 WEQ (R; �!). By de�nition,

there exists p 2 �L�1 such that for each i 2 N , xi 2 argmaxRijB �!
n
(p).

Given the assumptions on preferences, for each i 2 N , p � xi = p � �!n . Con-
sider a subeconomy M � N . The total resources available in this sube-
conomy after the departure of agents in NnM with their respective bundle
is
P

i2M xi. Hence, allocation xM is still feasible. Since p � xi = p � �!
n
, we

have that p �
P
j2M xj

jM j = p � �!
n
. Therefore, B �!

n
(p) = BP

j2M xj
jMj

(p) and thus

xj 2 fPj2M xj
jMj

�
RnRNnM ;

P
j2M xj

�
.

Second part: To see that when � is one of the corners of the Edgeworth
cube, consistency may be violated, let us look at the following example.
There are three agents and two goods, �! = (4; 2). At pro�le R 2

RN
D , agents 1 and 2 have utility functions given by ui (xi; yi) =

2
3
xi + yi

and u3 (x3; y3) = 3x3 + y3. Consider � = (0; �!y) and the allocation z =
((1:5; 1) ; (1:5; 1) ; (1; 0)). This allocation is equal-opportunity equivalent. Given
p = (2; 1), argmaxRijB�(p) = (0; 2) for i = 1; 2, argmaxR3jB�(p) = (1; 0) and
argmaxRjjB�(p) Ii zj for each j = 1; 2; 3: Suppose that agent 1 leaves the
economy with z1. By consistency, ((1:5; 1) ; (1; 0)) 2 f(0;1) (RnR1; (2:5; 1)).
19Thomson (1988) showed that if indi¤erence curves have kinks, then WEQ does not

satisfy consistency. Hence, for the remainder of the paper, the class of economies we
consider is END .
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The only price vector such that argmaxR3jB(0;1)(p) = (1; 0) is p = (1; 1).
At this prices, argmaxR2jB(0;1)(p) = (0; 1) but z2 Pi argmaxR2jB(0;1)(p), a
contradiction with the fact that f� satis�es equal-budget choice equivalence.

Third part: Next, we show that when � =2 C(A (�!)) [
�
�!
n

	
, consistency

is also violated. We use one counter-example but it should be clear that the
same can be shown for any other � =2 C(A (�!)) [

�
�!
n

	
.

Again we consider a three agents-two goods example with �! = (5; 2) and
� = (0:5; 2). At pro�le R 2 RN

D ; agents i = 1; 2 have utility functions given
by ui = xi + yi and u3 = (x3)

2y3. Allocation z = ((2; 0:5) ; (2; 0:5) ; (1; 1))
is equal-opportunity equivalent with respect to B� for p = (2; 1). Suppose
now that agent 1 leaves with z1. The reduced economy has �! = (3; 1:5) and
� = (0:3; 1:5) : By consistency, ((2; 0:5); (1; 1)) 2 f(0:3;1:5) (RnR1; (3; 1:5)).
The only price vector such that argmaxR2jB(0:3;1:5)(p) I2 (2; 0:5) is p =

�
15
22
; 1
�
.

However, argmaxR3jB(0:3;1:5)( 152 ;1) P3 z3, a contradiction with equal-budget
choice equivalence.
We conclude that the proposition holds if and only if � = �!

n
.

Q.E.D.

We conclude our results by the study of replication invariance. We
provide a characterization that parallels a result that appears in Thomson
(1988). He shows that a selection from the Pareto e¢ cient and equal-split
lower bound correspondence satis�es consistency and replication invariance
if and only if it is a subrule of the equal-income Walrasian rule.

Proposition 5: Suppose the class of preferences is RN
D and �x � 2 RL+.

Any Pareto e¢ cient selection from f� satis�es consistency and replication
invariance if and only if � = �!

n
.

Proof : Let � = ��! � �! 2 RL+, (R; �!) 2 END and x 2 f��! ��! (R; �!) be given.
By Pareto e¢ ciency, there exists p 2 �L�1 that supports x. Suppose that
x =2 WEQ (R; �!). Then there exists i 2 N with p � xi > p � �!n and j 2 N with
p � xj < p � �!

n
. By convexity and monotonicity of preferences, there exists

�i,�j 2 N and y such that y Pj xj, and

y =
�ixi + �jxj
�i + �j

.

De�ne � � max f�i; �jg. By replication invariance, �x 2 f��! ���! (�R; ��!).
Consider a subeconomy of �R composed of �i agents of type i and �j agents of
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type j. By consistency, we obtain that (�xi; �xj) 2 f��!(�i+�j)�y (�iRi; �jRj; � (�i + �j) y).
By equal-opportunity equivalence, there exists p 2 �L�1 such that �xk Ik
argmaxRkjB�y(p) Rk ��!(�i + �j)�y for k = i; j. This implies that �xj Rj
��!(�i + �j)�y, and ��! (�i + �j)�xj Pj ��!(�i + �j)�y, a contradiction with
the initial assumption that y Pj xj.
Q.E.D.

We conclude the paper with two remarks.

Remark 2: As seen in lemma 2, for some preference domains, the
equal-income Walrasian correspondence is not implementable via any game-
theoretical solution concept. On the other hand, a correspondence called the
constrained equal-income Walrasian correspondence, CWEQ, is Nash imple-
mentable. Given the de�cits of the allocation rules we have studied, one can
alternatively look at a constrained version of equal-budget choice equivalence.
Given � 2

�
0 < �0 < �! : �0 =2 C(A (�!)) and �0 6= �!

n

	
and p 2 �L�1, a

constrained linear choice set is �B�(p) � fx 2 Ai (�!) : p � x � p � �g. Based
on this de�nition, we can reformulate our axiom in term of constrained equal-
opportunity equivalence and constrained equal-budget choice equivalence.

Constrained equal-opportunity equivalence: An allocation x 2
A (�!) is constrained equal-opportunity equivalent relative to the family B�
for R 2 RN if there exists �B�(p) 2 B� such that for each i 2 N , xi Ii x�i for
some x�i 2 argmaxRij �B�(p).

The de�nition of equal-budget choice equivalence allocation rule �f� then
just follows. When � 2

�
0 < �0 < �! : �0 =2 C(A (�!)) and �0 6= �!

n

	
, every �f�

is subgame perfect implementable. However, notice that the only Nash im-
plementable allocation rule is the constrained equal-income Walrasian rule
CWEQ.20 Therefore, an allocation rule �f� satis�es constrained equal-budget
choice equivalence and Maskin monotonicity if and only if �f� = CWEQ.21

Observe that WEEQ � CWEQ. In addition, if preferences are strongly
monotonic, then for any (R; �!) 2 EN and any x 2 CWEQ(R; �!), allocation
x is Pareto e¢ cient. An important observation is that if � 6= �!

n
, then �f� is

20Thomson (1999) in fact shows that CWEQ is the minimal Maskin monotonic extension
of WEQ.
21Observe that a selection of the Constrained equal-income Walrasian rule is not neces-

sarily Maskin monotonic.
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neither a subcorrespondence nor a supercorrespondence of its unconstrained
counterpart f�.

Remark 3: An interesting extension would be to consider fair solutions
suggested in the literature and to construct the family of choice sets gener-
ating them as equal-opportunity equivalent solutions. If they satisfy imple-
mentation via some game theoretic solution concept, then the components
of the family of choice sets (e.g. bundles, allocations etc...) can be used
as part of the strategy sets of agents. For instance, suppose that a given
solution is Nash implementable using a family of choice sets B. Then, we
conjecture that the announcements of preference pro�les in canonical mech-
anisms such as Abreu and Sen (1990) for subgame perfect implementation;
Maskin (1999) or Bochet (2005b) for Nash implementation; can be replaced
by announcements of choice sets. This work would suggest a close connection
between equal-opportunity equivalence and the possibility to perform strat-
egy space reductions from in�nite to �nite spaces in canonical mechanisms
used to SC-implement an allocation rule.
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