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Abstract

This paper analyzes the question whether traders learn to coor-
dinate on a trading institution that guarantees market clearing, or
whether other market institutions can survive in the long run. While
we find that the market clearing institution is indeed always stable un-
der a general class of learning dynamics, it turns out that also other,
non-market clearing institutions are stable. Hence, in the long run
traders may fail to coordinate exclusively on market clearing institu-
tions.
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1 Introduction

The formation of a market requires a group of people some of whom want
to buy and some of whom want to sell. For the Walrasian theory of market
clearing this is all that is needed. As soon as preferences and cost functions
are specified, equilibrium analysis can be applied. Actual markets, though,
are not merely characterized by demand and supply. Market exchange does
not take place in an institutional void. It requires a framework in which
action and message sets are specified, and in which a process of matching
and price formation can take place.

An enormous variety of market institutions can be observed in the field.
For example, the bazaar differs from financial markets in terms of the match-
ing and bargaining process and the dissemination of information. The typ-
ical (Dutch) rules at flower auctions are different from the (English) rules
at art auctions. Trading institutions not only vary across different goods,
different market institutions exist even for the same good. Real estate is sold
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both at auctions and by means of direct negotiations, and both call mar-
kets and continuous double auction markets are used to exchange financial
assets.

There is some theoretical and empirical and a lot of experimental evi-
dence indicating that the details of the market institution are consequential.1

Trading rules affect the efficiency of the market outcome, the convergence to-
wards equilibrium, the volatility of the prices, and the distribution of surplus
over the market participants. Given that “institutions matter”, important
questions are: Do the existing market institutions support market clear-
ing equilibrium outcomes? Can we be confident that actual markets will
be characterized by efficient institutions? Are there circumstances under
which inefficient trading rules arise and persist, or are forces and mecha-
nisms present that drive a market towards efficient organization?

In order to answer these questions, it is useful to distinguish between two
different approaches. On the one hand, one can ask how new market institu-
tions come into existence, and what the properties of these new institutions
are.2 On the other hand, we might ask which institutions survive in the
long run if several institutions compete. In the paper at hand we provide
an answer to the second question. Whether a specific market institution
survives the competition with other existing market institutions depends on
whether traders employ this institution or whether they trade under another
set of rules. Hence, the (evolutionary) success of a market institution is a
function of the number of traders it can attract.

The decision about the use of a particular market institution gives rise
to a coordination game - potential buyers and sellers have to coordinate on
a particular institution in order to make mutual beneficial trade possible.
Of course, such coordination games typically exhibit a multiplicity of Nash-
equilibria. There exists the possibility that in a Nash-equilibrium traders
coordinate on an institution that does not lead to market clearing outcomes
and that does not maximize the gains of trade. They might even coordinate
on an institution that leads to a Pareto-inefficient outcome. It has been
claimed that traders will eventually learn to overcome this problem and co-

1Empirical and theoretical evidence is mostly found with respect to the impact of
the design of auction rules. An empirical example of the importance of auction design
in the context of internet auctions is provided by Ockenfels and Roth [20], who analyze
empirically the impact of the auction desing on internet auctions. A theoretical example
in the context of multi-unit auctions is provided by Ausubel and Cramton [2]. For an
overview of the theoretical literature of the impact of auction design see Klemperer [16].
An overview of the experimental evidence of the importance of market institutions is
provided by Holt [10] and by the classical article of Plott [21].

2There exists some theoretical literature along these lines, where market institutions
are modelled as networks (see Bala and Goyal [3], Jackson [12], and Kranton and Minehart
[18]). Another example of this approach is Kirchsteiger, Niederle, and Potter [17], where
the driving forces behind the development of new market institutions and the efficiency
properties of these institutions are experimentally investigated.
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ordinate on an efficient institution that guarantees market clearing outcomes
(see e.g. Hayek [9]). To our knowledge this claim has never been put to a
thorough investigation.3 Hence, our paper asks under what circumstances
traders will indeed learn to coordinate on an efficient, market-clearing insti-
tution.

To provide an answer to this question, we use a partial equilibrium frame-
work where we concentrate on the market institutions for trading an ho-
mogenous good. Potential traders have to choose simultaneously at which
institution they want trade. We specifically postulate one market clearing
institution and an arbitrary number of other, feasible institutions that do
not lead to the market clearing, but realize a price below or above the mar-
ket clearing level. Consequently, buyers or sellers who have chosen such an
institution face rationing.

In order to model the learning process we use the stochastic stability
techniques brought into the economics literature by Kandori, Mailath, and
Rob [13] and Young [24] to analyze coordination games with players learning
on which equilibrium to coordinate. Specifically, we postulate that traders
(buyers and sellers) will decide to switch from one institution to a different
one next period if they observe that the current-period results (prices and
traded quantities as resulting from rationing) are better for them. Traders
evaluate these results according to evaluation functions that satisfy a number
of weak behavioral assumptions, compatible with standard microeconomic
models but allowing also for boundedly rational behavior. In particular,
traders are not assumed to anticipate future prices, market-clearing or oth-
erwise. The learning model can be interpreted as a version of Kandori,
Mailath, and Rob’s [13] because traders tend to switch to strategies (in-
stitutions) wich are better in the current period, without anticipating the
effects of their strategy change.4

We find two types of results. First, the market clearing institution is
always stochastically stable under a general class of learning models. Sec-
ond, also other, non-market clearing institutions are stochastically stable in

3There exist several papers which are similar in spirit to our paper insofar as also in
these models traders can choose between different trading institutions (see e.g Ishibuchi,
Oh, and Nakashima [11], or Neeman and Vulkan [19]). Those papers, however, do not in-
vestigate whether traders learn to coordinate on efficient institutions guaranteeing market
clearing prices and quantities.

4A conceptually related model is analyzed by Gerber and Bettzüge [8]. They postulate
a finite population of traders who might choose among two identical, market-clearing
asset markets. Traders have idyosincratic preferences for the markets themselves and also
perceive markets to be more attractive when the number of traders in them increases (size
effect). When trading on a market, traders maximize a mean-variance utility function.
Learning is modelled through Young’s [24] adaptive play, i.e. traders best-reply to a sample
of past play. In particular, traders are able to compute future market-clearing prices (also
anticipating the effects of their own change in strategy) but are otherwise myopic. Gerber
and Bettzüge find that, for a large number of traders, the only stochastically stable state
is one where both markets are active and traders split equally among them.
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general.
The paper proceed as follows. Next we describe the model and its basic

assumptions. We proceed to present several examples and preliminary re-
sults concerning static comparisons of different institutions. In Section 3 we
describe the learning process and in Section 4 we present the main results.
Section 5 concludes. In the Appendix we provide a generalization of all our
results to the case of institutions with stochastic prices.

2 The model

There is a homogeneous good to be traded by a set I = {1, ..., n} of buyers
and a set J = {1, ...,m} of sellers. We denote the price of the good by p.
The demand of a typical buyer i ∈ I is given by a function d(p) such that
d(0) > 0, d(p) ≥ 0 for all p ≥ 0, and limp→∞ d(p) = 0. The function d is
assumed to be continuous and strictly decreasing in p in the range where
d(p) > 0. The supply of a typical seller j ∈ J is given by a function s(p) with
s(0) = 0. We assume s to be continuous and strictly increasing in p ≥ 0.

For an individual trader the market outcome is given by the price at
which he trades, and by the quantity he can trade. In order to model the
learning process, we describe how buyers and sellers evaluate the market
outcome. Denote by qS the quantity sold by a typical seller, and by qB the
quantity bought by a typical buyer. The evaluation of the market outcomes,
vB(qB, p) and vS(qS , p), depend on the quantity the traders buy and sell,
respectively, and on the price p at which they trade. Hence, the evaluations
(payoffs) are given by functions vB : <2+ → < and vS : <2+ → <.

The primitives in our model are the demand, supply and the payoff (eval-
uation) functions. We want to emphasize that this framework is much more
general than the usual microeconomic approach, where demand and supply
are derived from maximization of the payoffs (i.e. from utility- and profit
maximization). We have deliberately chosen this more general framework
in order to allow for the possibility that demand and supply are not based
on rational choices of the agents. Furthermore, in our framework the eval-
uation of the market outcome, which–as explained later in detail–drives
the learning process, need not be identical with consumers’ utility and pro-
ducers’ profits. In other words, we allow for more general (even boundedly
rational) modes of behavior.

About the relation between demand, supply and the evaluation of the
market outcome we make the following assumptions:

Assumption A1: In the absence of rationing, a lower price is better
for buyers and worse for sellers. I.e.,

vB(d(p), p) > vB(d(p
0), p0) and vS(s(p), p) < vS(s(p

0), p0) (A1)

for all p, p0 with p < p0 and d(p) > 0.
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Assumption A2: Given the price, traders prefer not to be rationed.
I.e.,

vB(d(p), p) > vB(qB, p) and vS(s(p), p) > vS(qS , p) (A2)

for all p and all qB < d(p), qS < s(p)

Assumption A3: Given the price, traders prefer being rationed to not
being able to trade. I.e.,

vB(qB, p) > vB(0) and vS(qS , p) > vS(0) (A3)

for all p > 0 and all 0 < qB < d(p), 0 < qS < s(p)

where vB(0) = vB(0, p
0) and vS(0) = vS(0, p

0) for all p0 ≥ 0 are the payoffs
of not being able to trade, which we explicitly assume not to depend on
(hypothetical) prices.

In the next subsection we show that these assumptions are not only very
plausible at first sight, but that they are also fulfilled in standard models. In
a first approach, demand and supply are derived from standard consumers’
and producers’ problems and the evaluation functions are obtained from the
corresponding utility and profit functions. In a second approach, demand
and supply are arbitrarily specified and then payoffs are taken to be con-
sumers’ and producers’ surplus. Assumptions A1-A3, though, can also be
fulfilled if payoffs, demand, and supply are not derived from standard prob-
lems. Take as an example a producer whose supply is derived from profit
maximization, but who evaluates the market outcome by the revenue raised
(without taking production costs into account). Such an inconsistency be-
tween the supply behavior and the learning process (which might e.g. be
due to the different divisions within a firm deciding about quantity supplied
and the market chosen) can be modelled by our approach, since despite the
inconsistency such a model fulfills A1-A3.

2.1 Standard Frameworks

2.1.1 Utility and Profit Maximization

Here we elaborate on the standard case of utility maximizing consumers and
profit maximizing firms, because it provides insights useful for the further
analysis.

Take identical consumers, each endowed with the same fixed income.
The preferences of a consumer are represented by a strictly quasiconcave,
continuous and strictly monotone utility function u(x), where x denotes the
consumption bundle. Furthermore, we assume that none of the goods is
a Giffen-good. Utility maximization and price-taking behavior give us the
demand functions. We are interested in the market for good 1. If we fix
the prices of all goods but 1, we obtain the (reduced) demand function for
good 1, d(p), where p denotes the price of good 1. Consumers’ evaluation
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of the market outcome coincides of course with the utility derived from this
outcome.

In our framework we allow for rationing, i.e. a consumer (buyer) may
receive less (but not more) than the quantity specified by the demand func-
tion. In this case we can think that the consumer maximizes utility taking
the rationing as an additional constraint. By the uniqueness of the solution
of the utility maximization problem without rationing (which is due to strict
quasiconcavity of the utility function), it is clear that for the problem with
rationing the rationing constraint is binding, and the solution of this prob-
lem leads to an outcome inferior to the non-rationing case. Hence, rationing
lowers the consumer’s utility (and hence the valuation of the market out-
come) as required by A2. Furthermore, again due to strict quasiconcavity
the problem with rationing has also a unique solution. Hence rationing at
a strictly positive level leads to a better outcome than no-trade, as required
by A3. Finally, standard revealed-preference arguments show that if the
demand for good 1 is strictly positive, any increase in p decreases utility,
and hence A1 is fulfilled.

Identical firms produce good 1 with a strictly convex technology. Cost
minimization allows us to derive - for given input prices - a strictly convex
cost function. Maximizing profits and price taking behavior lead to the
supply function s(p).We assume the absence of fixed costs and that marginal
costs are not bounded away from zero. This implies that s(p) is strictly
increasing in p as required.5 Firms’s evaluation of the outcome coincides
with the profits.

Of course, if due to rationing firms sell less than the quantity specified
by s(p), their profits are lower than in the non-rationing case. This confirms
A2. Furthermore, rationing at a strictly positive level is better for the firms
than no trade at all, as demanded by A3. Finally, in absence of rationing
any increase in the output price leads to an increase in the profits of the
producer for any given level of output, and the optimal adjustment of output
according to the supply function can only lead to a further increase in the
profits. This consideration confirms A1.

2.1.2 Consumer’s and Producer’s Surplus

Another specific way to derive valuation functions for the current model
would be to arbitrarily specify demand and supply functions and let the
evaluation of the market outcome be the corresponding consumers’ and pro-
ducers ’surplus (denoted by u and π). While such an approach is of course

5This feature of the supply function guarantees that equilibrium prices and quantities
are strictly positive as long as at least one buyer and one seller coordinate on an institution.
Of course, there are weaker conditions also guaranteeing such an interior equilibrium
outcome. Working with these weaker conditions, however, would have complicated the
presentation without providing new insights.
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not exempt of criticism, it is a particularly well-known case which also fulfills
our assumptions.

For simplicity, let pR > 0 be such that d(pR) = 0 (the reservation price).
Taking possible rationing (i.e. qB ≤ d(p)) into account, the buyer surplus is
given by

u(qB, p) =

Z pR

pQB

d(t)dt+
h
pQB − p

i
qB

where pQB = d−1(qB). Analogously, seller’s surplus with possible rationing
(qS ≤ s(p)) is

π(qS , p) =

Z pQS

0
d(t)dt+

h
p− pQS

i
qS

where pQS = s−1(qS). In this case, Assumption A1 holds trivially. If p < p0 ≤
pR, then d is strictly positive in

¤
0, pR

£
,

u(d(p), p) =

Z pR

p
d(t)dt >

Z pR

p
d(t)dt = u(d(p0), p0)

and analogously for the sellers’ surplus. Assumption A2 is also easy to check.
If qB < d(p), then changing the integrating variable

u(qB, p) =

Z pR

p
d(t)dt−

Z d(p)

qB

d−1(x)dx <

Z pR

p
d(t)dt = u(d(p), p)

where the strict inequality holds because qB < d(p) and d−1 is a strictly
positive function. Further, if 0 < qB < d(p), then from the same expression,
and since pQB > p, u(qB, p) > 0 and u(0, p) = 0 for all p, verifying Assumption
A3.

2.2 Trading Institutions

The good can be traded at different market institutions. For any institution
z, denote by nz,mz the number of traders active at z. Let p∗(nz,mz) be the
market clearing price at z, i.e. p∗(nz,mz) is the solution to

nzd(p) = mzs(p). (MC)

Under our assumptions, for every mz, nz > 0 there exists a unique
p∗(nz,mz) solving equation (MC), and it is strictly larger than zero. More-
over, the market clearing price p∗(nz,mz) depends only on the ratio

r =
nz
mz

through the implicit equation

rd(p) = s(p)
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which yields
p = p(r).

The function p(r) is strictly increasing in r (because d(p) is decreasing and
s(p) is increasing in p).

An institution z is characterized by a bias parameter βz > 0 which
measures the difference between the actual price realized under that market
institution, pz, and the market clearing price. More specifically:

pz(nz,mz, βz) = βzp
∗(nz,mz).

If the price is not at the market-clearing level, we assume that the quan-
tity traded is determined by the “shorter” market side and that the other
market side cannot trade as much as it wants according to its demand or
supply function. This rationing is assumed to be the same for every trader
of the same market side. More specifically, denote by Qz(nz,mz, βz) the
overall quantity traded at z. We can now distinguish between three cases:

Case 1: βz = 1. In this case the market clearing prices and quantities
are realized, and nobody is rationed. The institution is market clearing. The
quantities are given byQz(nz,mz, 1) = mz.s(p

∗(nz,mz)) = nz.d(p
∗(nz,mz));

qzB = d(p∗(nz,mz)); qzS = s(p∗(nz,mz))
Case 2: βz < 1: In this case the price is below the market-clearing

price, and hence the quantity is determined by supply and buyers are ra-
tioned: Qz(nz,mz, βz) = mz.s(pz(nz,mz, βz)). qzS = s(pz(nz,mz, βz));
qzB =

mz
nz
.s(pz(nz,mz, βz)) < d(pz(nz,mz, βz)).

Case 3: βz > 1: In this case the price is above the market-clearing
price, and hence the quantity is determined by demand and sellers are
rationed: Qz(nz,mz, βz) = nz.d(pz(nz,mz, βz)). q

z
B = d(pz(nz,mz, βz));

qzS =
nz
mz

d(pz(nz,mz, βz)) < s(pz(nz,mz, βz)).
In summary, given an institution characterized by βz > 0, and given

r = nz
mz

> 0, we can define the seller and buyer quantities as

qzS(βz, r) =

½
s (βz · p(r)) if βz ≤ 1
r · d (βz · p(r)) if βz ≥ 1

and

qzB(βz, r) =

½
1
r · s (βz · p(r)) if βz ≤ 1
d (βz · p(r)) if βz ≥ 1

At this point we have to emphasize that we do not aim to analyze how a
deviation form market clearing prices comes about. Rather, we just assume
that market clearing institutions as well as institutions preventing markets
from clearing are in principle feasible. And the purpose of this paper is to
investigate whether a non-market clearing institution can survive vis a vis
a market clearing one.
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Remark 1 Notice that, if mz = 0 or nz = 0, there is no trade at that
institution. We say then that the institution is inactive. Traders in an
inactive institution will always prefer any active institution by Assumption
A3, because in such an institution either demand (or supply) is satisfied or
traders are rationed, i.e. traders buy or sell strictly less than prescribed by
demand or supply.

Given an institution characterized by βz > 0, and given r =
nz
mz

> 0, the
payoffs for buyers and sellers at institution z are given by

VB(βz, r) = vB (q
z
B(βz, r), βz · p(r))

and
VS(βz, r) = vS (q

z
S(βz, r), βz · p(r)) .

In general the effects of a bias on the payoffs of the traders are am-
biguous. Take as an example an active institution z (0 < r < ∞) where
prices are higher than the equilibrium price (βz > 1). Compared to the
market clearing institution with the same r, prices as well as quantities are
unfavorable for buyers, and a further increase in βz would lead to a further
decrease in buyers’ payoffs. For sellers, however, the situation is different.
For them, prices at z are more favorable than at a market clearing institu-
tion. However, this comes at the price of a decrease in the quantity sellers
can sell. Therefore the impact of further increase of βz on sellers’ payoffs is
unclear. To get an intuition we look again at the standard case with demand
and supply derived from utility and profit maximization. Under the usual
assumptions about demand and production cost structure, the monopoly
price (and hence the optimal price for a cartel formed out of all sellers) is
above the equilibrium price, and at the equilibrium price the profits of the
monopolist are increasing in the price. Taking into account that all sellers
are equal, this translates into the statement that for βz close to one the
direct, profit-increasing impact of higher prices is larger than the indirect,
profit-decreasing impact of higher prices via smaller quantities. On the other
hand, if the price is above the monopoly level, the negative indirect effect of
a price increase dominates the positive direct effect - a further increase in
the price lowers the profits because of the implied decrease in the quantity.
Similar considerations can be made for the optimal price of a buyers cartel
(i.e. for the monopsony price). For prices close to the equilibrium price, the
positive direct effect of a price decrease on the consumers is larger than the
negative effect due to the decrease in consumed quantity. For prices below
the monopsony level, however, the reverse is true: The negative indirect
effect dominates. These considerations lead to:

Assumption A4: For any fixed ratio of buyers and sellers r with 0 <
r <∞, there exist β(r) < 1 < β(r) such that, for all β(r) < β < 1,

VB(β, r) > VB(1, r)
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and for all 1 < β < β(r),

VS(β, r) > VS(1, r).

This condition is immediately fulfilled if the buyer’s payoff VB(β, r) is
strictly decreasing in β at β = 1,6 and the seller’s payoff VS(β, r) is strictly
increasing in β at β = 1.

In what follows we will have to look at the maximum bias such that one
type of traders prefers the non-market clearing institution over the market
clearing one for all possible proportions of traders in both institutions. Hence,
we use the following

Definition 1 For any given m,n, define

R(m,n) =
na
b
|a = 1, ..., n, and b = 1, ...,m

o
β(m,n) = max

r∈R(m,n)
β(r)

β(m,n) = min
r∈R(m,n)

β(r)

Note that for any given number of buyers and sellers, there exists only a
finite number of values r can take. Hence, by A4 β(m,n) and β(m,n) exist
with β(m,n) < 1 < β(m,n).

It will prove convenient to look at those non-market clearing institutions,
which improve one market side relative to the market clearing institution
for any fixed r ∈ R(m,n). In other words for any given ratio of buyers
and sellers such a non-market clearing institution is favored by one market
side over the market clearing one. Formally, we say that an institution F is
favored when β(m,n) < βF < β(m,n), βF 6= 1.

By A4, potential F -institutions do exist7 for any m,n (and the vicinity
of the market clearing institution consists of such favored institutions). To
exemplify the underlying intuition, think of an institution where the price
is above the market clearing level. As long as the bias is low enough so that
the resulting price is below the monopoly (cartel) price, sellers profits are
larger if for any given r the biased institution is used rather than the market
clearing institution.

6Note that neither VB(β, r) nor VS(β, r) can be differentiable in general at β = 1,
because at this point there is a transition from rationing of the demand side to rationing
of the supply side. Hence, the traded quantity as a function of β has a “kink” at β = 1.

7That is, there exist values of the bias parameter such that, if an institution is char-
acterized precisely by that bias, it will be favored. This does not mean that we assume a
favored institution always to be actually available in the market.
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2.3 Examples

In this subsection, we present two specific examples derived from the stan-
dard formulations discussed above, and use them to exemplify Assumption
A4. We will return later to these examples to illustrate our results.

Example 1 Cobb-Douglas utility function.

Consider an economy with two goods. We analyze trading institutions for
good 1. Firms produce good 1 with the quadratic cost function c(qS) = 1

2q
2
S ,

where qS denotes the quantity of good 1 produced. Denoting the price for
good 1 by p, the profit function is given by π (qS, p) = pqS− 12q2S . Maximizing
this profit function w.r.t. qS yields the linear supply function s(p) = p.Firms’
valuation of the outcome coincides with the profits.

Buyers are endowed with a Cobb-Douglas utility function u(qB, x) =
qBx, where qB is the quantity of good 1 consumed and x is the consumption
of the other good. Let the price for good 2 be fixed at 1, and let the income
be 2 units. Then the standard consumers’ problem is given by:

maxqB ,x qB.x
s.t. pqB + x = 2

whose solution yields the demand for good 1:

d(p) =
1

p

Consumers’ valuation of an outcome coincides of course with the utility
derived from this outcome.

Suppose there are mz > 0 sellers and nz > 0 buyers active at institution
z, where the good 1 is traded. The equilibrium price p∗ is given by p∗ =
p(r) =

√
r, with r = nz

mz
.

If the institution is market clearing, the quantity of good 1 sold by an
individual seller is denoted by q0S. The quantity of good 1 consumed by
an individual buyer is denoted q0B, and the quantity of good 2 denoted x0.

These quantities are given by q0S =
√
r, q0B =

q
1
r , and x0 = 1. Hence for

the market clearing institution the payoffs are:

VB(1, r) =

r
1

r
and VS(1, r) =

1

2
r

What happens if the institution is non-market clearing? The price of the
non-market clearing institution, pN is given by pN = β

√
r. Which market

side is rationed depends on whether β is larger or smaller than one.
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We first look at the case with β > 1. Sellers are rationed in this case,
and their quantities are given by:8

qNS (β, r) = rd(pN ) =
r

pN
=

√
r.

β

Hence, profits are given by

VS(β, r) = qNS (β, r) pN −
1

2

¡
qNS (β, r)

¢2
= r − 1

2

r

β2

If the profits in the non-market clearing institution are larger, the fol-
lowing must hold:

1 <
VS(β, r)

VS(1, r)
=

r − 1
2
r
β2

1
2r

= 2− 1

β2

Since β > 1, this condition is fulfilled independently of r for all β > 1.
Hence, β(r) =∞ for all r. Therefore, A4 is fulfilled, and β(m,n) =∞. This
implies that any institution with β > 1 is a favored institution.

If β < 1, buyers are rationed. Since the rationing constraint is binding
when utility is maximized, the quantities consumed and the utility are given
by:

qNB (β, r) =
ms(pN)

n
=

pN
r
= β

1√
r

xN = 2− pqNB (β, r) = 2− β
√
rβ

1√
r
= 2− β2

VB (β, r) =
1√
r
β(2− β2)

If the profits in the non-market clearing institution are larger, the fol-
lowing must hold:

1 <
VB (β, r)

VB (1, r)
=

β
√
r(2− β2)√

r
= β(2− β2)

Whenever β > 0.62, this condition is fulfilled. It is again fulfilled inde-
pendently of r Hence, we can take β(r) = 0.62 for all r. Therefore, A4 is
again fulfilled, and β(m,n) = 0.62.

This implies that any institution with β > 0.62 is a favored institution,
independently of the number of sellers and buyers in the market.

Example 2 Linear demand.
8Note that in case of rationing all feasible quantities of trade are produced at marginal

costs below the price sellers get in a market where they are rationed. Hence, it cannot be
profit maximizing to sell less than the maximum quantity possible under rationing.
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As in the previous example, sellers are producers with cost function
c(qS) =

1
2q
2
S. The payoff function is given by the profits π(qS , p) = pqS −

1
2q
2
S and the supply function s(p) = p is derived from profit maximization.

Buyers, though, are directly endowed with a linear demand function

d(p) =

½
1− p if p ≤ 1
0 if p > 1

and their payoff is defined as the corresponding consumer’s surplus. The
market clearing price as a function of the buyers-sellers ratio r = nz

mz
is

p(r) =
r

1 + r
.

In a non-market clearing institution with bias parameter β > 1, sellers
are rationed and the quantity per seller becomes

qS(β, r) = r · d(βp(r)) =
(

r
³
1− β r

1+r

´
if β ≤ 1 + 1

r

0 if β > 1 + 1
r

.

Hence the sellers payoffs are (for β > 1)

VS(β, r) = π (qS(β, r), βp(r)) =

(
1
2r
2
³
1− β r

1+r

´ h
β
³
2+r
1+r

´
− 1
i
if β ≤ 1 + 1

r

0 if β > 1 + 1
r

which in particular implies β(r) ≤ 1+ 1
r . Since 1+

1
r converges to 1 as r →∞,

it is clear that β(r) → 1. However, from the inequality VS(β, r) > VS(1, r)
for all 1 < β < β(r) we can explicitly compute

β(r) = 1 +
2

r2 + 2r
> 1

and hence we see that Assumption A4 is satisfied for β > 1, although the
bound β(r) becomes tighter as the number of buyers increases relative to
the number of sellers. We will make use of this fact later.

Consider now a non-market clearing institution biased in favor of the
buyers, i.e. β < 1. Buyers’ payoff is computed as the consumer surplus

u(qB, p) =

Z 1

1−qB
(1− p0)dp0 + [(1− qB)− p] qB = (1− p)qB − 1

2
(qB)

2

and buyers are rationed and receive

qB(β, r) =
1

r
· s(βp(r)) = β

1

1 + r

which yields (for β < 1)

VB(β, r) = u (qB(β, r), βp(r)) = (1− β)β
1

1 + r
+
1

2

µ
β

1

1 + r

¶2
.
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From the inequality VB(β, r) > VB(1, r) for all β(r) < β < 1 we compute

β(r) =
1

1 + 2r
< 1

which shows that Assumption A4 is also fulfilled for β < 1. Notice, though,
that β(r) → 1 as r → 0, i.e. the bound becomes tighter as the number of
sellers increases relative to the number of buyers.

In this example we see that, although for any given m and n there exist
values of β that would give rise to favored institutions (recall that R(m,n) is
always finite), for any particular institution there exists a number of buyers
and sellers such that the ratio becomes large enough (for β > 1) or small
enough (for β < 1) such that the institution is no longer a favored one.
Note that, if the number of traders (both sellers and buyers) in the market
increases, the range of feasible values of the buyer-sellers ratios in R(m,n)
increases and hence both β(m,n) and β(m,n) converge to one. Hence, the
set of favored institutions shrinks around the market clearing one.

For the example with Cobb-Douglas utility functions, the set of F -
institutions is independent of the number of traders. The second example,
however, shows that in general the set of F -institutions cannot be defined
independently of the number of buyers and sellers operating on the market
as a whole. To understand the intuition behind this, think of any example
where the individual demand becomes zero above a certain price pmax. Fix
the number of sellers, and let the number of buyers increase. The larger the
number of buyers, the flatter the market demand curve becomes, and as the
number of buyers goes to infinity, the market demand curve becomes per-
fectly elastic at pmax. Therefore, the monopoly (cartel) price as well as the
market clearing price will converge to pmax as n goes to infinity. Hence, while
A4 implies that β(m,n) is always strictly larger than one, it would make
no sense to assume that β(m,n) is bounded away from one as n approaches
infinity.

2.4 Comparison of Institutions

In the following we will compare three different types of institutions. First,
we will look at the market clearing institution (denoted by 0) with β0 = 1.
The second type of institutions are non-market clearing ones (denoted by
N) which are characterized by βN 6= 1. Finally, we will look at favored
institutions as defined above, which of course form a subset of the set of
non-market clearing institutions.

In this subsection, we compare the payoffs sellers and buyers get at differ-
ent types of simultaneously active institutions. Note that this comparison,
which will be determinant for the learning process, is fundamentally different
than that spelled out e.g. in assumption A4, where the comparison is among
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payoffs yielded by two different institutions, provided the buyers-sellers ratio
was the same in both of them.

Comparing the market clearing with a general non-market clearing in-
stitution, we obtain the following general result:

Lemma 1 Assume A1 and A2. Consider any distribution of traders on
any number of institutions, where both the market clearing institution 0 and
a given non-market clearing institution N (i.e. βN 6= 1) are active. Then
the following holds:

If vS(q0S, p0) ≤ vS(q
N
S , pN), then vB(q

0
B, p0) > vB(q

N
B , pN). Hence, if

vB(q
0
B, p0) ≤ vB(q

N
B , pN ), then vS(q

0
S , p0) > vS(q

N
S , pN).

Proof. Suppose βN < 1. Then buyers, but not sellers, are rationed at
institution N . We have that q0S = s(p0) and qNS = s(pN ). Suppose now that
vS(q

0
S , p0) ≤ vS(q

N
S , pN ). By A1, we must have that p0 ≤ pN .

Then, again by A1, vB(q0B, p0) ≥ vB(d(pN), pN ), and, by A2, vB(d(pN), pN ) >
vB(q

N
B , pN ), because d(pN ) > qNB (buyers are rationed).
The case βN > 1 is analogous.
Lemma 1 shows that, whenever traders of a given market side obtain

larger payoffs in a biased institution than their counterparts in the market
clearing one, traders of the other market side which are active in the market
clearing institution must be obtaining larger payoffs than those active in the
biased one. The next result shows that the analogous statement holds for
favored institutions versus the market clearing one.

Lemma 2 Assume A1 and A4. Fix the number of buyers and seller op-
erating on the whole market. Consider any distribution of these traders on
any number of institutions, where both the market clearing institution 0 and
a given favored institution F (i.e. β(m,n) < βF < β(m,n)) are active.
Then the following holds:

If vS
¡
q0S, p0

¢ ≥ vS
¡
qFS , pF

¢
, then vB

¡
q0B, p0

¢
< vB

¡
qFB , pF

¢
. Hence, if

vB
¡
q0B, p0

¢ ≥ vB
¡
qFB , pF

¢
, then vS

¡
q0S, p0

¢
< vS

¡
qFS , pF

¢
.

Proof. Suppose βF < 1. Then buyers, but not sellers, are rationed at
institution F . We have that q0S = s(p0) and qFS = s(pF ). Suppose now that
vS(q

0
S , p0) ≥ vS(q

F
S , pF ). By A1, we must have that p0 ≥ pF .

Then, again by A1, vB(q0B, p0) ≤ vB(d(pF ), pF ).Note that vB(d(pF ), pF ) =
VB(1, rF ), and vB(q

F
B , pF ) = VB(βF , rF ). Hence, by A4 and since βF >

β(m,n), vB(d(pF ), pF ) < vB(q
F
B , pF ), and therefore vB(q

F
B , pF ) > vB(q

0
B, p0).

The case βF > 1 is analogous.

3 The Learning Process

If more than one institution is available, traders themselves can choose the
institution at which they want to be active. In this section, we explic-
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itly model this decision process. Our aim is to be able to predict which
institution(s) will be observed to be active, and whether the outstanding
importance of market clearing institutions in economics can be justified by
this choice process.

A generic trader is denoted by k, while i always denotes a buyer and j
always denotes a seller. There are Z institutions available, z = 0, 1, ..., Z.
Institution 0 is a market clearing institution (β0 = 1), the remaining others
are non-market clearing (βz 6= 1).

We proceed now by formulating the choice process as a game. At first all
traders choose simultaneously and independently the institutions at which
they want to trade the good. Then for each trading institution z the number
of buyers and sellers who have opted for this institution, nz and mz, and the
bias parameter βz determine - as described in section 2.2 - the price and the
quantity exchanged at z. This in turn determines the payoffs of the traders
having opted for z.

It is easy to see that this choice of the institution constitutes a coor-
dination game. If all traders coordinate on a particular institution, every
individual trader would be worse off if he deviated to another institution,
since by deviating he would lose all trading partners (see A3). Hence, noth-
ing guarantees coordination on the market clearing institution, and even
coordination on a Pareto-inferior institution is a strict Nash-equilibrium.

As already explained, we want to analyze under which circumstances
traders learn to coordinate on a market clearing institution. Hence, we
model the choice of the trading institution as a learning process.

We implicitly assume that traders understand the strategic nature of
the coordination problem. Therefore, they do not regard the situation as
an individual decision problem (as they would in a reinforcement learning
model). Furthermore, we assume that traders only know the prices and the
quantities of currently active institutions, and hence do not have enough
information to accurately predict the outcomes in all trading institutions
which are in principle feasible. Thus, they lack the information necessary to
compute a best reply to the current choices of all other traders.

What can a trader do in such a situation? From his individual (myopic)
standpoint, if he considers himself to be small relative to market size, the
best thing he can do is to observe the outcomes (i.e. prices and quantities) of
the currently active institutions and to evaluate these outcomes through his
own evaluation function. That is, he will switch to that institution whose
current prices and quantities he perceives as best according to his payoff
function. A trader can perceive this behavior as approximately rational,
since when he chooses a new institution, the implied changes in prices and
traded quantities will most of the time be small, and hence this behavior
is close to best reply. Of course, in the current (symmetric) model, this
behavior could also be interpreted as imitation of successful traders of the
own market type. We want to stress, though, that the described behavior
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does not require the observation of payoffs achieved by other traders, but
merely prices and traded quantities.

We proceed now by modelling the learning process. First we define the
state space. For any point in time t, the state of the process is given by

(t) = ( B(t), S(t)) ∈ {0, 1, ..., Z}n × {0, 1, ..., Z}m

i.e. (t)(k) ∈ {0, 1, ..., Z} denotes the institution chosen by trader k at time
t.

Since interactions are anonymous and traders are symmetric, it is con-
venient to use reduced-form state spaces. In this case, a typical state would
be:

ω = [(n0,m0) , ..., (nZ ,mZ)]

where nz ∈ {0, 1, ..., n} is the number of buyers and mz ∈ {0, 1, ...,m} the
number of sellers choosing institution z, and n0+...+nZ = n,m0+...+mZ =
m. Let Ω denote the set of all such states.

There are three elements in a learning model which require careful con-
sideration: how do agents revise their choices, when are they able to do such
a revision, and whether mistakes are possible. We discuss now the first two
elements, and postpone the discussion of the third element to section 3.2.

If an agent is able to revise his choice for a given period t+ 1, he takes
his decision given the state ω(t) and the associated payoffs. This decision
determines next the institution chosen for period t+1. As explained above,
we postulate that traders who get the opportunity to revise observe prices
and traded quantities at all institutions. Then they choose the institution
which yields the best outcome as evaluated by their own payoff functions,
and go there next period (ties broken randomly). That is, provided that
trader k receives revision opportunity at period t, in period t + 1 he will
choose an institution among those that in period t were yielding the highest
observed payoffs for traders of his own type.

When can agents revise their choices? It is common in learning models
to explicitly introduce some inertia allowing for the possibility that not all
agents are able to revise strategies simultaneously. Different specifications of
how revision opportunities arrive give rise to different dynamics and often
affect the results. Rather than adopting a specific formulation, here, we
postulate a general class of dynamics encompassing the standard examples
(and many others), which are then reviewed below. See Alós-Ferrer [1] for
a discussion.

Let E(k, t) denote the event that agent k receives revision opportunity in
period t, and let E∗(k, t) ⊆ E(k, t) denote the event that agent k is the only
agent of his type (i.e. the only buyer or the only seller) receiving revision
opportunity in period t.

Assumption D1: Pr (E∗(k, t)) > 0 for every agent k and period t.
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Notice that assumption D1 implies that Pr (E(k, t)) > 0, i.e. every agent
has strictly positive probability of being able to revise at any given period.
Further, since we have two clearly differentiated populations, we introduce
a weak form of independence between the revision opportunities in those
populations (it can actually be though of as an anonymity requirement).

Assumption D2: For every agent k and period t, either
Pr (E∗(k, t) ∩E∗(k0, t)) > 0 for any agent k0 of the other type, or
Pr (E∗(k, t) ∩E(k0, t)) = 0 for any such k.

Assumptions D1 and D2 are rather general. They are fulfilled by the
standard models considered in the literature of learning in games. In these
models, revision opportunities are either modelled through independent
probabilities (a case we call independent inertia; see e.g. [22] or [14]) or
assumed to arrive in an asynchronous way (a case we term non-simultaneous
learning; see e.g. [6] or [4]).

Independent Inertia. There is an exogenous, independent (across
traders and periods) probability 0 < 1− ρ < 1 such that the agent does not
get revision opportunity in a given period (inertia). Obviously, Pr (E∗(i, t)) =
ρ (1− ρ)n−1 > 0 for any buyer i, and analogously for sellers, hence verifying
D1. D2 follows from independence: Pr (E∗(i, t) ∩E∗(j, t)) = Pr (E∗(i, t)) ·
Pr (E∗(j, t)) > 0 for any buyer i and any seller j.

Note that this dynamics satisfies even stronger properties. For instance,

P ((∩i∈IE(i, t)) \ (∪j∈JE(j, t))) > 0

i.e. there is positive probability that, in any single period, all buyers revise
but no seller revises (and vice versa). We will return to this property later
on.

Non-simultaneous Learning. Each period, only one agent (i.e. ei-
ther a buyer or a seller) is (randomly) selected and allowed to revise his
strategy. Hence, Pr (E∗(k, t)) = 1

n+m for any trader k (verifying D1), and
Pr (E∗(i, t) ∩E(j, t)) = 0 for any buyer i and any seller j, and vice versa
(verifying D2).

Non-simultaneous Learning within Types. In our case, it is natural
to conceive a dynamics where in every period, only one buyer and one seller
are selected (randomly and independently) and given the opportunity to
revise. Assumption D1 holds because Pr (E∗(i, t)) = 1

n > 0 for any buyer
i and Pr (E∗(j, t)) = 1

m > 0 for any seller j. Assumption D2 holds by
independence .

Note that the second part of Assumption D2 is the one that specifically
allows for dynamics where only one agent at all is allowed to revise each
period (non-simultaneous learning). If this part were dropped (which still
allows for non-simultaneous learning within types and independent inertia),
the modified Assumption D2 would imply D1.
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3.1 Unperturbed Learning Process

We refer to the dynamics as described till now as the unperturbed learning
process, for reasons that will become apparent later. We first look at this
process in order to identify properties of the model that will greatly simplify
the analysis in the sequel.

The unperturbed learning process is a Markov chain on the (finite) state
space Ω, to which standard treatment applies (see e.g. [15].) In order to
describe the results of this model, it is useful to summarize the basic results
of such dynamics for reference.

Given two states ω, ω0, denote by P (ω,ω0) the probability of transition
from ω to ω0 in one period. The transition matrix of the process is given
by P = [P (ω, ω0)]ω,ω0∈Ω. An absorbing set

9 of the unperturbed dynamics
is a minimal subset of states which, once entered, is never abandoned. An
absorbing state is an element which forms a singleton absorbing set, i.e. ω
is absorbing if and only P (ω, ω) = 1. States that are not in any absorbing
set are called transient.

Every absorbing set of a Markov chain induces an invariant distribution,
i.e. a distribution over states µ ∈ ∆ (Ω) which, if taken as initial condition,
would be reproduced in probabilistic terms after updating (more precisely,
µ · P = µ). The invariant distribution induced by an absorbing set A ⊆ Ω
has support A. The set of all possible invariant distributions of the process
is the convex hull of the invariant distributions associated to the absorbing
sets. By the Ergodic Theorem, the invariant distribution associated to a
given absorbing set describes the time-average behavior of the system once
(and if) it gets into that class. That is, µ (ω) is the limit of the average time
that the system spends in state ω, along any sample path that eventually
gets into the corresponding absorbing set. If, additionally, the absorbing set
is aperiodic,10 then the associated invariant distribution describes also the
long-run probabilities of the states in the class, limT→∞ q · PT = µ for all
probability distributions q whose support is contained in the absorbing set.
This result is referred to as the Fundamental Theorem of Markov Chains.

A Markov chain is ergodic if it has a unique absorbing set. The (unique)
invariant distribution constitutes the long-run prediction for such a process,
since it represents the limit behavior of the process independently of initial
conditions. If the process is not ergodic, then several invariant distributions
exist, describing the long-run behavior along different sample paths, i.e. the
prediction depends on the initial conditions.

In our case the unperturbed dynamics is not ergodic, presenting a mul-
tiplicity of absorbing sets. Clearly, every “monomorphic” state where all

9Also called recurrent communication class or limit set.
10Loosely speaking, an absorbing set is aperiodic if it contains no deterministic non-

trivial cycles. A sufficient condition for aperiodicity is that for some state ω in the set,
P (ω, ω) > 0. Note also that any absorbing state is aperiodic.
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traders coordinate in one and the same institution constitutes an absorbing
state. In order to show that these are the only relevant absorbing states,
we need the following preliminary result. Given ω, ω0 ∈ Ω, ω 6= ω0, a
positive probability path from ω to ω0 is a finite sequence of states ω0 =
ω, ω1, ..., ωn−1, ωn = ω0 such that P (ωk−1, ωk) > 0 for all k = 1, ..., n.

Lemma 3 Assume A1, A2, and A3. Under D1 and D2, given any state
ω = [(n0,m0) , ..., (nZ ,mZ)] with n0 ≥ 1 and m0 ≥ 1, there exists a positive
probability path of the unperturbed dynamics leading from ω to the state
ω0 = [(n,m), (0, 0), ..., (0, 0)].

Proof. Consider any non-market clearing institution, z 6= 0, which is chosen
by some traders in state ω. If nz = 0 or mz = 0, by Remark 1 we can build
a positive probability path to a new state where no trader is at institution
z. Hence, without loss of generality, suppose nz > 0 and mz > 0.

By Lemma 1, it follows that in state ω at least one of the two types
of traders strictly prefers the market clearing institution in state ω. Let k
be a trader of that type who is at the non-market clearing institution z.
It might happen that k prefers a third institution to the market clearing
one, but certainly will not stay in z if given revision opportunity. Further,
by Assumption D1, there is strictly positive probability that k is the only
trader of his type obtaining revision opportunity. Consider the paths where
this event happens, and let k0 denote a trader of the other type (i.e. not
of the same type as k) who, in state ω, is in the same non-market clear-
ing institution z. Consider now the event that only k and k0 get revision
opportunity.

If this event has positive probability, then (if it occurs) k0 may or may not
change institution, but k will, switching to the market clearing or another
institution. If the probability of k and k0 being the only revising traders
is zero, by Assumption D2 no agent of the same type as k0 will revise this
period, and hence k will change institution but no other agent will. In any
case, the process reaches a state with strictly less traders at institution z
than there were in ω, but at least the same traders in the other institutions
(and, in particular, the market clearing one). Repeating this argument,
we will reach a state with either nz = 0 or mz = 0. From this state, all
remaining traders will leave institution z as above (by Remark 1). Hence,
we reach a state where strictly less institutions are chosen than in ω.

Repeating this procedure, we will reach a state where only two institu-
tions are chosen by traders, and one of them will necessarily be the market
clearing one. Applying again the same argument (using Lemma 1) shows
that we can construct a positive probability path to ω0, where 0 is the only
active institution.

Obviously, if there exists a positive probability path from ω to ω0 and
ω0 is an absorbing state, then ω is necessarily transient. Using this fact, we
establish the following
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Lemma 4 Assume A1, A2, and A3. Under D1 and D2,

(i) the absorbing states of the unperturbed dynamics are the cross-states
ω = [(n0,m0) , ..., (nZ ,mZ)] such that nz = n and mz0 = m for some
z, z0 ∈ {0, ..., Z} . In particular, this includes all monomorphic states
ωz = [(0, 0), ..., (nz = n,mz = m), ..., (0, 0)] corresponding to coordina-
tion on a particular institution;

(ii) no state ω = [(n0,m0) , ..., (nZ ,mZ)] with 1 ≤ n0 ≤ n − 1 and 1 ≤
m0 ≤ m − 1 (i.e., where the market clearing institution is active) is
part of any absorbing set of the unperturbed dynamics

Proof. Cross states as defined in (i) are obviously absorbing because, in
the absence of experimentation, traders will never switch to unobserved
institutions. To see that there are no other absorbing states, suppose there
are traders of the same type in at least two different institutions. Since
necessarily one of those institutions is yielding (weakly) higher payoffs than
the other, and under Assumption D1 there is positive probability that one
of the traders not in that institution is given revision opportunity, there is a
positive probability transition to a different state, a contradiction. Part (ii)
follows immediately from Lemma 3.

In principle (and particularly for slow dynamics as e.g. those with non-
simultaneous learning), there might be non-singleton absorbing sets. By (ii)
in the last Lemma, though, those would be made up of states where the
market clearing institution is never active.

3.2 Perturbed Learning Process

In order to select among the absorbing states of the unperturbed learning
model, and following the literature, we proceed to study stochastic stability.
The dynamics is enriched with a perturbation in the form of mistakes or
experiments as follows. With an independent probability ε > 0, each agent,
in each period, might make a mistake (experiment or mutate), and simply
pick an institution at random,11 independently of other considerations.

The dynamics with mistakes (experimentation) is called perturbed learn-
ing process. Since experiments make transitions between any two states
possible, the perturbed process has a single absorbing set formed by the
whole state space such processes are called irreducible. Hence, the perturbed
process is ergodic. The corresponding (unique) invariant distribution is de-
noted µ (ε). The limit invariant distribution (as the rate of experimentation
tends to zero) µ∗ = limε→0 µ (ε) exists and is an invariant distribution of
the unperturbed process P (see e.g. [13], [24], or [5]).

11We mean that an institution is picked up according to a pre-specified probability
distribution having full support, for instance uniformly. The exact distribution does not
affect the results, as long as it has full support.
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The limit invariant distribution singles out a stable prediction of the
unperturbed dynamics, in the sense that, for any ε > 0 small enough, the
play approximates that described by µ∗ in the long run. The states in the
support of µ∗, i.e. {ω ∈ Ω |µ∗ (ω) > 0} are called stochastically stable states
or long-run equilibria. Clearly, the set of stochastically stable states is a
union of some absorbing sets of the original, unperturbed chain (ε = 0).

In the sequel, whenever we say absorbing sets or states, we refer to the
unperturbed dynamics. Since the perturbed dynamics is irreducible, no
confusion should arise.

We will rely on the characterization of the set of stochastically stable
states developed by [13] and [24] and further developed by [5]. Detailed
overviews can be found e.g. in [7] or [23]. In particular, given two absorbing
sets A and B, let c(A,B) > 0 (referred to as the transition cost from A to
B) denote the minimal number of mistakes in a positive probability path
starting in an element of A and leading to an element in B. The following
Lemma contains all the results on stochastic stability that we will require
for the analysis. Its proof is a straightforward application of [5, Theorems 1
and 3] (see the Appendix).

Lemma 5 Let A be an absorbing set and define the Radius of A by

R(A) = min {c(A,B) |B is an absorbing set, B 6= A}
and the Coradius of A by

CR(A) = max {c(B,A) |B is an absorbing set, B 6= A}
Then:

(i) If R(A) ≥ CR(A), the states in A are stochastically stable.

(ii) If R(A) > CR(A), the only stochastically stable states are those in A.

(iii) If the states in an absorbing set B are stochastically stable and R(A) =
c(B,A), the states in A are also stochastically stable.

Intuitively, the radius of an absorbing set (e.g. the monomorphic state
corresponding to coordination on one particular institution) is a measure of
how hard it is to destabilize it, while the coradius is a measure of how difficult
it might be to reach it from any different state. Part (i) says that, whenever
the radius exceeds the coradius, the absorbing set (say, an institution) is
easier to reach than to destabilize, and hence it is stochastically stable. If
the inequality is strict, part (ii) further establishes that the institution it is
necessarily the only stochastically stable one. Finally, part (iii) says that, if
an institution is stable but there is another one which can be reached from
the former just as easily as it is left, then the later must also be stochastically
stable.

22



4 Stochastically Stable Institutions

We proceed now to analyze the complete model. First, notice that it is
straightforward to show that the non-monomorphic cross-states (in which
all institutions are inactive, i.e. no trader is actually trading) are rather
unstable. Specifically, they are destabilized with a single mutation, in which
one trader joins the traders of the other type. To see this, recall simply that
trade is preferred to no trade (recall Remark 1), and hence the outcome of
the now-active institution is better for all traders than that of the inactive
institution. Hence, traders at the inactive institution will switch whenever
revision opportunities arise.

Since monomorphic states correspond to full coordination on a particular
market institution, we aim to identify which of those states are stochastically
stable.

Definition 2 We say that an institution z ∈ {0, ...Z} is stochastically stable
if the corresponding monomorphic state

ωz = [(0, 0), ..., (nz = n,mz = m), ..., (0, 0)]

is stochastically stable.

Intuitively, a stochastically stable institution is one such that, in the long
run, traders frequently coordinate in it. In principle, several institutions
could be stochastically stable, but if a particular institution is not, we can
assert that, in the long run, this institution will be simply not be used by
traders.

Theorem 1 Under A1, A2, A3, D1, and D2, the market clearing institu-
tion is always stochastically stable.

Proof. We have to show the stochastic stability of the state
ω0 = [(n,m), (0, 0), ..., (0, 0)]. First, notice that, by Remark 1, no monomor-
phic state can be left with less than two mutations. In particular, R({ω0}) ≥
2.

Consider any state in any absorbing set other than {ω0}. Notice that
two mutations (to the market clearing institution) suffice to reach a state
ω = [(n0,m0) , ..., (nZ ,mZ)] with n0 ≥ 1 and m0 ≥ 1. By Lemma 3, there
is a positive probability path of the unperturbed dynamics (i.e. requir-
ing no further mutations) leading to ω0. This shows that CR({ω0}) = 2
(the equality follows because two mutations are required to leave any other
monomorphic state). The result follows from Lemma 5(i).

This result shows that, independently of which other institutions are
available, coordination on the market clearing one will always be observed
at least (a non-negligible) part of the time in the long run. The immediate
question is whether other institutions can also be observed. As a first insight,
we offer a condition that guarantees a negative answer.
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Definition 3 The market clearing institution is locally robust if at all
states of the form [(n− 1,m− 1), (0, 0), ..., (1, 1), ..., (0, 0)], both types of
traders strictly prefer the market clearing institution.

Proposition 1 Under A1, A2, A3, D1, and D2, if the market clearing
institution is locally robust, the state ω0 is the only stochastically stable state.

Proof. If the market clearing institution is locally robust, it is not pos-
sible to destabilize ω0 with two mutations, and hence R({ω0}) > 2, while
CR({ω0}) = 2 as in the proof of Theorem 1. The result follows from Lemma
5(ii).

Local robustness, though, might be too much to ask for. The following
result shows that any favored institution will necessarily be stochastically
stable. As a corollary, in the presence of such an institution local robustness
must fail.

Theorem 2 Assume A1, A2, A3, and A4, and consider any dynamics sat-
isfying D1 and D2. Let z ∈ {1, ..., Z} be any favored institution. Then z is
stochastically stable.

Proof. Let ωz denote the monomorphic state corresponding to coordination
on institution z. We know from Theorem 1 that ω0 is stochastically stable.
By Lemma 2, we see that if exactly two mutations to institution z occur at
state ω0, we reach a state where at least one type of traders strictly prefer
that institution. Analogously to the proof of Lemma 3 (through repeated
application of Lemma 2), from this state there exists a positive probability
path involving no further mutations which leads to state ωz. From the proof
of Theorem 1, we already know that it is possible to make the opposite
transition with exactly two mutations (but no less). Thus, we obtain that
c({ω0} , {ωz}) = 2 = R({ωz}), and the result follows from Lemma 5(iii).

Theorem 2 gives us sufficient conditions for the existence of stochasti-
cally stable institutions other than the market clearing one. Recall from
the example with Cobb-Douglas utility functions that the set of favored in-
stitutions can be very large and independent of the number of traders in
the market, and hence the same holds for the set of stochastically stable
institutions. This depends, however, crucially on the particular demand,
supply and evaluation functions. In the example with linear demand and
consumers surplus as evaluation, the set of favored institutions shrinks as
the number of traders increases. Hence, in this example Theorem 2 delivers
little information when the number of traders becomes large. The following
results are significant also for those cases where Theorem 2 has no bite as
the number of traders increases.

The following lemma shows that, independently of the actual size of
the market, it is always possible to find a non-market clearing institution
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(which needs not be favored) such that the market clearing one fails local
robustness in the presence of the former. Therefore, the set of stochastically
stable institutions may not shrink to the market clearing institution when
the market size increases, even if the set of favored institutions degenerates
with increasing market size.

Lemma 6 Assume A1 and A4. Let 0 < β(1) < βB < 1 < βS < β(1).
Then,

(i) if m ≤ n, in a state where all traders except for one seller and
one buyer are at a market clearing institution and the two remain-
ing traders are at an institution with βz = βB, buyers strictly prefer
the latter;

(ii) if m ≥ n, in a state where all traders except for one seller and
one buyer are at a market clearing institution and the two remain-
ing traders are at an institution with βz = βS, sellers strictly prefer
the latter.

Proof. (i) Since m ≤ n, we have that m− 1 ≤ n− 1 and hence

r =
n− 1
m− 1 ≥ 1

i.e. there are (weakly) more buyers than sellers at the market clearing
institution. By A4, since β(1) < βB < 1,

VB(βB, 1) > VB(1, 1)

and, by A1

VB(1, 1) = vB (q
z
B(1, 1), p(1)) ≥ vB (d(p(r)), p(r))

because qzB(1, 1) = d(p(1)) and p(1) ≤ p(r) since r ≥ 1 and p is decreasing
in r. Hence,

VB(βB, 1) > vB (d(p(r)), p(r))

which proves the claim, because vB (d(p(r)), p(r)) is the buyers’ payoff at
the market clearing institution, and VB(βB, 1) is the payoff of the (only)
buyer at the non-market clearing institution with βz = βB (where there is
just one buyer and one seller).

(ii) Since m ≥ n, we have that m− 1 ≥ n− 1 and hence 1 < βS < β(1)

r =
n− 1
m− 1 ≤ 1

i.e. there are (weakly) less buyers than sellers at the market clearing insti-
tution. By A4, since 1 < βS < β(1),

VS(βS , 1) > VS(1, 1)
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and, by A1

VS(1, 1) = vS (q
z
S(1, 1), p(1)) ≥ vS (s(p(r)), p(r))

because qzs(1, 1) = s(p(1)) and p(1) ≥ p(r) since r ≤ 1 and p is decreasing
in r. Hence,

VS(βS , 1) > vS (s(p(r)), p(r))

which proves the claim, because vvS (s(p(r)), p(r)) is the sellers’ payoff at
the market clearing institution, and VS(βS , 1) is the payoff of the (only)
buyer at the non-market clearing institution with βz = βB (where there is
just one buyer and one seller).

This lemma has a simple interpretation. Suppose one market side (buy-
ers or sellers) is overrepresented in the population. Then, this market side
has less market power than the other side. If, for some reason, an institution
biased in the favor of this market side attracts an equal number of sellers
and buyers, the referred side will necessarily prefer the latter institution.

Note that, since β(1) ≤ β(m,n) and β(1) ≥ β(m,n), the set of institu-
tions fulfilling the hypothesis of the last Lemma is in general significantly
larger than the set of favored institutions. In particular, the former set re-
mains unchanged as the number of traders in the market increases, while
the later can shrink. For instance, in the example with linear demand, the
set of favored institutions becomes degenerate as the market size increases,
while simple calculation shows that β(1) = 1

3 and β(1) = 5
3 . Hence, the

last lemma and the next theorem apply for all institutions with 1
3 < β < 5

3
independently of market size.

The following theorem proves existence of stochastically stable non-
market clearing institutions even for those cases where the set of favored
institutions degenerates. However, we can establish this result only for dy-
namics with independent inertia.

Theorem 3 Assume A1, A2, A3, and A4. Suppose we have a dynamics
with independent inertia. Let 0 < β(1) < βB < 1 < βS < β(1) and consider
three or more institutions, one of them with bias parameters 1 (the mar-
ket clearing institution), βB (the buyers’ institution) and βS (the sellers’
institution). Then,

(i) if m ≤ n, both the market clearing and the buyers’ institution are
stochastically stable.

(ii) if m ≥ n, both the market clearing and the sellers’ institution are
stochastically stable.

Proof. We will show part (i). Part (ii) is analogous. Let ω1 denote the
monomorphic state corresponding to coordination on the buyers’ institu-
tion. We know from Theorem 1 ω0 is stochastically stable. By part (i) of
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the previous Lemma, we see that if exactly two mutations to the buyers’
institution at state ω0 occur, we will reach a state where buyers strictly pre-
fer that institution. With independent inertia, there is positive probability
that all buyers revise (hence switching to the buyer institution) and at least
the mutant seller does not. Regardless of what other sellers do, next period
the buyers’ institution will be the only active one and all remaining traders
will eventually switch to it. Hence, we have constructed a positive prob-
ability path from ω0 to ω1 involving only two mutations. From the proof
of Theorem 1, we already know that it is possible to make the opposite
transition with exactly two mutations (but no less). Thus, we obtain that
c({ω0} , {ω1}) = 2 = R({ω1}), and the result follows from Lemma 5(iii).

Theorem 3 presents a trade-off with respect to the result shown in The-
orem 2. On the one hand, the former applies to a wider range of institutions
than the latter. On the other hand, though, the price to pay is that the
result is only established for a subset of the considered dynamics, namely
those with independent inertia. Careful inspection of the proof of Theorem
3 shows that it is in general not possible to make a similar statement for
more general dynamics. The intuition is that the hypothesis of the The-
orem guarantees that as long as two traders (of different types) switch to
the considered non-market clearing institution, one market side will benefit
from the switch. If the dynamics is quick enough (as in the independent
inertia case), all traders of that market side will switch to the non-market
clearing institution and the other side will have to follow suit as the market
clearing one becomes inactive. If the dynamics is slow, however (as e.g. a
dynamics with non-simultaneous learning), the hypothesis of Theorem 3 is
not sufficient to derive the result.

5 Conclusions

We have presented a model where traders can choose among different trading
institutions and asked whether they will learn to coordinate on an institution
that guarantees market clearing.

Under a general class of learning dynamics, we find that the market
clearing institution is always stochastically stable. We also identify a suffi-
cient condition for this institution to be the only stochastically stable one.
However, this condition is rather strong. Hence, we also find non-market
clearing institutions that are stochastically stable under rather general con-
ditions. These conditions are of two types. The first one (favored institu-
tions) depends on actual market size. If the market becomes very large, for
certain examples the set of institutions fulfilling this condition may become
degenerate. The second one is independent of market size, but guarantees
stochastic stability of non-market clearing institutions only for a restricted
class of learning dynamics.
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In general, we conclude that coordination on market clearing institutions
will be often observed as the result of learning, but other institutions might
also survive.
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Appendix A: Proof of Lemma 5
Lemma 5 Let A be an absorbing set and define the Radius of A by

R(A) = min {c(A,B) |B is an absorbing set, B 6= A}
and the Coradius of A by

CR(A) = max {c(B,A) |B is an absorbing set, B 6= A}
Then:

(i) If R(A) ≥ CR(A), the states in A are stochastically stable.

(ii) If R(A) > CR(A), the only stochastically stable states are those in A.
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(iii) If the states in an absorbing set B are stochastically stable and R(A) =
c(B,A), the states in A are also stochastically stable.

Proof. Part (ii) follows immediately from [5, Theorem 1]. Part (i) fol-
lows from part (iii) taking B to be any absorbing set containing stochasti-
cally stable states (which always exist). Part (iii) follows from [5, Theorem
1], but the result there is stronger and the relationship might not be ap-
parent at first glance. That Theorem uses the concept of modified costs
c∗(B,A), which are smaller than the transition costs ([5, p. 28-9]). How-
ever, if R(A) = c(B,A) ≥ c∗(B,A) and states in B are stochastically stable,
it cannot happen that R(A) > c∗(B,A) because in such case [5, Theo-
rem 1] also implies that no state in B can be stochastically stable. Hence,
R(A) = c(B,A) implies R(A) = c∗(B,A), which is the hypothesis in [5,
Theorem 1].

Appendix B: Stochastic Institutions
Experimental evidence reveals that at least for some institutions the price

at which trade takes place has a large variance. To capture this feature, the
model can be generalized as follows.

For an institution z the price bias is a random variable. Its value is
drawn from an arbitrary distribution over the strictly positive real numbers,
with expected value eβz and variance vz. Denote a realization of this random
variable by βz. The actual price at which trade takes place at z is given by:

pz = βzp
∗(nz,mz)

Hence, eβz specifies the extent to which the price at z differs on average from
the market clearing price, and vz measures the volatility of the bias. Note
that eβz = 1, vz = 0 imposes market clearing.

Given a realization βz, if the price is not at the equilibrium level, ra-
tioning takes place as in the deterministic case above.

We now proceed to sketch the analysis of this more general model, point-
ing only at the differences with the deterministic case. First, consider a
market clearing institution 0 with eβ0 = 1, v0 = 0, and a stochastically non-
market clearing institution N with either eβN 6= 1,or vN > 0, or both. We
obtain the following generalization of Lemma 1.

Lemma 7 Under Assumptions A1, A2,

(i) For all realizations of βN it holds that: vB(q0B, p0) ≤ vB(q
N
B , pN ) =⇒

vS(q
0
S, p0) ≥ vS(q

N
S , pN).

(ii) The probability of a realization of βN such that vB(q
0
B, p0) ≤ vB(q

N
B , pN )

does not imply vS(q0S , p0) > vS(q
N
S , pN), is zero.

30



Proof. In order to prove the lemma, we have to distinguish between three
possible realizations of βN . If either βN < 1 or βN > 1, the proof is identical
with that of Lemma 1. If βN = 1, neither sellers nor buyers are rationed at
N . Hence, qNB = d(βNp

∗(mN , nN )). By A1, vB(q0B, p0) ≤ vB(q
N
B , pN) implies

that pN ≤ p0. Again by A1, this leads to vS(q0B, p0) ≥ vS(q
N
S , pN)).

In all three cases, vB(q0B, p0) ≤ vB(q
N
B , pN) =⇒ vS(q

0
S , p0) ≥ vS(q

N
S , pN )

as demanded by part (i). Part (ii) is implied by the fact that βN = 1
happens with probability zero.

Next we define the stochastic analog of favored institutions. We say
that an institution F is stochastically favored if it is stochastically non-
market clearing and the support of its bias parameter βF is contained in¤
β(m,n), β(m,n)

£
. Then, we obtain a generalization of Lemma 2.

Lemma 8 Assume A1 and A4. Fix the number of buyers and seller op-
erating on the whole market. Consider any distribution of these traders on
any number of institutions, where both the market clearing institution 0 and
at a given stochastically favored institution F are active. Then the following
holds:

(i) If vB
¡
q0B, p0

¢ ≥ vB
¡
qFB , pF

¢
, then vS

¡
q0S, p0

¢
< vS

¡
qFS , pF

¢
.

(ii) The probability of a realization of βN such that vB(q
0
B, p0) ≥ vB(q

F
B , pF )

does not imply vS(q0S , p0) < vS(q
F
S , pF ), is zero.

Proof. Again for realizations βF < 1 or βF > 1 the proof is identical with
that of Lemma 2. If βF = 1, neither sellers nor buyers are rationed at F .
Hence, qFB = d(βFp

∗(mF , nF )). By A1, vB(q0B, p0) ≥ vB(q
F
B , pF ) implies that

pF ≥ p0. Again by A1, this leads to vS(q
0
B, p0) ≤ vS(q

F
S , pF )). This shows

part (i). Part (ii) is again implied by the fact that βF = 1 happens with
probability zero.

The analogues of Lemmata 3 and 4 follow directly from Lemma 7. Then
we obtain, with the same proof of Theorem 1:

Theorem 4 Under A1, A2, A3, D1, and D2, the market clearing institu-
tion (eβ0 = 1, v0 = 0) is always stochastically stable.

We say that the market clearing institution is stochastically locally ro-
bust if at all states of the form [(n− 1,m− 1), (0, 0), ..., (1, 1), ..., (0, 0)], both
types of
traders strictly prefer the market clearing institution for all possible re-
alizations of the bias parameter of the other active institution. Of course,
this is an even stronger condition than local robustness in the deterministic
case. The proof of Proposition 1 then yields

Proposition 2 Under A1, A2, A3, D1, and D2, if the market clearing
institution is stochastically locally robust, the monomorphic state ω0 is the
only stochastically stable state.
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Lemma 8, however, allows us to establish the analog of Theorem 2.

Theorem 5 Assume A1, A2, A3, and A4, and consider any dynamics sat-
isfying D1 and D2. Let z ∈ {1, ..., Z} be any stochastically favored institu-
tion. Then z is stochastically stable.

Of course, in examples as the one with linear demand, as the number
of traders increases the support of the bias parameter of stochastically fa-
vored institutions must become narrower, degenerating in the limit to β = 1.
Again, though, we can obtain the analog of Lemma 6, leading to a general-
ization of Theorem 3:

Theorem 6 Assume A1, A2, A3, and A4. Suppose we have a dynamics
with independent inertia. Let B and S be two institutions such that the sup-
port of their bias parameters βB, βS are contained in

¤
β(1), 1

£
and

¤
1, β(1)

£
,

respectively. Then,

(i) if m ≤ n, both the market clearing and B are stochastically stable.

(ii) if m ≥ n, both the market clearing and S are stochastically stable.

In the deterministic case, all favored institutions fulfill the hypothesis
of Theorem 3. In the stochastic case, though, the analogous statement is
not true. The distribution of the bias parameter of a stochastically favored
institution may assign positive probability both to a set of bias parameters
larger than 1 and to another set of bias parameters smaller than 1, so that
its bias works in an ambiguous way, sometimes favoring sellers and some-
times buyers. The institutions in the statement of the last theorem, though,
must always be biased in favor of the same side of the market. As in the
deterministic case, however, the set of such institutions remains unchanged
as the market size increases.
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