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Abstract

This paper presents a formal epistemic framework for dynamic games in which players,
during the course of the game, may revise their beliefs about the opponents’ utility functions.
We impose three key conditions upon the players’ beliefs: (a) throughout the game, every
move by the opponent should be interpreted as being part of a rational strategy, (b) the
belief about the opponents’ relative ranking of two strategies should not be revised unless
one is certain that the opponent has decided not to choose one of these strategies, and (c)
the players’ initial beliefs about the opponents’ utility functions should agree on a given
profile u of utility functions. Types that, throughout the game, respect common belief about
these three events, are called persistently rationalizable for the profile u of utility functions.
It is shown that persistent rationalizability implies the backward induction procedure in
generic games with perfect information. We next focus on persistently rationalizable types
for u that hold a theory about the opponents of “minimal complexity”, resulting in the
concept of minimal rationalizability. For two-player simultaneous move games, minimal
rationalizability is equivalent to the concept of Nash equilibrium strategy. In every outside
option game, as defined by van Damme (1989), minimal rationalizability uniquely selects the
forward induction outcome.
Keywords: Rationalizability, belief revision, dynamic games, backward induction, forward

induction.
JEL Classification: C72

1. Introduction

In the epistemic approach to noncooperative games every player is modeled as a decision maker
under uncertainty, endowed with a preference ordering on the possible strategy choices. Under
the assumption that each player is of the expected utility type, such preference orderings may
be represented by a utility function over the possible consequences and a subjective probability
distribution, or belief, over the uncertain parameters in the game. Most epistemic models
that have been proposed in the literature assume that the players face no uncertainty about
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the opponents’ utility functions (some papers that explicitly allow for uncertainty about the
opponents’ utility functions will be discussed below). This property is usually modeled by
the presence of an exogenously given profile of utility functions and the implicit requirement
that, whatever happens in the game, these utility functions are never to be questioned. The
uncertainty faced by a player at a given instance of the game will then consist of the opponents’
strategy choices, the opponents’ beliefs about the other players’ strategy choices, the opponents’
beliefs about the other players’ beliefs about the other players’ strategy choices, and so forth.

Within a given epistemic model for games, the problem of how to model rational behavior
cannot be reduced to one-person decision theory since a player should not only choose rationally
given his beliefs, but these beliefs should also be based upon the conjecture that his opponents
choose rationally as well. Also should a player realize that each of his opponents will hold beliefs
that are based upon the conjecture that the other players act rationally, and so on. This intuitive
argument may be formalized by the notion of common belief of rationality, a concept that plays
a central role in theories of rationality such as rationalizability (Bernheim (1984) and Pearce
(1984)), Nash equilibrium and all refinements thereof. Indeed, Tan and Werlang (1988) have
shown that, within a formal epistemic model, the strategies that may be chosen rationally when
there is common belief of rationality coincide exactly with the set of rationalizable strategies.

A fundamental problem arises, however, if the notion of common belief of rationality is to
be applied to dynamic games, and no uncertainty about the utility functions is allowed. The
difficulty is that there may be information sets in the game that cannot be reached if players
were to act in accordance with common belief of rationality. Reny (1992a, 1993) has shown
that for the class of perfect information games, this phenomenon occus on a rather structural
basis. A natural question which then arises is: how should a player revise his beliefs about
the opponents’ strategy choices and the opponents’ beliefs if an information set is reached that
contradicts common belief of rationality? At this stage, the player should conclude that there
is at least one opponent who (a) did not act rationally given his beliefs, or (b) bases his beliefs
upon the conjecture that some other player does not act rationally given his belief, or (c) believes
that some other player believes that some other player acts irrationally, and so on. A concept
of rationality should specify which of the above scenarios is to be viewed as “most plausible”,
thus imposing a restriction on how beliefs are to be revised at such “problematic” information
sets.

In the literature, several rationalizability concepts for dynamic games have been proposed
that hold different views on how to revise beliefs when common belief of rationality has been
contradicted by the play of the game. The concept of common certainty of rationality at the
beginning of the game (Ben-Porath (1997)) and its extension to general dynamic games, to
which we shall refer as weak sequential rationalizability, require common belief at the beginning
of the game about the event that players choose rationally at each of their information sets, but
impose no restriction upon the players’ belief revisions at information sets where the player’s
initial belief about the opponents has been contradicted. In particular, if common belief of
rationality has been contradicted at a given information set, the corresponding player may from
now on believe that one or more opponents chooses suboptimally.

Backward induction, and backward induction based rationalizability concepts such as se-
quential and quasi-perfect rationalizability (Asheim and Perea (2002)), state that a player, at an
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information set where common belief of rationality has been contradicted, should conclude that
the event of reaching this information set is due to a suboptimal move by one of his opponents,
but should maintain his belief in common belief of rationality for the remainder of the game.

The concept of extensive form rationalizability (Pearce (1984) and Battigalli (1997)) holds
yet another viewpoint by requiring that a player, at an information set contradicting common
belief of rationality, should not conclude immediately that an opponent has chosen suboptimally,
but should rather seek for the “highest possible degree of interactive belief of rationality1” that
is compatible with the event of reaching this information set. From then on, the player should
base his beliefs about the opponents upon this degree of interactive belief of rationality until
some further information set is reached that contradicts this degree. At this occasion, the player
should again search for the highest possible degree of interactive belief of rationality that explains
the event of reaching this information set, and so on.

In this paper we choose an alternative approach by allowing the players to revise their be-
liefs about the opponents’ utility functions during the game, while insisting on common belief
of rationality at every possible instance in the game (see Perea (2002) for a similar approach
within an equilibrium framework). Accordingly, we develop an epistemic model in which every
player, at each of his information sets, has uncertainty about the opponents’ strategy choices, the
opponents’ utility functions, the opponents’ first-order beliefs about the other players’ strategy
choices, the opponents’ first-order beliefs about the other players’ utility functions, the oppo-
nents’ second-order beliefs about the other players’ first-order beliefs, etcetera. This leads, for
every player at each of his information sets, to an infinite hierarchy of succesively richer uncer-
tainty spaces, to which we refer as the first-order uncertainty space, second-order uncertainty
space, and so on, and to an infinite hierarchy of preference orderings over his own strategies.
In this hierarchy, the k-th order preference ordering at a given information set is induced by a
subjective probability distribution (belief) over the k-th order uncertainty space and a utility
function at reachable terminal nodes. In turn, the k-th order uncertainty space contains the
opponents’ possible (k−1)-th order preference relations, and hence a player, at each of his infor-
mation sets, should hold a belief about the opponents’ first-order, second-order, and higher order
preference relations. In Perea (2003) it has been shown that the infinite preference hierarchies
within our epistemic model can be handled efficiently by means of types. More precisely, it can
be shown that each preference hierarchy of a player can be identified with a type, which specifies
at each of the information sets a subjective probability distribution over the opponents’ strategy
choices and opponents’ types, and which determines a utility function at the terminal nodes.
This representation result thus justifies the use of a relatively simple, implicit type-model that
makes the analysis easier.

We then proceed by imposing some restrictions upon the types, eventually leading to the
concept of persistent rationalizability. The first two requirements, updating consistency and
proper belief revision, are concerned with the belief updating and belief revision policies carried
out by the types. Updating consistency simply states that Bayesian updating should be used
whenever the observed behavior is still in accordance with the previously held beliefs. Proper
belief revision states that, whenever a player i type decides to revise his belief about player
j’s ranking of his own strategy choices, then he should not change his belief about j’s relative

1Or, “highest possible degree of strategic sophistication”, as Battigalli and Siniscalchi (2002) put it.
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Figure 1

ranking of two strategies unless player i is absolutely certain that j has decided not to choose
one of these strategies. The underlying principle is that a player should base his belief revision
policy solely on the actual observed behavior, and not on conjectures concerning possible past
and future behavior about which he is not absolutely certain. In order to illustrate this principle,
consider Figure 1.

Suppose that player 2 initially believes that player 1 strictly prefers c over a, and strictly
prefers a over b. If player 2 finds himself at his information set, he is certain that player 1 has
not chosen c. If player 2 believes at this stage that player 1 has chosen rationally, player 2 is led
to revise his belief about player 1’s preference relation. Proper belief revision requires player 2
to maintain his belief that player 1 strictly prefers a over b, while allowing player 1 to change
his belief about the ranking of c relative to a and b. The reason is that the observed behavior,
namely that player 1 has not chosen c, does not reveal new evidence about player j’s ranking of
a relative to b, and therefore player 2 should not change his belief about this relative ranking.

The reason to call it proper belief revision is that this belief revision principle is implic-
itly present in the concepts of proper equilibrium (Myerson (1978)) and proper rationalizability
(Schuhmacher (1999), Asheim (2001)). The key restriction in both concepts is that a player
should never exclude any strategy choice by an opponent, yet should deem one opponent strat-
egy “infinitely more likely” than another if he believes that the opponent strictly prefers the
former above the latter. The notion of “infinitely more likely” can either be formalized by tak-
ing sequences of full-support probability distributions over the opponents’ strategy choices and
considering the relative likelihood of two strategy choices in the limit, as is done in Myerson
(1978) and Schuhmacher (1999), or can be established by considering lexicographic probability
distributions over strategy choices, as used in Blume, Brandenburger and Dekel (1991a, 1991b)
and Asheim (2001) in their characterizations of proper equilibrium and proper rationalizability,
respectively. If we would apply proper equilibrium or proper rationalizability to the situation in
Figure 1, and assume that player 2 initially believes that player 1 strictly prefers c over a, and
strictly prefers a over b, then player 2 should deem c infinitely more likely than a, and deem a
infinitely more likely than b. Hence, if player 2 observes that player 1 has chosen a or b, he should
still deem a infinitely more likely than b. Consequently, if player 2 is faced with the fact that
player 1 has chosen a or b, he should still believe that player 1 strictly prefers a over b, and hence
proper equilibrium and proper rationalizability imply the proper belief revision principle in this
example. Since this argument can be applied to any given dynamic game, proper equilibrium
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and proper rationalizability generally support the proper belief revision principle.
The third condition we impose on types, belief in sequential rationality, reflects the principle

that, whatever happens in the game, a player should always interpret observed moves as rational
ones. In particular, if a player i observes a move that would not have been optimal for an
opponent j, were player i to keep his previously held belief about j’s utility function, then
player i should actually revise his belief about j’s utilities in order to rationalize this move.
Types that, throughout the game, respect common belief about the events that (1) types are
updating consistent, (2) types satisfy proper belief revision, and (3) types believe in sequential
rationality, are called persistently rationalizable.

The literature usually assumes some exogenously given restrictions upon the players’ utility
functions, and the beliefs they have about the opponents’ utilities, modeled by the specification
of a fixed profile of utility functions. The implicit interpretation is that players are assumed to
hold these utility functions, and are to believe throughout the game that the opponents hold the
utility functions as specified by the profile. As to link the concept of persistent rationalizability to
existing rationality concepts for given utility functions, we subsequently impose some exogenous
restrictions upon the players’ utility functions and beliefs about the opponents’ utilities. In order
to do so, we proceed as above by taking as given a profile u of utility functions, but a different
interpretation shall now be attached to it. Players are required to hold the utility functions
as specified by u, and to respect common belief about the event that players initially believe
that opponents hold utility functions as given by u. Persistently rationalizable types that satisfy
these additional requirements are said to be persistently rationalizable for u, and strategies that
are optimal for such types at each of their information sets are called persistently rationalizable
strategies for u. We thus leave open the possibility that players may change their belief about
the opponents’ utilities as the game is under way, while requiring that the players’ beliefs agree
on the same profile of utility functions at the beginning of the game.

In light of the latter property, our approach is related to the model of games with randomly
disturbed payoffs, as used in Harsanyi (1973), Fudenberg, Kreps and Levine (1988), Dekel and
Fudenberg (1990), Zauner (2002) and Stinchcombe and Zauner (2002), among others. In all
of these papers, players are assumed to have “infinitesemal uncertainty” about the opponents’
utility functions at the beginning of the game, modeled by a sequence of games with randomly
perturbed utility functions in which the perturbation vanishes in the limit. The analysis then
focusses on the behavior of players as the perturbation tends to zero. When applied to dynamic
games, the choice of a sequence of utility perturbations may be seen as a way to model a
particular belief revision policy for each player about the possible opponents’ utilities. By
letting the perturbation vanish in the limit, one imposes that the players’ beliefs about the
opponents’ utilities should (approximately) agree on a particular profile of utility functions at
the beginning of the game. A key factor that distinguishes our model from the ones above is
that our proper belief revision condition imposes an explicit restriction upon the way players
should revise their beliefs about the opponents’ utilities, while the above mentioned papers, with
the exception of Stinchcombe and Zauner (2002), put no constraints on the sequences of utility
perturbations that may be chosen.2 Battigalli (2003), in his analysis of rationalizability in games

2Stinchcombe and Zauner (2002) do impose a restriction upon the sequence of utility perturbations, however
it is different from proper belief revision.
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with “genuine incomplete information”, takes another approach by assuming that players may
have uncertainty about the other players’ utility functions, without requiring that the players’
beliefs at the beginning of the game agree on a particular profile of utility functions.

Having established the concept of persistent rationalizability for a given profile u of utility
functions, our next step is to present a refinement that focusses on types holding beliefs that are
“as simple as possible”. As to formalize the latter, we introduce the notion of the complexity of
a type ti, which, loosely speaking, represents the total number of types that ti considers directly
or indirectly in his theory about the opponents. More precisely, the complexity of a type ti first
counts the number of types tj that ti attaches positive probability to in his beliefs. For each of
these types tj , one counts the number of types that tj attaches positive probability to and that
have not been counted already, and so on. By summing up all these types, one gets the total
number of types that ti directly or indirectly refers to in his beliefs throughout the game, and
this number is called the complexity of ti. For a given profile of utility functions u, we say that
a type is minimally rationalizable for u if (1) it is persistently rationalizable for u, and (2) it
has minimal complexity among all types that are persistently rationalizable for u. Accordingly,
a strategy is called minimally rationalizable for u if it can be chosen rationally by a type that is
minimally rationalizable for u.

The second part of this paper is devoted to relating persistent and minimal rationalizability
to existing rationality concepts in the literature. First of all, in Perea (2003) it has been shown
that for every given profile u of utility functions, every properly rationalizable strategy for u for
types with “non-increasing type supports” is persistently rationalizable for u. Here, the latter
concept is a non-empty refinement of proper rationalizability, thus establishing the existence
of persistently rationalizable types and strategies for all game trees and all utility functions
u. Moreover, the proof of this result shows that persistently rationalizable types with finite
complexity can always be found for all u, and hence minimally rationalizable types and strategies
always exist.

We next find that persistent rationalizability may be viewed as a possible epistemic foun-
dation for backward induction, since for generic games with perfect information the only per-
sistently rationalizable strategy for each player is his backward induction strategy. Moreover,
it establishes an interpretation of backward induction where moves off the backward induction
path are not viewed as mistakes by one of the players, but rather as moves in accordance with
common belief of rationality, while allowing players to adjust their beliefs about the opponents’
utilities when observing such deviations from the backward induction path.

The concept of minimal rationalizability, on the other hand, turns out to have a strong
forward induction flavour, at least in some classes of games. It is shown that in the class of
outside option games, as introduced by van Damme (1989), the unique minimally rationalizable
strategy for each player is his forward induction strategy. In particular, minimal rationalizability
uniquely selects the forward induction outcome, which is the only Nash equilibrium outcome in
the game that dominates the outside option from player 1’s point of view. What is remarkable
about this result is that no explicit equilibrium condition is needed in minimal rationalizability
to filter this forward induction Nash equilibrium outcome.

The relation between minimal rationalizability and Nash equilibrium is even more transpar-
ent in the class of two-player simultaneous move games, since for such games the set of minimally
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rationalizable strategies for a player coincides exactly with the set of Nash equilibrium strategies.
As such, minimal rationalizability provides an epistemic characterization of Nash equilibrium
strategies for two-player static games. The major difference with the epistemic characterization
provided by Aumann and Brandenburger (1995) is that minimal rationalizability does not ex-
plicitly impose mutual belief (or knowledge) concerning the players’ beliefs about the opponent’s
strategy choice.

The outline of this paper is as follows. Section 2 presents some preliminary definitions in
extensive form games. In Section 3 we present the epistemic framework that will be used as
a basis for the rationalizability concepts. Section 4 lays out the concepts of persistent and
minimal rationalizability. Sections 5, 6 and 7 prove the above mentioned results on backward
induction, Nash equilibrium in two-player simultaneous move games and outside option games,
respectively. Section 8, finally, discusses the relationship with other rationalizability concepts
such a weak sequential rationalizability and extensive form rationalizability.

2. Extensive Form Structures

In this section we introduce the necessary notation and some preliminary definitions for dynamic
games. It is assumed that the reader is familiar with the precise definition of an extensive form
game, which we therefore do not present in order to save space. Let I be some finite set of players
that faces a dynamic game. The rules of the game are given by an extensive form structure S
consisting of (1) a finite game tree, (2) for every player i some finite collection Hi of information
sets, (3) for every information set h some finite set A(h) of available actions, and (4) a finite
set Z of terminal nodes. We assume that the extensive form structure S satisfies perfect recall
and contains no chance moves. The latter requirement is not really needed for our analysis,
but rather simplifies the exposition. Let H = ∪i∈IHi be the collection of all information sets
in the game. By h0 we denote the information set that marks the beginning of the game. Let
H∗i = Hi ∪ {h0} for every player i.

The definition of a strategy we use in this paper follows Rubinstein’s (1991) notion of a
plan of action, specifying an action only at those information sets which are not avoided by
the strategy itself. Let H̃i ⊆ Hi be some collection of player i information sets, not necessarily
including all, and let si be a function that assigns an available action si(hi) ∈ A(hi) to every
information set hi in H̃i. We say that an information set h ∈ H (possibly controlled by some
player other than i) is avoided by the function si if every profile of available actions in ×h∈HA(h)
that coincides with si on H̃i, avoids the information set h. The function si defined on H̃i is called
a strategy if H̃i is exactly the collection of player i information sets not avoided by si. Obviously,
every player i strategy may be obtained by first prescribing an action at all player i information
sets, and then discarding those player i information sets that are avoided by it. Let Si denote
the set of player i strategies.

An additional restriction we impose upon the extensive form structure is that it should be
with observable deviators (see e.g. Battigalli (1996)). For its definition, we need some additional
notation. For a given information set h, let S(h) be the set of strategy profiles (si)i∈I that reach
h, and let Si(h) be the set of player i strategies that do not avoid h. Here, player i needs not
be the player who controls h. We say that the extensive form structure S is with observable
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deviators if S(h) = ×i∈ISi(h) for every information set h. Hence, if every player i chooses a
strategy that cannot avoid h by itself, then the resulting strategy profile will reach h. The
condition is implied by perfect recall if there are only two players involved. For more than two
players, however, this is no longer true.

3. The Epistemic Model

Our next step will be to lay out an epistemic model for dynamic games in which players, during
the course of the game, may revise their beliefs about the opponents’ preference relations,
including the opponents’ utilities at the terminal nodes. The model is identical to the one used
in Perea (2003) and the reader is referred to that paper for the proofs of the results to be
presented in this section. Before discussing the epistemic model, we shall briefly introduce the
notions of acts and expected utility preference relations over acts, as they play a crucial role in
the model.

Consider a compact metric space X endowed with some topology. The space X is to be
interpreted as a collection of relevant parameters about which the decision maker is uncertain.
Let Y be some finite set of possible consequences, and ∆(Y ) the set of probability distributions
on Y, endowed with the natural topology. Following Anscombe and Aumann (1963), every
decision may be identified with a mapping from X to ∆(Y ), to which we refer as acts. 3 Let
F(X,Y ) be the set of measurable acts from X to ∆(Y ), and assume that the decision maker
holds a preference relation over all acts in F(X,Y ).We say that this preference relation is of the
expected utility type if there is some probability distribution µ on X and some von Neumann-
Morgenstern utility function u from Y to the real numbers such that act f is weakly preferred
to act g if and only if Z

X
u(f(x)) dµ ≥

Z
X
u(g(x)) dµ.

Here, u(f(x)) is the expected utility induced by the probability distribution f(x) ∈ ∆(Y ) and the
utility function u. Similarly for u(g(x)). Let Peu(X,Y ) be the set of non-trivial expected utility
preference relations on F(X,Y ). For a given preference relation in Peu(X,Y ) the probability
distribution µ is unique and the utility function is unique up to a positive affine transformation.
Hence, every member of Peu(X,Y ) may be uniquely identified with a pair (µ, u) where µ is
a probability distribution on X and u is a utility function on Y with maximum value 1 and
minimum value 0. Let U(Y ) be the set of utility functions on Y with the latter property. We
thus may identify Peu(X,Y ) with the space ∆(X) × U(Y ). If we endow this space with the
product toplogy induced by the weak topology on ∆(X) and the natural toplogy on U(Y ), the
set Peu(X,Y ) becomes a compact metric space.

Let us now return to dynamic games. The basic assumption is that every player i, at each
of his information sets hi ∈ H∗i , holds a preference relation on the set Si(hi) of strategies that
are compatible with hi, while facing uncertainty about the opponents’ strategy choices. Recall
that H∗i = Hi ∪ {h0}. At information set hi, the set of feasible opponents’ strategies is given by

3In Anscombe and Aumann (1963), such acts are called compound horse lotteries.
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S−i(hi) = ×j 6=iSj(hi). Hence, we may define
X1
i (hi) = S−i(hi)

as player i’s first-order space of uncertainty at information set hi. Let Z(hi) be the set of
terminal nodes following hi. Every strategy si in Si(hi) may now be identified with an act
fsi in F(S−i(hi), Z(hi)) which assigns to every opponents’ strategy profile s−i ∈ S−i(hi) the
probability distribution on Z(hi) that attaches probability one to the terminal node reached
by (si, s−i). Hence, Si(hi) may be embedded in the set of acts F(X1

i (hi), Z(hi)). It is assumed
that player i at hi holds a non-trivial expected utility preference relation p

1
i (hi) on all acts in

F(X1
i (hi), Z(hi)), that is, p

1
i (hi) ∈ Peu(X1

i (hi), Z(hi)).We refer to p
1
i (hi) as player i’s first-order

preference relation at hi, while Peu(X1
i (hi), Z(hi)) is the set of player i’s first-order preference

relations at hi. By choosing the appropriate topology as described above, the latter set becomes
a compact metric space.

The set X1
i (hi), however, does not contain all relevant parameters about which player i is

uncertain at hi, since player i also faces uncertainty about the first-order preference relations that
his opponents hold at each of their information sets. We may thus define player i’s second-order
space of uncertainty at hi by

X2
i (hi) = X

1
i (hi)× (×j 6=i ×hj∈H∗j Peu(X1

j (hj), Z(hj))),

containing both the opponents’ possible strategy choices that may have led to hi and the op-
ponents’ possible first-order preference relations at each of their information sets. Similarly as
above, we assume that player i at hi holds an expected utility preference relation p

2
i (hi) on the

set of all acts in F(X2
i (hi), Z(hi)).We refer to p

2
i as player i’s second-order preference relation at

hi, and to Peu(X2
i (hi), Z(hi)) as the set of possible second-order preference relations at hi. The

players’ k-th order uncertainty spaces at their respective information sets may then be defined
inductively by

Xk
i (hi) = X

k−1
i (hi)× (×j 6=i ×hj∈H∗j Peu(Xk−1

j (hj), Z(hj)))

for all players i, information sets hi ∈ H∗i and k ≥ 2. At each information set hi, player i is
assumed to hold a hierarchy of preference relations pi(hi) = (p

k
i (hi))k∈N, where p

k
i (hi) represents

the k-th order preference relation in Peu(Xk
i (hi), Z(hi)). A vector pi = (pi(hi))hi∈H∗i of such

hierarchies of preference relations, one for each information set, is simply called a preference
hierarchy for player i. Let Pi be the set of all preference hierarchies for player i.

Similar to Epstein and Wang (1996), a preference hierarchy pi is called coherent if for every
information set hi and every order k ≥ 2, the marginal of the k-th order preference relation
pki (hi) on the (k−1)-th order space of acts F(Xk−1

i (hi), Z(hi)) coincides with the (k−1)-th order
preference relation pk−1i (hi).

4 In words, coherence means that the different preference relations in
the hierarchy should coincide on overlapping subspaces. We obtain the following representation
result for coherent preference hierarchies, for which a proof can be found in Perea (2003).

4Every act in F(Xk−1
i (hi), Z(hi)) may be identified with some act in F(Xk

i (hi), Z(hi)) that only depends on
the argument in Xk−1

i (hi). As such, F(Xk−1
i (hi), Z(hi)) may be viewed as a subspace of F(Xk

i (hi), Z(hi)), and
hence the marginal of pki (hi) on F(Xk−1

i (hi), Z(hi)) is well-defined.
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Lemma 3.1. For every player i, the set of coherent preference hierarchies is homeomorphic to
the space ×hi∈H∗i Peu(S−i(hi)× P−i, Z(hi)).

Here, P−i = ×j 6=iPj is the space of all opponents’ preference hierarchies. As such, every
coherent preference hierarchy pi for player i induces at every information set hi ∈ H∗i some
expected utility preference relation on acts in F(S−i(hi)×P−i, Z(hi)), representable by a prob-
ability distribution µi(pi, hi) on S−i(hi)×P−i, and some utility function ui(pi, hi) on Z(hi). For
an opponent j, let µi(pi, hi| Pj) be the marginal of the probability distribution µi(pi, hi) on the
set of player j’s preference hierarchies. Let Pj(pi, hi) = supp µi(pi, hi| Pj) be the set of player
j’s preference hierarchies to which pi assigns positive probability at hi. For j = i, we define
Pi(pi, hi) = {pi}. By P (pi, hi) = ∪j∈IPj(pi, hi) we denote the set of all preference hierarchies
to which pi assigns positive probability at hi. Let P (pi) = ∪hi∈H∗i P (pi, hi) be the set of all
preference hierarchies to which pi assigns positive probability somewhere in the game.

Let P̃ ⊆ ∪j∈IPj be a set of profiles of preference hierarchies, or simply an event. We say
that the coherent preference hierarchy pi believes the event P̃ if P (pi) ⊆ P̃ , that is, if pi only
assigns positive probability to preference hierarchies that belong to P̃ . We now define common
belief about coherence by means of the following recursive definition of sets: let P c,1i be the

set of coherent preference hierarchies for player i, and for every k ≥ 2 let P c,ki be the set of

preference hierarchies in P c,k−1i that believe ∪j∈IP c,k−1j . By P c,∞i = ∩k∈NP c,ki we denote the set
of preference hierarchies that respect common belief about coherence. Hence, pi ∈ P c,∞i if and
only if pi is coherent, believes that all opponents’ preference hierarchies are coherent, believes
that all opponents’ preference hierarchies believe that all other players’ preference hierarchies are
coherent, and so on. In the spirit of Armbruster and Böge (1979), Böge and Eisele (1979) and
Mertens and Zamir (1985) we may now derive the following representation result for preference
hierarchies that respect common belief about coherence. A proof may be found in Perea (2003).

Lemma 3.2. For every player i, the set P c,∞i of preference hierarchies that respect common
belief of coherence is homeomorphic to the space ×hi∈H∗i Peu(S−i(hi)× P

c,∞
−i , Z(hi)).

By Ti = P
c,∞
i we denote the set of player i types. Then, by the lemma above, the type-space

Ti for every player i is homeomorphic to ×hi∈H∗i Peu(S−i(hi) × T−i, Z(hi)). That is, every type
ti may be identified with a vector that induces at every information set hi ∈ H∗i a probability
distribution, or belief, µi(ti, hi) on S−i(hi) × T−i, and a utility function ui(ti, hi) on Z(hi).
Similarly as we have done above for coherent preference hierarchies pi, we may define for every
type ti the set T (ti) ⊆ ∪j∈ITj as the set of types to which ti assigns positive probability
somewhere in the game. We recursively define the sets of types T 1(ti), T

2(ti), ... by T
1(ti) =

T (ti), and

T k(ti) =
[

t∈Tk−1(ti)
T (t)

for all k ≥ 2. By construction, T k(ti) for k ≥ 2 is the set of types t for which one can build
a sequence (ti = t1, t2, ..., tk = t) of length k such that ti assigns positive probability to t

2,
t2 assigns positive probability to t3, ..., tk−1 assigns positive probability to t somewhere in the
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game. By T∞(ti) = ∪k∈NT k(ti) we denote the set of types that may be reached from ti by
building such sequences of arbitrary length.

Let T̃ ⊆ ∪j∈ITj be a collection of types, or simply an event. We say that type ti respects
common belief about T̃ if T∞(ti) ⊆ T̃ . In words, ti believes that all types belong to T̃ , believes
that all types believe that all types belong to T̃ , and so on.

4. Persistent and Minimal Rationalizability

4.1. Persistent Rationalizability

We shall now impose three restrictions upon types in our epistemic model: updating consistency,
proper belief revision and belief in sequential rationality. The concept of persistent rationaliz-
ability then selects those types that respect common belief about these three events throughout
the game.

Updating consistency requires a type to update his beliefs using Bayes’ rule, whenever pos-
sible.

Definition 4.1. A type ti is called updating consistent if for every two information sets h
1
i , h

1
i ∈

H∗i such that h
2
i follows h

1
i , and every event E ⊆ S−i(h2i )× T−i, it holds that

µi(ti, h
2
i )(E) =

µi(ti, h
1
i )(E)

µi(ti, h
1
i )(S−i(h2i )× T−i)

whenever µi(ti, h
1
i )(S−i(h

2
i )× T−i) > 0.

Proper belief revision states that a type, when revising his belief about an opponent’s prefer-
ence relation, should not change his belief about the opponent’s relative ranking of two strategies
unless he is certain that the opponent has not chosen one of these strategies. Formally, let ti be
a type and hi ∈ H∗i an information set for player i. By definition, ti knows at hi that opponent j
has chosen some strategy in Sj(hi), without being able to exclude any of these strategies. Proper
belief revision then argues that ti may revise his belief at hi about player j’s preference relation
over strategies in Sj , but should not change his belief about player j’s ranking of strategies in
Sj(hi). In the formal definition below, let Tj(ti, hi) be the set of player j types to which ti assigns
positive probability at information set hi.

Definition 4.2. A type ti is said to satisfy proper belief revision if for every two information
sets h1i , h

2
i ∈ H∗i with h2i following h1i , and every type t2j ∈ Tj(ti, h2i ), there is some type t1j ∈

Tj(ti, h
1
i ) with the property that t

1
j and t

2
j hold the same preference relation over strategies in

Sj(h
2
i ) ∩ Sj(hj) at every information set hj ∈ H∗j .
Finally, belief in sequential rationality reflects the principle that a player, at each of his

information sets, should believe that his opponents are carrying out strategies that are optimal
for them at each of their information sets. Formally, we say that a strategy-type pairs (si, ti) is
sequentially rational if at every information set hi ∈ H∗i (si) it holds that

ui(ti, ti| hi) = max
s0i∈Si(hi)

ui(s
0
i, ti| hi).
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Here, H∗i (si) denotes the collection of information sets in H∗i that are not avoided by si. By
ui(ti, ti| hi) we denote the expected utility at hi induced by the utility function ui(ti, hi), the
strategy si and the marginal of the belief µi(ti, hi) on the set S−i(hi) of opponents’ strategies.
For every player j, let (Sj × Tj)sr be the set of sequentially rational strategy-type pairs. For a
given player i, let (S−i×T−i)sr = ×j 6=i(Sj ×Tj)sr be the set of opponents’ sequentially rational
strategy-type pairs.

Definition 4.3. A type ti is said to believe in sequential rationality if for every information set
hi ∈ H∗i it holds that supp µi(ti, hi) ⊆ (S−i × T−i)sr.

We are now ready to define the concept of persistent rationalizability.

Definition 4.4. A type ti is called persistently rationalizable if it respects common belief about
the events that (1) types are updating consistent, (2) types satisfy proper belief revision, and
(3) types believe in sequential rationality.

4.2. Restrictions on Utility Functions and Initial Beliefs

We now proceed by imposing some exogenous restrictions upon the players’ actual utility func-
tions, and the initial beliefs players have about the utility functions of others. Consider a profile
u = (ui)i∈I of utility functions over the terminal nodes. Together with the extensive form struc-
ture S, this induces a pair (S, u) which is usually called an extensive form game. The most
common interpretation of (S, u) is that players hold utility functions as specified by u, and that
they should believe throughout the game that the opponents have utility functions as given by
u. Our interpretation of (S, u) will be different since we require players to initially believe that
opponents have utility functions in u, while allowing the players to change their beliefs about
the opponents’ utility functions later on in the game. Formally, we say that a type ti initially
believes u if supp µi(ti, h0) only contains types tj with uj(tj , hj) = uj |Z(hj) for all hj ∈ H∗j .
Here, uj |Z(hj) denotes the restriction of uj on the set Z(hj) of terminal nodes following hj .

Definition 4.5. Let the profile u = (ui)i∈I of utility functions be given. We say that a type ti is
persistently rationalizable for (S, u) if (1) ti is persistently rationalizable, (2) ui(ti, hi) = ui|Z(hi)
for all hi ∈ H∗i , and (3) ti respects common belief about the event that types initially believe
u. We say that a strategy si is persistently rationalizable for (S, u) if there is a persistently
rationalizable type ti for (S, u) such that (si, ti) is sequentially rational.

4.3. Minimal Rationalizability

We shall next focus on types that are persistently rationalizable for a given extensive form game
(S, u), and, moreover, hold a theory about the opponents that in some sense is “as simple as
possible”. In order to formalize the latter, we introduce the notion of the complexity of a type.
Recall from Section 3 that for a given type ti, the set T

∞(ti) ⊆ ∪j∈ITj denotes the collection
of types tj such that either (1) ti assigns positive probability to tj at one of his information
sets, (2) ti assigns positive probability to some type tk which assigns positive probability to tj
at some of his information sets, and so on. Hence, one could say that T∞(ti) represents the set
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of types that ti uses, directly or indirectly, in his theory about the opponents’ strategies and
beliefs throughout the game. Let c(ti) be the total number of types in T

∞(ti), which could in
principle be infinite. We refer to c(ti) as the complexity of type ti.

Definition 4.6. Let (S, u) be an extensive form game. Then, a type ti is called minimally
rationalizable for (S, u) if ti is persistently rationalizable for (S, u) and has minimal complexity
among all player i types that are persistently rationalizable for (S, u). A strategy si is said to
be minimally rationalizable for (S, u) if there is some minimally rationalizable type ti for such
that (si, ti) is sequentially rational.

4.4. Existence

In Perea (2003) it has been shown that for every extensive form structure S with observable
deviators, and every profile u of utility functions, every player has at least one persistently ra-
tionalizable type and strategy for (S, u). The existence follows from a theorem establishing a
general relationship between the concept of proper rationalizability (Schuhmacher (1999) and
Asheim (2001)) on the one hand, and the concept of persistent rationalizability on the other
hand. More precisely, the theorem states that for a given extensive form game (S, u), every
properly rationalizable strategy for (S, u) for types with “non-inceasing type-supports” is a per-
sistently rationalizable strategy for (S, u). The former notion constitutes a refinement of proper
rationalizability, and following Asheim (2001) it can easily be shown that properly rationalizable
strategies for types with non-increasing type supports always exist for every (S, u).

The proof of the theorem not only establishes the existence of persistently rationalizable
types for all (S, u), it also shows that we can always find a persistently rationalizability type
with finite complexity for each player . The reason is that the proof chooses for every (S, u) a
properly rationalizable type with “non-increasing type supports” (this can always be found) and
then explicitly transforms this type into a persistently rationalizable type for (S, u) with finite
complexity. As such, the notion of minimal rationalizability for (S, u) is always well-defined,
and every minimally rationalizable type will always have a finite complexity. In the remainder
of this paper, we shall apply the concepts of persistent and minimal rationalizability to several
special classes of games, and investigate their relationships to existing rationality concepts.

5. Games with Perfect Information

In this section we show that in generic games with perfect information, every player has a
unique persistently rationalizable strategy, namely his backward induction strategy. A game
with perfect information (S, u) is said to be in generic position if for every player i and every
pair z1, z2 of different terminal nodes, we have that ui(z1) 6= ui(z2). For such a game, let
a∗(hi) ∈ A(hi) denote the unique backward induction action at information set hi. For every
player i, there is a unique strategy s∗i with s

∗
i (hi) = a

∗(hi) for all hi ∈ Hi(s∗i ), to which we shall
refer as the backward induction strategy.

Theorem 5.1. Let (S, u) be a game with perfect information in generic position. Then, a
strategy is persistently rationalizable for (S, u) if and only if it is a backward induction strategy
for (S, u).
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Proof. Let (S, u) be a game with perfect information in generic position. For every player i
and every information set hi, let S

∗
i (hi) denote the set of strategies si such that (1) at every

information set h̃i ∈ Hi preceding hi the strategy si prescribes the unique action at h̃i which
leads to hi, and (2) at every information set h̃i following hi which is not avoided by si, the
strategy si prescribes the unique backward induction action a

∗(hi). We refer to S∗i (hi) as the
set of player i backward induction strategies conditional on hi in the game (S, u). Let T ∗i (hi) be
the set of player i types ti such that ti’s most preferred strategies at hi all belong to S

∗
i (hi). For

a given type ti, let µi(ti, hi| Tj) be the marginal probability distribution of µi(ti, hi) on player
j’s types. Let T∞i (u) be the set of player i types that respect common belief about the event
that types initially believe u. We prove the following claim.
Claim. Let ti be persistently rationalizable and ti ∈ T∞i (u). Then, for every information set
hi ∈ H∗i , every opponent j and information set hj following hi, it holds that suppµi(ti, hi|
Tj) ⊆ T ∗j (hj).
Proof of claim. By induction on the number of decision nodes following hj . Suppose first that hj
is not followed by any decision node. Let tj ∈ suppµi(ti, hi| Tj). Then, since ti satisfies proper
belief revision, there is some t0j ∈ suppµi(ti, h0| Tj) such that t0j and tj have at hj the same
preference relation over strategies in Sj(hi). Since hi precedes hj , we have that Sj(hj) ⊆ Sj(hi),
and hence t0j and tj have the same preference relation over strategies in Sj(hj). Since ti ∈ T∞i (u)
we have that ti initially believes u, and hence uj(t

0
j , hj) = uj |Z(hj). Since hj is not followed by

any decision node, it must hold that t0j at hj strictly prefers the backward induction action. But

then, since tj at hj has the same preference relation over actions at hj as t
0
j , it must hold that

also tj at hj strictly prefers the backward induction action, and hence tj ∈ T ∗j (hj).We thus have
shown that suppµi(ti, hi| Tj) ⊆ T ∗j (hj).

Now, suppose that the claim holds for every ti, hi and hj where hj is followed by at most
K − 1 decision nodes. We prove the claim for information sets hj followed by K decision
nodes. Choose hi and hj such that hj follows hi and hj is followed by K decision nodes. Let
tj ∈ suppµi(ti, hi| Tj). We show that tj ∈ T ∗j (hj). Since ti is persistently rationalizable and
ti ∈ T∞i (u), we have that tj is persistently rationalizable and tj ∈ T∞j (u). Let player k 6= j and
information set hk ∈ Hk be such that hk follows hj . Since hk is followed by at mostK−1 decision
nodes, we may apply the induction assumption to tj , hj and hk and conclude that suppµj(tj , hj |
Tk) ⊆ T ∗k (hk). Hence, for all players k 6= j and all information sets hk following hj we have that
suppµj(tj , hj | Tk) ⊆ T ∗k (hk). Since tj is persistently rationalizable, we have in particular that tj
believes in sequential rationality. By the above, we may thus conclude that tj believes at hj that
at all future information sets the corresponding player chooses the backward induction action.

Since tj ∈ suppµi(ti, hi| Tj) and ti satisfies proper belief revision, there is some t0j ∈
suppµi(ti, h0| Tj) such that t0j and tj hold the same preference relation over strategies in
Sj(hi) ⊇ Sj(hj). As ti initially believes u, it must hold that uj(t

0
j , hj) = uj |Z(hj). Moreover,

since t0j ∈ suppµi(ti, h0| Tj) we may apply the same reasoning as above to conclude that t0j is
persistently rationalizable and t0j ∈ T∞j (u). But then, by copying the argument above for tj , this
leads to the conclusion that t0j believes at hj that at all future information sets the corresponding

player chooses the backward induction action. Together with the fact that uj(t
0
j , hj) = uj |Z(hj),

this implies that t0j ’s most preferred strategies at hj are backward induction strategies conditional

14



on hj .
Above we have seen that t0j and tj hold the same preference relation over strategies in Sj(hj),

and hence tj ’s most preferred strategies at hj are backward induction strategies conditional on
hj , that is, tj ∈ T ∗j (hj). This completes the proof of the claim.

Now, choose an arbitrary strategy si that is persistently rationalizable for (S, u). Then,
there must be a type ti which is persistently rationalizable for (S, u) such that si is sequentially
rational for ti. By definition, ti ∈ T∞i (u), and hence, by the claim, it follows that for every infor-
mation set hi ∈ H∗i , every opponent j and information set hj following hi, we have suppµi(ti, hi|
Tj) ⊆ T ∗j (hj). Since ti believes in sequential rationality, we may conclude that ti believes at
every information set hi that at all future information sets the corresponding player chooses his
backward induction action. By assumption, ui(ti, hi) = ui|Z(hi) for all information sets hi, and
hence ti prefers at every information set hi a backward induction strategy conditional on hi.
Since si is sequentially rational for ti, it must be that si is player i’s unique backward induction
strategy in (S, u). This completes the proof of this theorem. ¥

In view of Theorem 5.1, the concept of persistent rationalizability may be employed as an al-
ternative epistemic foundation for backward induction in games with perfect information. There
is an important difference with other foundations proposed in the literature, such as Aumann
(1995), Samet (1996), Balkenborg and Winter (1997), Stalnaker (1998) and Asheim (2000), as
persistent rationalizability allows players to revise their conjectures about the opponents’ utility
functions during the game, whereas the latter foundations do not. In turn, persistent rationaliz-
ability requires players to interpret “unexpected moves” (in this case, moves that deviate from
the backward induction play) always as being in accordance with common belief of rationality.

6. Simultaneous Move Games

In Section 4, we have defined minimally rationalizable types for (S, u) as those persistently
rationalizable types for (S, u) that have minimal complexity. Recall that the complexity of
a type ti denotes the total number of types that ti, directly or indirectly, uses in his theory
about the opponents’ beliefs. In this section, we show that the minimal complexity criterion has
non-trivial implications even for the class of simultaneous move games in which belief revision
plays no role. In these games, persistent rationalizability is equivalent to rationalizability, as
defined in Bernheim (1984) and Pearce (1984). Together with the restriction that types hold
utility functions as specified by u and that there be common belief about the event that types
initially believe u, the epistemic model of Section 3, when applied to simultaneous move games,
is equivalent to the one used by Tan and Werlang (1988). Minimal rationalizability thus restricts
attention to those rationalizable strategies that can be justified by an epistemic rationalizability
theory (cf. Tan and Werlang (1988)) which involves as few types as possible. We shall prove
that for the case of two-player simultaneous move games, this concept is equivalent to the notion
of Nash equilibrium strategies.

In order to formalize this result, we first need the definition of a Nash equilibrium strategy.
For a given two-person simultaneous move game, a first-order belief about player i is a probability
distribution µi ∈ ∆(Si), reflecting player j’s belief about player i’s strategy choice. A profile
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(µ1, µ2) of first-order beliefs is a Nash equilibrium if µi(si) > 0 implies that si is a best response
against µj . A strategy si is a Nash equilibrium strategy if there is some Nash equilibrium (µ1, µ2)
such that si is a best response against µj . Since not every rationalizable strategy in a two-player
game is a Nash equilibrium strategy, the following result implies that minimal rationalizability
is indeed stronger than rationalizability in two-player simultaneous move games.

Theorem 6.1. Let (S, u) be a two-player simultaneous move game. Then, si is minimally
rationalizable for (S, u) if and only if si is a Nash equilibrium strategy for (S, u).

Proof. Let si be a Nash equilibrium strategy. Then, there is some Nash equilibrium (µi, µj)
in first-order beliefs such that si is optimal against µj . We may construct two types ti and tj
such that ui(ti, h0) = ui, µi(ti, h0) assigns probability one to tj , µi(ti, h0)(sj , tj) = µj(sj) for all
sj ∈ Sj , and similarly for type tj . Then, by the properties of Nash equilibrium, ti is persistently
rationalizable. Since T∞(ti) = {ti, tj}, the complexity of ti is 2, which is clearly minimal. Hence,
ti is minimally rationalizable. Since si is optimal against µj , it follows that (si, ti) is sequentially
rational, which implies that si is minimally rationalizable for (S, u).

Now, let si be minimally rationalizable. Then, there exists some minimally rationalizable
type ti for this game such that (si, ti) is sequentially rational. We have seen above that every
Nash equilibrium induces a type that is persistently rationalizable for (S, u) with complexity 2.
Since Nash equilibria always exist, we may thus conclude that ti must have complexity 2, that is,
T∞(ti) = {ti, tj} for some tj . Hence, µi(ti, h0) assigns probability one to tj , and µj(tj , h0) assigns
probability one to ti. Let µi be the marginal of µj(tj , h0) on Si, and µj the marginal of µi(ti, h0)
on Sj . Since ti is persistently rationalizable, it follows that (µi, µj) is a Nash equilibrium. Since
(si, ti) is sequentially rational, it follows that si is optimal against µj , and hence si is a Nash
equilibrium strategy. This completes the proof. ¥

The characterization result no longer holds for more than two players. In order to see this,
consider the following three-player simultaneous move game, represented by its normal form.

g d e f

a 3, 3, 0 3, 0, 3 0, 2, 0

b 0, 0, 0 0, 0, 0 0, 2, 0

c 2, 0, 0 2, 0, 0 2, 2, 0

h d e f

a 0, 0, 0 0, 3, 3 0, 2, 0

b 0, 0, 0 3, 3, 0 0, 2, 0

c 2, 0, 0 2, 0, 0 2, 2, 0

i d e f

a 0, 0, 2 0, 0, 2 0, 2, 2

b 0, 0, 2 0, 0, 2 0, 2, 2

c 2, 0, 2 2, 0, 2 2, 2, 2

.

Here, player 1 chooses between a, b and c, player 2 chooses between d, e and f, whereas player 3
chooses between g, h and i.We show that g is a minimally rationalizable strategy for player 3, but
not a Nash equilibrium strategy. Consider types t1, t2, t3 such that µ1(t1, h0) puts probability
one on ((e, t2), (g, t3)), µ2(t2, h0) puts probability one on ((a, t1), (h, t3)) and µ3(t3, h0) puts
probability one on ((a, t1), (e, t2)). Then, it may be verified that t3 is persistently rationalizable
for (S, u). Type t3 has complexity 3, which is the minimum possible complexity, and hence t3
is minimally rationalizable. Since g is sequentially rational for t3, it follows that g is minimally
rationalizable.

Suppose that g would be a Nash equilibrium strategy. Then, there would be a Nash equi-
librium (µ1, µ2, µ3) in first-order beliefs such that g would be optimal against (µ1, µ2). Here,

16



µi ∈ ∆(Si) represents player i’s opponents’ common belief about player i’s strategy choice.
However, g can only be optimal against (µ1, µ2) if µ1(a) > 0 and µ2(e) > 0. Since (µ1, µ2, µ3)
is a Nash equilibrium, this implies that a is optimal against (µ2, µ3) and e is optimal against
(µ1, µ3)̇. This, in turn, implies that µ3(g) ≥ 2

3 and µ3(h) ≥ 2
3 , which is clearly impossible. Hence,

g is not a Nash equilibrium strategy. The difference with minimal rationalizability is that the
concept of Nash equilibrium requires player 3 to believe that players 1 and 2 hold the same
belief about player 3’s strategy choice, whereas minimal rationalizability does not impose such
restriction. Indeed, types t1 and t2 above hold different beliefs about t3’s strategy choice, and
this is what makes g minimally rationalizable.

One direction of Theorem 6.1 remains true, however, if more than two players are allowed.
Namely, in every n-player simultaneous move game, every Nash equilibrium strategy is minimally
rationalizable. The proof is similar to the proof above and is left to the reader.

7. Outside Option Games

In this section, we shall prove that the concept of minimal rationalizability singles out the unique
forward induction outcome in so-called outside option games as defined in van Damme (1989).
An outside option game is a two-player game (S, u) with the following properties:
(1) At the beginning, player 1 may choose an outside option and leave the game or not choose the
outside option and stay in the game; actions that will be denoted by Out and In, respectively.
(2) When taking the outside option, player 1 receives utility u1(Out).
(3) If player 1 does not take the outside option, players 1 and 2 enter a simultaneous move
game with action sets A1 and A2. In this subgame, there is a strict Nash equilibrium (a∗1, a∗2)
which yields player 1 utility u1(a

∗
1, a

∗
2) > u1(Out). All other Nash equilibria (µ1, µ2) in first-order

beliefs yield player 1 an expected utility strictly lower than u1(Out).
In van Damme (1989) it is argued that (In, a∗1) and a∗2 are the unique “forward induction

strategies” in this game. The argument runs as follows. If player 2 observes that player 1 has
not chosen the outside option, he should conclude that player 1 is heading for the only Nash
equilibrium that dominates the outside option for him, that is, (a∗1, a∗2). As such, he should believe
that player 1 will play a∗1, and hence player 2 should respond with a∗2. Player 1, anticipating on
player 2 reasoning in this way, should therefore choose (In, a∗1). In the following theorem, we
prove that this argument is supported by the concept of minimal rationalizability.

Theorem 7.1. Let (S, u) be an outside option game in the sense of van Damme (1989). Then,
the unique minimally rationalizable strategies for (S, u) are the forward induction strategies
(In, a∗1) and a∗2.

Proof. Let h1 and h2 denote the information sets at which players 1 and 2 move in the
simultaneous move game, respectively. We can construct types t∗1 and t∗2 with the following
properties: (1) t∗1 and t∗2 have utility functions u1 and u2 throughout the game, where u1 and u2
are as specified by (S, u), (2) µ1(t∗1, h0) and µ1(t∗1, h1) assign probability one to strategy a∗2 and
type t∗2, and (3) µ2(t∗2, h0) and µ2(t∗2, h2) assign probability one to strategy (In, a∗1) and type t∗1.
Then, it may be verified that t∗1 and t∗2 are persistently rationalizable for (S, u) with complexity
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2, hence minimally rationalizable. Since ((In, a∗1), t∗1) and (a∗2, t∗2) are sequentially rational, it
follows that (In, a∗1) and a∗2 are minimally rationalizable.

Now, let t1 be minimally rationalizable for (S, u). From the above, we must conclude that t1
should have complexity 2, that is, T∞(t1) = {t1, t2} for some t2. Hence, µ1(t1, h0) and µ1(t1, h1)
assign probability one to t2, whereas µ2(t2, h0) and µ2(t2, h2) assign probability one to t1. Since
t1 has utility function u1 throughout the game, it follows, in particular, that t2 believes at h2
that player 1 has utility function u1 at h0 and h1. Moreover, since t2 has utility function u2, it
follows that t1 believes at h1 that player 2 has utility function u2 at h2. Let µ1 be the marginal of
µ2(t2, h2) on player 1’s action set A1 in the simultaneous move game, and let µ2 be the marginal
of µ1(t1, h1) on A2. Since both t1 and t2 believe in sequential rationality, we may conclude that
(µ1, µ2) constitutes a Nash equilibrium in first-order beliefs in the subgame.

Since t2 believes in sequential rationality, we know that µ2(t2, h2) only assigns positive prob-
ability to player 1 strategies (In, a1) that are optimal for t1 at h0. Hence, µ2(t2, h2)(In, a1) > 0
only if (In, a1) is optimal at h0 given µ1(t1, h0). Since t1 satisfies updating consistency, we know
that µ1(t1, h0) = µ1(t1, h1). Recall that we have denoted the marginal of µ1(t1, h1) on A2 by
µ2, and the marginal of µ2(t2, h2) on A1 by µ1. It thus follows that µ1(a1) > 0 only if (In, a1)
is optimal at h0 given µ2. In particular, we have that µ1(a1) > 0 only if u1(a1, µ2) > u1(Out),
where u1(a1, µ2) denotes the expected utility of playing a1 when having belief µ2 about player
2’s strategy choice.

In summary, we thus have that (µ1, µ2) must constitute a Nash equilibrium, and µ1(a1) > 0
only if u1(a1, µ2) > u1(Out). However, by the definition of an outside option game, there is only
one Nash equilibrium (µ1, µ2) with this property, namely (a

∗
1, a

∗
2). Hence, we may conclude that

µ1(t1, h1) puts probability one on a
∗
2, and µ2(t2, h2) puts probability one on (In, a

∗
1). By updating

consistency, we then have that µ1(t1, h0) puts probability one on a
∗
2. The unique strategy that is

sequentially rational for t1 is (In, a
∗
1), and hence, (In, a

∗
1) is the unique minimally rationalizable

strategy for player 1 in (S, u).
Now, suppose that t2 is minimally rationalizable for (S, u). Then, t2 must have complexity

2, which implies that T∞(t2) = {t1, t2} for some t1. In particular, µ2(t2, h0) and µ2(t2, h2) must
assign probability one to t1. Since t2 initially believes u, it follows that u1(t1, h0) = u1 and
u1(t1, h1) = u1|Z(h1). Together with the observation that t1 must be persistently rationalizable
and must respect common belief about the event that types initially believe u, this implies that
t1 is persistently rationalizable for (S, u). Since T∞(t2) = {t1, t2}, we have that T∞(t1) = {t1, t2}
as well, and hence we may conclude that t1 is minimally rationalizable for (S, u). Above we have
already seen that in such a case, (In, a∗1) is the unique strategy which is sequentially rational
for t1. Since t2 believes in sequential rationality, and µ2(t2, h2) assigns probability one to t1, it
follows that µ2(t2, h2) must assign probability one to the strategy (In, a

∗
1). But then, a

∗
2 is the

only strategy which is sequentially rational for t2. Hence, a
∗
2 is the only minimally rationalizable

strategy for player 2 in (S, u). This completes the proof. ¥

8. Relation to Other Concepts

The purpose of this section is to compare persistent and minimal rationalizability with the
concepts of weak sequential rationalizability (Ben-Porath (1997)) and extensive form rational-
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izability (Pearce (1984) and Battigalli (1997)).

8.1. Weak Sequential Rationalizability

Formally speaking, the concept of weak sequential rationalizability as we use it, is an extension
of the notion of common certainty of rationality at the beginning of the game, defined in Ben-
Porath (1997) for the class of games with perfect information, to the general class of extensive
form games. We first formally define weak sequential rationalizability within our epistemic
framework. Let S be an extensive form structure and u = (ui)i∈I a profile of utility functions.
In the concept of weak sequential rationalizability, it is assumed that there be common belief
about u at every information set, and not only at the beginning of the game. By the latter,
we formally mean that every type respects common belief about the event that all types ti, at
every information set hi ∈ H∗i , hold the utility function ui(ti, hi) = ui|Z(hi). Moreover, there is
initial common belief about the event that types initially believe that players act sequentially
rationally. In particular, a type is allowed to believe that an opponent is no longer acting
sequentially rationally whenever this type finds out that the opponent has made a move that
contradicts his initial beliefs. In order to state this property formally, we need the following
definitions.

For a given type ti and opponent j, let

T 1j (ti, h0) = suppµi(ti, h0| Tj)

be the set of player j types that ti assigns positive probability to at the beginning of the game.
Let T 1i (ti, h0) = {ti}, and let

T 1(ti, h0) = ∪j∈IT 1j (ti, h0).
For all k ≥ 2, let

T k(ti, h0) = ∪t∈Tk−1(ti,h0)T 1(t, h0).
Define T∞(ti, h0) = ∪k∈NT k(ti, h0). For a given event T̃ ⊆ ×j∈ITj , we say that ti respects initial
common belief about T̃ if T∞(ti, h0) ⊆ T̃ .

For a given player i, recall that (S−i × T−i)sr denotes the set of sequentially rational oppo-
nents’ strategy-type pairs. Let T sri (h0) be the set of player i types ti that initially believe in
sequential rationality, that is, with suppµi(ti, h0) ⊆ (S−i × T−i)sr.

Definition 8.1. A type ti is said to be weakly sequentially rationalizable for the game (S, u)
if (1) ti holds utility function ui, (2) respects common belief about u at every information set,
and (3) respects initial common belief about the event that types initially believe in sequential
rationality. A strategy si is called weakly sequentially rationalizable for (S, u) if there is a weakly
sequentially rationalizable type ti for (S, u) such that (si, ti) is sequentially rational.

We shall now prove that for every extensive form game, persistently rationalizable strategies
are always weakly sequentially rationalizable. The other direction is not true, since it is well-
known that weakly sequentially rationalizable strategies in a game with perfect information need
not be backward induction strategies, while we have seen that persistent rationalizability always
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yields backward induction strategies in such games. One may even find examples of games with
perfect information in which a profile of weakly sequentially rationalizable strategies need not
lead to the backward induction outcome (see for instance Figure 1 in Ben-Porath (1997)).

Theorem 8.2. Let S be an extensive form structure and u a profile of utility functions. Then,
every persistently rationalizable strategy for (S, u) is weakly sequentially rationalizable for (S, u).
Proof. Let si be persistently rationalizable for (S, u). Then, there is some type ti that is
persistently rationalizable for (S, u) such that (si, ti) is sequentially rational. By definition, ti
respects initial common belief about the event that types initially believe in sequential rationality.
However, ti need not respect common belief about u at every information set since ti may revise
his belief about the opponents’ utility functions as the game proceeds. However, the type ti may
be transformed into a type t̃i such that (1) t̃i respects common belief about u at all information
sets, and (2) at every information set hi, the marginal probability distribution of µi(t̃i, hi) on
the opponents’ strategies coincides with the corresponding marginal probability distribution of
µi(ti, hi). Then, by construction, t̃i has utility function ui, respects initial common belief about
the event that types initially believe in sequential rationality, and respects common belief about u
at all information sets. Hence, t̃i is weakly sequentially rationalizable for (S, u). Moreover, since
the beliefs of t̃i about the opponents’ strategies coincide with ti’s beliefs at every information
set hi, and since (si, ti) is sequentially rational, it follows that (si, t̃i) is sequentially rational.
We may thus conclude that si is weakly sequentially rationalizable for (S, u), which completes
the proof. ¥

8.2. Extensive Form Rationalizability

The concept of extensive form rationalizability has been introduced in Pearce (1984) by means
of an iterated elimination procedure. Later, Battigalli (1997) provided an alternative procedure
that always leads to the same sets of strategies, whereas Battigalli and Siniscalchi (2002) give
an epistemic foundation for the concept of extensive form rationalizability. Instead of delivering
a precise definition of extensive form rationalizability, we shall restrict ourselves to a verbal
expression of Battigalli and Siniscalchi’s epistemic characterization in order to save space. This
informal desciption will then be sufficient to prove that there is no general logical relationship
between persistent rationalizability and extensive form rationalizability, at least in terms of
strategy choices.

In the concept of extensive form rationalizability, the players’ utility functions are never
to be questioned during the game. Battigalli and Siniscalchi (2002) show that extensive form
rationalizability can be characterized by the requirement that a player, at each of his information
sets, should seek for the “highest possible degree of interactive belief in sequential rationality”
that is still compatible with the event of reaching this information set, and should base his
current and future beliefs upon this degree until it is contradicted at some later information set.
As to illustrate the concept, consider the perfect information game in Figure 2, which is taken
from Reny (1992b).

Suppose that player 2 observes that player 1 has chosen r1 at his first move. Among the
feasible strategies (r1, r3) and (r1, d3), only (r1, r3) can possibly be a sequentially rational strat-
egy for player 1, given the restriction that player 2 should still believe at this point that player
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1’s utility function is as depicted at the terminal nodes. As such, extensive form rationaliz-
ability requires player 2 to believe that player 1 has chosen (r1, r3) after observing r1. Given
these beliefs, player 2 should choose (r2, d4). If player 1 believes, at the beginning, that player 2
chooses (r2, d4), player 1 should choose d1. Hence, d1 and (r2, d4) are the unique extensive form
rationalizable strategies in this game. Since the unique backward induction strategies are d1
and d2, we know by Theorem 5.1 that d1 and d2 are the unique persistently rationalizable (and
hence unique minimally rationalizable) strategies in this game. We may thus conclude that a
minimally rationalizable strategy need not be extensive form rationalizable, and an extensive
form rationalizable strategy need not be persistently rationalizable.

In the perfect information game above, we see however that the concepts of extensive form
rationalizability and persistent (minimal) rationalizability lead to the same unique outcome:
the backward induction outcome (2, 0). This is a structural phenomenon for perfect information
games, since Battigalli (1997) has shown that in a generic game with perfect information, every
profile of extensive form rationalizable strategies leads to the backward induction outcome.

There are other games, however, where minimal rationalizability leads to outcomes that
cannot be reached by extensive form rationalizability. Consider, for instance, the Burning-
Money game in Figure 3, which is due to van Damme (1989) and Ben-Porath and Dekel (1992).
In this game, player 1 may choose between burning a dollar (burn) or not burning a dollar
(not) at round 1, after which players 1 and 2 face a simultaneous move game at round 2. We
show that (not, e) and (c, g) are the unique extensive from rationalizable strategies, leading
to player 1’s most preferred outcome (3, 1). Suppose that player 2 observes burn. Among the
feasible strategies (burn, a) and (burn, b), only (burn, a) can possibly be sequentially rational,
and hence extensive form rationalizability imposes that player 2 should believe that player 1
chooses (burn, a) after observing burn. As such, player 2 should choose c after observing burn.
Player 1, anticipating on player 2 choosing c after burn, can thus guarantee 2 by choosing
(burn, a). Player 2, realizing this, should thus believe that player 1 is choosing (not, e) after
observing not, since (not, f) cannot give player 1 more than 2. Hence, player 2 should choose
g after not, which makes player 1 choosing (not, e) at the beginning of the game. The only
strategies that remain are thus (not, e) for player 1 and (c, g) for player 2.5

We will show, however, that minimal (and hence persistent) rationalizability may lead to

5Shimoji (2002) shows that in the more general class of Burning-Money games discussed in Ben-Porath and
Dekel (1992), extensive form rationalizability always leads to the “forward induction outcome”, that is, player 1’s
most preferred outcome in the game.
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outcomes other than (3, 1). As a preparatory step, we first prove that any persistently rational-
izable type in (S, u) should have a complexity strictly greater than 2. Assume, on the contrary,
that t1 would be a persistently rationalizable type in (S, u) with complexity 2. Then, there is
some type t2 such that T

∞(t1) = {t1, t2}, that is, t1 believes at h0 that player 2 has type t2,
and that t2 believes at h2 and h4 that player 1 has type t1. In particular, t2 believes at h2 and
h4 that player 1 has utility function u1 as specified at the terminal nodes in Figure 3. Since
t2 should believe at h2 that t1 chooses sequentially rationally, t2 should believe at h2 that t1
chooses (burn, a). Accordingly, t1 should believe at h0 that t1 chooses c after burn, and hence
t1’s expected utility by choosing (burn, a) is 2. Since t2 should believe at h4 that t1 chooses
sequentially rationally, t2 should believe at h4 that t1 chooses (not, e). Hence, t1 should believe
that t2 chooses g after not, and hence t1’s expected utility by choosing (not, a) is 3, which is
greater than his expected utility by choosing (burn, a) or (burn, b). Therefore, t2 cannot believe
at h2 that t1 chooses sequentially rationally, and hence t1 cannot be persistently rationalizable
in (S, u) while having complexity 2. Similarly, one may show that no persistently rationalizable
type t2 in (S, u) can have complexity 2.

Now, let the utility functions u1 and u2 be as specified in Figure 3, and let ũ1 be the utility
function that coincides with u1 at Z(h3), and for which ũ1(z) = u1(z)− 2 for all z ∈ Z(h1). Let
the types t1, t̃1 and t2 be such that:
(1) t1 has utility function u1 and µ1(t1, h0), µ1(t1, h1) and µ1(t1, h3) assign probability one to
((c, h), t2);
(2) t̃1 has utility function ũ1 and µ1(t1, h0), µ1(t1, h1) and µ1(t1, h3) assign probability one to
((c, h), t2);
(3) t2 has utility function u2, µ2(t2, h0) and µ2(t2, h2) assign probability one to ((burn, a), t1),
and µ2(t2, h4) assigns probability one to ((not, f), t̃1).

It may be verified that t1 and t2 are persistently rationalizable for (S, u). Since both have
complexity 3, it follows that both t1 and t2 are minimally rationalizable for (S, u). The strategies
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(burn, a) and (c, h) are sequentially rational for t1 and t2, and hence (burn, a) and (c, h) are
minimally rationalizable for (S, u), leading to the outcome (2, 1). We may thus conclude that
not every minimally rationalizable outcome is extensive form rationalizable in this game.

There are also games in which not every extensive form rationalizable outcome is minimally
rationalizable. Consider the following two-player simultaneous move game (see Perea (2001),
p.204) represented by its normal form.

d e f

a 3, 3 0, 0 3, 2

b 0, 0 3, 3 3, 2

c 2, 0 2, 0 2, 2

In this game (S, u), every strategy is rationalizable. Since extensive form rationalizability coin-
cides with rationalizability in simultaneous move games, it follows that all strategies are extensive
form rationalizable. However, strategy c is not a Nash equilibrium strategy. Suppose, on the
contrary, that c were a Nash equilibrium strategy. Then, there should be some Nash equilib-
rium (µ1, µ2) ∈ ∆(S1) ×∆(S2) in first-order beliefs such that c is a best response to µ2. This
implies that µ2(d) > 0 and µ2(e) > 0. Hence, both d and e should be a best response to µ1,
which is impossible. Consequently, c cannot be a Nash equilibrium strategy. Since we know
from Theorem 6.1 that the set of minimally rationalizable strategies coincides with the set of
Nash equilibrium strategies in every two-player simultaneous move game, it follows that c is not
minimally rationalizable. In particular, the outcomes (c, d), (c, e) and (c, f) are extensive form
rationalizable but not minimally rationalizable.

At this stage, it remains an open question whether in any given game, every extensive form
rationalizable outcome is a persistently rationalizable outcome. Up to this point, I have not
been able to provide a counterexample, nor to produce a general proof.
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