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Abstract

Many studies have found that discounting is hyperbolic rather than constant. Hyperbolic

discounting is becoming increasingly popular in economic applications. Most studies that

provide evidence in favor of hyperbolic discounting either are merely qualitative or they

depend on assumptions about, or parametric fittings of, utility functions. This paper

provides a quantitative measure for the degree of deviation from stationarity that can

overcome the problems mentioned. This measure, the hyperbolic factor, can easily be

calculated from data and does not require knowledge of the utility function. Moreover,

it provides simple preference foundations of the most popular discount functions. Thus,

the hyperbolic factor provides an easy tool for theoretical preference foundations, critical

empirical tests, and quantitative measurements of hyperbolic discounting.
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1 Introduction

Since Samuelson’s (1937) introduction of constant discounted utility, this model has been

widely accepted as a normative and descriptive model of intertemporal choice. According

to general, possibly non-constant, discounted utility, a stream of outcomes is evaluated by

first determining the utility of every outcome, i.e. the value of the outcome would it have

been received immediately, and then multiplying each utility by a discount factor that

corresponds to the time-point of receipt. Constant discounting implies that a preference

between two streams of outcomes is not affected if all outcomes in both streams are delayed

by the same time interval.

Recently, there has been an increasing number of empirical studies suggesting that

discounting is not constant, including Benzion, Rapoport, and Yagil (1989), Bleichrodt and

Johannesson (2001), Cairns and van der Pol (2000), Green, Fristoe, and Myerson (1994),

Kirby and Marakovic (1995), Mazur (1987, 2001), Read and Read (2004), Rodriguez and

Logue (1988), and Thaler (1981). If an early reward and another, later and larger reward

are perceived as being equivalent, then delaying both rewards equally will, for most people

and animals, result in a strict preference for the later and larger reward, revealing decreasing

impatience.

As a consequence of decreasing impatience, individuals’ preferences can be dynamically

inconsistent. Consider a person who prefers to receive two apples in one year plus one day

rather than one apple in one year, but prefers to receive one apple today rather than two

apples tomorrow (Thaler, 1981). This person is decreasingly impatient. If his preferences

between ‘today’ and ‘tomorrow’ remain the same for one year, then in one year from
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now, he will prefer to receive one apple on that day rather than two apples one day later.

Thus, his preferences between the two options will have changed over time. In this sense

decreasing impatience may be viewed as reflecting an irrationality.

An increasingly popular model that captures decreasing impatience is hyperbolic dis-

counting (Loewenstein and Prelec, 1992; Harvey, 1986; Mazur, 1987). This model has

been used in many fields (Akerlof, 2002; Harris and Laibson, 2001; Krusell and Smith,

2003; Laibson, 1997; Luttmer and Mariotti, 2003; O’Donoghue and Rabin, 1999; Thaler

and Benartzi, 2004). Most studies that provide empirical evidence in favor of hyperbolic

discounting assume a particular, often linear, utility function or first need to parametrically

fit utility. Thus, the quantitative evidence in favor of hyperbolic discounting is confounded

by assumptions about and parametric fittings of utility. Most qualitative studies in favor

of hyperbolic discounting only reject constant discounting and provide evidence in favor of

general decreasing impatience, not of hyperbolic discounting in particular.

This paper proposes a simple method to quantify the degree of deviation from station-

arity that does not need assumptions about or estimations of utility. That is, a measure of

decreasing impatience is introduced, the hyperbolic factor, which can easily be calculated

from data without knowledge of utility.

One approach to construct a measure of decreasing impatience would be to find out how

impatience changes over time. This would require knowledge of impatience at each time-

point, i.e. knowledge of the discount function. Then, to determine this discount function,

we would also need to know the utility function. It is, indeed, commonly believed in the

field that such a procedure should be followed. Surprisingly, as this paper shows, we do not

need to go through all these steps. In fact, measuring the degree of decreasing impatience
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is even easier than measuring the discount function.

Our method of measurement is similar to the utility measurement method of Wakker

and Deneffe (1996). There, choices between gambles under uncertainty are constructed

in such a manner that subjective probabilities or decision weights cancel from the equa-

tions, so that utilities can be measured without the need to measure subjective or weighted

probabilities. Similarly, this paper constructs choices between delayed outcomes in such

a manner that the absolute level of discounting and the utilities of outcomes cancel from

the equations, so that we can measure variations in impatience and, thus, degrees of irra-

tionality, without knowledge of utility or the absolute level of discounting.

As will be shown, the hyperbolic factor is a useful tool in the axiomatization of the var-

ious discount functions that exist today. A constant positive hyperbolic factor corresponds

to generalized hyperbolic discounting (Loewenstein and Prelec, 1992). Quasi-hyperbolic

discounting holds if and only if the hyperbolic factor is equal to zero for all points in time

except the present (Phelps and Pollak, 1968). If, in addition, the hyperbolic factor is zero

in the present, then constant discounting holds. Thus, estimating the hyperbolic factor and

testing whether it is constant will be useful in testing which of the currently used models

fit empirical data best and in testing whether these existing models are appropriate at all

or whether different models need to be developed.

Prelec (2004) introduced another measure of decreasing impatience. Relative to the

hyperbolic factor, his measure is more complicated: it uses the second derivative of the

logarithm of the discount function, which can only be obtained after complex measurements

of discounting and utility. Moreover, his measure is not constant under hyperbolic discount-

ing. The difference between Prelec’s measure and the hyperbolic factor is analogous to the
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difference between the measure of absolute and that of relative risk aversion (Mas-Colell,

Whinston, and Green, 1995). While the former is most useful for CARA-utility (constant

absolute risk aversion), the latter is most useful for CRRA-utility (constant relative risk

aversion). Similarly, while the hyperbolic factor is most useful for hyperbolic discounting,

Prelec’s measure will be more useful for other discount functions. Finally, the hyperbolic

factor is model-free, i.e. it can also be used as a measure of decreasing impatience when

preferences cannot be represented by discounted utility. This is not the case for Prelec’s

measure, which essentially needs a discount function.

Section 2 defines the hyperbolic factor. This factor is applied to discounted utility in

Section 3. All proofs are in the Appendix.

2 The Hyperbolic Factor Defined

Let X = Rm be a set of outcomes1 and T = R+ a set of time-points. A timed outcome

(t, µ) yields outcome µ at time t and nothing (= 0) at all other points in time, where

t = 0 corresponds to ‘today’. We examine preferences < over timed outcomes. The

relations 4,Â,≺,∼ are as usual. Preferences over outcomes are derived from preferences

over timed outcomes consumed today, i.e. χ < µ if and only if (0, χ) < (0, µ).

We assume that < is a weak order, i.e < is complete ((s, µ) < (t, χ) or (t, χ) < (s, µ) for

all µ, χ ∈ X and s, t ∈ T , possibly both) and transitive. Preferences are monotonic

if χ < µ implies (t, χ) < (t, µ) for every t ∈ T , and χ Â µ implies (t, χ) Â (t, µ)

1 All results in this paper remain valid if X is a connected topological space containing a reference outcome

‘nothing.’ X can, for instance, be any convex subset of Rm containing zero, or a set of non-quantified

health states.
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for every t ∈ T . Preferences are impatient if for every s < t, χ Â 0 implies (s, χ) Â

(t, χ) and χ ≺ 0 implies (s, χ) ≺ (t, χ). Preferences are continuous if for every (t, χ)

the sets {(s, µ) ∈ T × X | (s, µ) < (t, χ)} and {(s, µ) ∈ T × X | (s, µ) 4 (t, χ)} are closed.

Throughout this paper we assume that preferences constitute a continuous, monotonic,

and impatient weak order.

Consider two equivalent timed outcomes (s, µ) ∼ (t, χ), with s < t. Then we have

either χ Â µ Â 0 or χ ≺ µ ≺ 0 (µ is ‘moderate’ and χ is ‘extreme’). If the outcome µ

is delayed by an interval τ, then stationarity implies that the outcome χ should also be

delayed by τ in order to maintain indifference. Thus, under stationarity (s, µ) ∼ (t, χ)

implies (s + τ, µ) ∼ (t + τ, χ). Stationarity reflects constant impatience.

The preference relation < exhibits decreasing impatience if for all s < t, τ ∈ T , (i)

χ Â µ Â 0 and (s, µ) ∼ (t, χ) imply (t + τ, χ) < (s + τ, µ), and (ii) χ ≺ µ ≺ 0 and

(s, µ) ∼ (t, χ) imply (t + τ, χ) 4 (s + τ, µ); increasing impatience holds if the implied

preferences are always the reverse. Thus, with decreasing impatience, when we consider

two equivalent timed outcomes, then delaying both outcomes equally will result in less

distinction between the time-points, and, thus, more preference for the timed outcome

with the preferred outcome. In this sense, decreasing impatience reflects that a time

difference becomes decreasingly important as it lies farther in the future. Assume another

preference relation <∗, which also is a continuous, monotonic and impatient weak order.

Preferences <∗ exhibit more decreasing impatience than < if for all s < t, τ, σ ∈ T and

µ � χ, (i) χ∗ Â∗ µ∗ Â∗ 0, (s, µ) ∼ (t, χ), (s+σ, µ) ∼ (t+ τ, χ), and (s, µ∗) ∼∗ (t, χ∗) imply

(t + τ, χ∗) <∗ (s + σ, µ∗), and (ii) χ∗ ≺∗ µ∗ ≺∗ 0, (s, µ) ∼ (t, χ), (s + σ, µ) ∼ (t + τ, χ), and

(s, µ∗) ∼∗ (t, χ∗) imply (t + τ, χ∗) 4∗ (s + σ, µ∗) (Prelec, 2004).
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Consider again two equivalent timed outcomes (s, µ) ∼ (t, χ) with s < t. Assume that

(s+σ, µ) ∼ (t+τ, χ). Decreasing (increasing) impatience implies that τ−σ > 0 (τ−σ < 0).

An obvious measure of decreasing impatience is, therefore, τ −σ. This measure τ −σ, how-

ever, will depend on s, t, σ, µ, and χ, and will be hard to compare across different outcomes

and time-points. The main purpose of this paper is to propose a transformation of this

measure that is better suited as a measure of impatience, and that can be compared more

easily across different outcomes and time-points. This proposed measure, the hyperbolic

factor, is defined next. It is just as easily observable from preferences as τ−σ itself. Unlike

τ − σ, however, it will be constant, i.e. independent of s, t, σ, µ and χ, for all hyperbolic

discounting models currently used in the literature, as we will see in Section 3. Outcomes

µ, χ ∈ X and time-points s, t, σ, τ ∈ T , with s < t, τ > 0, form an indifference pair if

(s, µ) ∼ (t, χ) and (s + σ, µ) ∼ (t + τ, χ). (1)

Definition 2.1

For every indifference pair as in eq. 1 the hyperbolic factor is defined as

τ − σ

tσ − sτ
.

For general preferences, a hyperbolic factor may not always be defined for every outcome

χ and all s < t and τ > 0. For instance, there may be no µ and σ that satisfy eq. 1. Our

assumptions about preferences imply that such a case can never arise, so that a µ and σ

as described can always be found. This claim is formalized in the next theorem.

Theorem 2.2 For every χ � 0, s < t, and τ > 0, there are a µ, and a unique σ such that

an indifference pair as in eq. 1 results.
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Now we can define the function H for every χ � 0, s < t, and τ > 0, as

H(s, t, χ, τ) =
τ − σ

tσ − sτ
,

where σ is such that together with a µ and the arguments of H, it yields an indifference

pair as in eq. 1. The function H gives the hyperbolic factors. In general, H need not

always be regular, i.e. H is infinite if tσ = sτ, and negative in spite of strongly decreasing

impatience if tσ < sτ. Yet, as we will see later, for all discounted utility models popular in

the literature, regularity holds, i.e. for every indifference pair as in eq. 1 we have tσ > sτ .

Note that for every indifference pair, a hyperbolic factor can be calculated. From n

indifferences as in eq. 1 with varying time-points,
(

n
2

)
/2 hyperbolic factors can be calcu-

lated. Non-negative hyperbolic factors correspond to decreasing impatience. We will see in

Section 3 that hyperbolic discounting induces non-negative hyperbolic factors, and, thus,

decreasing impatience.

Theorem 2.3 Let regularity hold. Preferences < exhibit decreasing impatience if and only

if H ≥ 0. Preferences < exhibit increasing impatience if and only if H ≤ 0.

The hyperbolic factor also serves as a measure of decreasing impatience, as shown in the

next theorem. Thus, it properly captures Prelec’s (2004) relative decreasing impatience.

When we consider another preference relation <∗, then it is assumed that <∗ is a contin-

uous, monotonic and impatient weak order, and that the corresponding hyperbolic factors

are given by H∗(s, t, χ, τ).

Theorem 2.4 Let regularity hold. Preferences <∗ exhibit more decreasing impatience than

< if and only if H∗(s, t, χ∗, τ) ≥ H(s, t, χ, τ) for all s, t, τ, χ, χ∗.
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Thus, we have shown that the hyperbolic factor is an appropriate model-free measure

of decreasing impatience that can easily be obtained from an indifference pair.

3 The Hyperbolic Factor and Discounted Utility

Discounted utility holds if there exist a discount function φ and a utility function u such

that preferences < can be represented by

DU(t, µ) = φ(t)u(µ),

where φ is continuous and strictly decreasing, φ(0) = 1, φ(t) > 0 for every t, and u is

continuous, u(0) = 0, and there is an outcome χ ∈ X with u(χ) 6= 0. Fishburn and

Rubinstein (1982) characterized discounted utility. In this section we will assume that

discounted utility holds. Thus, preferences still constitute a continuous, monotonic and

impatient weak order as in Section 2. We will not assume regularity, but instead derive it

later from other assumptions.

Under discounted utility, the hyperbolic factor is independent of the outcomes, as the

following theorem shows.

Theorem 3.1 Let discounted utility hold. Then H(s, t, χ, τ) is independent of χ.

Two decision-makers with different discount functions φ and φ∗ that are related by a

power transformation φ∗(t) = [φ(t)]c have equal hyperbolic factors, as stated in Observa-

tion 3.2. Thus, in order to measure deviations from stationarity, we do not even need to

know how much people discount in an absolute sense. This observation underlies the pos-

sibility to analyze decreasing impatience without a need to measure the discount function

or utility.
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Observation 3.2 Let discounted utility hold. Consider two discount functions φ and

φ∗ with corresponding H and H∗. If there is a c ∈ R such that φ∗(t) = [φ(t)]c then

H∗(s, t, χ∗, τ) = H(s, t, χ, τ) for every s, t, τ, χ, χ∗.

3.1 Constant Discounting

For a long time, constant discounting has been a traditional assumption in economics.

Preferences satisfy constant discounting if there is a constant discount factor δ such that

φ(t) = δt for every t. Constant discounting is equivalent to the hyperbolic factor always

being zero.

Theorem 3.3 The following two statements are equivalent under discounted utility.

(i) Preferences < satisfy constant discounting.

(ii) H(s, t, χ, τ) = 0 for all s, t, χ, τ.

3.2 Generalized Hyperbolic Discounting

Following up on the empirical studies that found violations of stationarity, Loewenstein

and Prelec (1992) introduced the generalized hyperbolic discount function, which is defined

by

φ(t) = (1 + ht)−r/h,

with h > 0, r > 0. Generalized hyperbolic discounting is equivalent to the hyperbolic factor

being a positive constant.

Theorem 3.4 The following two statements are equivalent under discounted utility.
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(i) Preferences < satisfy generalized hyperbolic discounting φ(t) = (1 + ht)−r/h with para-

meter h > 0.

(ii) There is a constant h > 0 such that H(s, t, χ, τ) = h for all s, t, χ, τ.

Mazur (1987) tested a necessary condition for hyperbolic discounting that also did not

require knowledge of utility. We provide a testable condition that is not only necessary,

but also sufficient for hyperbolic discounting, as Theorem 3.4 shows.

3.3 Harvey Discounting

Harvey (1986) proposed a discount function given by

φ(t) = (1 + t)−r.

This Harvey discounting is equivalent to generalized hyperbolic discounting with a hyper-

bolic factor that equals one.

Theorem 3.5 The following two statements are equivalent under discounted utility.

(i) Preferences < satisfy Harvey discounting.

(ii) H(s, t, χ, τ) = 1 for all s, t, χ, τ.

3.4 Mazur Discounting

Mazur (1987) proposed a discount function given by

φ(t) = (1 + ht)−1.

This Mazur discounting is equivalent to generalized hyperbolic discounting with r = h.
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It follows that the hyperbolic factor does not distinguish between the generalized hy-

perbolic discounting of Loewenstein and Prelec (1992) and the model of Mazur (1987).

This is because the hyperbolic factor only restricts the parameter h and not the para-

meter r as we saw in Observation 3.2. Indeed, on our domain of timed outcomes the two

models cannot be distinguished, because they differ only regarding the absolute level of dis-

counting and not regarding the degree of decreasing impatience. This finding reflects once

more that changes in impatience and the corresponding irrationalities can be investigated

independently of the absolute level of discounting.

3.5 Quasi-hyperbolic Discounting

Phelps and Pollak (1968) introduced quasi-hyperbolic discounting, as used by Laibson

(1997) and many others. The quasi-hyperbolic discount function is given by

φ(t) =





1 if t = 0

βδt if t > 0.

for some β ≤ 1, and some δ > 0.

Quasi-hyperbolic discounting is equivalent to stationarity for all of the future except

the present.

Theorem 3.6 The following two statements are equivalent under discounted utility.

(i) Preferences < satisfy quasi-hyperbolic discounting.

(ii) H(s, t, χ, τ) = 0 for all s > 0, t, χ, τ.

Thus, when combined with Fishburn and Rubinstein’s (1982) preference foundation of

discounted utility, this section provided preference foundations for all currently popular
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discount models.

4 Conclusion

This paper has introduced the hyperbolic factor, a quantitative measure of decreasing

impatience, which can easily be obtained from an indifference pair. In addition to being

a simple measure, the hyperbolic factor is useful in characterizing all popular discount

models. Hyperbolic discounting holds if and only if the hyperbolic factor is constant and

positive. The discount function of Harvey applies if and only if the hyperbolic factor

is always equal to one. Quasi-hyperbolic discounting holds if and only if the hyperbolic

factor is equal to zero for all future points in time except the present. If, in addition, the

hyperbolic factor is equal to zero today, then constant discounting holds.

A direction for future research is to calculate hyperbolic factors from data, which will

illustrate how strong the evidence in favor of hyperbolic discounting is. A major advantage

of such future studies, in comparison to earlier ones, is that they will not be confounded

by assumptions about or estimations of instant utility functions. Testing whether hyper-

bolic factors are constant and positive will indicate whether hyperbolic discounting is the

appropriate alternative to constant discounting.

Appendix

Proof of Theorem 2.2

Consider s, t, χ, τ with 0 ≤ s < t, χ � 0, and τ > 0. Assume that χ Â 0. By monotonicity
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and impatience we know that2

(s, 0) ∼ (t, 0) ≺ (t, χ) ≺ (s, χ).

By continuity and connectedness of Rm there must then be a µ with (s, µ) ∼ (t, χ) and

χ Â µ Â 0. Thus,

(s, µ) ∼ (t, χ) Â (t + τ, χ) Â (t + τ, µ).

By continuity there must then be a σ with (s + σ, µ) ∼ (t + τ, χ). By replacing all ‘Â’ by

‘≺’ and all ‘≺’ by ‘Â’, this reasoning shows that similar things hold for χ ≺ 0.

By monotonicity and impatience, µ is unique up to indifference and σ is unique. 2

Proof of Theorem 2.3

By regularity, we have H ≥ 0 if and only if τ − σ ≥ 0 for all indifference pairs as in eq. 1.

Thus, by Theorem 2.2, we have H ≥ 0 if and only if decreasing impatience holds. 2

Proof of Theorem 2.4

By regularity, we have H∗(s, t, χ∗, τ) ≥ H(s, t, χ, τ) for every s, t, τ, χ, χ∗ if and only if

σ∗ ≤ σ for all s < t, χ � 0, τ > 0 with (s, µ) ∼ (t, χ), (s + σ, µ) ∼ (t + τ, χ) and

(s, µ∗) ∼∗ (t, χ∗), (s + σ∗, µ∗) ∼∗ (t + τ, χ∗), which, by impatience, holds if and only if <∗

exhibits more decreasing impatience than < . 2

2 By the definition of a timed outcome it follows that (s, 0) ∼ (t, 0) for every s, t.
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Proof of Theorem 3.1

Let H(s, t, χ, τ) = h and H(s, t, χ∗, τ) = h∗. Then there are µ, σ, µ∗, σ∗, with (s, µ) ∼ (t, χ),

(s + σ, µ) ∼ (t + τ, χ), (s, µ∗) ∼ (t, χ∗) and (s + σ∗, µ∗) ∼ (t + τ, χ∗). By discounted utility

it follows that

φ(s)u(µ) = φ(t)u(χ)

and

φ(s + σ)u(µ) = φ(t + τ)u(χ).

Therefore,

u(µ)

u(χ)
=

φ(t)

φ(s)
=

φ(t + τ)

φ(s + σ)
.

Similarly,

u(µ∗)
u(χ∗)

=
φ(t)

φ(s)
=

φ(t + τ)

φ(s + σ∗)
.

By impatience it then follows that σ∗ = σ and h = h∗. This proves our result.

A similar reasoning proves Observation 3.2. 2

Proof of Theorem 3.3

Let H(s, t, χ, τ) = 0 for all s, t, χ, τ. Then

(s, µ) ∼ (t, χ)

if and only if

(s + τ, µ) ∼ (t + τ, χ),
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i.e. stationarity holds. Thus, for every s, t, σ ∈ T ,

φ(s)

φ(t)
=

φ(s + τ)

φ(t + τ)
.

Therefore, by setting s = 0, for every t, τ ∈ T ,

φ(t)φ(τ) = φ(t + τ).

By Cauchy’s functional equation it follows that there must be a c ∈ R such that φ(t) = ect

for every t ∈ T . Now let δ = ec. Then, φ(t) = δt. The converse follows easily. 2

Proof of Theorem 3.4

Let there be a constant h > 0 such that H(s, t, χ, τ) = h for all s, t, χ, τ. Assume that

u(µ) = φ(t)u(χ) and φ(σ)u(µ) = φ(t + τ)u(χ),

with t > 0. Then we must have

τ − σ

tσ
= h.

Let k = 1 + ht. It follows that t + τ = t + kσ. Moreover, k is a constant that depends only

on t. Loewenstein and Prelec (1992) showed that this implies that the discount function

is of the generalized hyperbolic form. Thus, there must be parameters h̃, r such that

φ(t) = (1 + h̃t)−r/h̃. It follows that h̃ = h. From the assumption that φ(·) is strictly

decreasing it follows that r > 0. This proves one direction of our result. The proof of the

other direction is straightforward. 2
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Proof of Theorem 3.5

Harvey discounting is equivalent to generalized hyperbolic discounting with h = 1. 2

Proof of Theorem 3.6

Let H(s, t, χ, τ) = 0 for all s > 0, t, χ, τ. Then for every s, t, σ ∈ T , with s, t > 0

φ(s)

φ(t)
=

φ(s + σ)

φ(t + σ)
.

Let s0 > 0. Define the function φ0 on T by φ0(t) = φ(t + s0)/φ(s0). Then for every

s, t, σ ∈ T ,

φ0(s)

φ0(t)
=

φ(s + s0)

φ(t + s0)
=

φ(s + s0 + σ)

φ(t + s0 + σ)
=

φ0(s + σ)

φ0(t + σ)
.

Moreover, φ0(0) = 1. By Cauchy’s functional equation it follows that there must be a

c0 ∈ R such that φ0(t) = ec0t for every t ∈ T . Therefore, φ(t + s0) = ec0tφ(s0) for every

t ∈ T . Thus, φ(t) = ec0(t−s0)φ(s0) for all t ≥ s0. Define δ0 = ec0 and β0 = e−c0s0φ(s0). Then

φ(t) = β0δ
t
0 for all t ≥ s0. Similarly, consider an s1 with 0 < s1 < s0 and with corresponding

β1 and φ1. It follows that for all t ≥ s0, φ(t) = β1δ
t
1 = β0δ

t
0, so β0 = β1 and δ0 = δ1. We

can continue this argument repeatedly.

Thus, letting β = β0 and δ = δ0 we obtain φ(t) = βδt for all t > 0. By definition we

have φ(0) = 1. 2
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