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1 Introduction

THE CAPITAL ASSET PRICING MODEL (CAPM) of Sharpe (1964) and Lintner (1965) pre-
dicts that equilibrium returns of assets are a linear function of their market [, the slope
in the regression of a security’s return on the market’s return. This intuitively appealing
result has long shaped the way practitioners think about average returns and risk. While
the empirical validity of the model is very controversial (see for example Fama and French
(1992)) it remains one of the central building blocks in financial economics.

However, in consumption based asset pricing models where agents choose portfolios
in order to maximize von Neumann-Morgenstern utility over non-negative consumption
processes, the CAPM pricing formula only holds if one assumes that all agents’ utility
functions are quadratic (see Geanakoplos and Shubik (1990), Berk (1997)). In applied
general equilibrium, this is usually thought of as an unrealistic specification of preferences
and it is assumed instead that agents’ preferences exhibit constant relative risk aversion
(CRRA). Under this assumption CAPM does not hold and there are no general results
linking an asset’s equilibrium return to its covariance with the market’s return.

In this paper we investigate under which conditions equilibrium asset prices can be well
approximated by the CAPM formula in economies where all agents have CRRA preferences.

It is easy to construct examples where assets’ market 5 does not explain any variation
in cross sectional returns. In these economies any econometric test would reject CAPM
and empirical contradictions of CAPM might be explained by the fact that some agents
do not have quadratic utility. For example, when all assets have the same price and each
asset payoff has the same covariance with aggregate endowments CAPM, predicts that the
excess returns must be identical across assets. But since higher moments matter when
agents have CRRA preferences the equilibrium returns generally differ across assets. We
give a simple example where these differences are quantitatively substantial.

On the other hand we show that for a large class of economies the CAPM pricing
formula provides a very good prediction for actual equilibrium returns. If there is a single
agent whose labor income is independent of all asset payoffs and if all asset payoffs are
generated by a linear factor structure with iid factors and factor-weights adding up to
one, the CAPM pricing formula holds independently of the specification of the agent’s
utility function. This simply follows from the absence of arbitrage and is itself of limited
interest because of the strong assumptions on payoffs and the representative agent. The
main contribution of the paper is to provide hundreds of examples which demonstrate
that this relation is very robust with respect to the introduction of heterogeneous agents
and variations in the factor structure. The CAPM provides an excellent approximation to
equilibrium excess returns for a wide variety of dividends and individual endowments.

In the examples, we assume that there are three agents and 32, 768 states of nature and



we examine the robustness of CAPM with respect to different specifications of preferences,
payoffs and endowments. We assume that the agents have CRRA utility functions (but
different degrees of risk aversion) and examine the following cases:

e Endowments and dividends are drawn from a uniform distribution. We randomly
generate 100 economies with differ with respect to the support of the uniform distri-
butions.

e Endowments and dividends are drawn from a log-normal distribution. We randomly
generate 100 economies which differ with respect to the agents’ coefficients of risk
aversion.

e Endowments and dividends are determined by two factors and an idiosyncratic shock
each of which are drawn from a log-normal distribution. We randomly generate 100
economies with differ with respect to the factor-loads.

e Endowments and dividends are drawn from a log-normal distribution and there is an
option on one of the stocks. We randomly generate 100 economies which differ with
respect to the strike-price of the option.

For all economies under consideration we compare the computed return on individual
stocks to the return predicted by the CAPM-pricing formula. We find that in all 400 cases
the average mean squared pricing errors (for returns) across stocks lie below 0.04 percent.
The average error across all simulations is in the order of magnitude of 0.005 percent. In
these economies standard statistical procedures would accept CAPM.

The paper is organized as follows. In Section 2 we introduce the general equilibrium
model and summarize several results on CAPM in this setting. In Section 3 we give
simple examples which demonstrate under which conditions CAPM pricing provides a good
approximation for equilibrium returns when agents have CRRA preferences. In Section 4
we compute returns for several hundred examples and show the robustness of our results.
Section 5 concludes.

2 The Two-Period Finance Economy

The finance version of the GEI-model describes an economy over two periods of time,
t =0, 1, with uncertainty over the state of nature resolving in period ¢t = 1. We describe the
model, introduce the necessary notation and discuss the CAPM. For a thorough description
of the GEI-model see for example Magill and Quinzii (1996).



2.1 The Model

There are S + 1 states in the economy; at time ¢ = 0 the economy is in state s = 0, at
time ¢ = 1 one state of nature s out of S possible states of nature realizes. In each state
s=0,...,85, there is a single nondurable consumption good.

There are H agents, indexed by h = 1,..., H, that participate in the economy. An agent
h is characterized by initial endowments (the initial income stream) e = (e, e?, ... el)T
€ ]RJSFJJF1 and his preferences over consumption bundles (income streams available for con-
sumption) ¢ = (ch,cf,...,c&) " € RI*'. To distinguish between first-period consumption
and the random second-period consumption, we define Z = (zy,...,25)" for any vector
r = (29,21,...,75) . Aggregate endowments (aggregate incomes) are e = 1", e’. Each

agents’ preferences are represented by a von Neumann-Morgenstern utility function

S
ut(c") = o' (cg) + 8 Y psv(cy),
s=1

where probabilities pi, ..., ps > 0, ©5_, p, = 1, and the discount factor § > 0 are identical
across agents, and where the Bernoulli function v" : R, — IR is assumed to be strictly
increasing and strictly concave.

There are J assets. Asset j pays dividends at date ¢ = 1 which we denote by d; € R.
The price of asset j at time ¢ = 0 is ¢;. Without loss of generality we assume in this section
that the assets are in zero net supply and we collect all assets’ dividends in a pay-off matrix

A=(dy,...,d;) € R,

Without loss of generality, we assume A to have full column rank. At time ¢t = 0 agent
h chooses a portfolio-holding 8" € R’ which uniquely defines the agents’ consumption by
" =e"+ AP" and ¢ = eb — 0" - . The net demand of agent h, ¢ — é", belongs to the
marketed subspace (4) = {z € R® | 30 € R/, 2 = A6}.

The exogenous parameters defining a finance economy & = ((u”,e"),— _g; A) are
agents’ utility functions and endowments, and the pay-off matrix.

We define asset prices to be arbitrage free if it is not possible to achieve a positive
income stream in all states by trading in the available assets. It is well known that a price
system ¢ € R’ precludes arbitrage if and only if there exists a state price vector = € ]RJSr i
such that ¢ = 7" A.

DEFINITION 1 (COMPETITIVE EQUILIBRIUM): A competitive equilibrium for an econ-

omy &£ is a collection of portfolio-holdings 6* = (6',...,07*) € R"’, consumptions

¢ = (c™,...,c™) and asset prices ¢* € R’ that satisfy the following conditions:
*T

(1) (c*,0™) € argmaxa gn u(c") s.t. " = el + < _jl >9h and c" € R, h =
1,..., H;



(2) Zpy 0 =0.

Existence of an equilibrium follows from the results of Geanakoplos and Polemarchakis
(1986).

2.2 The Capital Asset Pricing Model

Under the assumption that all agents are mean-variance optimizers Sharpe (1964) and
Lintner (1965) derive a closed-form solution for equilibrium returns, the so-called S-pricing
formula. This formula relates the return of a risky asset to the return of the market
portfolio by the covariance of that asset with the market. It is well known that the -
pricing formula can be derived in the finance GEI-model, see Geanakoplos and Shubik
(1990). We summarize the findings in the literature - Geanakoplos and Shubik (1990),
Magill and Quinzii (1996), Oh (1996), and Willen (1997).

We denote by 1, = (1,...,1)T € R" the vector of all ones. We assume that there
exist objective probabilities p;, s = 1,..., S, over the possible states of nature in period
1. Moreover, asset 1 is a riskless bond, d; = 1g. For a random variable z € R®, we
define its expected value E(z) = X5, p,as, for two random variables z,y € R®, we define
the covariance as cov(z,y) = Y5, ps7sys — E(2)E(y). The variance of a random variable
z € R® is given by var(x) = cov(x, ). Finally, we define x oy = S5 psasys for vectors
z,y € RS,

For any competitive equilibrium (6*, ¢*), there exists a unique state price vector in the
marketed subspace 74 € (A) such that, for all assets j, ¢j = 77 -, d;. Using the definitions
of variance and covariance, this implies

7} = B(m3)E(d)) + cov(w, dy). 1)

J

We define the return of a portfolio § € R’ with ¢* -6 # 0 by ry = qﬁ‘—.‘% and we denote the

return of the riskless bond by Rf = q%. With this we rewrite equation (1) as
1
* 1 *
q; = ﬁE(dj) + cov(my, d;).
We define the pricing portfolio as the unique portfolio 8% which solves A#% = 7%. Notice
that

¢ -0y =1y, A0y =T,y >0,

where 7% # 0 follows from E(7%) = ¢f > 0.



Since the return of the pricing portfolio satisfies rp, = ;*1190;1 = ﬂ—“ we can rewrite
7% TAPTA
equation (1) as
cov(rg, ro=)
E(rg) — R' = —————2%(E(ry,) — R"). (2)

var(rg- )

While equation (2) relates the prices of the risky assets and looks similar to the CAPM
pricing formula, this formula is rather useless if we have no further information on 7. Note
that so far all formulas followed simply from the absence of arbitrage. It is well known that
under the assumption that one agent h’s utility function is differentiable and that in an
equilibrium with individual consumption (¢™*),cp, agent h’s utility maximization problem
has an interior solution, 77 can be characterized as

% . ac’fuh(ch*)/pl acguh(ch*)/ps
Ta = POy |7y pul(ch=) 7777 Qaub () )
o )

where proj 4, denotes the projection on (A) under the inner product p.

Agent h’s first period endowments can be decomposed into a marketed part and a non-
marketed part, where the latter part lies orthogonal to the marketed subspace under the
inner product p. We write

e =ey+el

and have by definition &} -, 2 = 0 for all z € (A). This decomposition is uniquely deter-
mined. We define the marketed endowments by &y = Y./, &. The market portfolio 6y
is then defined as the unique portfolio satisfying

Note that it may happen that ¢* -6y = 0, even when € > 0.! However, to simplify matters,
we assume ¢* - 0y # 0.
Given a competitive equilibrium (c*, 8*, ¢*), we define 3, for a portfolio § € R’ by

_ cov(rg, Tgy;)
) = M)
VaI'(TgM)

Then the following result can be found in the literature (see e.g. Willen (1997) for a deriva-
tion in the GEI-framework).

THEOREM 1: Under the assumptions that all agents have quadratic utility, that var(éy) >

0, and that there is a riskless bond, each equilibrium (c*,0*,q*) of & with equilibrium con-

1*,...,CH*)

sumption (c > 0 has the following properties.

'For a vector z € R™ we use the notation z > 0if z € R}, z > 0 if z € R} \ {0}, and = > 0 if
reRY,.



1. The CAPM-pricing formula holds; when ¢* - 0y # 0, then for each 6 € R,
E(rg) — R = By(E(rg,,) — R'). (3)

2. The pricing vector satisfies 'y = a1lg — azéy, with oy > axE(€) and ay strictly
positive.

Note that for the case where the endowments are spanned, i.e. where e? = 0 for all
h, the pricing formula reduces to the standard CAPM-formula (see Magill and Quinzii
(1996)).

It might be sensible to define the market portfolio somewhat differently as a portfo-
lio of risky assets only. In this case define Oy = (0,0m2, - -, 00,s). If we define Bg =
cov(r, ra\M)/Var(rAM) it turns out that the pricing formula still holds. After some substi-

0
tutions, one obtains

E(rg) — R = Bg(E(raM) — RY.

Finally, note that the concept of marketed endowments is not needed to define the
pricing vector. Since €, is orthogonal to (A), the pricing vector can also be defined by
Th = ailg — age. Of course it then no longer holds that 7% € (A). Therefore income
streams not in (A) are typically priced differently by 7% than by 7.

3 CAPM and CRRA: Three Examples

As we have discussed in the introduction, Theorem 1 can only be obtained when one is
willing to make very restrictive assumptions. Magill and Quinzii (1996) comment on the
CAPM: “As we indicated above these models are interesting since they lead to clearcut
results which have strong intuitive appeal. However the restrictive nature of the hypothesis
made could cast doubt on the generality of the results.” In particular, the assumption
that all agents maximize a quadratic utility function is unattractive because it implies
increasing absolute risk aversion. A more realistic assumption, and one commonly made
in macroeconomics and finance, is that agents’ preferences exhibit constant relative risk
aversion. The question we want to address in this paper is how much actual equilibrium
prices will differ from the predictions of CAPM in this more realistic setting.

We assume that all agents have constant relative risk aversion utility functions of the
form

h " h
v'(c) = — 7 #1,




where 7" is the coefficient of relative risk aversion.

In this section we consider three simple examples, two of which can be solved analyti-
cally, to show that whether or not equilibrium returns are close to CAPM depends crucially
on the joint distribution of all asset payoffs.

3.1 Exact CAPM with a Linear Factor Structure

Suppose that there is single representative agent, whose initial endowments consist of his
labor income plus dividends from his asset holdings. Denote the agent’s possibly stochastic
labor income by [. Suppose there are N identically and independently distributed random
variables (or ‘factors’) €; which are all independent to [ and have mean zero. Suppose that
there is a riskless bond and J — 1 stocks in unit net supply where for j =2,..., J,

N J
dj = ,U,jls + Z (]5;62, Z (]5; =1 for all 7. (4)
i=1 j=2

Note that with this setup arbitrary first and second moments of asset payoffs can be
constructed. Higher moments of one individual asset or the market can be matched by
the choice of ¢, but higher moments of all assets cannot be matched. We now show that
with this construction, the CAPM pricing formula (3) holds exactly, independently of the
representative agent’s utility.

Since there is a representative agent we can price all assets by pricing the factors. Since
the factors are all iid and independent of [, by symmetry, they must all have the same
price, ¢.. If q; denotes the price of the bond, then the price of stock j is given by

N
4G = i+ ¢ Y b5
i=1

The return of stock 7 is given by

N
(Mjls +y ¢§€Z> /4
i=1

and the return of the market portfolio by

J N J

> (wis+ 362 | /0

j=2 i=1 j=2
After some manipulations, it follows that stock j’s market B is given by

B_ — Ei:2 qk ZZ]\LI ¢;




We have that the CAPM formula (3) holds if and only if

4G @ G Yieqi @ N

Multiplying by ¢; = pjq1 + q. >N ¢§- and substituting 37 _, qx = q1 S7_y px + Ng. reveals
that this equation (and therefore CAPM pricing) always holds.

Note that in this setup CAPM pricing follows purely from the absence of arbitrage,
holds independently of the representative agent’s preferences and has nothing to do with
mean-variance analysis.

3.2 No CAPM with Different Factors

We now give a simple example that shows that the CAPM pricing formula might be com-
pletely useless for explaining cross sectional returns when asset payoffs are not generated
by identically distributed factors.

Consider an economy with a representative agent with CRRA utility function and risk
aversion of v. As before, the agent’s initial endowments consist of his labor income plus
dividends from his asset holdings. In addition to a bond there are two risky stocks which
are independently distributed. There are two independently distributed factors, ! and 2.
The first factor is 0.8 with probability 2/3 and 1.4 with probability 1/3. The second factor
is 1.2 with probability 2/3 and 0.6 with probability 1/3. The two stocks’ dividends are

diy =c' and dy = €% + plg

for some p > 0. The stocks are in unit net supply. The agent has a non-stochastic labor
income of 0.2 — i in the second period. Suppose the agent also has 2 units available for
consumption in the first period and does not discount the future, i.e. § = 1. Since the
assets are in unit net supply, it follows that ¢ = 0.2 + &' + £2.

% the equilibrium prices of the two stocks are identical. Since both
stocks have the same covariance with aggregate endowments, CAPM predicts that the

For p =

excess return of the two stocks must be equal. However, the equilibrium excess returns are
quite different and depend on v as the following table shows.

The key to this example lies in the fact that on the margin, a CRRA agent prefers the
dividends of asset 1 to the dividends of asset 2 - therefore for the same expected payoffs,
asset 2 must be cheaper than asset 1 and its returns higher. A mean-variance agent with
quadratic utility, on the other hand, would be indifferent between €' and 2 since they have
the same mean and variance.



v | Excess return 1 | Excess return 2 | CAPM prediction
2| 7.7 10.1 8.9

4| 13.7 20.7 17.2

6 | 15.2 25.7 20.4

TABLE 1: Equilibrium excess returns

3.3 Heterogeneous Agents and Identical Factors

While the argument in Section 3.1 shows that given a linear factor structure one might
expect CAPM to provide a good approximation to prices if there is only a single agent,
one has to compute equilibria in order to assess how well CAPM predicts equilibrium
prices in economies with heterogeneous agents and incomplete markets. From now on we
examine economies with three heterogeneous agents, representing classes of agents with
low, medium and high incomes.

Each agent is endowed with an initial portfolio (0,6") of the riskless bond and the
available stocks with current income, representing current labor income plus dividends
from 0", e} = 2/3, €2 =1, and 3 = 4/3, and with stochastic future labor income given by
some [ € ]Rir. For each household h, the labor incomes I are generated by S independent
draws from some given distribution. The first agent has no capital income, ' = 0. For the
other agents we have #2 =1/3-1;_; and #* =2/3-1;_,. Agents have heterogeneous von
Neumann-Morgenstern utility functions with CRRA, identical uniform probabilities over
states and identical discount factors 6" = 0.95.

The assets available are given by a riskless bond and 7 stocks. In most examples the
dividends of asset j depend on a single common factor which we now denote by f € R® as
well as on an idiosyncratic factor &/ € R®. We denote asset j’s load in the common factor
by ¢;, varying from 0.25 to 1.75 in steps of 0.25. Aggregate consumption and capital share
in the examples are calibrated to yearly US data. The expected growth rate of aggregate
consumption equals two percent and the standard deviation of both the factor and the
idiosyncratic shock determining the dividends are about 0.13 - giving an overall standard
deviation of the stock market of about 0.17. The standard deviation of labor income is
chosen to be around 0.10 and labor income constitutes around 2/3 of total income. The
eleven random variables in the model are therefore ((I")n—1 _m, f, (€7)=2...1)-

Note that the construction of asset dividends now differs from (4) in that factor weights
no longer add up to one.

As a first example we analyze the case where the realization of each random variable
is either high or low with equal probabilities, and all random variables are independent.

10



The minimal state space to achieve this consists of 2!! = 2,048 states. More specifically
we have that

" e {2/3-(1.02—0.1),2/3- (1.02 +0.1)},
fs € {-0.13,0.13},
el € {-0.13,0.13}.

Dividends of asset j are then determined by

d = 1/3-1/7-(102+ /o, f, + ).

We have taken the square of the factor load ¢; in the specification of the dividends in order
to give it an interpretation as the (approximate) stock’s market 3.

We choose heterogeneous coefficients of risk aversion: yv' =6, v = 4 and 7 = 2.

With these specifications we compute the equilibrium prices and portfolio-holdings and
compare them to the predictions of the CAPM in Figure 1. In Herings and Kubler (2002)
we develop an algorithm that is tailored to the finance GEI-model with one good per state,
and that is independent of the number of states. We use this algorithm to approximate
equilibria numerically.

The solid line in the figure is the security market line, i.e. the CAPM relationship
between a portfolio’s 4 and its risk premium. The actual equilibrium expected returns of
the seven securities are depicted by + and lie all almost exactly on the security market
line. CAPM turns out to be an extraordinarily good predictor for the actual equilibrium
returns of assets in this example. This is surprising for two reasons. First, the asset payoffs
and dividends do not satisfy the assumptions in Section 3.1. Secondly, the introduction of
agents’ heterogeneity does not alter the cross section of equilibrium returns significantly.

Although the graph of Figure 1 looks very convincing, it is clear that we need more
objective measures to quantify the deviation of equilibrium prices and portfolio-holdings
from the CAPM predictions.

The most straightforward approach is to measure the accuracy of CAPM-pricing is to
take the Mean Squared Error (MSE), which is defined by

7
MSE — ﬁ S5 — 7))
7j=2

where 77 denotes the equilibrium expected return of asset j and 7; the prediction by CAPM,
using (3) and the true equilibrium interest rates and market return.

A different approach consists of the following. It is well-known that 7% € (1g,€y) is
sufficient for CAPM-pricing. That this is necessary as well follows from the observation that
otherwise 7% is equal to the sum of its projection on (1g,éy) plus a non-zero orthogonal

11
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FIGURE 1: Security market line with high-low returns.
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part in (A) under the inner product p. When CAPM-pricing is valid, the orthogonal part
should have zero price, which is obviously not the case when priced by 77. Therefore, an
interesting alternative to MSE is to take the OLS R? of the regression with

o [(Oau () pr Owut(c)/ps
PrOJay |~ hedmy 7 g b (che)
( Oep (™) Oepul(ch*) )
as regressand and 1g and €y as regressors. Notice that this measure is independent of h.
We call it Pricing R?.
The following table confirms that CAPM provides an outstanding prediction for the
economy under consideration.

Rf 1.0633
Equity Premium | 0.0185
MSE 0.0000530
Pricing R? 0.99999998

TABLE 2: CAPM for CRRA preferences and two-point distributions.

4 Robustness of CAPM

In order to show that the predictions of CAPM are a good approximation for equilibria
in a wide variety of economic settings we compute several hundred examples. We assume
that there are S = 32, 768 states of nature. Using a large number of states guarantees that
our final samples are good approximations of continuous distributions. By taking a large
number of states we rule out finite sample effects on the prices of assets. When we replicate
the experiment and generate economies out of a newly drawn sample, the equilibrium will
be almost the same if the number of states is sufficiently large.

We test the robustness of our results to variations in the distributions of endowments
and assets. We consider three different families of return processes and compute 100
randomly generated examples within each class. We show the histograms of MSE and
Pricing R?. In all histograms the scaling is taken identically, so that results for different
models can be compared easily.

4.1 Uniform Returns

In order to verify whether our results depend crucially on all factors having the same
distribution we now assume uniformly distributed shocks, which all have different support.

13



We also allow for some variation in the ratio of labor income to total income, in the variance
of the factor and in the variance of the idiosyncratic shocks.
More specifically, we start each example by randomly generating parameters ai, as, a3

and a4, where

a; ~ U(1.02-0.5,1.02-0.9),

as ~ U(1.02-1.1,1.02-1.5),

as U(—05, —01),

Ay U(Ol, 05)
Given a realization for aq, ..., a4, we continue the construction of the economy by taking
independent drawings for (?, f, and &/, where

" ~ U(2/3-0.8,2/3-1.24),

fs ~ Ullar — a2)/2, (a2 — a1)/2),

Sg ~ U(a3, 04).

Finally, dividends are determined by

d§:1/3.1/7.(“1;“2+\/¢7jfs+gg).

Given the realizations for the parameters a; and as, 1/3-1/7- (a; + a2)/2 equals expected
dividends from asset j. The realization of the factor belongs to the interval [(a; —as)/2, (as—

a1)/2] and the realizations of the idiosyncratic shocks to the interval [as, a4]. The expected
labor income and the variance of labor income are taken as before.

Figures 2a-b show that the ability of CAPM to predict portfolio-holdings and excess
returns is robust to variations in the distribution of shocks.

Figure 2 shows that CAPM is an excellent predictor for the class of CRRA utility
functions and uniform factors. While the factors are no longer iid, in most cases the MSE
is around 1 - 10~ The worst Pricing R? found is 0.9999.

The high values of the Pricing R? provides very useful information for the pricing of
assets. Recall that the price of asset j is given by 7%-d’. Any vector that is highly correlated
with 7% should lead to a similar price for asset j. In particular, when the Pricing R? is

close to one, CAPM is bound to give almost exact equilibrium prices and the use of CAPM
leads to a low MSE.

4.2 Log-Normal Returns and Different Risk Aversions

We now vary the factor structure (4) further my assuming that all asset payoffs are the
product of iid factors with log-normal distribution. Furthermore we vary agents’ degree of
risk aversion.

14
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FIGURE 2A: Uniform: MSE. FIGURE 2B: Uniform: 100- Pricing R?.

Throughout this section we assume that all random variables are log-normally dis-
tributed, so [, f,, and ¢/ are drawn independently from a log-normal distribution. The
log-normal distribution with mean p and variance o2 is denoted by LN(u,c?). As before
asset 1 is the riskless bond. For j > 2, we define asset j’s dividend to be

d=1/3-1/7-1.02- f7 . &
and we choose

"~ LN(2/3-1.02,(2/3)%-0.01),
fI ~ LN(1,¢,-0.0161),
gl ~ LN(1,0.0161).

The actual (f? )JJ:2 are all based on a single realization of a normal random variable. For
each asset j, we linearly transform the realization of this random variable in such a way
that after taking the exponent a log-normally distributed random variable with mean 1
and variance ¢; - 0.0161 results. The construction of the random variables implies that all
dividends themselves are log-normally distributed. To get a similar variance of the entire
stock market as before the variance of the factors and the idiosyncratic shock have to be
chosen to be 0.0161 instead of 0.0169. Notice that the factor realization does not enter
linearly in the formula for the asset’s dividends, an assumption that is made in most models
describing factor economies.

We now assume that all agents have constant relative risk aversion and we draw ",
h =1,2,3, from a uniform distribution on the interval [0.5, 10]. As before we compute 100
examples - Figures 3a-b report the analogues of Figures 2a-b for the CRRA case.
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FIGURE 3A: CRRA: MSE. FIGURE 3B: CRRA: 100- Pricing R2.

As before CAPM is a very good prediction for actual equilibrium returns.

4.3 Two Common Factors

In this subsection we generate a number of economies where risky assets depend on two
common factors, f and f , and factor loads for each one of the assets are randomly drawn.
On top of this, also the importance of the idiosyncratic shock is randomly determined.

We start each example by randomly generating, for each asset 7 = 2,...,.J, parameters
bj, @, and 7;. These parameters represent the load in factor 1, the load in factor 2 and the
importance of the idiosyncratic shock. More specifically it holds that

¢j ~ U(Oa 2)>
¢; ~ U(0,2),

Labor income, the two factors and assets’ idiosyncratic shocks are independently log-
normally distributed, so I*, f,, f, and &/ are drawn from a log-normal distribution,

" ~ LN(2/3-1.02,(2/3)%-0.01),
f7 ~ LN(1,¢,-0.0161),
fi ~ LN(1,6;-0.0161),
el ~ LN(1,i;-0.0161).
Finally, dividends are determined by
d = 1/3-1/7-1.02- 1. fI .l
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The way to generate f7, j = 2,...,.J, from a single realization of a normally distributed
random variable is the same as in Section 4.2. The same applies to the other factor.
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2 25 3 35 4

FI1GURE 4B: Two-factor: 100- Prici
FIGURE 4A: Two-factor: MSE. WORSC o reing
Surprisingly, CAPM pricing is still a very good prediction for equilibrium returns.
Although the asset payoffs now differ substantially from a linear factor structure, pricing
errors are very small.

4.4 Options

Since markets are incomplete and utilities are not quadratic, the introduction of an option
on one of the assets will generally change all equilibrium prices. Therefore one might expect
that the introduction of an option worsens CAPM-pricing considerably. Furthermore, given
the robustness of CAPM in the earlier examples, it is interesting to see if it is possible to
give an equilibrium pricing formula for options in incomplete markets via CAPM.

Another reason to introduce an option is that this is an asset with the capacity to
seriously alter the higher order moments of an asset portfolio. One possible explanation
for our results obtained so far is that asset markets are very incomplete, which makes it
difficult for households to change the higher order moments of the returns of their portfolios.
Although households care for higher order moments, the mix of marketed assets makes it
difficult to affect the higher order moments. With the introduction of an option this clearly
changes. Agents have then a possibility to limit downwards risk, which is exactly the kind of
risk agents with CRRA utility functions are concerned about, but mean-variance optimizers
are not.
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In order to investigate this issue more closely we introduce a call option on the most
risky asset. Specifically we have a 9-th security which pays max(d? — X, 0) in state s, with
X the strike price of the call option.

Suppose we consider the uniquely determined equilibrium pricing vector 7% of the
economy without the option, and we use this pricing vector to price the option. Given the
reasoning of the previous paragraph, at those prices one would expect the call option (in
combination with the bond) to be more attractive to the agents than the stock, exactly
because of the higher order moments. So the equilibrium price of the call option should be
higher than the one computed by CAPM-pricing, in order to make that asset less appealing.
As a consequence, the expected equilibrium return of the call option should be less than
the one predicted by CAPM.

To examine different options, we draw X out of the uniform distribution for each
example. To avoid options that are either too far in or too far out of the money we
determine in each example the minimal dividend paid out by asset 8, & = ming—; g di,
and the maximal dividend paid out, 38 = maXs—1,. s df. We then draw X out of a uniform
distribution on [0.5 - (1.02 + d®), 0.5 - (1.02 + 38)]. Note that 1.02 is the expected dividend
of asset 8. The strike price is always between the average of the minimal dividend and the
expected dividend, and the average of the expected dividend and the maximal dividend.
The results are given in Figures 5a-b.

25 T T T T T T T 100

I I . . . . 0 I I I I I I I I
1 1.5 2 25 3 35 4 99.99 99.991 99.992 99.993 99.994 99.995 99.996 99.997 99.998 99.999
4
x 10

FiGURrE 5A: Option: MSE. FIGURE 5B: Option: 100- Pricing R%.

The MSE in Figure 5 refers to the MSE of the pricing of the stocks only. The option
is analyzed in detail in Figure 6. It turns out that the MSE are comparable to the ones
given before. The Pricing R? is somewhat less good than before, but is still excellent.
Surprisingly, we have found no systematic effect of the introduction of the option on the
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price of asset 8. In some examples the introduction of an option raised the price above the
CAPM-prediction, in others it has been lower.

Figure 6 analyzes the pricing of the option by CAPM. According to CAPM, a call option
is a very risky asset. It has zero pay-offs in bad states of nature, and very high in good states
of nature. The covariance of a call option with the market portfolio is very high, which is
also clear from Figure 6, where it is shown that the option’s § varied from 5 to 35 in the
economies generated. Notice that, as we expected, there is indeed an over-prediction of the
expected return of an option by CAPM. In all economies generated, CAPM underpriced
the call option. The misprediction was relatively small when the option’s (§ is low, say
below 10, but may get quite severe for call options with a very high strike price, which
are the ones with a high . Notice, however, that a higher § of an option also corresponds
to a higher excess return, which makes the relative misprediction less bad. Still, the over-
prediction of call option returns is more than linearly increasing in an option’s 3, whereas
the excess return itself is still roughly linear.

It is surprising that the Pricing R? and the MSEs of stocks remained so good in all
economies, even when the option was sometimes seriously under-priced by CAPM. In fact,
it may even be perceived as an inconsistency that the Pricing R? is virtually exactly correct,
and the option is seriously mispriced. Indeed, when CAPM-pricing is highly correlated with
%, almost all assets are priced very well. The only exceptions are those like options with
a very high strike price. Such an asset pays off in a few (less than 10) states of the 32,768
only. A high correlation with 7% is not inconsistent with a fairly different state price in a
negligible fraction of states only.

5 Conclusion

In order to show that the CAPM-pricing formula holds in a general equilibrium model with
heterogeneous agents , one needs strong assumptions either on preferences or on dividends
and endowments (see Berk (1996)). It is possible to construct simple examples with agents
who have CRRA utility in which an asset’s § implies little about its equilibrium excess
return.

However, examining the robustness of CAPM by computing equilibria, we find that
CAPM provides an excellent approximation to equilibrium excess returns and portfolio-
holdings for a wide variety of dividends and endowments. One possible explanation is
that the dividend structures we consider are ‘close’ to a linear factor structure which
guarantees that CAPM holds exactly if there is a single agent in the economy and that labor
incomes are chosen to be independent of all asset payoffs. Nevertheless, the computational
results are very surprising: Both the introduction of heterogeneous agents and substantial
deviations from the linear factor structure seem to have very small quantitative effects on
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the cross section of equilibrium excess returns.

It has already been noted (see e.g. Heaton and Lucas (1996)) that agents’ hetero-

geneity and independent labor background risk has only small quantitative effects on the

equity premium. One contribution of this paper is to show that the effects on cross sec-

tional returns are very small as well. The main contribution of this paper, however, is to

show that CAPM provides a good approximation of returns for a wide variety of dividend

specifications.
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