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Abstract

Effectivity functions for finitely many players and alternatives are con-
sidered. It is shown that every monotonic and superadditive effectiv-
ity function can be augmented with equal chance lotteries to a finite
lottery model—i.e., an effectivity function that preserves the original
effectivity in terms of supports of lotteries—which has a Nash consis-
tent representation. In other words, there exists a finite game form
which represents the lottery model and which has a Nash equilibrium
for any profile of utility functions, where lotteries are evaluated by
their expected utility. No additional condition on the original effec-
tivity function is needed.

1 Introduction

For a group of individuals and a set of alternatives, an effectivity function
(Moulin and Peleg, 1982) describes for each subgroup of individuals the sub-
sets of alternatives for which the subgroup is “effective”. What “effective”
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means depends on the context. For instance, for an effectivity function de-
rived from a game (form), to say that a subgroup of players is effective for
a subset of outcomes means that these players can combine their strategies
in such a way that the realized outcome of the game is an element of the
particular subset. Another important usage of an effectivity function is to
describe a constitution for a society (Gärdenfors, 1981; Peleg, 1998). Then,
to say that a subgroup of individuals in the society is effective for a subset of
alternatives (social states) means that this group is entitled to the realized
social state being a state in that subset.

For this last application in particular, it is important to be able to “imple-
ment” the constitution by a set of rules (laws) according to which individuals
should behave, such that their original rights as described by the constitu-
tion are preserved. In formal terms, it is important to find a game form—a
set of rules or, more precisely, allowed actions and associated outcomes—of
which the induced effectivity function is equal to the orginal effectivity func-
tion (the constitution). Additionally, it is important that such a game form
possess some form of stability. A weak form of stability is the existence of
a Nash equilibrium for every profile of individual preferences. In Peleg et
al. (2002) a necessary and sufficient condition was found for an effectivity
function to have a Nash consistent representation, i.e., a representing game
form that has a Nash equilibrium for any profile of preferences. This result
holds for a wide range of effectivity functions, including effectivity functions
for finitely many individuals and alternatives, the case also studied in the
present paper. The condition established in Peleg et al. (2002), however,
is quite restrictive, and a natural question is whether it can be avoided by
adapting the effectivity function or the representing game form. One way in
which this could be done is to introduce mixed strategies in the game form
and appeal to the existence of Nash equilibrium in mixed strategies. Since
there are many reasons why the introduction of mixed strategy spaces in the
model is not attractive, this is not the route that we follow.

Our approach to this problem is based on the concept of a lottery model
for an effectivity function. This means that we add equal chance lotteries
over alternatives in such a way that the original effectivity is preserved in
the following sense. Suppose that a group of individuals S is effective for a
set of alternatives (say) B, then we assume that this effectiveness relation
is preserved if S is effective for a set of lotteries with total support equal
to B. We further assume that lotteries are evaluated by individuals on the
basis of their expected utilities (see Section 6 for more discussion on this
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issue and related literature). With these assumptions, we are able to prove
that for any effectivity function (satisfying the usual necessary conditions of
monotonicity and superaddivity) there exists a lottery model which has a
Nash consistent representation, without imposing further conditions on the
effectivity function. The representing game form is finite, and no mixed
strategies are used.

For a constitution modelled as a monotonic and superadditive effectivity
function, the relevance of this result is that such a constitution can always
be “decentralized” by a set of rules (a game form) that preserves the original
rights and that is stable in the sense that for any preferences a Nash equilib-
rium exists, as long as we are willing to accept some uncertainty in the form
of equal chance lotteries as outcomes of the game, evaluated by expected
utility.

For a given finite game form our result implies that we can always find an
alternative finite game form, preserving effectivity in the indicated sense, that
has a pure Nash equilibrium for any profile of preferences, again evaluating
lotteries by their expected utilities. This also entails a solution to the so-
called Gibbard paradox (Gibbard, 1974; see Example 4.3 in Section 4 below).

After preliminaries in Section 2, Section 3 extends the main result of
Peleg et al. (2002) on Nash consistent representation of effectivity functions
in order to be able to use restrictions in the domain of preferences—in our
case to expected utility preferences. Section 4 introduces lottery models and
presents the main result and some examples. In Section 5 we consider the
case of neutral effectivity functions, for which a natural and simple lottery
model can be based on the so-called uniform core. Section 6 concludes.

Notations For a finite set D, |D| denotes the number of elements of D;
P (D) denotes the set of all subsets of D; P0(D) denotes the set of all non-
empty subsets of D.

2 Effectivity functions and game forms

Let N = {1, . . . , n} (where n ≥ 2) be the set of players, and let Z be a
non-empty finite set. An effectivity function (EF) is a function E : P (N) →
P (P0(Z)) that satisfies the following conditions: (i) E(N) = P0(Z); (ii)
E(∅) = ∅; (iii) Z ∈ E(S) for every S ∈ P0(N). As a general interpretation,
X ∈ E(S) means that coalition S can force the final “alternative” to be an
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element of X. The interpretation of the three conditions is fairly obvious.
An effectivity function E is superadditive if it satisfies the following con-

dition: If Si ∈ P0(N) and Xi ∈ E(Si) for i = 1, 2, and S1 ∩ S2 = ∅, then
X1 ∩X2 ∈ E(S1 ∪ S2). The effectivity function E is monotonic if

[X ∈ E(S), X∗ ∈ P0(Z), X ⊆ X∗, and S ⊆ S∗] ⇒ X∗ ∈ E(S∗).

Observe that monotonicity means monotonicity with respect to the players
as well as monotonicity with respect to the alternatives. Monotonicity and
superadditivity of effectivity functions are natural properties in view of the
interpretation given above. Moreover, effectivity functions derived from game
forms (see below) have these properties.

Let U be some non-empty set of utility functions u : Z → R. Then UN is
the associated set of utility profiles. A function u ∈ U expresses a preference
that a player might have over the elements of Z.

We now turn to game forms. A game form (GF) is an (n + 2)-tuple
Γ = (Σ1, . . . , Σn; π; Z), where (i) Σi is the (non-empty finite) set of strategies
of player i ∈ N ; and (ii) π : Σ1 × · · · × Σn → Z is the outcome function.
For S ∈ P0(N) we denote ΣS = ×i∈SΣi. Let uN ∈ UN . The pair (Γ, uN)
defines, in an obvious way, a game in strategic form. A strategy combination
σ ∈ ΣN is a Nash equilibrium of (Γ, uN) if

[τ i ∈ Σi, i ∈ N ] ⇒ ui(π(σ)) ≥ ui(π(σN\{i}, τ i)).

(Here σN\{i} is the restriction of σ to N\{i}.) We say that Γ is Nash consis-
tent on UN if (Γ, uN) has a Nash equilibrium for every uN ∈ UN .

Let Γ = (Σ1, . . . , Σn; π; Z) be a game form and assume that π is surjective.
The effectivity function EΓ, associated with Γ, is defined in the following way.
For S ∈ P0(N) and X ∈ P0(Z), S is effective for X if there exists σS ∈ ΣS

such that π(σS, τN\S) ∈ X for all τN\S ∈ ΣN\S. Then EΓ is defined1 by
EΓ(∅) = ∅ and

EΓ(S) = {X ∈ P0(Z) : S is effective for X}, for S ∈ P0(N).

Clearly, EΓ is superadditive and monotonic. Let E : P (N) → P (P0(Z)) be
an effectivity function. A game form Γ is a representation of E if E(S) =
EΓ(S) for every S ∈ P0(N). Basically, this means that the game form
distributes the same power among the players as the effectivity function
does.

1EΓ is defined in Moulin and Peleg, 1982, where it is called the α-EF of Γ.
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3 Nash consistent representation of effectiv-

ity functions

In Peleg et al. (2002) a necessary and sufficient condition was derived for the
existence of a Nash consistent representation of an effectivity function. Here,
we give an extension of this result for an arbitrary set of utility functions.

Let U be a non-empty set of utility functions Z → R, and let X ∈ P0(Z).
Call X admissible with respect to U if there is a u ∈ U such that u(x) > u(y)
for every x ∈ X and every y ∈ Z\X. Hence, a player with utility function
u strictly prefers every element of X to every element not in X. For an
effectivity function E and for i ∈ N , let

E∗(i) := {X ∈ P0(Z) : X ∩ Y 6= ∅ for all Y ∈ E(N\{i})}.
Theorem 3.1 Let E : P (N) → P (P0(Z)) be a superadditive and monotonic
effectivity function. Then E has a representation that is Nash consistent on
UN if and only if

[X i ∈ E∗(i) and X i admissible w.r.t. U for all i ∈ N ] ⇒
n⋂

i=1

X i 6= ∅. (1)

A proof of this theorem is provided in the Appendix.

4 Lottery models

We will now be more specific about the set Z. Let A be a finite set of (pure)
alternatives, |A| ≥ 2. For each B ∈ P0(A), `(B) denotes the lottery that
assigns equal probability 1/|B| to each alternative in B. The set of all such

equal chance lotteries with support in a set B ∈ P0(A) is denoted by B̃,
hence

B̃ = {`(B′) : B′ ∈ P0(B)}.
By identifying each x ∈ A with the degenerate lottery `({x}), we have B ⊆ B̃.

Typically, we shall consider Z = A and Z = Ã. Let Ẽ : P (N) →
P (P0(Ã)) be an EF. With Ẽ we associate an EF E : P (N) → P (P0(A)) as
follows. Let E(∅) = ∅. For S ∈ P0(N) and B ∈ P0(A), we let B ∈ E(S) if

there exists an X ∈ Ẽ(S) such that

B =
⋃

B′∈P0(A): `(B′)∈X

B′. (2)
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In other words, elements of E(S) are obtained by taking the union of the

supports of elements of Ẽ(S). It is straightforward to check that, indeed, E

is an EF. If E is derived from Ẽ in this way, then we call Ẽ a lottery model
for E.

Remark 4.1 Monotonicity of Ẽ with respect to the players implies mono-
tonicity of E with respect to the players, and (since A ⊆ Ã) monotonicity of

Ẽ with respect to the alternatives implies monotonicity of E with respect to
the alternatives. Hence, monotonicity of Ẽ is inherited by E. Also superad-
ditivity of Ẽ is inherited by E. For let Ẽ be superadditive, S1, S2 ∈ P0(N)

with S1 ∩ S2 = ∅, and let B1 ∈ E(S1) and B2 ∈ E(S2). Let X1 ∈ Ẽ(S1) and

X2 ∈ Ẽ(S2) correspond to B1 and B2 as in the definition of E, i.e., as in (2).

Then superadditivity of Ẽ implies X := X1 ∩X2 ∈ Ẽ(S1 ∪ S2), hence

E(S1 ∪ S2) 3
⋃

B′∈P0(A):`(B′)∈X

B′ ⊆ B1 ∩B2.

Monotonicity of E now implies B1 ∩B2 ∈ E(S1 ∪ S2). This shows that E is
superadditive.

The converse is not true: a lottery model Ẽ for a monotonic and super-
additive EF E is not itself necessarily monotonic and superadditive. ¤

Let u : A → R be an arbitrary utility function, expressing preferences over
pure alternatives. We assume that lotteries are evaluated by considering their
expected utility value. Hence, we define

V :=

{
u ∈ RÃ : u(`(B)) =

∑
a∈B

u(a)

|B| for all B ∈ P0(A)

}

to be the set of all expected utility functions on Ã.
The main result of this paper is that for every monotonic and super-

additive effectivity function there exists a lottery model which has a Nash
consistent representation on V N . Clearly, monotonicity and superadditivity
cannot be left out here: a lottery model that has a representing game form
must be monotonic and superadditive, and by Remark 4.1 the original “de-
terministic” EF must also be monotonic and superadditive. But, in contrast
to Theorem 3.1, no additional condition is needed on E.
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Theorem 4.2 Let E : P (N) → P (P0(A)) be a monotonic and superadditive

EF. Then there exists an EF Ẽ : P (N) → P (P0(Ã)) such that

(i) Ẽ is a lottery model for E;

(ii) Ẽ has a representation which is Nash consistent on V N .

Proof. Define Ẽ : P (N) → P (P0(Ã)) as follows. Let Ẽ(∅) = ∅ and for every
S ∈ P0(N) with |S| 6= n− 1 let

Ẽ(S) =
{

X ∈ P0(Ã) : X ⊇ B̃ for some B ∈ E(S)
}

.

Let S ∈ P0(N) with |S| = n − 1, say S = N\{i} for some i ∈ N . For each

C ∈ E(N\{i}) and C ′ ∈ P0(C) define the set X(C, C ′) ∈ P0(Ã) by

X(C, C ′) =

{ {`({c} ∪ C ′) : c ∈ C\C ′} if C ′ 6= C
{`(C)} if C ′ = C.

Then let X ∈ Ẽ(N\{i}) if and only if X ⊇ B̃ for some B ∈ E(N\{i}) or

X ⊇ X(C, C ′) ∪ B̃ for some C ∈ E(N\{i}), C ′ ∈ P0(C), and B ∈ P0(A)
such that B ∩ B′ 6= ∅ for all B′ ∈ E({i}. This concludes the definition of

Ẽ. It is not hard to verify that Ẽ : P (N) → P (P0(Ã)) is a monotonic and

superadditive EF and that Ẽ is a lottery model for E.
It remains to prove that Ẽ has a Nash consistent representation on V N .

For each i ∈ N , let X i ∈ Ẽ∗(i) such that X i is admissible with respect to V .
In view of Theorem 3.1 it is sufficient to prove

⋂
i∈N X i 6= ∅. For each i ∈ N

choose ui ∈ V such that

ui(x) > ui(y) for all x ∈ X i and y ∈ Ã\X i (3)

(this is possible since each X i is admissible), and choose Bi ∈ E({i}) and
bi ∈ Bi such that

ui(bi) = min{ui(b) : b ∈ Bi} ≥ min{ui(b) : b ∈ B} for all B ∈ E({i}).

Also, for each i ∈ N , define Ci :=
⋂

j∈N\{i} Bj. Then Ci ∈ E(N\{i}) by

superadditivity of E. Choose ai ∈ Ci such that

ui(ai) = max{ui(a) : a ∈ Ci}.
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By superadditivity of E, ui(ai) ≥ ui(bi). For every i ∈ N define B̄i :=
Bi ∪ {ai} and C̄i :=

⋂
j∈N\{i} B̄j. By monotonicity, still B̄i ∈ E({i}) and

C̄i ∈ E(N\{i}) for every i ∈ N .
Now fix a player i ∈ N and write ui(x1) ≥ ui(x2) ≥ . . . ≥ ui(xm), where

A = {x1, x2, . . . , xm}. Let k ∈ {1, 2, . . . , m} such that ai = xk. Choose p
with k ≤ p ≤ m such that

ui(`({xk, xp, xp+1, . . . , xm})) ≤ ui(`({xk, xp′ , xp′+1, . . . , xm}))

for all k ≤ p′ ≤ m. Consider the set D = {xk, . . . , xm}. Since C̄ i ⊆ D, we

have D ∈ E(N\{i}). Let D′ := {xp, xp+1, . . . , xm} ⊆ D. Define Y ∈ P0(Ã)
by

Y = X(D, D′) ∪ F

where

F = {b ∈ A : b ∈ B with ui(b) = min{ui(c) : c ∈ B} for some B ∈ E(i)} .

By definition of Ẽ and Y , we have Y ∈ Ẽ(N\{i}). It follows, in particular,
that the set X i contains an element of Y , say y. Consider the lottery ¯̀ =
`(

⋂
j∈N B̄j). Then

ai ∈ B̄i ∩ C̄i =
⋂

j∈N B̄j and ui(ai) ≥ ui(c) ≥ ui(bi) for all c ∈ ⋂
j∈N B̄j.

(4)
We show that ¯̀∈ X i by considering all the possible values for y ∈ Y ∩X i.
If y ∈ F , then ui(¯̀) ≥ ui(bi) ≥ ui(y), where the first inequality follows
from (4) and the last inequality by definition of bi and F . By (3), this
implies ¯̀ ∈ X i. If y ∈ X(D, D′), then y = `({xp′ , xp, . . . , xm}) for some
p′ ∈ {k, k + 1, . . . , p − 1} if k < m and y = xm if k = m. In that case, we
argue as follows. Write

⋂
j∈N B̄j = {ai, y1, . . . , yr} with ui(ai) ≥ ui(y1) ≥

ui(y2) ≥ . . . ≥ ui(yr). Then

ui(¯̀) ≥ ui(`({ai, xm−r+1, xm−r+2, . . . , xm}))
≥ ui(`({ai, xp, . . . , xm}))
≥ ui(`({xp′ , xp, . . . , xm}))
= ui(y)

where the second inequality follows from the choice of p, and the third follows
since ui(ai) ≥ ui(xp′). Hence also in this case, (3) implies that ¯̀∈ X i.
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Since i ∈ N was arbitrary, we conclude that ¯̀ ∈ Xj for every j ∈ N ,
hence

⋂
j∈N Xj 6= ∅. ¤

A Nash consistent representation of the lottery model Ẽ in Theorem 4.2 is
the one constructed in the proof of Theorem A.1 (see Peleg et al., 2002) in the
Appendix, on which Theorem 3.1 is based. This particular game form has
a number of appealing properties. In particular, it always admits a Pareto
optimal Nash equilibrium outcome (cf. Remark A.2 in the Appendix). The

following example illustrates the effectivity function Ẽ, constructed in the
proof of Theorem 4.2, for the effectivity function associated with a 2 × 2-
game form.

Example 4.3 Let N = {1, 2}, A = {a, b, c, d}, and consider the effectivity
function E derived from the game form

[
a b
c d

]
,

where player 1 chooses a row and player 2 chooses a column. In particu-
lar, E({1}) contains {a, b}, {c, d}, and all supersets; E({2}) contains {a, c},
{b, d}, and all supersets. It is easy to see that condition (1) in Theorem 3.1
is not fulfilled. For instance, {a, d} ∈ E∗({1}), {b, c} ∈ E∗({2}), both are
admissible, but {a, d} ∩ {b, c} = ∅.

The effectivity function Ẽ, constructed in the proof of Theorem 4.2, as-
signs the following sets (where, e.g., ab is shorthand for `({a, b}), the equal
chance lottery on {a, b}):

Ẽ({1}) : {a, b, ab} {a, d, ab} {c, b, ab} {c, d, ab}
{a, b, cd} {a, d, cd} {c, b, cd} {c, d, cd}

Ẽ({2}) : {a, c, ac} {a, d, ac} {b, c, ac} {b, d, ac}
{a, c, bd} {a, d, bd} {b, c, bd} {b, d, bd}

and all supersets of these sets within Ã. It is easy to check that Ẽ is a
lottery model for E. By the proof of Theorem 4.2, Ẽ has a Nash consistent
representation. This can also be verified “directly” by using Theorem 3.1 and
showing that X1∩X2 6= ∅ for all admissible X1 ∈ E∗({1}) and X2 ∈ E∗({2}),
but this is a rather tedious task. Admissibility has strong implications. For
instance, if a, b ∈ X1, then also ab ∈ X1, or if ab ∈ X1, then also a ∈ X1 or
b ∈ X1, etc.
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The so called Gibbard paradox is formally an instance of this situation
(see Gibbard, 1974; Gaertner et al., 1992; or Peleg et al., 2002). Our main
result implies that the Gibbard paradox can be “solved” by allowing equal
chance lotteries as described. ¤

For particular cases, there may exist other lottery models that are less com-
plex and in that sense more attractive. This is the case in the next example,
where the unanimity effectivity function is considered.

Example 4.4 Let E : P (N) → P (P0(A)) be the unanimity effectivity func-
tion, i.e., E(S) = {A} for all S ∈ P0(N), S 6= N . This EF clearly fails to
satisfy condition (1). It is straightforward to check that here the lottery ¯̀

in the proof of Theorem 4.2 is equal to `(A), but in this case the lottery

model Ẽ in that proof is overly complicated. It is again straightforward to
see that also the effectivity function Ẽ ′ is a lottery model for E, where for
each S ∈ P0(N), S 6= N , Ẽ ′(S) consists of {`(A)} and all its supersets in Ã,

and Ẽ ′(N) = P0(Ã). By applying Theorem 3.1 and checking condition (1) it
follows that this lottery model has a Nash consistent representation. ¤

Example 4.4 is a special case of a neutral effectivity function. These EFs are
studied in the next section.

5 Neutral effectivity functions

A veto function is a function v : P (N) → {−1, 0, . . . , |A| − 1} such that
v(∅) = −1, v(S) ≥ 0 if S ∈ P0(N), and v(N) = |A| − 1. The interpretation
is that coalition S can veto any subset of the alternatives with at most v(S)
elements. With v we can associate a neutral (i.e., not depending on the
names of the alternatives) effectivity function Ev by

Ev(S) = {B ∈ P0(A) : |A \B| ≤ v(S)} = {B ∈ P0(A) : |B| ≥ |A| − v(S)}

for every S ∈ P (N). Conversely, it can be checked that every neutral ef-
fectivity function is derived from some veto function. A veto function is
monotonic if v(S) ≤ v(S∗) for all S, S∗ with S ⊆ S∗, and superadditive if
v(S) + v(S∗) ≤ v(S ∪ S∗) for all S, S∗ ∈ P (N) with S ∩ S∗ = ∅. Clearly, a
veto function is monotonic [superadditive] whenever the associated effectivity
function is monotonic [superaditive].
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We will show that for neutral effectivity functions there exists a simple
and quite natural lottery model that has a Nash consistent representation.
To this end we need the concept of the uniform core.

Let E : P (N) → P (P0(A)) be a monotonic and superadditive effectivity
function. Let U = RA (in fact, it suffices to assume ordinal preferences
here), uN ∈ UN , and say that x ∈ A is uniformly dominated by B ∈ P0(A)
via S ∈ P0(N) if (i) B ∈ E(S); (ii) x /∈ B; and (iii) ui(b) > ui(a) for all
b ∈ B, a ∈ A\B, and i ∈ S. We also say that S blocks x by B. The
set of all alternatives that are not uniformly dominated by some set B via
some coalition S is called the uniform core and denoted Cuniform(E, uN). See
Abdou and Keiding (1991), who show non-emptiness of the uniform core.
The uniform core represents E in the sense that, for every S ∈ P0(N) and
every B ∈ P0(A),

B ∈ E(S) ⇔ ∃uS ∈ US ∀uN\S ∈ UN\S : Cuniform(E, (uS, uN\S)) ⊆ B.

See Keiding and Peleg (2004) for a proof of this fact.

Define Ẽuniform : P (N) → P (P0(Ã)) by requiring for each S ∈ P0(N) and

X ∈ P0(Ã):

X ∈ Ẽuniform(S) ⇔ ∃uS ∈ US ∀uN\S ∈ UN\S : `(Cuniform(E, (uS, uN\S))) ∈ X.

Then Ẽuniform is a monotonic and superadditive lottery model for E. In fact,
Ẽuniform = EΓuniform where Γuniform = (U, . . . , U ; π; Ã) is the game form de-
fined by π(uN) = `(Cuniform(E, uN)) for each uN ∈ UN . Hence, the game

form Γuniform represents the effectivity function Ẽuniform, which in turn is a
lottery model for E. We will show that Γuniform is Nash consistent. Observe
that Γuniform is a simple game form, where each player just reports a utility
function—in fact, it is sufficient to report a weak ordering over the alterna-
tives. Given such a profile of reports one computes the uniform core and
the outcome of the game is the equal chance lottery over the elements of the
uniform core.

Theorem 5.1 Let uN ∈ UN . Then the game (Γuniform, uN) has a Nash equi-
librium.

Proof. We construct a strategy profile ûN ∈ UN inductively as follows. First,
let W (1) ⊆ A contain exactly v(1) worst alternatives according to u1, that
is, u1(x) ≤ u1(y) for all x ∈ W (1) and y ∈ A \ W (1). Define û1(x) = 0
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and û1(y) = 1 for all x ∈ W (1) and y ∈ A \W (1). Let k ∈ {2, . . . , n} and
suppose that ûl has been defined for all 1 ≤ l ≤ k − 1. Then let W (k) ⊆ A
contain exactly v(k) worst alternatives in A \⋃k−1

l=1 W (l) acording to uk, and
define ûk(x) = 0 and ûk(y) = 1 for all x ∈ W (k) and y ∈ A \W (k).

We claim that ûN is a Nash equilibrium in (Γuniform, uN). Let k ∈ N
and assume that each player l ∈ N \ {k} plays the strategy ûl. Consider any
coalition S ⊆ N \{k} with more than one player. Then S could only possibly
block some alternative by the set A \W (l) for some l ∈ S, but all these sets
are different since all sets W (l) are different. Hence, only singletons in N\{k}
block: each l ∈ N \ {k} blocks W (l), so altogether the set

⋃
l∈N\{k} W (l) is

blocked by the single players in N \ {k}. Consider the decision problem
for player k. By the same argument as before, a non-singleton coalition S
containing player k can only possibly block some alternative if S = {k, j} for
some j 6= k (since all sets W (l), l ∈ N \ {k} are different), but in that way
S can only block the set W (j), namely by player k playing some strategy u′

such that u′(x) < u′(y) for all x ∈ W (j) and y ∈ A \W (j). Then the game
would result in the equal chance lottery `(A \⋃

l∈N\{k} W (l)). By only using
his own blocking power, however, player k can make sure that the outcome of
the game is `(A \⋃

l∈N W (l)) by playing ûk. Clearly, this is an improvement
for player k, and also the best outcome attainable by using k’s own blocking
power. ¤

Note that this proof depends on the assumption that indifferences between
pure alternatives are allowed, in contrast to Theorem 4.2, which holds also
if preferences between pure alternatives can only be strict.

The Nash equilibrium exhibited in the proof of Theorem 5.1 is a very
natural one, since it consists of successive sincere vetoing of alternatives. Of
course, vetoing according to any other ordering of the players would also be
a Nash equilibrium.

If E is non-neutral, then Ẽuniform is still a lottery model for E and Ẽuniform =
EΓuniform , but it is not clear whether Γuniform is still Nash consistent.

6 Concluding remarks

In this paper we have proved that every (monotonic and superadditive) ef-
fectivity function can be augmented, by adding finitely many equal chance
lotteries, to a new effectivity function (lottery model) which preserves the
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original effectivity and has a Nash consistent representation. This approach
is based on two critical assumptions.

First, we assume that in the lottery model the original effectiveness of
a coalition S of players for a set B of alternatives is preserved if S is now
effective for some set X of equal chance lotteries such that the union of the
supports of the lotteries in X is equal to B. For instance, if B = {a, b, c},
then X could be the one-point set {`({a, b, c})} but also the two-point set
{a, `({a, b, c})}. This example shows that, in this set-up, we cannot really
interpret effectiveness for B as the alternatives of B being equiprobable, even
if we only add equal chance lotteries. Rather, players (or coalitions) evaluate
effectiveness purely in terms of supports.

Second, we assume that equal chance lotteries resulting as outcomes of
the representing game form are evaluated in terms of their expected utility.
This assumption is not innocent since it is not obvious how expected utility
maximization in general can be derived from underlying preferences if only
this limited set of lotteries is available. This critical point, however, can be
given a positive turn by observing that actually the expected utility prop-
erty is only needed to evaluate equal chance lotteries, and may therefore be
derived from a different set of assumptions in a decision model that only
includes equal chance lotteries. An early example is Fishburn (1972), where
preferences on sets of alternatives are considered and the expected utility
property for equal chance lotteries is derived from conditions on these prefer-
ences. The assumption of equal chance lotteries evaluated by expected utility
has been made frequently in the social choice literature, such as recently in
Barberà et al. (2001), but also in earlier work, e.g., Feldman (1980). Indeed,
also these references point at the interpretation of considering as outcomes
sets rather than equal chance lotteries, and evaluating these sets using ex-
pected utility with equal chances. In fact, this was done in Section 5, where
we considered the uniform core and evaluated that set as an equal chance
lottery.

Finally, our result is also a contribution to the classical “purification” prob-
lem. For any finite game form, it enables us to construct a new finite game
form which preserves the strategic possibilities of players and coalitions in
the sense that the associated effectivity function is a lottery model for the
effectivity function associated with the original game form, and which has a
pure Nash equilibrium for any profile of utility functions respecting expected
utility on equal chance lotteries.

13



A Appendix: Proof of Theorem 3.1

For the proof of Theorem 3.1 we recall the following result, which is Theorem
A.1 in Peleg et al. (2002). First a notation: for u : Z → R and x ∈ Z,
L(x, u) = {z ∈ Z : u(z) ≤ u(x)}. (L(x, u) is the lower contour set of u at x.)

Theorem A.1 Let E : P (N) → P (P0(Z)) be an effectivity function and let
U ⊆ RZ. Then E has a Nash consistent representation on UN if and only if
the following conditions are satisfied:

(a) E is monotonic and superadditive.

(b) For every uN ∈ UN there exists an x ∈ Z such that L(x, ui) ∈ E(N\{i})
for all i ∈ N .

Remark A.2 The representing game form used in the proof of Theorem
A.1 has two interesting properties. First, it is maximal in the sense that it
admits any potential Nash equilibrium outcome, i.e., any outcome that is a
Nash equilibrium (for a given utility profile) in some representing game form.
Second, for any utility profile it admits a Pareto optimal Nash equilibrium
outcome.

Proof of Theorem 3.1. First assume that E has a Nash consistent repre-
sentation Γ on UN . For each i ∈ N , let X i ∈ E∗(i) be an admissible set and
ui ∈ U such that ui(z) > ui(y) for all z ∈ X i and y ∈ Z\X i. Let x ∈ Z be a
Nash equilibrium outcome of (Γ, uN). Then

L(x, ui) ∈ EΓ(N\{i}) = E(N\{i}) for all i ∈ N.

This implies X i ∩ L(x, ui) 6= ∅ for every i ∈ N . By admissibility, x ∈ X i for
all u, hence

⋂
i∈N X i 6= ∅, so that (1) holds.

For the converse, assume (1). Let uN ∈ UN . For every i ∈ N let Y i :=
{y ∈ Z : Z\L(y, ui) ∈ E∗(i)} and define

X i =

{ ⋂
y∈Y i Z\L(y, ui) if Y i 6= ∅

Z otherwise.

By (1),
⋂

i∈N X i 6= ∅. Take x ∈ ⋂
i∈N X i. Then Z\L(x, ui) /∈ E∗(i) for

each i. Hence, there is some set Zi ⊆ L(x, ui) with Zi ∈ E(N\{i}, so
by monotonicity of E, L(x, ui) ∈ E(N\{i}) for every i. Theorem A.1 now
implies that E has a Nash consistent representation. ¤
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