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Abstract. We consider graphs that can be embedded on a surface of bounded genus
such that each edge has a bounded number of crossings. We prove that many optimiza-
tion problems, including maximum independent set, minimum vertex cover, minimum
dominating set and many others, admit polynomial time approximation schemes when
restricted to such graphs. This extends previous results by Baker [1] and Eppstein [3]
to a much broader class of graphs.

1 Introduction

Already more than two decades ago, Baker [1] showed that the maximum in-
dependent set and many other NP-hard optimization problems on graphs ad-
mit polynomial time approximation schemes (PTAS) when restricted to planar
graphs. The basic idea of Baker’s algorithm was to remove the vertices in every
kth level of a breadth first search tree (BFS) and to solve the problem on the
remaining components by a dynamic programming algorithm. Baker proved
that from k ways of choosing which set of levels to remove there is at least
one which only decreases the size of the maximum independent set by a factor
of at most (k − 1)/k. Moreover, remaining components after levels deletion
are k-outerplanar graphs, and dynamic programming can solve the problem on
these components efficiently.

Recently, Eppstein in [3] observed that the results by Baker [1] can be
extended to any minor-closed family of graphs satisfying so-called diameter-
treewidth property. This implies that the problem admits a PTAS if restricted
to bounded-genus graphs. This result has been generalized to other minor-
closed classes; in particular, Grohe gave PTAS’s for several problems, for any
minor-closed family that does not contain all graphs [2].

In this paper we continue the line of investigations — in which way can
Baker’s technique be further extended? Revisiting Eppstein [3] result, we ob-
serve that the restriction that the class of graphs must be minor-closed can be
relaxed. By moving from the input graph to an auxiliary graph obtained by
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replacing each crossing by a vertex and back, we can obtain Baker-type PTAS’s
for several problems on graph that are embeddable on a surface of bounded
genus (e.g., the plane) with a bounded number of crossings per edge.

2 Problem and Definitions

We illustrate the basic ideas of the PTAS on the maximum independent set
problem. Given a graph G = (V, E), we look for a maximum cardinality inde-
pendent set in G, i.e. a vertex subset V ′ ⊆ V such that no two vertices from
V ′ are adjacent by an edge from E. Let n = |V |. This problem is known to be
NP-hard even for planar graphs. The problem admits a PTAS if restricted to
planar graphs [1] and even to bounded-genus graphs [3].

Definition 2.1 (Good embedding). We call an embedding of graph G on a
surface S of genus g a good embedding if it satisfies the following conditions:
(i) all vertices of the graph are given as distinct points in S; (ii) no two edge
crossings happen in the same point in S; (iii) for any edge no vertex of the
graph, except the endpoints of the edge, is situated on the edge.

Definition 2.2 (Crossing parameter). Let the crossing parameter ϕ of a
graph (on surface S) be the minimum over all good embeddings on S of the
maximum over all edges e of the number of edge crossings of e.

Through this paper we assume that a good embedding of G is given and
both the crossing parameter ϕ and the genus g of S are bounded by some
constants. Clearly, the graph is planar if g = 0 and ϕ = 0.

3 The Polynomial Time Approximation Scheme

We now describe our polynomial time approximation scheme for the maxi-
mum independent set problem on graphs with bounded crossing parameter on
bounded genus. Consider the following algorithm A which is a revised version
of the algorithms by Baker [1] and Eppstein [3].

Construct the graph G′ = (V ′, E′) obtained from G by replacing each edge
crossing by a vertex. W.l.o.g. let ϕ < k. Build an arbitrary breadth first search
tree T of G, with root v0, and consider the levels of the tree (i.e., vertex sets
with equal distance to v0). Suppose we remove every kth level in T from G′

together with its ϕ successive levels. This decomposes G′ into a collection of
subgraphs H = {H1, H2, . . . , Hr} where each subgraph Ht = (Vt, Et) is induced
by k − ϕ− 1 consecutive levels in T of G′.

Consider a subgraph Gt of G induced by vertices Vt ∩ V . Since number of
crossings per edge is at most ϕ and we removed ϕ + 1 consecutive levels from
G′, we have that after deletion of levels there is no an edge e ∈ E such that its
two endpoints belong to two different subgraphs Gt′ and Gt′′ . Therefore, for
each choice of k we have a subgraph of G formed by a collection of subgraphs
G1, G2, . . . , Gr. By arguments similar to Baker’s [1] there is a choice of the
deleting set of levels which leads to a subgraph approximating the optimum
within a factor (k − ϕ− 1)/k.



Now, let us show that the treewidth of Gt is bounded by O(k) for all t =
1, . . . , r. Consider a subgraph Ht induced by levels r +1, r +2, . . . , r + s in T of
G′ where s = k−ϕ−1 = O(k). Consider a minor of G′ obtained by contraction
of the first r levels in T to a single vertex and deletion of all levels above r + s.
Clearly, this minor is a graph of genus g. Moreover, it has a diameter of at
most 2(k − ϕ − 1) = O(k). By Eppstein [3] the treewidth of such a minor is
O(gk). Therefore, Ht as a subgraph of such a minor has the treewidth of at
most O(gk) as well.

Now, let us estimate how much the treewidth of Gt and Ht can differ.
Construct a graph H ′

t from Ht by replacing each vertex v in Ht that represents
an edge crossing, say e1 and e2, by two adjacent vertices v1 and v2 representing
e1 and e2 respectively. Let v1 be adjacent to all vertices corresponding to
the neighborhood of v representing e1, and let v2 be adjacent to all vertices
corresponding to the neighborhood of v representing e2. It is not hard to
see that a tree decomposition of Ht of treewidth d can be turned into a tree
decomposition of H ′

t of treewidth at most 2d + 1. One can also observe that
we can select for each edge in Gt a path in H ′

t between its endpoints, such that
these paths do not have internal vertices in common. Thus, Gt is a minor of H ′

t

and hence the treewidth of Gt is at most twice the treewidth of Ht plus one,
and thus O(gk) = O(k) as required. Hence, the maximum independent set for
Gt can be found in time O(n2O(k)) by a dynamic programming algorithm, using
standard treewidth techniques. As a result we have the following theorem.

Theorem 3.1. Algorithm A outputs an independent set of graph G of size at
least 1 − O(1/k) times the optimum in time O(kn2O(k)), and thus, there is a
PTAS for maximum independent set for graphs given with an embedding on a
surface of bounded genus and with bounded crossing parameter.

For each of the following problems (and many others), we can also obtain in
a similar way, using techniques similar to those of Baker [1], a PTAS for graphs
embeddable on a surface of bounded genus with bounded crossing parameter:
minimum vertex cover, minimum dominating set, minimum edge dominating
set, minimum triangle matching, maximum H-matching, maximum tile salvage.

4 More on the Crossing Parameter

In this section we give some results on the computational complexity of the
crossing parameter and some properties of the class of graphs with bounded
crossing parameter.

Theorem 4.1. The problem to determine if a given graph G can be embedded
on the plane with crossing parameter 1 is NP-complete.

Corollary 4.1.1. When P6=NP, there does not exist a polynomial time 2-
approximation algorithm for finding the crossing parameter of a graph on the
plane.

Notice, however, that several natural classes of graphs have a bounded cross-
ing parameter on the plane. For instance, graphs of intersections of objects in



the plane with bounded objects density (disk graphs with bounded density are
special case of these); graphs with bounded degree and bounded tree width;
planar graphs.

Observation 4.1. The class of graphs with an embedding on the plane with
crossing parameter 1 is not closed under taking minors. In fact, every graph is
a minor of a graph with crossing parameter 1: take any good embedding, and
then add a new vertex of degree two between every two successive crossings.

From work on the crossing number of graphs (the minimum total number
of crossings in a planar embedding), we can also obtain bounds on the crossing
parameter (on the plane). E.g., the crossing number of a complete graph with
n vertices is Θ(n4) [4], hence its crossing parameter is Θ(n2).

References

[1] B. Baker. Approximation algorithms for NP-complete problems on planar
graphs. Journal of the ACM 41 (1994), 153–180. Preliminary version in
FOCS’83.

[2] Martin Grohe, Local tree-width, excluded minors, and approximation al-
gorithms. Combinatorica 23 (2003), 613-632.

[3] D. Eppstein. Diameter and treewidth in minor-closed graph families. Al-
gorithmica 27 (2000) 275–291.

[4] F.T. Leighton. New lower bound techniques for VLSI. Mathematical Sys-
tems Theory 17 (1984) 47–70.


