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Abstract

The effect of replacing an agent in a two-person two-state finance
economy by a more risk averse agent is studied. It is established under
which conditions the other agent benefits or looses in equilibrium from
dealing with a more risk averse agent. If one agent becomes more risk
averse, then the equilibrium allocation moves towards that agent’s
certainty line. Whether or not that is beneficial for the other agent,
depends on the location of the endowment point.
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1 Introduction

The concept of risk plays a central role in financial markets, both in theory
and in practice. The celebrated capital asset pricing model, for instance, gives
a relation between asset equilibrium prices when – among other conditions
– agents’ choices are based on a tradeoff between means and variances of
assets. An aspect, however, which to the best of our knowledge has received
little attention is the effect an agent’s risk attitude has on the utility of the
other agents in equilibrium. The purpose of this paper is to study this effect

∗Department of Quantitative Economics, University of Maastricht, P.O. Box 616, 6200
MD Maastricht, The Netherlands. Tel.: +31 43 3883835, email: c.berden@ke.unimaas.nl,
h.peters@ke.unimaas.nl.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6941587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


in about the simplest possible model, namely a two-person two-state finance
economy.

In such an economy the two agents are equipped with endowments of a
single good (e.g., money) in two possible states of the world. These states
of the world occur with commonly known probabilities. The agents trade
in the two associated Arrow securities and evaluate allocations according to
their von Neumann-Morgenstern utility functions. At the equilibrium prices,
markets clear – the total allocation per state is equal to the total endowment
per state – while agents maximize their expected utility. This is the simplest
version of a financial market (see, for instance, LeRoy and Werner, 2001).
It is equivalent to a two-person two-good exchange economy with, of course,
quite special utility functions.

To facilitate the exposition we assume that the economy has a unique
interior equilibrium and then we ask the following question. Suppose an
agent is replaced by a more risk averse agent in the sense of the Arrow-Pratt
measure of risk aversion: is the new equilibrium allocation better or worse for
the other agent? In slightly different wording, does increased risk aversion of
one agent benefit or hurt the other agent?

In answering this question, we find that the position of the endowment
point is an important factor. If agent A is replaced by a more risk averse
agent, then the equilibrium allocation moves towards A’s certainty line, i.e.,
the line of risk free allocations. This movement takes place along agent
B’s offer (demand) curve. If the new equilibrium allocation is farther away
from the endowment point than the original one, then B’s utility increases,
otherwise it decreases. Only cases where the equilibrium allocation passes
the endowment point are ambiguous in terms of change of B’s utility.

As a typical example, suppose the total endowment in state 1 is higher
than in state 2, agent A has a higher endowment in state 1 than in state
2, and in equilibrium agent A’s allocation in state 1 is smaller than his
endowment in state 1. I.e., he has traded part of his state 1 endowment for
state 2 securities. In that case, if agent A is replaced by a more risk averse
agent, that agent will demand even more state 2 securities in order to move
closer to a risk free allocation. Hence, the equilibrium allocation moves away
from the endowment point along B’s offer curve. Such a change is always to
the benefit of agent B – intuitively since the endowment point is available
whatever the prices are, so moving away from it reveals an increase in utility.
This movement is accompanied by a price decrease of state 1 securities. The
intuition that agent B benefits from this is tempting, but it should be taken
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with some care since price changes also have income effects. Nevertheless, the
situation can be summarized by saying that agent B benefits from a more risk
averse agent A demanding a less risky portfolio, resulting in a price decrease
of an asset demanded by B and having a positive net effect on B’s utility.

Other cases, collected in the main result Theorem 1 of this paper, can
be given similar interpretations. It may not come as a big surprise that
it depends on the relative locations of the endowment and the equilibrium
whether increased risk aversion of one agent benefits or hurts the other agent.
On the other hand, for any possible configuration we can either say what is
the case, or spell out why it is ambiguous. Our results are only for two agents
and two states, but these can be interpreted as aggregates for two different
groups of agents and two different classes of states. See also the concluding
section of the paper.

The paper is organized as follows. Section 2 describes the model and some
preliminary observations, Section 3 presents the main result, and Section 4
concludes.

2 Preliminaries

We consider economies with two agents A and B, a single good, and two
states of the world. The endowments of the agents are denoted by eA =
(eA

1 , eA
2 ) and eB = (eB

1 , eB
2 ), where the subscripts refer to the states of the

world. Throughout, it is assumed that eA > 0 and eB > 0, i.e., each agent is
endowed with a positive amount of the good in each state.1 State of the world
1 occurs with probability π and state of the world 2 with probability 1 − π.
The total endowment in state 1 is denoted by w1 and the total endowment
in state 2 by w2, so w1 = eA

1 + eB
1 and w2 = eA

2 + eB
2 . The preferences of the

agents are expressed by von Neumann-Morgenstern utility functions uA, uB :
[0,m] → R, where m ∈ R with m ≥ max{w1, w2}. We assume that these
functions are strictly concave, strictly increasing and twice differentiable on
the interior of their domain, so (uA)′, (uB)′ > 0 and (uA)′′, (uB)′′ < 0. Such
an economy is denoted by E = (uA, uB, eA, eB, π).

Let p1 and p2 be positive ‘state’ prices. Given these prices, an agent in
the economy with utility function u and endowment e = (e1, e2) faces the

1The vector inequality x > y means that every coordinate of x is strictly larger than
the corresponding coordinate of y.
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familiar consumer problem

max
x1,x2

πu(x1) + (1 − π)u(x2)

subject to p1x1 + p2x2 = p1e1 + p2e2

x1, x2 ≥ 0 . (1)

From our assumptions it follows that this problem has a unique solution, the
demand vector x(p1, p2) . It is routine to verify that an interior solution to
(1) satisfies

p1

p2

=
πu′(x1)

(1 − π)u′(x2)
, (2)

with x1 and x2 satisfying the budget constraint. As is clear from the budget
constraint and also from (2), prices are relative. It will often be convenient
to fix the price of state 2 at p2 = 1 and consider changes in p1.

A pair xA, xB ∈ R
2 of nonnegative vectors is called an allocation. If,

moreover, xA
1 + xB

1 = w1 and xA
2 + xB

2 = w2, then the allocation is called
feasible. As usual, a (Walrasian) equilibrium in this economy is a vector of
positive prices p = (p1, p2) and a feasible allocation xA = (xA

1 , xA
2 ) and xB =

(xB
1 , xB

2 ) such that xA solves (1) for A and xB solves (1) for B. Feasibility
implies that markets clear.

A useful instrument to study equilibria is the offer curve. For an agent
with utility function u and endowment e in the economy E , the offer curve

associates with each price vector p = (p1, p2) the demand vector x(p) ∈ R
2

which solves problem (1). Clearly and well-known, by (2), the offer curve of
an agent passes through the endowment, and in the economy E , a feasible
allocation (xA, xB) 6= (eA, eB) is part of an equilibrium if and only if xA

is on A’s offer curve and xB is on B’s offer curve. When drawn as curves
in an Edgeworth box, both the offer curve of A and of B passes through
the endowment point e = (e1, e2) and through each equilibrium allocation
(xA, xB). We will use the expression ‘offer curve’ also for the corresponding
curve in the Edgeworth box.

For later reference we collect some useful observations about offer curves
and equilibria. For completeness’ sake, all proofs are provided.

The first lemma describes how demand and, thus, offer curves depend on
prices.

Lemma 1 Consider an agent in E with utility function u and endowment e.

Let x1(p1, p2) and x2(p1, p2) be the demand functions in state 1 and state 2,

respectively. Assume interior demand, i.e., x1(p1, p2) > 0 and x2(p1, p2) > 0.
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(i) If e1 − x1(p1, p2) ≤ 0, then dx1

dp1

< 0. 2

(ii) If e1 − x1(p1, p2) ≥ 0 , then dx2

dp1

> 0.

Proof. Since prices are relative, it is without loss of generality to set p2 = 1.
Then, by (2), for the demand x(p) we have p1 = πu′(x1)

(1−π)u′(x2)
, with x2 =

p1(e1 − x1) + e2. By straightforward computation,

dx1

dp1

=
(1 − π)(u′(x2))

2 + πu′(x1)u
′′(x2)(e1 − x1)

π(u′(x2)u′′(x1) + p1u′(x1)u′′(x2))
. (3)

This implies (i). For (ii), again by straightforward computation,

dx2

dp1

=
πu′′(x1)(x2 − e2) − p2

1(1 − π)u′(x2)

p3
1(1 − π)u′′(x2) + p1πu′′(x1)

. (4)

If e1−x1(p1, p2) ≥ 0, then by the budget constraint e2−x2(p1, p2) = e2−x2 ≤
0, so (ii) follows from (4). �

An implication of Lemma 1 for the offer curve is given in the following lemma.
The lemma says that an agent’s offer curve cuts each budget line in two
points, namely the endowment point and the demand point: for in-between
prices the offer curve is below, and for other prices above the budget line.

Lemma 2 Consider an agent with utility function u and endowment e. Fix

the price of state 2 at 1, p2 = 1, and denote x(p) by x(p1). Let e = x(pe
1)

and let q1 6= pe
1 with x(q1) > 0. Then:

(i) if p1 is weakly between pe
1 and q1, then x(p1) is affordable at price q1,

i.e.,

q1x1(p1) + x2(p1) ≤ q1e1 + e2 .

(ii) if p1 is not between pe
1 and q1, then x(p1) is not affordable at price q1,

i.e.,

q1x1(p1) + x2(p1) > q1e1 + e2 .

2Strictly speaking, these are partial derivatives. Since prices are relative, so that we can
always fix the price of one of the goods (states), we use the ordinary derivative notation
here and in the sequel.
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Proof. Assume without loss of generality that x1(q1) < e1 and (thus) x2(q1) >

e2. Lemma 1 implies that pe
1 < q1. To prove (i), let pe

1 ≤ p1 ≤ q1. Then,
since e solves (1) at price pe

1, we must have

pe
1x1(p1) + x2(p1) ≥ pe

1e1 + e2 .

By subtracting this inequality from the equation

p1x1(p1) + x2(p1) = p1e1 + e2

we obtain the inequality (p1 − pe
1)x1(p1) ≤ (p1 − pe

1)e1, which by p1 ≥ pe
1

implies x1(p1) ≤ e1. Suppose the statement in (i) were not true, i.e.,

q1x1(p1) + x2(p1) > q1e1 + e2 .

Then subtracting from this the equation p1x1(p1) + x2(p1) = p1e1 + e2 yields
(q1 − p1)x1(p1) > (q1 − p1)e1, a contradiction since p1 ≤ q1 and x1(p1) ≤ e1.

The proof of part (ii) is similar and therefore omitted. �

The final preliminary lemma establishes that an equilibrium allocation in our
economy is always located between the agents’ ‘certainty lines’.

Lemma 3 Let the interior demand vectors xA and xB with prices (p1, p2) be

an equilibrium in E. Then,

(i) if xA
1 = xA

2 , then xB
1 = xB

2 and hence w1 = w2;

(ii) if xA
1 > xA

2 , then xB
1 > xB

2 and hence w1 > w2;

(iii) if xA
1 < xA

2 , then xB
1 < xB

2 and hence w1 < w2.

Proof. For case (i), suppose that xA
1 = xA

2 . Then by (2), p1

p2

= π
(1−π)

. Again

by (2), this implies xB
1 = xB

2 . For case (ii), suppose that xA
1 > xA

2 . Then
(uA)′(xA

1 ) < (uA)′(xA
2 ) and by (2), p1

p2

< π
(1−π)

. By (2) again, it follows that

(uB)′(xB
1 ) < (uB)′(xB

2 ). Therefore, xB
1 > xB

2 . Case (iii) is analogous. �

6



3 The effect of risk aversion on equilibrium

Consider two economies E = (uA, uB, eA, eB, π) and Ẽ = (uÃ, uB, eÃ, eB, π)
which differ only in the utility function of the first agent. More precisely,
in Ẽ agent A is replaced by agent Ã with the same endowment eÃ = eA

but with utility function uÃ = k ◦ uA, where k is a strictly increasing and
concave, twice differentiable function; hence, k′ > 0 and k′′ < 0 on the
interior of the domain of k. Thus, Ã is more risk averse than A according to
the familiar Arrow-Pratt measure of risk aversion. The main purpose of this
paper is to investigate the effect of increased risk aversion on the utility of
agent B through its effect on equilibrium. A direct comparison between the
equilibrium utilities of A and Ã is meaningless since the utility functions of
these agents are not comparable with respect to magnitude.

In order to keep the presentation as simple as possible, we assume that the
equilibria of E and Ẽ are unique and interior. The uniqueness assumption
renders it possible to make unambiguous comparisons between agent B’s
utility levels in equilibrium.3

The following lemma compares the offer curves of A and Ã and therefore
plays a crucial role in the proof of our main result.

Lemma 4 Let p = (p1, p2) be a vector of positive prices and let x = x(p) and

x̃ = x̃(p) be the corresponding interior demands of A and Ã, respectively.

(i) If x1 = x2, then x1 = x̃1 and x2 = x̃2.

(ii) If x1 > x2, then x̃1 > x̃2, x̃1 < x1 and x̃2 > x2.

(iii) If x1 < x2, then x̃1 < x̃2, x̃1 > x1 and x̃2 < x2.

Geometrically, this lemma can be summarized as follows: (i) the point on
the offer curve of A and the certainty line is also the point on the offer curve
of Ã at the same prices; (ii) for a point on the offer curve of A below the
certainty line, the corresponding (that is, at the same prices) point on the

offer curve of Ã lies also below the certainty line but closer to the certainty
line, in the ‘North-West’ quadrant with respect to the original point; (ii) for

3Our conditions do not guarantee uniqueness. Familiar conditions for this like the gross
substitutes condition (e.g., Takayama, 1985) are not satisfied. Our results below can be
adapted to the case where the equilibria are not unique (this can occur) but then we would
have to keep track of the equilibria that we are comparing.
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a point on the offer curve of A above the certainty line, the corresponding
(that is, at the same prices) point on the offer curve of Ã lies also above the
certainty line but closer to the certainty line, in the ‘South-East’ quadrant
with respect to the original point. This confirms our intuition with regard
to the fact that Ã is more risk averse than A.

Proof of Lemma 4. By (2) we have

p1

p2

=
πu′(x1)

(1 − π)u′(x2)
=

πk′(u(x̃1))u
′(x̃1)

(1 − π)k′(u(x̃2))u′(x̃2)
(5)

To show (i), let x1 = x2. Then (5) implies x̃1 = x̃2 and the budget restriction
in (1) then implies x1 = x2 = x̃1 = x̃2. To show (ii), let x1 > x2. Then (5)
implies x̃1 > x̃2 and, moreover,

u′(x1)

u′(x2)
<

u′(x̃1)

u′(x̃2)

by concavity of k. Together with the budget restriction p1x1 +p2x2 = p1x̃1 +
p2x̃2 (= p1e

A
1 + p2e

A
2 ), this implies x1 > x̃1 and x2 < x̃2. The proof of (iii) is

analogous. �

Let V denote the indirect utility function associated with (1), i.e., V (p) =
πu(x1(p)) + (1 − π)u(x2(p)) for every vector of positive prices p = (p1, p2).
Then the partial derivatives of V exist. The following lemma is concerned
with the sign of these derivatives and establishes when utility increases or
decreases along the offer curve.

Lemma 5 Consider an agent in E with utility function u, endowment e and

indirect utility function V . Let x = x(p) be an interior demand. Then:

(i) If x1 < e1, then dV
dp1

> 0.

(ii) If x1 = e1, then dV
dp1

= 0.

(iii) If x1 > e1, then dV
dp1

< 0.

Proof. Without loss of generality set p2 = 1. Then

dV

dp1

= πu′(x1)
dx1

dp1

+ (1 − π)u′(x2)(e1 − x1 − p1
dx1

dp1

) .
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By (2), this implies

dV

dp1

= (1 − π)u′(x2)(e1 − x1) .

This implies (i)–(iii). �

The next result states, for a number of cases, how prices change in the equi-
librium of Ẽ compared to the equilibrium of E .

Lemma 6 Let c = (cA
1 , cA

2 , cB
1 , cB

2 ) and d = (dÃ
1 , dÃ

2 , dB
1 , dB

2 ) be the unique,

interior equilibrium allocations and q and q̃ the corresponding equilibrium

prices of E and Ẽ, respectively, with q2 = q̃2 = 1. Then:

(i) If cA
1 > cA

2 and cA
1 > eA

1 , then q̃1 ≤ q1.

(ii) If cA
1 > cA

2 and cA
1 ≤ eA

1 , then q̃1 ≤ q1.

(iii) If cA
1 < cA

2 and cA
1 > eA

1 , then q̃1 ≥ q1.

(iv) If cA
1 < cA

2 and cA
1 ≤ eA

1 , then q̃1 ≥ q1.

Typical examples of cases (i)–(iv) in Lemma 6 are drawn in parts (i)–(iv) of
Figure 1.

Proof of Lemma 6. We only prove (i), the other cases are analogous. Let
cA
1 > cA

2 and cA
1 > eA

1 . We normalize all price vectors by setting the state 2
price equal to 1, and write x(p1) for the demand vector x(p). We use xA(p1)
and xB(p1) to denote demand vectors of A and B, respectively.

We start with a useful observation. Let pA
1 be the price such that eA

= xA(pA
1 ). Lemma 1(i) and cA

1 > eA
1 imply q1 < pA

1 . Define C to be the set

C =
⋃

q1≤p1≤pA
1

{(xA
1 , xA

2 , xB
1 , xB

2 ) ∈ R
4 | eA

1 ≤ xA
1 ≤ xA

1 (p1),

p1x
A
1 + xA

2 = p1e1 + e2, xA + xB = e1 + e2} .

In words, C is the union of all line segments with as one endpoint the endow-
ment point and as other endpoint a point on the offer curve of A between
e and c: observe that eA

1 < xA
1 (p1) < cA

1 for every q1 < p1 < pA
1 by Lemma

1. Also, C is a subset of feasible allocations since, by Lemma 2(i), every

9



e

d

c

B

Ã

A

(i)

e
d cB

A Ã

(ii)

B

AÃ

(iii)

e

d

c

B

A
Ã

(iv)

e

d
c

Figure 1 : Panels (i)–(iv) sketch instances of the cases (i)–(iv) in Lemma 6. In

each case an Edgeworth box is drawn with the origin for A and Ã at the lower

left point and the origin for B at the upper right point. Also the agents’ certainty

lines are drawn. In cases (i) and (iv) the endowment point e can also be located

at the other side of A’s certainty line, but that does not make an essential

difference. Similarly, in cases (ii) and (iii), e could be located on the other side

of B’s certainty line. In all four panels, three offer curves are drawn, and the

equilibrium allocations c and d are the points of intersection.
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element of C is below the budget line through e and c, and by the previous
observation, has first coordinate between eA

1 and cA
1 . It can be verified that

C is a closed set with as boundary the union of the feasible allocations on
the offer curve of A below the budget line through e and c in the Edgeworth
box, and the line segment between e and c. In fact, C is the set between the
offer curve of A and the line segment connecting e and c, but our definition
of C turns out to be useful below.

We claim that e and c are the only feasible allocations in C on the offer
curve of B. Suppose not, and let y = (yA, yB) be another feasible allocation
in C on the offer curve of B. Let pB

1 such that xB(pB
1 ) = eB. By Lemma

1, pB
1 < q1. Since y ∈ C and, thus, yB

1 < eB
1 and yB

2 > eB
2 , Lemma 2 and

Lemma 1 imply that yB = xB(py
1) for some price p

y
1 > q1. By Lemma 1(ii),

it follows in particular that xB
2 (p1) > cB

2 > eB
2 for all p1 ≥ p

y
1. Choose

pz
1 > max{py

1, p
A
1 }, then the feasible allocation z with zB = xB(pz

1) is not in
C. Since C is a closed set and the offer curve of B a continuous curve, this
curve must intersect the boundary of C at a point v for some price between
p

y
1 and pz

1. Since v cannot be a point on the line segment connecting e and
c, it must be a point on the offer curve of A unequal to e or c. But then, v

is an equilibrium allocation, contradicting our assumption that equilibrium
is unique.

Now suppose, contrary to what we wish to prove, that q̃1 > q1. Lemma
3 and cA

1 > cA
2 imply w1 > w2, and therefore, by Lemma 3 again, dÃ

1 > dÃ
2 .

Since d is on the offer curve of B, q̃1 > q1 > pB
1 and Lemma 1(ii) imply dB

2 >

eB
2 and, thus, dB

1 < eB
1 . Consider the feasible allocation x with xA = xA(q̃1),

which is located on the offer curve of A and the budget line through e and d.
If x is on the same side of d as e is, i.e., if xA

1 ≤ dÃ
1 , then consider two cases.

If xA
1 > xB

1 , then, by Lemma 4(ii), dÃ has first coordinate smaller than xA
1 ,

a contradiction. If xA
1 ≤ xB

1 , then by Lemma 4(i) or (iii), dÃ
1 ≤ dÃ

2 , again a

contradiction. Hence, we must have xA
1 > dÃ

1 . Then q̃1 ≤ pA
1 since otherwise

xA
1 < eA

1 < dA
1 by Lemma 1(i), a contradiction. Hence q1 < q̃1 ≤ pA

1 , which
implies that d is in the set C, contradicting our claim above.

Thus, we must have q̃1 ≤ q1. �

Let q and q̃ be the equilibrium prices in E and Ẽ , respectively. Let V B

denote the indirect utility function of agent B. We say that risk aversion (of
the opponent) benefits agent B if V B(q̃) ≥ V B(q) and risk aversion (of the
opponent) hurts agent B if V B(q̃) ≤ V B(q). The following theorem answers
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the question when risk aversion benefits or hurts agent B.

Theorem 1 Let c = (cA
1 , cA

2 , cB
1 , cB

2 ) and d = (dÃ
1 , dÃ

2 , dB
1 , dB

2 ) be the unique,

interior equilibrium allocations and q and q̃ the corresponding equilibrium

prices of E and Ẽ. Consider the following exclusive cases:

(i) w1 = w2.

(ii) w1 > w2 and

(ii.a) eA
1 ≤ eA

2 .

(ii.b) eA
1 > eA

2 , cA
1 ≤ eA

1 .

(ii.c) eA
1 > eA

2 , cA
1 > eA

1 , dB
1 ≤ eB

1 .

(iii) w1 < w2 and

(iii.a) eA
1 ≥ eA

2 .

(iii.b) eA
1 < eA

2 , cA
1 ≥ eA

1 .

(iii.c) eA
1 < eA

2 , cA
1 < eA

1 , dB
1 ≥ eB

1 .

Then risk aversion benefits agent B in the cases (ii.b) and (iii.b). In case

(i), q = q̃ and c = d, so V B(q) = V B(q̃). In all other cases, risk aversion

hurts agent B.

Proof. Case (i) follows directly from Lemma 3 and Lemma 4(i).
For case (ii.a), it follows from Lemma 3 and Lemma 6(i) that q̃1 ≤ q1.

From Lemma 3 again and from Lemma 5(i), V B(q̃) ≤ V B(q), so risk aversion
hurts B.

For case (ii.b), by Lemma 3 and Lemma 6(ii), q̃1 ≤ q1. By Lemma
5(ii),(iii), V B(q̃) ≥ V B(q), so risk aversion benefits B.

For case (ii.c), by Lemma 3 and Lemma 6(i), q̃1 ≤ q1. By Lemma 5(i),
V B(q̃) ≤ V B(q), so risk aversion hurts B.

The analogous proofs for cases (iii.a)–(iii.c) are omitted. �

Theorem 1 can be summarized in a non-technical way as follows. This sum-
mary also provides a good intuition for the results. If agent A is replaced
by a more risk averse agent Ã, then the equilibrium allocation moves closer
to agent A’s (or Ã’s) certainty line, as is intuitive. This movement takes
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place along agent B’s offer curve. If the equilibrium allocation moves away
from the endowment point e, then this is beneficial to agent B, as follows
from Lemma 5. If it moves towards e, then this hurts agent B. The latter
observation also explains why Theorem 1 is not exhaustive. Cases (ii.c) and
(iii.c), where the equilibrium allocation indeed moves towards the endowment
point, are restricted by the condition that the equilibrium allocation should
not actually cross the endowment point, since in that case, agent B’s util-
ity starts to increase again, so that the finally resulting effect is ambiguous.
Example 1 below shows that this can indeed happen.

Cases (ii.b) and (iii.b) of Theorem 1 are illustrated in Panels (ii) and (iii)
of Figure 1, respectively. In both cases the movement from c to d along the
offer curve of B is away from the endowment point e: this benefits agent B.
Cases (ii.a) and (iii.a) of Theorem 1 are illustrated in Panels (i) and (iv) of
Figure 1, respectively. In both cases the movement from c to d along the
offer curve of B is towards the endowment point e: this hurts agent B.

Example 1 Let agent A have utility function uA(t) = ln(t + 1) and endow-
ment eA = (11

10
, 13

20
). Agent B has utility function uB(t) = ln t and endowment

(19
10

, 27
20

). So w1 = 3 and w2 = 2. Let π = 1
2
. Let Ã be a more risk averse

agent, with utility function uÃ(t) = ln t. Let c and d be the equilibrium

allocations in E and Ẽ , respectively. It is straightforward to compute that
cB = (37

20
, 111

80
) and dB = (157

80
, 157

120
). Then cB

1 < eB
1 < dB

1 and B’s expected
utility at d (≈ 0.4715) is higher than at c (≈ 0.4713). Theorem 1 does not
apply here, since the last condition in case (ii.c) is not fulfilled: by going
from c to d along B’s offer curve, endowment point e is crossed.

Consider, next, an agent Ā with utility function uĀ(t) = ln(t + 1
5
), which

implies that Ā is more risk averse than A (but less so than Ã). Now the
new equilibrium allocation is the point d̄ with d̄B = (85

44
, 85

64
), with expected

utility approximately equal to 0.4711, hence smaller than at c. We still have
cB
1 < eB

1 < d̄B
1 , so that Theorem 1 again does not apply.

4 Concluding remarks

Extending our model and results to more than two agents and/or more than
two states may be quite hard, due to the many different possible configura-
tions of endowments and equilibrium allocations. An additional complication
in case of more than two agents is that agents’ utilities may be affected in
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different directions if one agent is replaced by a more risk averse agent. For
particular choices of utility functions (e.g., linear risk tolerance functions) it
may be possible to obtain some results, but this is left for further research.

To the best of our knowledge, a comparative static study with respect to
risk aversion in financial equilibrium models like the one in this paper, has
not explicitly been carried out before. The impact of increased risk aversion
has been studied before in the related area of game theory. See, for instance,
Kihlstrom et al. (1981) and Köbberling and Peters (2003) for bargaining
games, and Berden and Peters (2005) for two-person noncooperative games.
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