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Abstract 
An obstacle to the widespread adoption of environmentally friendly energy technologies such 
as stationary and mobile fuel cells is their high upfront costs. While much lower prices seem 
to be attainable in the future due to learning curve cost reductions that increase rapidly with 
the scale of diffusion of the technology, there is a chicken and egg problem, even when some 
consumers may be willing to pay more for green technologies. Drawing on recent percolation 
models of diffusion by Solomon et al. [7], Frenken et al. [8] and Höhnisch  et al. [9], we 
develop a network model of new technology diffusion that combines contagion among 
consumers with heterogeneity of agent characteristics. Agents adopt when the price falls 
below their random reservation price drawn from a lognormal distribution, but only when one 
of their neighbors has already adopted. Combining with a learning curve for the price as a 
function of the cumulative number of adopters, this may lead to delayed adoption for a certain 
range of initial conditions. Using agent-based simulations we explore when a limited subsidy 
policy can trigger diffusion that would otherwise not happen. The introduction of a subsidy 
policy seems to be highly effective for a given high initial price level only for learning 
economies in a certain range. Outside this range, the diffusion of a new technology either 
never takes off despite the subsidies, or the subsidies are unnecessary. Perhaps not 
coincidentally, this range seems to correspond to the values observed for many successful 
innovations. 
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I. Introduction 

 

The diffusion of new technologies often depends upon the interrelations between social and 

technical aspects [1]. On the one hand, communication channels and social networks play a 

central role in the widespread adoption of innovation [2]. Information contagion and imitation 

effects are widely recognized as crucial factors in the process of diffusion of innovations. In 

the particular case of energy technologies, and especially in the case of hydrogen and fuel 

cells technologies, demonstration effects and increased confidence play a significant role. On 

the other hand, technical factors such as the degree of complexity, compatibility and special 

features [3] directly influence the initial cost levels of innovations. High upfront costs are 

among the main factors that prevent the widespread diffusion of new technologies, and this is 

especially true for environmental energy technologies. The degree of learning economies is of 

primary importance in this context. New technologies characterized by high learning cost 

curve reductions will have a greater chance to break into mainstream markets. If a new 

technology has the chance to develop first in niche markets one could then exploit cost 

reductions in these markets due to learning curve effects when it is introduced into the 

mainstream market. For instance, in the case of environmentally friendly energy technologies, 

a potential niche for market entry might be created by the willingness of some particularly 

environmentally conscious and high-income consumers to pay more for products that are 

perceived to be green (an example is the Toyota Prius hybrid car in the US, called 

“Hollywood’s latest politically correct status symbol” by the Washington Post1). 

However, even if much lower prices seem to be attainable in the future due to learning 

curve cost reductions that increase rapidly with the scale of diffusion of the technology, there 

is a chicken and egg problem. It is not clear when a technology will pass the threshold that 

permits widespread adoption and competitive market pricing, and when it will fail. The latter 

seems too often to be the case without long-term subsidies. 

There exist a wide variety of policy options available to decision makers to influence 

this process. They may be roughly divided in two categories: demand-pull and technology-

push policies. Even if a mix of the two is actually necessary, especially in the case of 

renewable energy sources [4], we will analyze the effect of one particular policy option that 

belongs to the first category: adoption subsidies for consumers. According to Turkenburg [5], 

the innovation diffusion process can be split into two parts: early deployment in which costs 

                                                
1 The Washington Post, June 2, 2002, p. C01. 
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decline, and widespread dissemination in which institutional barriers are overcome and 

investments increase. A potential policy strategy related to the first phase of diffusion is 

represented by temporary subsidies followed by a phasing-out policy during the period of 

pervasive diffusion. In practice, however, especially with regard to environmentally friendly 

energy technologies, we often find permanent subsidy policies because the diffusion of such 

innovations is frequently not self-sustainable. Thus one can ask what policy actions may be 

implemented to support the diffusion of a new energy technology to market maturity that are 

socially profitable? In other words, which kinds of subsidy policies can trigger a self-

sustained diffusion of these particular technologies that ultimately justifies the upfront social 

expenditures? 

Drawing on recent percolation models [6, 7, 8, 9] of diffusion, which combine the 

contagion aspect (e.g., epidemic models) with the heterogeneity of agent characteristics (e.g., 

Probit or heterogeneous threshold models), we develop and analyze a network model of new 

technology diffusion. Agents adopt when the price falls below their random reservation price 

drawn from a lognormal distribution, but only when one of their neighbors has already 

adopted. Combining with a learning curve for the price as a function of the cumulative 

number of adopters, this may lead to delayed adoption for a certain range of initial conditions. 

Using agent-based simulations (ABS) we explore when a limited subsidy policy can trigger 

diffusion that would otherwise not happen. As a main result we find that subsidies are not 

helpful both when learning economies are too low (and thus reasonable temporary subsidies 

fail to trigger diffusion), and when learning economies are too high, (and diffusion would 

take-off anyway). However, for a certain range of learning coefficients a temporary subsidy 

policy may indeed trigger self-sustained diffusion provided that the level of subsidies is high 

enough. 

The article is organized as follows. Section two gives a brief overview of the existing 

literature on percolation diffusion models, learning curves and subsidies. The details of the 

model and the methodology are discussed in section three. In section four we present the 

results. Interpretations and conclusions are discussed in section five. 

 

II. Extending standard models of diffusion by introducing percolation, learning curves 

and subsidies 

 

Innovation diffusion has been investigated using different approaches [10]. In particular, the 

S-shaped diffusion models and the epidemic models stem from two lines of research 
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originating in Griliches’ empirical investigation [11] and Mansfield’s contributions [12, 13]. 

In general, diffusion models can be classified as epidemic models, Probit models, legitimation 

and competition models, and information cascades models [14]. In what follows we focus in 

the first two categories: epidemic and Probit models. While the former emphasizes the effects 

of information contagion, it usually presupposes agent homogeneity. The latter is especially 

relevant in stressing the effects of agent heterogeneity but it neglects a description of the 

interrelations among individuals. The percolation model developed in the present paper 

incorporates both information contagion and agent heterogeneity. Agents interact on a 

specific network structure called the Ising network [2]. According to Stauffer and Aharony 

[15], percolation was originally applied by Flory and Stockmayer during the Second World 

War  to describe critical phenomena for the process of gelation. Broadbent and Hammersley 

introduced the name percolation theory in 1957. Percolation explains, for example, how a 

fluid can traverse a porous material. But it has been applied to other cases, like the 

investigation of forest fires or stock market bubbles. As a simple example we explain the 

simple case of an atemporal site-percolation model. In a two-dimensional square lattice, 

assign randomly either 0 or 1 to each site. The values are stochastically independent and P  is 

the probability for the realization of value 1, 1-P for value 0. Percolation is said to occur if 

there exist at least one unbounded cluster of sites with value 1. It can be shown that there is a 

critical value cP , such that for cPP <  percolation will not occur. On the contrary, if cPP >  

percolation will occur with probability 1 ( 592743.0=cP ). Percolation theory has been 

applied to social science [7] as well as to the economics of technology diffusion [8, 9]. 

The process of diffusion of new products and technologies often occurs on different 

time scales. It often starts with a few early adopters, followed by an increasing cumulative 

number as time passes. Moreover, it often follows an S-shaped path of diffusion. The market 

price may have to fall below some threshold level, however, before this process of diffusion 

can take off. 

Hohnisch et al. [9] have used percolation theory to explain what determines delayed 

take-offs in the diffusion of new products and what happens to the price’s threshold level: 

macroscopic effects either on the demand side or on the supply side or both can trigger the 

process of diffusion even for price levels initially higher than the threshold. What they call 

macroscopic effects may be interpreted as interdependency among potential buyers’ choices 

on the one hand and learning curve cost reductions on the other. The notion of learning curves 

is well known in the literature [16] and refers to the unit cost reductions due to increasing 
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production. Thus costs and price decrease with the increasing number of new adopters. In [9] 

the model assumes that consumers’ willingness to pay is drawn from a uniform distribution 

on the interval [0, 1]. In order to incorporate consumers’ aptitude to “greenness“, we assume 

that the reservation price is distributed according to the highly skewed lognormal distribution 

such is characteristic of many other economic variables such as personal income and wealth. 

We then develop a model that combines both the network effect and the heterogeneity of 

agents. While the present version adopts the lattice type network structure, in principle it can 

easily be generalized to other network topologies that better reflect the communication 

channels influencing consumer behavior at both the local and global levels. 

The approach in [9] can be enriched by introducing policy actions intended to trigger 

widespread adoption of a new product such as subsidy policies. We modify their model in 

order to explore when subsidies may trigger the process of diffusion of eco-innovations. In 

particular, we investigate when diffusion can become self-sustaining after an initial policy of 

temporary subsidies. In the next section we specify the details of the model’s structure and 

equations. 

 

III. The Model 

 

Consider a finite number of consumers distributed on a two-dimensional lattice with periodic 

boundary conditions (i.e., a torus). Each consumer is faced with the choice of whether of not 

to buy a new technology available in the market. Whether she will buy it depends on two 

factors: her neighbors’ choices and her willingness to pay for that new product. She will first 

consider purchasing the product if it has already been bought by at least one of her neighbors. 

If this condition is fulfilled she will then compare the market price of the new technology to 

her reservation price: she will buy it if the latter is higher than the former. 

The model explains diffusion as a process of spreading news or “keeping up with the 

Jones’s”. This reflects the fact that the adoption of new products may often be the result of 

imitation behaviors (in the particular case of hydrogen and fuel cells technology, a testimony 

of reliability and safety may be fundamental). In part this may simply result from status 

considerations, but it may also be an essential element in reducing informational uncertainty 

about product characteristics and suitability. In addition, the model analyzes diffusion as 

resulting from the interaction of heterogeneous behaviors. Consumers’ initial willingness to 

pay for the new product is drawn from a lognormal distribution at the beginning of the 

simulation. It might reasonably be argued that agents with a high income are characterized by 
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a higher reservation price (e.g. they are more inclined to pay for the environmental quality of 

a product).  

A schematic representation of such a network neighborhood is presented in Figure 1. 

Consumer i is of type 0—she has not yet acquired the technology. Type 1 consumers such as 

the ones on the left and above have already adopted the technology in previous periods. She 

knows about the availability of the new product2 (e.g. at least one of her neighbors has already 

bought it). Her reservation price is θi, [ ]∞∈ ,0iθ , where ( )σµθ ,LogN≈  with 0≥σ  and 

0>µ  ( µ  and σ  are parameters of the model corresponding to the mean and standard 

deviation of the underlying normal distribution). A standard learning curve will be applied to 

the price of the new technology at time t according to equation {1} : 

 

                                                
2 We assume in this model that consumers collect information at zero costs. 
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period i). The initial price [ ]+∞∈ ,00p  and 0≥α  are parameters of the model. The 

subsidy rate on the price is 10, ≤≤ ss . In contrast to [9], the only macro effect 

modeled in our analysis is represented by the learning curve. We do not assume that 

the consumers’ reservation prices will decrease with the number of adopters. In the 

basic percolation model, percolation occurs when the probability that iθ  is greater 

than the market price tp  is less than the critical value cP  (for a square lattice 

593.0≈cP ). With a lognormal distribution, the integral of the density function at tp  

must be less than cP−1 . In that case product diffusion will take off. After the 

occurrence of percolation we know that a certain number of agents, depending on the 

path of diffusion of percolation, have bought the product. According to the Probit 

model, if the reservation price is log-normally distributed then the probability to buy 

{ }0Pr >yob  in the static case is: 

 

{ } { } ( )pFyobob −=>=> 10PrPr *θθ ,  {2}

 

where ( )pF  is the cumulative probability function at p, the market price of the new 

product. In the case with learning this leads to dynamic equations of the form: 

 

{ } { } ( )tt pFyobob −=>=> + 10PrPr 1
*θθ ,  {3}

where 
α









=

t
t N

N
pp 0

0 and { }tt obNN *Pr θθ >⋅= . N  is the total number of 

potential adopters, 0N  is the initial number of buyers,tN  is the cumulative number 
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of adopters at time t, and tp  is the market price of the new technology that is 

dependent on the initial price 0p  and on the number of initial adopters at time t as 

specified in equation 1. In the following we will compare the cumulative percentage 

of adopters at the percolation threshold with the level predicted by the Probit model 

both without and with learning (respectively called lower and upper bounds of 

diffusion). The percentage of buyers from a percolation model will never exceed the 

value attained by the corresponding Probit model, but it will when subsidies will be 

introduced. The cumulative percentage of adopters computed by a Probit model with 

constant price provides a lower bound for it tells us the maximum number of 

consumers willing to buy the product in the absence of learning economies. 

 

IV. Results and interpretation 

 

The following figures show the results obtained by simulating the model on a 

100x100 square lattice. The results for each parameter configuration are averaged 

over ten simulation runs to minimize the effects of statistical variation. Consumers’ 

reservation prices iθ  are drawn from a lognormal distribution ( )Φ≈Θ LogN , where 

( )σµ,N≈Φ is normally distributed with parameters 1=µ  and 2=σ . The number 

of initial adopters is 1000 =N  (that is, 1% of the total number of potential 

consumers). In an environment with learning economies, the initial level of price is 

60 =p . According to the theory, for these numerical values percolation occurs with 

probability 1 for values of 698.1≤tp . Hence, for an initial price 60 =p , we should 

not see any rapid diffusion of the new technology. Introducing price dynamics due to 

the learning curve may change this, however, due to the possibility of delayed 

takeoff [9]. 

In an environment without learning economies ( 0=α ), the ultimate 

percentage of adopters decreases with the exogenous level of prices (Figure 2). In 

addition, it can be seen how much the difference in the computed percentage of 

adopters between the Probit model and the percolation model increases with the price 
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level: for 2.0=p  the results of the two models are almost the same. As p  increases, 

the difference becomes increasingly large. Finally, the percolation model describes a 

delayed diffusion of the new technology even without learning economies: the 

percentage of adopters increases slowly over time and the path is S-shaped. 

Figure 3 illustrates the relationship between the percentage of adopters in 

both Probit and percolation models versus price levels. In the percolation model there 

exists a more non-linear relationship between price level and diffusion. There is a 

threshold level of p (1.69 for the assumed parameters of the lognormal distribution) 

at which percolation takes place. We see that for values of price lower than the 

threshold the percentage of adopters in the percolation model rapidly approaches the 

results given by the Probit, which forms an upper bound. 

Figure 4 presents the results from the simulations in an environment with 

learning economies but no subsidies, with an initial price level 60 =p  and learning 

coefficients α = 0, 0.2 and 0.4. With the increase of the learning coefficient the 

percentage of adopters rises. The percolation model has both a more delayed path of 

diffusion and a higher sensitivity to learning economies than the Probit model. The 

difference is lower for higher levels of α : for 4.0=α  the results are almost the 

same. 

The results for simulations in a world with learning economies and the 

introduction of subsidies are illustrated in Figures 5-11, where we jointly vary the 

level of subsidies [ ]5.0;4.0;3.0;2.0;1.0;0=s  and the length of subsidies in simulation 

time steps [ ]20;12;4=tMax . 

Direct subsidy policies by governments for eco-innovations are rare. An 

exception is the Japanese policy for promoting photovoltaic [17]. Often policy 

actions in favor of environmentally friendly technologies are a portfolio of different 

approaches implemented to encourage the emergence and the diffusion of the 

technology on both the supply and the demand sides. In the present paper we will 

only model direct subsidies to consumers. 

When will a subsidy policy trigger a self-sustained process of diffusion? This 

depends upon the dynamics of adoption after the phasing out of subsidies. In order to 
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analyze the latter issue we differentiate between three different policy options. Let us 

define as short-term, medium-term and long-term a policy that respectively lasts for 

4, 12, 20 simulation timesteps. Figures 5-8 illustrate the cumulative percentage of 

adopters over time for different values of the parameters s, α  and tMax. Short-term 

subsidies ( 5.02.0 ≤≤ s  and 4=tMax ) trigger a self-sustained process of diffusion 

when the learning coefficient is in the interval 3.00 <≤ α . The cumulative 

percentage of adopters is higher than in the case without subsidies ( 0=s ) and the 

process of diffusion also continues to increase after the phasing-out of subsidies. 

Figure 5 illustrates the case in which 1.0=α . The long-term effect of subsidies 

disappears as the level of α  increases beyond 0.3 (see Figure 9 and Figure 6 for the 

case 4.0=α , where it is also apparent that the rate of diffusion increases somewhat 

with s, even if the ultimate level does not). As the length of the subsidy period 

increases, the effect of subsidies is more striking, even for higher levels of the 

learning coefficient (see Figures 7 and 8 for 4.0=α  and [ ]20;12=tMax  

respectively, as well as Figures 10 and 11 for a complete overview). However only 

medium-term subsidies trigger a self-sustained process of diffusion: the cumulative 

percentage of adopters increases after the phasing-out of subsidies, even if to a lower 

extent than in the former short-term case. Long-term subsidies do not trigger a self-

sustained diffusion: the process of adoption stabilizes before the phasing-out of 

subsidies at every level of both the learning coefficient and the level of subsidies. 

Adoption takes place entirely at a subsidized price level, but the level of diffusion is 

considerably higher than in the short-term subsidy case. 

Whether a policy is a valuable option depends upon the desired level of 

diffusion. Let us take the Probit level of adoption as a benchmark. The new 

technology is adopted and diffuses widely even for initial price levels higher than the 

threshold ( 698.1=p ). However, there exists a threshold level for the learning 

coefficient such that for α  lower than this threshold diffusion does not take-off (e.g., 

it does not exceed the lower bound represented by the level of diffusion given by the 

Probit model without learning). 
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In Figure 9, where the length of subsidies tMax is four simulation time steps 

(the short-term subsidy case), the critical value of α  decreases from 0.27 (with no 

subsidies, 0=s ) to 0.24 (for the highest value of subsidies, 5.0=s ). If the level of 

diffusion from the Probit model without learning is considered as the policy target, 

then a short-term policy may trigger a self-sustained diffusion to that target for 

values of the learning coefficient lower than the critical one but only to a certain 

extent (or, in other words, only in the interval 27.024.0 ≤≤ α ). As the length of 

subsidies increases, the policy influences diffusion for ever larger intervals of α : a 

medium-term policy ( 12=tMax ) triggers diffusion for 27.013.0 ≤≤ α  (Figure 10), 

whereas a long-term policy influences the cumulative percentage of adopters for 

27.009.0 ≤≤ α  (Figure 11). 

The introduction of subsidies affects the threshold level of the learning 

coefficient: as we include a subsidy policy the critical value of α  is likely to 

decrease. A subsidy policy may spur a self-sustained diffusion but the success of 

such policy actions strongly depends on the value of the learning coefficient as well 

as on the level and length of subsidies. If for example government would want to 

support the diffusion of new technology characterized by relatively low learning 

economies (say 15.0=α ) a medium to long-term subsidy policy should be 

introduced: a short-term policy would not trigger diffusion to the target (Probit lower 

bound) for 15.0=α  (see Figure 9), while both a medium-term (Figure 10, 5.0=s ) 

and a long-term subsidy would (Figure 11, [ ]5.0;4.0=s ). 

In summary, short-term subsidies (Figure 9) do not significantly enhance 

diffusion except for rather restricted values of the learning coefficient, when α  

belongs to the interval [0.24-0.27]. When α  is too low ( 24.00 ≤≤ α ) the process 

does not take off even with a high subsidy ( 5.0=s ), and when α  is high ( 27.0≥α ) 

diffusion takes off anyway. Especially for very high levels of the learning coefficient 

( 4.0=α ), the difference between the path of diffusion with and without subsidies 

disappears. This is less true the more the length of subsidies increases: medium-term 

subsidies (Figure 10) affect the percentage of adopters, as do long-term subsidies 

(Figure 11), but only when the level of subsidies is high enough (that is 5.03.0 ≤≤ s  
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in the medium-term and 5.02.0 ≤≤ s in the long-term). Low subsidies do not 

guarantee a significant change in the degree of diffusion, even if we see a stronger 

effect when we switch from a medium-term to a long-term policy. However, the 

introduction of a subsidy policy is only sensible in conjunction with learning 

economies if the initial price is well above the percolation threshold. 

We have seen that subsidies are only effective for learning parameters in a 

certain range (0.2-0.4). Subsidies on the demand side are in some sense dual to R&D 

expenditures on the supply side, which also serve to support developments efforts in 

a technology in the pre-commercial stage until the point where the technology “can 

stand on its own two feet”. Empirical studies have shown that learning parameters of 

successful technologies are indeed, ex post, in this range [18]. This remarkable 

coincidence is perhaps not so surprising since only those technologies for which 

demand-side or R&D subsidies had been successful investments will show up in the 

statistics on learning curves as other technologies having been selected out. 

 

V. Conclusions and Directions for Further Research 

 

In this article we analyze the relationship between the diffusion of a new technology, 

learning economies, and subsidies. The aim of the research is to investigate the path 

of diffusion of a new energy technology when some consumers are willing to pay 

more for goods that are perceived as “green” and learning economies may reduce the 

price as a function of the extent of previous adoption. An obstacle to the widespread 

adoption of environmentally friendly energy technologies such as stationary fuel 

cells and the use of hydrogen is their high upfront costs. While much lower prices 

seem to be attainable in the future due to learning curve cost reductions that increase 

rapidly with the scale of diffusion of the technology, there is a chicken and egg 

problem, even when some consumers may be willing to pay more for green 

technologies. Policy actions devoted to spurring the diffusion of these kinds of 

technologies may help overcome initial barriers, but in order to be worthwhile, 

governmental interventions should trigger a self-sustained process. It is not clear 

when a technology will pass a threshold to widespread adoption and competitive 
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market pricing, and when it will fail. The latter seems too often to be the case 

without long-term subsidies. 

Among others approaches, epidemic and Probit models have been separately 

used to analyze the process of technology diffusion. We have developed a 

percolation model in which both information contagion and agent heterogeneity are 

taken into account and interact in nontrivial ways. The percolation model is then 

extended to allow for the introduction of learning economies, which then explain the 

delayed take off of new technologies. This results in a more non-linear relationship 

between price levels and the extent of diffusion than in a standard heterogeneous 

threshold (Probit) model. The percolation model has both a more delayed path of 

diffusion and a higher sensitivity to learning economies than the Probit model. The 

new technology is adopted and diffuses even for price levels higher than the 

threshold. But there exists a threshold level for the learning coefficient α  below 

which diffusion does not take off. 

Whether a policy triggers a self-sustained process of diffusion depends upon 

the dynamics of adoption after the phasing-out of subsidies. Short-term subsidies 

( 5.02.0 ≤≤ s  and 4=tMax ) trigger a self-sustained process of diffusion when the 

learning coefficient falls in the interval 3.00 <≤ α . Diffusion continues strongly 

even after the phasing-out of subsidies. But the effect of subsidies diminishes as the 

level of α  increases. As the length of the subsidy period increases, the model shows 

that policy remains effective even for higher level of the learning coefficient.  

However, whether a policy is a valuable option depends upon the desired 

level of diffusion. Let us take the Probit lower bound as the policy target. The 

introduction of subsidies affects the threshold level of the learning coefficient: as we 

include a subsidy policy the critical value of α  is likely to decrease. A subsidy 

policy may spur diffusion but the success of such policy actions strongly depends on 

the value of the learning coefficient as well as on the level and length of subsidies. 

Given the target, short-term subsidies are of limited utility in two cases: when the 

learning coefficient is too low ( 24.00 ≤≤ α ) the process only takes off for very high 

levels of subsidies ( 1=s ), and when α  is high ( 27.0≥α ) diffusion takes off 

anyway. Especially for very high levels of the learning coefficient ( 4.0=α ), the 
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difference between the path of diffusion with and without subsidies disappears. This 

is less true the more the length of subsidies increases: medium-term subsidies 

significantly affect the ultimate level of adopters, as do long-term subsidies. But this 

is true only when the level of subsidies is high (e.g. 5.0=s ): low level of subsidies 

( [ ]2.0;1.0=s ) do not guarantee a relevant change in the degree of diffusion, even if 

we see a stronger effect when we switch from a medium-term to a long-term policy. 

To more fully evaluate the appropriateness of subsidy policies it is necessary 

to formulate some kind of cost-benefit analysis to measure the returns to subsidized 

adoption in terms of additional environmental goods (foregone pollution, for 

example, due to a wider and earlier diffusion of an environmentally friendly 

technology) vs. the subsidy costs to the taxpayer. Our intuition says that there must 

be a “sweet spot” in parameter space and subsidy design space at which subsidies are 

maximally effective in triggering adoption and widespread diffusion without wasting 

money on adopters who would have adopted anyway. Because the system is so 

nonlinear, the existence of such a “sweet spot” seems likely, although whether 

policymakers could always find it in practice, given the uncertainties surrounding the 

learning parameter and consumers’ propensities to adopt, remains to be seen. We are 

currently working on simulation experiments in this direction. 

Additional realism would be added by allowing for a portfolio of new 

technologies to be present instead of the standard assumption of just one innovation 

competing against an incumbent. A simple modification of the present model could 

address this question by using a multinomial decision mechanism to model each 

adopter’s choice. 
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Figure 1: A neighborhood of an agent on the lattice, where 0 represents non-adoption and 1 

adoption of the technology by a neighbor. Θi is the reservation price of agent i.  

 

  
Figure 2: Percentage of adopters over time for different values of the product price p, assumed 

time constant. 
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Figure 3: A comparison between the percentage of adopters for Probit and percolation models 

for different values of the time-independent product price p. 

 

 
Figure 4: Percentage of adopters over time. A comparison between Probit and percolation 

models with learning for different values of the learning parameter α. 

 

 
Figure 5: Cumulative percentage of adopters over time for α = 0.1 and tMax = 4 for different 

value of the subsidy rate. 
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Figure 6: Cumulative percentage of adopters over time for α = 0.4 and tMax = 4 for different 

values of the subsidy rate. 

 

 
Figure 7: Cumulative Percentage of adopters over time for α = 0.4 and tMax = 12 for different 

values of the subsidy rate. 

 



 23 

 
Figure 8: Cumulative percentage of adopters over time for α = 0.4 and tMax = 20 for different 

values of the subsidy rate. 

  

 

 
Figure 9: Short-term subsidy policy and ultimate level of diffusion for tMax = 4 as a function of 

the learning exponent α for different subsidy rates. 
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Figure 10: Medium-term subsidy policy and ultimate level of diffusion for tMax = 12 as a 

function of the learning exponent α for different subsidy rates. 

 

 

 
Figure 11: Long-term subsidy policy and ultimate level of diffusion for tMax = 20 as a function 

of the learning exponent α for different subsidy rates. 
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