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1. Introduction 

Over the past two decades, initiatives to foster collaborative R&D in precompetitive research 

have become a key instrument of science, technology and innovation (STI) policy at the re-

gional, national and supranational levels. Major international examples are discussed by Ca-

loghirou et al. (2002). In Europe, the prime examples are the European Framework Pro-

grammes (FPs) on Research and Technological Development (RTD). In these FPs, the Euro-

pean Union has (co-)funded thousands of transnational, collaborative R&D projects; projects 

aimed at supporting transnational collaboration and coordination in research; and projects 

supporting transnational mobility for training purposes. Since their inception in 1984, six FPs 

have been launched and the seventh will commence in 2007. 

The main objective of these activities has been to strengthen Europe's science and technology 

capabilities and to promote European international competitiveness through co-ordinating 

national policies, integrating national research communities, improving the integration of 

marginal actors, and bringing together actors with the most advanced resources and capabili-

ties. This has created a pan-European network of actors performing joint R&D. 

Strikingly, the composition and structure of this network, in particular at the actor level, has 

been barely studied to date (notable exceptions are Barber et al. 2006; Breschi and Cusmano 

2004). The main reason for this is simply the difficulty of obtaining suitable data – yet the 

implications are profound. 

Although EU-sponsored R&D accounts for only a small part of total R&D in Europe, the FPs 

are by far the major source of public funding of transnational R&D in Europe. Moreover, re-

search by Larédo and colleagues (see, e.g. Larédo 1998) has shown that, at least in the case of 

France, most important research actors (large firms, research-intensive small and medium-

sized enterprises (SMEs), universities, public research organisations, etc.) participate in EU 

projects. Therefore, the networks that have emerged in the EU FPs provide valuable informa-

tion on the organisational fabric and social infrastructure of European science and technology. 

Knowing how the networks look, how the networks have formed and how the networks 

evolve in response to external stimuli is of great importance for designing, implementing and 

assessing new policy measures that aim at creating and deepening the European Research 

Area. 

The networks that have been induced by the EU FPs are very large for social science stan-

dards and quite interesting in that they involve a broader set of actors than other sources on 
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R&D collaborations, in particular data on strategic alliances (for a description of major data 

sources, see Hagedoorn et al. 2000). Although the networks are moulded by a very particular 

set of framework conditions and findings thus cannot be generalised naively, the networks 

provide rich information on a different stage of the innovation process than networks gener-

ated from alliance data, patents, scientific publications or surveys. 

Using a novel, comprehensive data source on the first five EU FPs – the sysres EUPRO data-

base – we describe key structural features of the networks induced by the Framework pro-

grammes and illustrate their economic relevance. This yields insights on patterns of network 

formation and the social and institutional infrastructure of European research and technology, 

in particular on what may be the core of the European Research Area. 

As formal network formation rules are minimal – a project has to comprise at least two part-

ners from two different countries – we would expect similarly minimal structures. In contrast, 

however, we observe a great deal of structure that would not be anticipated from the minimal 

rules. 

Prior work (Barber et al. 2006) has shown that organisation and project networks in the first 

four EU FPs are complex networks that share common topological features with many em-

pirical networks in the natural, technological and social domains (see e.g. Strogatz 2001). In 

particular, they are characterised by a scale-free degree distribution, short characteristic path 

length and high local clustering – a result that we confirm and extend to FP5 in this work. 

Beyond these standard measures, the networks yield additional structural information. Typical 

patterns of association shed light on network formation and network substructure. Further 

information is provided by considering the strengths of connections. Projects can be discrimi-

nated by project type and central projects can be identified. Organisations can be classified by 

organisation type and analysed in a similar manner. Further, their participation patterns can be 

investigated over time. We address each of these points in this paper and identify extant issues 

to be addressed in future work. 

The remainder of the paper is organized as follows. In Section 2, we look at greater depth into 

the rationale and history of the European Framework Programmes. This is followed in Section 

3 by a brief survey of the mathematical structures known as graphs and their use in the analy-

sis of real-world, R&D collaboration networks. In Section 4, we describe the actual networks 

considered, detailing the raw data on the Framework Programmes, how the data has been re-

fined and regularized, and the procedure by which networks are constructed from the data. In 

Section 5, we present results on global characteristics, edge properties and vertex properties 
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of networks. In Section 6, we summarise our findings and conclude with an agenda for future 

work. 

2. Rationale and history of the European Framework Programmes 

The objectives and instruments of STI policy have changed considerably over the past 20 

years, which is also reflected in the evolution of the European Framework Programmes. Insti-

tutional framework and objectives have co-evolved, which has impacted the Programmes' 

designs. At the same time, a number of key elements are common to all FPs. This section 

briefly highlights the main issues. 

The catalytic events for the European Framework Programmes came in the early 1980s in 

response to widespread concern about the technological competitiveness of European indus-

try, in particular high-tech industries (for excellent accounts of the history of EU research 

policy, see Peterson and Sharp 1998; Guzetti 1995). In late 1982, the European Commission 

launched the European Strategic Programme for Information Technology (ESPRIT), upon 

which the basic structure of the later Framework Programmes was patterned. 

ESPRIT provided financial support (about 50% of the project costs) for precompetitive, ge-

neric research that had wide applications across many economic sectors. Precompetitive re-

search is located on the continuum between fundamental and applied industrial research, and 

for practical purposes came to be understood as industrial research that was sufficiently dis-

tant from the market to ensure full competition in the product market (for details, see Guzetti 

1995, pp. 77-78). This guaranteed compliance with competition rules. 

Research in ESPRIT was conducted jointly by firms, research organisations and universities. 

It involved at least two partners from at least two member states to stimulate transnational 

linkages and to alert actors to opportunities and needs beyond their home markets (the prior 

policy of promoting 'national champions' having patently failed). Research results had to be 

disclosed at least to all members of the consortium. Showing demonstrable success in attract-

ing proposals, several other programmes modelled on ESPRIT were launched shortly after-

wards in other strategic technology areas, including telecommunications, industrial technolo-

gies, biotechnology and medicine. 

At the time, the theoretical rationale for subsidising collaborative, precompetitive R&D was 

based on the well-known 'market failure' argument. While crucial for long-term competitive-

ness, precompetitive R&D is an uncertain, risky and increasingly expensive activity, whose 

results cannot be fully appropriated by any single organisation due to the public good nature 
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of its output. Therefore, subsidies are required to restore private investment incentives and to 

reap the collective benefits of collaborative R&D in terms of creating critical mass, sharing 

costs, pooling risk and internalising knowledge spillovers. 

In 1984, the various existing and proposed programmes were fused into the First Framework 

Programme (FP1), institutionalising the model established by ESPRIT. This represented an 

attempt by the European Commission to design a comprehensive science and technology pol-

icy that would give coherence to its RTD efforts and provide a means for selecting European 

scientific and technological objectives, co-ordinating Community and national policies, and 

ensuring the necessary funding. 

The Single European Act (1987) gave the Community a hitherto missing legal competence for 

research and technology. It defined the twin objectives of EU RTD policy, 'to strengthen the 

scientific and technological bases of European industry and to favour the development of its 

international competitiveness' (Caracostas and Muldur 2001, p. 160). The Maastricht Treaty 

(1993) added 'cohesion', i.e. narrowing the wealth gap between rich and poor regions, to the 

objectives of EU RTD policy. Moreover, the Maastricht Treaty stipulated the Commission's 

power to lead the coordination of national RTD policies, if necessary, and foresaw that all EU 

activities in the field of research would be included in a multi-annual (five-year) Framework 

Programme. The latter provision was significant in that it extended the remit of the FPs to 

include basic research, applied research, technology development and the demonstration of 

new technologies. 

After the termination of FP1 in 1987, the second (1987–1991) and third (1990–1994) re-

mained 'technology-push' programmes in spirit. At about the same time, however, a new theo-

retical conceptualisation of the innovation process started to pervade policy advisory circles 

(see, e.g. Soete and Arundel 1993). It conceptualises innovation as a complex, interactive 

learning process that involves a multitude of actors from all societal spheres (see, e.g. Edquist 

2005). The systemic model provides complementary and novel directions for STI policy, in-

cluding additional rationales for supporting collaborative R&D. These include the need to 

foster interactive learning as a key mechanisms for knowledge creation; to optimise linkages 

between the different (sets of) actors involved in innovation processes that rely on increas-

ingly complex knowledge bases; to diffuse new knowledge and technology rapidly and 

widely; and to build innovative capacity through equipping workers with the requisite knowl-

edge and skills to thrive in an increasingly dynamic, knowledge-based economy (see, e.g. 

Lundvall and Borrás 2005). 
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The innovation systems approach has had a profound impact on the orientation of European 

RTD policy. Much more so than its predecessors, FP4 (1994–1998) focused on the diffusion 

of new technologies and the integration of SMEs. Moreover, for the first time, it included a 

substantial budget for training and mobility related measures. Recognising the need for eco-

nomic and social acceptance of EU-funded research, FP5 (1998–2002) emphasised a stronger 

user-orientation. It was conceived to help solve problems and to respond to the major socio-

economic challenges facing Europe. At the same time, it aimed at maintaining European re-

search capacity and fostering the development of cutting-edge technology.  

FP6 (2002–2006) represented a major break with the previous FPs. On the one hand, it fo-

cused on scientific and technological excellence in a way that resembled the technology-push-

oriented FP2 and FP3. This was done by introducing new instruments – integrated projects 

and networks of excellence – that brought together a large number of partners. Both were mo-

tivated by the perceived need of critical mass of resources and expertise to reach ambitious, 

fundamental research goals and to create excellent research capacity in Europe. On the other 

hand, it expanded the scope of the FPs and gave them a new role by becoming the financial 

instrument to make the European Research Area (ERA) (European Commission 2000) a real-

ity. ERA is intended to overcome the European problems of research fragmentation, underin-

vestment in R&D, and the lack of co-ordination of national STI policies. This is to be 

achieved through creating a critical mass and reducing the duplication of efforts by promoting 

better co-operation and coordination between relevant actors at all levels. FP7, which com-

mences in 2007, will continue in this direction, deepening ERA and carrying it further to-

wards the development of the knowledge economy and society in Europe (CORDIS 2006a). It 

is designed for a period of seven years, until 2013. 

Figure 1 shows that available research funding in the FPs has grown considerably over time 

from € 4bn in FP1 to almost € 18bn in FP6. The largest increases occurred from FP3 to FP4 

and F5 to FP6. Breaking down total funding by the main thematic priorities shows that the 

largest share of research funding has gone to information and communication technologies 

(ICT) in all but the first Framework Programme. Research funding for industrial technologies 

and life sciences (including food and agriculture) has increased markedly over time, both in 

absolute and in relative terms. Also, the environmental thematic priority (including transport) 

has become quite sizeable in FP4 to FP6. In contrast, energy, which accounted for almost half 

of total funding in FP1, has become considerably less important in recent FPs. Absolute fund-

ing for energy is actually smaller in FP5 and FP6 than in FP1. 
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Within these thematic priorities, the main funded activities are shared cost research and the 

co-ordination of national research activities that may range from fundamental basic research 

to fairly applied development work and validation with users. Since FP4, R&D activities have 

been complemented with funding for the training and mobility of researchers, special support 

for SMEs, networking and exploitation activities. This is reflected in Figure 1 in the growing 

share of the categories 'training and mobility' and 'other'. 

Figure 1: Budget FP1–FP6: Evolution and share of thematic priorities 
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Note: ICT ... information and communication technologies; industrial technologies include materials, 
aeronautics and space technologies; life sciences include biotechnology, genomics, biomedicine and 
food; environment includes transport; Other includes support for SMEs, dissemination, demonstration, 
co-operation with third countries, and ERA related measures. 

Source: adapted from CORDIS (2006c; 2006b); European Commission (2006); Barker and Cameron 
(2004, p. 172). 

 

Despite the evolution of their objectives and their scope (an excellent comprehensive yet con-

cise account is Barker and Cameron 2004), the fundamental rationale of the FPs as mid-term 

research programmes that support collaborative research in selected technological priority 

areas has remained unchanged. Moreover, all FPs share a few key structural elements (see 

Caracostas and Muldur 2001, p. 162). In particular, 

• the EU only co-funds projects of limited duration that mobilise private and public 

funds at the national level, 

• the focus is on multinational and multi-actor co-operations that add value by operating 

at the European level (see European Commission 2002), 
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• all projects are proposed by self-organised consortia, and 

• the selection for funding is based on specific scientific excellence and socio-economic 

relevance criteria. 

Because of these common features, projects and networks can be compared over time. The 

remainder of the paper is devoted to this task. 

3. Formal and conceptual background 

Before examining the network data, we need to establish the formal and theoretical concepts 

relied upon in this work. This is done in the present section. 

3.1. Graph concepts 

A network is a somewhat loose term describing an object that is composed of elements and 

connections between these elements. The concept can be made rigorous by identifying net-

works with graphs. A graph is a mathematical structure consisting of a set of vertices (nodes) 

and a set of edges (links) that connect pairs of vertices. Graphs are a versatile model class that 

have become increasingly popular in recent years as a basis for investigating natural, techno-

logical and social networks (for an overview, see Bornholdt and Schuster 2003). 

A graph can be represented by a matrix A called the adjacency matrix. The adjacency matrix 

has elements Aij equal to 1 if there is an edge between vertices i and j and equal to 0 other-

wise. If the network is weighted, e.g. some edges represent stronger connections than others, 

elements Aij may be generalised to take on real number values to represent stronger and 

weaker connections. If A is a symmetric matrix, the graph is undirected, otherwise it is di-

rected. 

The total number of edges connected to a vertex (total number of adjacent vertices or nearest 

neighbours) is the degree k. In directed graphs, the number of incoming and outgoing edges 

are separately totalled to produce the in-degree and the out-degree. The density of a graph is 

defined as the ratio of the number of edges present in the graph to the number of edges that 

could be present. 

Graphs can be partitioned into subgraphs, i.e. subsets of vertices and edges. The simplest is 

the dyad, consisting of two vertices that are either adjacent, i.e. connected by an edge, or not. 

Subgraphs of size three are called triads. If the three vertices are connected, they constitute a 

triangle. A triangle is the smallest nontrivial example of a clique. Cliques are complete (or 
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fully connected) subgraphs, in which every vertex is adjacent to every other. Cliques have the 

property that transitivity holds within the clique; i.e. if vertex i is a neighbour of vertex j and j 

is a neighbour of vertex k, k is also a neighbour of i. 

A graph is connected if it is possible to establish a path from any vertex to any other vertex of 

the graph. A path is the alternating sequence of vertices and edges, starting and ending with a 

vertex, in which each vertex is incident with the lines following and preceding it in the se-

quence. 

Paths are useful to measure distance, i.e. how far apart vertices are in a graph. The shortest 

path between two vertices is referred to as a geodesic. The average geodesic in a connected 

graph is the characteristic path length ℓ. The maximum geodesic from vertex i to any other 

vertex is its eccentricity. The maximum eccentricity in a graph is its diameter.  

An empirically important special class are bipartite graphs, or affiliation networks, where ver-

tices can be partitioned into two disjoint subsets, with edges existing only between the two 

sets. These are appropriate models for many social networks, where ties between actors are 

defined by their joint affiliation to organisations, events, etc. The networks we consider in this 

paper are bipartite graphs, with the two sets comprising organisations and projects. 

3.2. Graph models 

The simplest baseline model for empirical networks is a random graph. In random graphs, 

graph properties such as the number of vertices, the number of edges, or the connections be-

tween them are determined in some random way. Random graphs are useful for the mathe-

matical determination of expected properties of graphs (see Bollobás 2001). For empirical 

applications, random graphs provide a baseline for comparison between real-world networks 

and networks generated by putative network formation rules. Thus, a random graph model 

can play the role of a theory to be tested by comparison to real-world networks. 

An important class of random graphs are Erdős-Rényi random graphs (often simply called 

"random graphs" due to their historical role). In the Erdős-Rényi model, an edge exists be-

tween any pair of vertices with probability p. Many properties of this simple model are ex-

actly solvable in the limit of large graph size. In particular, such graphs undergo a phase tran-

sition as p increases, transforming from multiple disconnected components to a single giant 

component to which all but a negligibly small fraction of the vertices are connected. Random 

graphs have short characteristic path lengths. This is also observed in real networks, where it 
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is known as the small world effect, and allows each vertex in the giant component to reach 

any other vertex in a small number of steps. 

However, Erdős-Rényi random graphs lack many other properties observed in real networks. 

In particular, the diameter grows logarithmically with the number of vertices; local clustering, 

describable in terms of the number and size of cliques, is low; the distribution of degrees has a 

Poisson form; and the graphs show no correlation between the degrees of adjacent vertices. In 

light of this, the Erdős-Rényi random graph model can be viewed as only a starting point for 

investigating real networks. 

A seminal model that reproduces the small world effect is due to Watts and Strogatz (1998). 

In their small world network model, they begin with a locally connected graph and randomly 

rewire connections, giving rise to 'shortcuts' outside the local region. This change produces 

networks that show the small world effect and feature the high clustering seen in many real 

networks. 

Further refinements yield models that feature additional properties missing from the Erdős-

Rényi model and the Watts and Strogatz model. In this work, we are particularly interested in 

scale-free network models. Scale-free networks are characterized by having a power-law de-

gree distribution, and can feature the formation of a giant component, the small world effect, 

substantial local clustering, and correlations between the degrees of neighbouring vertices. 

3.3. Relating graphs and networks 

3.3.1. Global topology 

The global topology of a complex network (for reviews, see Dorogovtsev and Mendes 2004, 

2002; Newman 2003a; Albert and Barabasi 2002) is usually recognised through three indica-

tors: a scale-free or power-law degree distribution, a short characteristic path-length, and high 

average clustering. These properties have also been identified in R&D collaboration net-

works, such as in the life sciences (Powell et al. 2005) and in the networks stimulated by the 

European Union in its Frameworks Programmes (Barber et al. 2006; Breschi and Cusmano 

2004). We will briefly describe each of these indicators and highlight their empirical implica-

tions. 

In classical random graphs, the degree distribution, given by the average fraction of vertices 

of degree k, has a Poisson form (see, e.g Bollobás 2001). The degree distribution of many 

large real-world networks, however, in such distinct domains as the technological, biological, 
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psychological and social realms (see Newman 2003a), is strongly right-skewed with a heavy 

tail. Mathematically, the tail can be described by a power law (Barabasi and Albert 1999),  

( ) α−∼ ckkp , 

where c and α are positive constants. This means that the probability p of a vertex selected at 

random having a degree k declines with the size of α determining the rate of decay. The size 

of α also determines the convergence or divergence of the higher moments of the empirical 

degree distributions (see technical appendix). Such divergences can produce strong effects, 

such as high degree vertices with noticeable probability (see Dorogovtsev and Mendes 2004). 

The power law can be identified by plotting the degree distribution on logarithmic axes, 

where it appears as a straight line with slope -α. This contrasts with a normal or a Poisson 

distribution which drops off sharply on a log-log plot, such that the probability of a degree 

greater than a cut-off value is effectively zero (for a nice graphical illustration, see Watts 

2004, p. 251). A cut-off thus implies a characteristic scale for the degree distribution of a net-

work. Since a power-law degree-distribution lacks any such cut-off value, it is often called a 

scale-free distribution and the so-characterised network scale-free. 

This property has important empirical implications. While the majority of vertices have a less-

than-average degree, some vertices have a degree that is orders of magnitude larger than the 

average. These 'hubs' are centrally located and highly interconnected vertices that may dra-

matically affect the way a network operates. 

3.3.2. Knowledge creation and knowledge diffusion 

A necessary condition for information or objects to spread or to diffuse in a network is that 

vertices are connected, either directly or indirectly through a path of connected vertices. In a 

large scale-free network, most vertices form a giant component such that they are all mutually 

reachable. This giant component is highly resilient to the random removal of vertices, as most 

vertices are only linked to a few others (a property referred to as 'attack tolerance' or 'ultrare-

silience'). However, if the highly connected hubs are removed, the giant component quickly 

falls apart into smaller, disconnected components, disrupting any global transmission process. 

Another property of the giant component in scale-free networks is that it has a short diameter, 

i.e. the maximum number of steps between two vertices is small. At the same time, scale-free 

networks are quite dense locally: nodes tend to be connected with many of their direct 

neighbours. A quantity of particular interest are triangles, i.e. triples of connected vertices. 
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Dividing the number of actual triangles of which vertex i is a part by the number of theoreti-

cally possible triangles (if all neighbours were connected) yields the clustering coefficient Ci 

for vertex i. Averaging Ci over all vertices gives the network-specific clustering coefficient C. 

In scale free networks this is considerably higher than in random networks, a property that is 

also known as cliquishness. 

Networks that combine a short average path length with a high clustering coefficient are 

called small-world networks (Watts and Strogatz 1998). These are quite interesting in terms of 

knowledge creation and knowledge diffusion, two key functions of R&D collaboration net-

works. 

When path lengths are short, new knowledge can spread rapidly and widely through the popu-

lation and thus fuel local knowledge creation. This is a necessary but not sufficient condition 

for learning. Like in a barter economy, there has to be a double coincidence of wants for 

knowledge exchange to take place. This becomes clear if we bear in mind that completely 

identical agents cannot learn from each other. Rather, agents have to know different things 

while being sufficiently similar to be able to communicate and share complementary knowl-

edge. Communicating through joint neighbours relaxes this constraint. Such local redundancy 

is present in cliquish networks but absent in Erdős-Rényi random graphs. 

Knowledge transmission is limited by absorptive capacity, the ability to make sense of and to 

leverage new knowledge. Knowledge thus degrades as it is passed along long chains, which is 

costly in terms of time and the diminution of knowledge. If new knowledge is difficult to ab-

sorb (e.g. because a considerable part is tacit) or if transmission requires repeated interaction, 

the redundancy of ties in cliquish networks is again beneficial, as it facilitates the validation 

of new knowledge and the possibility for multiple interactions. Note that the value of cliqu-

ishness critically depends on absorptive capacity. If information transmission is (near) perfect, 

nothing can be learned afterwards and there is no benefit in redundancy. Instead, links be-

tween cliques are more beneficial. 

Cowan and Jonard (2004; 2003) formalise these ideas. They show that small world networks 

generated by the Watts and Strogatz (1998) model initially produce relatively rapid aggregate 

knowledge growth in settings where absorptive capacity is low. Long-run knowledge levels 

are higher in small world networks than in other network configurations. Thus, in exploration 

networks (Rothaermel and Deeds 2004), such as pre-competitive R&D collaboration net-

works, where knowledge is less-codified and there is a great deal of diversity in search activi-

ties, the optimal network structure for communication and knowledge flow is cliquish. In con-
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trast, in exploitation networks (Rothaermel and Deeds 2004) that aim at exploiting existing 

capabilities, optimal network structures are more random (Cowan et al. 2004). 

3.3.3. Mixing patterns and network formation 

So far, we have treated all vertices identically, which is seldom the case for real-world net-

works. Rather, vertices may differ in terms of numerical or categorical properties, e.g. weight 

or organisation type. Taking this additional information into account can provide considerably 

more information on network structure and also shed some light on network formation rules. 

This is closely related to the notion of homophily, which is the tendency of actors to associate 

and bond with similar others (see McPherson et al. 2001). 

A straightforward and much studied measure of homophily is based on the degree. If actors 

tend to associate with others who are like them, i.e. neighbouring vertices tend to have similar 

degrees, the network is said to show assortative mixing or assortative matching. If actors pre-

fer to associate with others who are different, the network shows disassortative mixing 

(Newman 2003b, 2002). 

The nature of the mixing has been measured in a variety of ways. Newman has proposed a 

simple and flexible measure based on the use of the Pearson correlation coefficient between 

degrees of neighbouring vertices. By examining the correlation coefficients for several real 

world networks of diverse origins, he concludes that social networks tend to be assortatively 

mixed, while biological and technological networks tend to be dissortatively mixed. 

Assortative mixing can have profound effects on the structural properties of a network. If 

mixing occurs by some discrete attribute, the network will tend to break into separate com-

munities, which may impact diffusion processes. Likewise, Newman shows that in networks 

with positive degree correlation, a giant component forms more easily and is more closely 

connected than in networks with no or negative degree correlation. The higher density of as-

sortatively mixed networks suggests faster diffusion. At the same time, the giant component is 

more resilient to the random removal of central vertices, presumably because these cluster 

together in the core group and are therefore to some extent redundant. While these properties 

are undesirable in the context of, e.g., epidemic spread of diseases, they are quite desirable for 

information and knowledge diffusion. 
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3.3.4. Centrality measures 

One of the fundamental properties of a node is its position in the network. In mathematical 

sociology, several measures have been developed to quantify vertex centrality (see 

Wasserman and Faust 1994, and the references cited therein) that allow to identify and rank 

vertices by their structural importance. The assumption is that central actors have a stronger 

influence on other network members. We will consider four centrality measures, each of 

which quantifies a different aspect of centrality. Conveniently, each of them can be normal-

ised to the interval [0,1] and can be compared across networks of different size. 

The simplest measure is the degree centrality, which is defined as the ratio of degree ki and 

the maximum degree k in a network of the same size. It is based on the idea that vertices that 

are connected to many neighbours have power in many social settings. They are highly visible 

and should be recognised by others as major channels of relational information. 

A more sophisticated version of the same idea is known as eigenvector centrality. Having 

many connections surely affords influence and power, but not all connections are the same. 

Typically, connections to actors who are themselves well connected (high degree) will pro-

vide actors with more influence than connections to poorly connected (low degree) actors. 

Eigenvector centrality thus accords each vertex a centrality that depends both on the number 

and the quality of its connections by examining all vertices in parallel and assigning centrality 

weights that correspond to the average centrality of all neighbours. This is done using the ad-

jacency matrix representation of the graph and produces a vector of centralities that is an ei-

genvector of the matrix corresponding to the largest eigenvalue (see technical appendix). The 

eigenvector centrality is mathematically very natural because it is based on fundamental prop-

erties of the adjacency matrix, specifically, the spectral properties of the matrix. 

Another way to define centrality is based on network paths. Assuming that information, infec-

tions, commodities, etc. take the shortest paths when spreading in a network, vertices that are 

at a short distance from any other are likely to receive them more quickly than more distant 

vertices. This idea is quantified by the closeness centrality of vertex i, which is defined as the 

inverse of the mean geodesic distance (i.e., the mean length of the shortest path) from vertex i 

to every other vertex in a connected graph. 

Based on the same logic, the betweenness centrality of vertex i can be defined in a connected 

graph as the fraction of geodesic paths between any pair of vertices on which i lies. Between-

ness centrality is commonly interpreted as a measure of control, as actors that lie on many 

shortest paths can exert considerable control and act as gatekeepers. 

 13



4. Framework Programme networks 

4.1. The data set 

We draw on the latest version of the sysres EUPRO database. This database includes all in-

formation publicly available through the CORDIS projects database (CORDIS search 2006) 

and is maintained by ARC systems research (ARC sys). For purposes of network analyses, the 

main obstacle is the inconsistency of the raw data. Apart from incoherent spellings in up to 

four languages per country, organisations are labelled inhomogeneously. Entries may range 

from large corporate groupings, such as EADS, Siemens and Philips, or large public research 

organisations, such as CNR, CNRS and CSIC, to individual departments and labs. 

These are listed as valid at the time the respective project was carried out. Among heteroge-

neous organisations, only a subset contains information on the unit actually participating or on 

geographical location. Information on older entries and the substructure of firms tends to be 

less complete. These properties rule out any fully automated standardisation method. 

In order to homogenise the data, organisational boundaries are defined by legal control and 

entries are assigned to the respective organisations. Resulting heterogeneous organisations, 

such as universities, large research centres, or conglomerate firms are then broken down into 

subentities that operate in fairly coherent activity areas, such as faculties, institutes, divisions 

or subsidiaries. Based on the available contact information of participants, subentities have 

been identified for a significant number of entries. 

This procedure reflects the two main approaches in the modern theory of the firm, which de-

fine organisations as a) a cost-minimising contractual agreement or as b) a (coherent) bundle 

of resources and competencies (see, e.g. Hodgson 1998). Creating roughly comparable units 

across organisations mitigates the fundamental problem of the appropriate scale at which or-

ganisations should be compared. Moreover, coherent organisations yield more precise infor-

mation on actual collaboration patterns. 

The case of the French Centre National de la Recherche Scientifique (CNRS), the most active 

participant in the EU FPs, may serve as an illustration. Initially, 2737 separate entries were 

summarized under a unique organisational label. These 2737 entries were broken down into 

the eight areas of research activity in which CNRS is currently organized. Based on available 

information on participating units and geographical location, 2650 of the 2737 entries could 

be assigned to one of the eight subentities. For the remaining 87 entries, the nonspecific label 

CNRS was used. 
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Comparable processing was done for other large research organisations and universities. 

However, due to scarcer information, firms could not be broken down into subentities at a 

comparable rate. Moreover, owing to resource constraints, standardization work has focused 

on the major players in the FPs. Organisations participating in fewer than a total of 30 pro-

jects in FP1–FP5 have not been broken down yet. 

Wherever possible, missing information is added and the resulting dataset is regionalised ac-

cording to the European NUTS (Nomenclature of territorial units for statistics) classification 

system (European Commission 2005). Particular attention is devoted to cleaning the poor-

quality raw data on organisation types. To the best of our knowledge, this makes the sysres 

EUPRO database the most complete and highest quality data source on the European Frame-

work Programmes1. 

Table 1 shows that the sysres EUPRO database presently comprises information on 43,317 

projects over the period 1984 (first project starting dates) to 2012 (last scheduled project end 

date). At its present state of standardisation, the database includes 42,020 separate organisa-

tions that were involved in at least one project. This figure increases to 49,885 if we consider 

subentities. Data on the first four FPs is complete according to the CORDIS website. In FP5, 

the database is missing 554 projects which have been added to the CORDIS project database 

since the latest update of the sysres EUPRO database. The database will be updated with the 

missing data and information on FP6 as it becomes available. 

Participating organisations are either coded as prime contractor (i.e. co-ordinator) or partici-

pant. There is no further information on participants' roles. Information on prime contractors 

is available for virtually all projects. Although projects by definition have to comprise at least 

two partners, information on additional participants is only available for a subset (see Table 

1). However, this subset comprises a sizeable majority of the population for all FPs beginning 

with the second. This also applies to FP4 and FP5, where the apparent decline in projects with 

information on multiple partners is due to the addition of training, mobility and supportive 

measures, which mostly list only the main applicant. 

                                                 

1  We are only aware of one comparable major data source on the EU FPs, the EU RJV database, which is part of the 

STEP-TO-RJVs database (Caloghirou and Vonortas 2000). It has been constructed in the TSER project 'Science and 

Technology Policies Towards Research Joint Ventures' and contains information on all projects funded in FP1-FP4 that 

have at least one participant from the private sector. The 6,300 research joint ventures, however, represent only a subset 

of the corresponding 20,700 projects with information on more than one participant included in the sysres EUPRO da-

tabase. 
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Table 1: sysres EUPRO database – numbers of projects and organisations described 

Framework 
Programme (FP) 

Period Projects Projects with 
multiple partners 

Organisations Subentities 

FP1 1984–1987 3,283 1,696 1,981 2,583 
FP2 1987–1991 3,885 3,013 4,572 6,300 
FP3 1990–1994 5,529 4,611 7,324 10,025 
FP4 1994–1998 15,061 11,374 19,755 24,156 
FP5 1998–2002 15,559 10,674 22,303 27,382 
Total  43,317 31,345 42,020 49,855 

Note: EURATOM projects are not listed. Recipients of research grants are not counted as organi-
sations or subentities. 

 

By examining the number of active R&D projects, the above figures can be related to actual 

research activity over time. Figure 2 shows that the total number of active R&D projects in-

creases until FP4 and reaches about the same level in FP5. Moreover, the figure makes clear 

that there is considerable overlap between the different FPs that is not only caused by the 

temporal overlap between them. According to the available data, it takes up to two years after 

the official beginning of an FP (FP3-FP5) for a sizeable number of R&D projects to kick-off. 

As the average duration of R&D projects is in the range of 31–35 months in each FP, the 

number of active projects peaks past the official end date of each FP. Projects funded in the 

final calls of the FPs may last more than four years past the FPs' official termination. 

Figure 2: Number of R&D projects over time, FP1–FP5 
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Although the sysres EUPRO database already incorporates massive efforts to produce a reli-

able data source on activities funded in the EU FPs, there is scope for improvement. Apart 

from continuously updating the database and improving the homogeneity of the data, the main 

challenge is to make the data consistent over time. At the moment, participants are labelled 

with their most recent name. This ensures continuity but introduces a bias in that many legally 

separate participants have become parts of new organisations at a later stage. Also, a sizeable 

number of organisations have only been founded recently, such as EADS or Helmholtz-

Gemeinschaft. Tracing the genealogy of actors, in particular of firms, has only started re-

cently. This will provide the data required for detailed dynamic analyses in the future. 

4.2. Network construction 

In our empirical analyses, we focus on organisation and project networks separately, rather 

than analysing them as bipartite networks. Since we do not have detailed information on the 

intra-project structure, we have to construct the networks from our data. This we do by pro-

jecting the bipartite graph onto the set of organisations and the set of projects, producing the 

O-graph and P-graph, respectively. We assume that organisations (projects) are connected if 

they share a project (an organisation). In other words, if Alcatel and ABB participate in the 

same project, an edge is drawn in the O-graph. If Shell participates in two projects, an edge is 

drawn in the P-graph. Edges can be weighted with the cardinality of the intersection, e.g. if 

Alcatel and ABB participate jointly in two projects, the corresponding edge has a weight of 

two and so on. The size of each vertex is its degree in the bipartite graph, e.g. a project com-

prising ten organisations has size ten, as does an organisation participating in ten projects. 

In constructing the networks, we thus assume each project to be a fully connected subgraph of 

organisations, i.e. a clique, and similarly for organisations and the projects they participate in. 

This is an idealised graph type that, although not fully representative, is a reasonable ap-

proximation to the actual intra-project structure of all but very large projects. Since the vast 

majority of projects in our data set have fewer than 15 participants, our construction rule is 

considerably more accurate than assuming the other idealised type of a star structure, in which 

each participant is only connected to the project coordinator as central vertex. 

To keep our analyses consistent across the FPs, we only consider R&D projects and exclude 

all training, mobility and accompanying measures in FP4 and FP5. We construct the networks 

using information on subentities, if available, since this yields more accurate information on 

actual collaboration patterns. As this information is not consistently available for all organisa-

tions, we cannot rule out the possibility that the process of breaking down organisations into 
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subentities has introduced a bias into our data analysis. However, we have run all the reported 

analyses during the continual refinement of the data and have obtained qualitatively and quan-

titatively similar results, apart from extreme values, e.g. the maximum degree. 

5. Empirical characteristics 

5.1. Global characteristics 

In Table 2a and Table 2b, we give some basic properties of the project and organisation net-

works for the FP1–FP5. The facts that FP1 was the first program launched and that the avail-

able data are rather incomplete make it exceptional in many respects. We therefore focus our 

analyses on FP2–FP5, providing graph characteristic values for FP1 merely to indicate the 

difference from the networks created by the subsequent FPs. 

Table 2a: Basic network properties of FP1–FP5 organisation projection 

Graph characteristic FP1 FP2 FP3 FP4 FP5 
No. of vertices N 2,612 6,397 10,158 22,501 23,116 
No. of edges M 9,645 64,459 114,826 244,136 324,361 
No. of components 413 217 453 467 83 
N for largest component 2,102 6,084 9,460 21,775 22,788 
Share of total (%) 80.5 95.1 93.1 96.8 98.6 
M for largest component 9,495 64,282 114,367 243,418 323,653 
Share of total (%) 98.4 99.7 99.6 99.7 99.8 
N for 2nd largest component 22 15 36 10 48 
M for 2nd largest component 8 6 9 45 12 
Clustering coefficient 0.563 0.717 0.717 0.787 0.806 
Diameter of largest component 10 7 8 10 11 
ℓ largest component 3.77 3.34 3.39 3.54 3.36 
Mean degree 7.39 20.15 22.61 21.7 28.06 
Fraction of N above the mean (%) 28.9 28.4 25.2 23.7 24.6 
Mean vertex size 3.06 3.02 3.11 2.75 2.62 
Standard deviation 5.47 5.17 6.19 5.92 5.63 

 

Examination of the numbers of vertices and edges in the connected graph components indi-

cates that a giant component is present in all Framework Programme networks. In each case, 

the great majority of vertices and essentially all edges are in the giant component, supporting 

the choice to focus on the giant component. 

As expected, all networks are of small world type: They exhibit a high clustering coefficient 

and a small characteristic path length. This is a positive result in terms of what we presently 

know about knowledge creation and knowledge diffusion in exploration networks (see Cowan 

2006). 
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Table 2b: Basic network properties of FP1–FP5 project projection 

Graph characteristic FP1 FP2 FP3 FP4 FP5 
No. of vertices N 3,283 3,884 5,529 9,471 6,803 
No. of edges M 42,804 87,956 186,039 386,205 339,881 
No. of components 413 217 453 467 83 
N for largest component 2,709 3,626 5,031 8,948 6,714 
Share of total (%) 82.5 93.4 91.0 94.5 98.7 
M for largest component 42,497 87,898 185,990 386,129 339,873 
Share of total (%) 99.3 99.9 100.0 100.0 100.0 
N for 2nd largest component 10 6 3 9 3 
M for 2nd largest component 45 15 3 38 3 
Clustering coefficient 0.654 0.541 0.448 0.479 0.438 
Diameter of largest component 9 7 9 9 10 
ℓ largest component 3.36 2.86 2.80 2.79 2.55 
Mean degree 26.08 45.29 67.3 81.56 99.92 
Fraction of N above the mean (%) 36.2 37.0 35.5 36.2 35.8 
Mean vertex size 3.74 6.04 6.61 7.23 8.94 
Standard deviation 2.14 4.59 4.59 4.63 6.07 

 

There is a slight increase in the clustering coefficient of the organisation networks from FP1 

to FP5. This suggests that integration between collaborating organisations has increased over 

time, indicating that Europe has already been moving toward a more closely integrated Euro-

pean Research Area in the earlier Framework Programs. 

Conversely, there is a slight decrease in the clustering coefficient amongst the projects. Taken 

together, these trends appear to indicate changes in the interaction patterns as the average pro-

ject size increases with later FPs, while the average number of projects per organisation re-

mains roughly constant across FPs. 

Qualitatively, the changes are not inconsistent with smaller projects being grouped together 

into larger projects in name but not in fact to meet changing funding expectations. Such 

groupings would tend to increase the number of transitive connections (i.e. triangles) in the O-

graphs and to decrease the number of transitive connections in the P-graphs, with correspond-

ing effects on the clustering coefficients. However, this pessimistic interpretation would de-

pend on both bad faith in project applications and poor quality in application evaluations. Al-

though possible in some cases, this seems unlikely as the sole explanation of the observed 

trends. A more complete explanation of the trend could be provided by a closer examination 

of the interactions of organisations within projects – for which we lack suitable data at present 

– or, possibly, inferred from a study of dynamic changes in network structures throughout the 

FPs. 
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The mean degree in the P-graphs shows a marked increase with time. This is contrasted by the 

mean degree in the O-graphs, which shows no pronounced change over time. This can be in-

terpreted as organisations having a roughly constant capability to maintain connections to one 

another, while projects have no such constraint. A greater number of participants per projects 

increases the total ability to make connections, which is consistent with the observed rise of 

the mean degree in the P-graphs. 

Figure 3: Degree distribution of FP2-FP5 organisation and project projections 

 
Note: Exponent of the fit line in the organisation projection is α = 2.43 ± 0.07. Exponent of the fit line in the 
project projection is α = 3.1 ± 0.2. Standard error is calculated using bootstrapping with 1000 samples. Fit lines 
for earlier FPs are similar (not shown). 

 

In both projections, the distributions of degrees and vertex sizes are highly skewed. This is 

seen in the fraction of vertices with degree above the mean, and in the relative sizes of the 

mean vertex size and the standard deviation of the same. In fact, the distributions for both 

projections are scale-free in the right tail (for details on how power laws are fit, see Technical 

Appendix). The degree distribution for the organisation network is scale-free beginning at a 

degree of about 10 (see Figure 3). In contrast, the degree distribution for the P-graph has a 

more complicated structure with a scale-free character only at the extreme end of the tail. 

Theoretical arguments (see Barber et al. 2006) suggest the interpretation of the degree distri-

butions for the P-graphs as the combination of two distinct power laws. However, fitting 

power laws to the actual data does not produce a high-quality fit, especially in earlier FPs; 

further investigation appears warranted. 

The scale-free structure of the degree distributions has profound consequences, essentially 

stemming from the spread of degrees over several orders or magnitude. Perhaps the most ap-

parent such consequence is the presence of network hubs: these high degree vertices are the 

most visible members and tend to be pivotal for the coherence of the network. The scale-free 
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distribution indicates a great deal of heterogeneity amongst the network participants that must 

be taken into account when investigating the nature of the networks. 

Similarly, the vertex size distributions have scale-free characteristics. The distribution of or-

ganisation sizes is scale-free for essentially all values (see Figure 4). It is remarkably similar 

across FPs, indicating that the distribution of organisations able to carry out a particular num-

ber of projects has not changed over time. A complementary interpretation of this finding is 

that the changes in the underlying research activities have not altered the mix of organisations 

participating in a particular number of projects in each FP. 

Figure 4: Distribution of vertex sizes in the FP2-FP5 organisation and project projections 

 
Note: Exponent of the fit line in the organisation projection is α = 2.28 ± 0.05. Exponent of the fit line in the 
project projection is α = 3.5 ± 0.2. Standard error is calculated using bootstrapping with 1000 samples. Fit lines 
for earlier FPs are similar (not shown). 

 

The distribution of project sizes, as measured by participation, is indicative of a typical range 

of between roughly 5 and 10 participants. The project size distribution is highly skewed, with 

over 95% of the projects in FP5 having at most 15 participants while the largest project has 

over 100 participants. Average project size increases across the FPs, which is consistent with 

recommendations from evaluation studies and the stated attempts of the EU commission to 

reduce its administrative burden. The overall shape of the distributions, however, is remarka-

bly similar. This may suggest that possible changes in project formation rules – including 

both formal policies and informal practices – did not affect the aggregate structure of the re-

sulting research networks. 

5.2. Edge properties 

Relationships between the vertices of a graph are represented by the edges. So far, we have 

capitalised on this by using the edges to investigate properties of the vertices. As well, it is 
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worth exploring the edges themselves more directly. An interesting and fundamental property 

of the edges is their mixing pattern (Newman 2003b, 2002), whether they tend to connect si-

milar or dissimilar vertices. Here, we focus on mixing by the degrees of the vertices linked by 

the edge. 

Mixing patterns, in terms of correlation coefficients between the degrees of linked vertices, 

for the FP networks are shown in Table 3. For the P-graphs, the correlation coefficients are all 

positive, indicating assortative mixing, with magnitudes similar to those observed in other 

social networks (Newman 2002). For the O-graphs, the correlation coefficients, while all 

positive, are miniscule, indicating that the organisations are virtually uncorrelated by degree. 

Quite surprisingly, the correlation coefficients in the bipartite graph show a third mixing pat-

tern, with all coefficients small in magnitude, but negative. Based on the standard errors, the 

correlation coefficients for the bipartite- and P-graphs significantly differ from zero in a statis-

tical sense, but it is doubtful that the difference is significant in a practical sense. 

Table 3: Mixing patterns, FP1–FP5 

Framework 
Programme 

bipartite graph O-graph P-graph 

FP1 -0.133  (0.003) 0.019  (0.007) 0.319  (0.003) 
FP2 -0.038  (0.004) 0.016  (0.002) 0.151  (0.003) 
FP3 -0.019  (0.002) 0.056  (0.002) 0.184  (0.002) 
FP4 -0.030  (0.002) 0.050  (0.001) 0.194  (0.001) 
FP5 -0.020  (0.002) 0.032  (0.001) 0.167  (0.001) 

Note: Standard error is shown parenthetically. Values calculated using bootstrapping with 100 samples. 

 

Some interpretation of the lack of strong correlation in the O-graph can be given under the 

assumption that the vertex size of an organisation correlates positively with its degree in the 

network. In this case, assortative mixing would indicate that organisations of similar size tend 

to take part in the same projects, while disassortative mixing would indicate that organisations 

of dissimilar size tend to take part in the same projects. Both types of interaction are known to 

occur, although the homogeneity of the network with respect to mixing patterns is less clear: 

there may be no tendency for degree correlation throughout the network, or the mixing pat-

terns may vary in different subnetworks. Future work on subnetworks will shed light on this 

point. 

The assortative mixing observed in the P-graphs indicates that projects tend to be connected 

to other projects of similar size. Since a connection between two projects exists when an or-

ganisation takes part in both projects, this further indicates that organisations tend to take part 
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in projects of a particular scale with some consistency. A possible interpretation of assortative 

mixing amongst projects is thus that projects with similar goals tend to be organised similarly; 

as a corollary, particular types of projects may have specific requirements reflecting the needs 

of the field, such as organisation competencies or resource requirements in order for project 

members to be effective. 

Thus far, we have focused simply on the presence or absence of links between network nodes. 

For a link between two organisations or projects it is sufficient to have just one project or or-

ganisation, respectively, in common, but of course there could be additional commonality. 

Define the edge excess as the number of projects or organisations beyond the minimum of one 

needed to form the edge.  

In Figure 5, the edge-excess distribution is shown for P- and O-graphs of FP2-5. There is an 

almost perfect power-law behaviour in all cases, with maximum edge excesses of approxi-

mately 30. 

Figure 5: Edge-excess distribution of FP2-FP5 organisation and project projection 

 
Note: Exponent of the fit line in the organisation projection is α = 3.9 ± 0.1. Exponent of the fit line in the pro-
ject projection is α = 4.3 ± 0.1. Standard error is calculated using bootstrapping with 1000 samples. Fit lines for 
earlier FPs are similar (not shown). 

 

The presence of exceptionally high excesses in the P-graphs may be caused by memory ef-

fects due to prior collaborative experience. This can be validated by examining the dynamical 

properties of the networks. Also, a greater edge excess may result from the fact that organisa-

tions are active in a wider set of complementary activities. In this case, intra-organisational 

links and knowledge flows may also be of importance, as search for potential partners may be 

influenced by the collaboration behaviour of other actors within an organisation. The fact that 

a sizeable number of organisations collaborate more than once in each FP indicates that there 
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is a kind of robust backbone structure in place, which may constitute the core of the European 

Research Area. 

5.3. Vertex properties 

5.3.1. O-graphs 

The networks at hand include a diverse set of actors. We start with analysing actors' identities 

within FPs. Figure 6 displays the distribution of organisation types for each of the five FPs. 

The figure on the left is generated from the total set of project participations, while the figure 

on the right is based on counts of distinct organisations. Both figures show that the vast ma-

jority of participants in EU projects are firms, universities or research organisations. Meas-

ured by project participations (left-hand side), shares are quite stable over time, but this pic-

ture changes markedly when we count by distinct organisations (right-hand side). 

Figure 6: Distribution of organisation types in the organisation networks, FP1–FP5 
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This implies a considerably higher participation intensity by actors from research than from 

industry. Averaging across all FPs, an industrial actor participates in a mean (standard devia-

tion) number of 1.9 (3.4) projects, a research organisation in 4.0 (8.8) projects and a univer-

sity in 4.6 (7.3). We interpret this result as evidence for greater fluctuation among industry 

participants and different organisational attitudes towards the kind of research captured by our 

data. The enormous variation of our results indicates considerable heterogeneity within the 

different groups of actors. 
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Universities and research organisations mainly conduct exploratory (re)search in the 'open 

science' mode, while firms focus on exploitation governed by the norms of 'proprietary tech-

nology' (see Dasgupta and David 1994). The disclosure rules stipulated in the EU FPs work 

well with exploratory research in the open science mode, but are ill-suited for exploitation. 

Exploiting existing capabilities that are critical for industrial competitiveness requires secrecy 

and is therefore typically funded internally. Indeed, research on Finnish firms has shown that 

these often set up parallel, internal projects in which they exploit results obtained in EU-

funded research (Luukonen 2002).  

While actors in science mainly conduct exploratory research, it constitutes a smaller part of 

firms' R&D activities (albeit one that is critical for long-term competitiveness). Accordingly, 

EU projects are a natural way of funding academic research which is reflected in greater par-

ticipation intensity by scientific actors. In contrast, firms participate in fewer projects, mainly 

to acquire knowledge critical for longer-term success or to create future markets, e.g. by set-

ting standards in network technologies. 

Next, we explore the identity of actors between FPs. Organisations may not only participate in 

multiple projects within FPs, but also across them. At the same time, new actors may enter the 

scene. Figure 7 displays the respective relative shares and breaks them down by organisation 

type. It reveals two overarching trends: 

Figure 7: Returning and new actors, breakdown by organisation type, FP1–FP5 
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First, the share of actors participating in the preceding FP is larger than the share of new ac-

tors until FP4. This is even more remarkable as the number of organisations per FP is rising 
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steeply (see Table 2a). FP5 breaks with this trend in that more than two-thirds of the partici-

pants are new. A partial explanation is offered by the increasing integration of the candidate 

countries that joined the EU in its latest accession round. It will be interesting to explore other 

driving forces in future work. 

Second, in all cases, the majority of new actors are firms. In contrast, the majority of universi-

ties and research organisations overlap between FPs, indicating considerably greater stability 

among these actor groups. 

Figure 7 thus shows that the growing size and widening scope of the FPs has attracted a grow-

ing share of new actors, most of which are firms. At the same time, there is sizeable stability 

among a subset of participants. About one third of the actors taking part in each of the preced-

ing FPs also participate in FP5. This suggests that there has been a growing organisational and 

social infrastructure in science and technology over the past two decades that may form the 

core of the present day ERA. More detailed dynamic analyses may provide interesting in-

sights. 

We next focus on the main players in this potential core of ERA. Who are they? Do they re-

flect the participation patterns identified in Figure 6? To shed light on these questions, we 

need to operationalise importance or prominence. One way to think of importance is to look at 

how much research an organisation carries out, approximated by how active it is in the FPs. 

Presumably, organisations that are able to participate in many projects carry out a greater 

share of the total research than less active organisations. They create more knowledge and 

artefacts, and are more visible. We can thus create a ranking of organisations based on the 

number of projects they participate in. 

Table 4 shows the resulting ten most active organisations per FP. In each of the FPs, the most 

active organisations are predominantly large research centres, in particular the various sub-

units of the French CNRS. Other research organisations that rank among the Top 10 in more 

than one FP include the German Aerospace Center, the division 'Earth and Environment' of 

the Italian CNR, the French Commissariat à l'Energie Atomique (CEA), in particular its mate-

rial science division, and the Dutch TNO as well as the Harwell Laboratory of the UK Atomic 

Energy Agency in the early FPs. 

A number of industrial firms also rank among the Top 10. These include Fiat, Siemens and 

DaimlerChrysler in the recent FPs, and BEA Systems and Bull Europe in the early ones. The 

rankings are completed by the natural science and engineering faculties of some of the best 

known universities in Europe. These include Imperial College London, Oxford University, 



Table 4: Number (#) of projects per organisation, Top 10, FP1–FP5 

FP5   FP4   FP3   FP2   FP1   

R
an

k 

Organisation # Orgty
pe 

Organisation # Orgt
ype

Organisation # Orgt
ype

Organisation # Orgt
ype

Organisation # Orgt
ype 

1 CNRS/Sciences de la 
vie 

223 ROR CNRS/Sciences de la vie 196 ROR CNRS/Sciences de 
l’univers 

170 ROR CNRS/Sciences de la vie 94 ROR Commissariat à 
l'Energie Atomique 

86 ROR 

2 CNRS/Sciences de 
l’univers 

164 ROR CNRS/Sciences de 
l’univers 

187 ROR CNRS/Sciences de la vie 153 ROR CNRS/Sciences de 
l’univers 

72 ROR UKAEA/Harwell 
Laboratory 

68 ROR 

3 Fiat/Centro Richerche 153 IND Fiat/Centro Richerche 112 IND CNRS/Sciences physiques 
et mathematiques 

135 ROR TNO 70 ROR TNO 65 ROR 

4 HHG/German Aero-
space Center  

118 ROR CNR/Earth and 
Environment 

107 ROR CNRS/Sciences chimiques 112 ROR CNRS/STIC 68 ROR Universite 
Catholique de 
Louvain 

64 EDU 

5 CNRS/Information et 
communication 

113 ROR HHG/German Aerospace 
Center 

107 ROR ImperialCL/Faculty of 
Engineering 

84 EDU CNRS/Sciences physiques 
et mathematiques 

65 ROR CNRS/Sciences de 
l’univers 

64 ROR 

6 CEA/Direction des 
Sciences de la Matiere

111 ROR CSIC/Biology and 
Biomedicine 

100 ROR UP XI/Faculte des 
Sciences 

84 EDU Siemens AG 60 IND Imperial College 
London 

61 EDU 

7 CNR/Earth and 
Environment 

106 ROR JRC/Institute for Envi-
ronment and Sustainability

93 ROR CEA/Direction des 
Sciences de la Matiere 

82 ROR HHG/Research Center for 
Environment and Health 

59 ROR BAE Systems 
Electronics Ltd 

45 IND 

8 Siemens AG 85 IND Siemens AG 86 IND CU/School of Physical 
Sciences 

76 EDU Bull Europe 58 IND Risø National 
Laboratory 

42 ROR 

9 Uni Stuttgart/Faculty 
of Engineering 

83 EDU ImperialCL/Faculty of 
Engineering 

84 EDU CNRS/Information et 
communication 

75 ROR CNR/Earth and 
Environment 

57 ROR INRA/Centre de 
Recherche de Paris 

39 ROR 

10 DaimlerChrysler AG 82 IND SotonU/Engineering, 
Science and Mathematics 

79 EDU OU/Mathematical and 
Physical Sciences Division

72 EDU UKAEA/Harwell 
Laboratory 

56 ROR Centre d'Etudes de 
l'Energie Nucleaire 

39 ROR 

10       SotonU/Engineering, Sci-
ence and Mathematics 

72 EDU BAE Systems PLC 56 IND    

Note: CEA ... Commissariat à l'Energie Atomique, CNR ... Consiglio Nazionale delle Ricerche, CNRS ... Centre National de la Recherche Scientifique, CNRS/STIC ... 
CNRS/Sciences et technologies de l'information et de la communication, CSIC ... Consejo Superior de Investigaciones Científicas, CU ... Cambridge University, HHG ... 
Helmholtz-Gemeinschaft, ImperialCL ... Imperial College London, INRA ... Institut National de la Recherche Agronomique, JRC ... Joint Research Centre, OU ... Oxford Uni-
versity, SotonU ... Southampton University, UP XI ... Université Paris-Sud XI, UKAEA ... United Kingdom Atomic Energy Authority. 

 

 

 

 27



FP5   FP4   FP3   FP2   FP1   

R
an

k 

Organisation Orgt
ype 

Score Organisation Orgt
ype

Score Organisation Orgt
ype

Score Organisation Orgt
ype

Score Organisation Orgt
ype 

Score 

1 CNRS/Sciences de la vie ROR 13 SotonU/Engineering, 
Science and Mathematics 

EDU 11 CNRS/Sciences de la vie ROR 9 CNRS/Sciences chimiques ROR 18 TNO ROR 16 

2 Fiat/Centro Richerche IND 16 HHG/German Aerospace 
Center 

ROR 25 SotonU/Engineering, 
Science and Mathematics 

EDU 17 Siemens AG IND 26 Imperial College Lon-
don 

EDU 36 

3 HHG/German Aerospace 
Center 

ROR 18 CNRS/Sciences de la vie ROR 36 CNRS/Sciences de 
l’univers 

ROR 25 HHG/Research Center for 
Environment and Health 

ROR 52 Universite Catholique 
de Louvain 

EDU 39 

4 CNRS/Information et 
communication 

ROR 23 CNRS/Sciences de 
l’univers 

ROR 43 UP XI/Faculte des 
Sciences 

EDU 28 TNO ROR 61 Risø National 
Laboratory 

ROR 57 

5 CNR/Earth and 
Environment 

ROR 31 JRC/Institute for Environ-
ment and Sustainability 

ROR 48 CNRS/Sciences chimiques ROR 34 Bull Europe IND 62 Technical University of 
Denmark 

EDU 71 

6 AUTH/Faculty of 
Technology 

EDU 31 CNR/Earth and 
Environment 

ROR 49 CEA/Direction des 
Sciences de la Matiere 

ROR 35 Energy Research Centre 
of the Netherlands 

ROR 78 Universiteit Twente EDU 93 

7 CEA/Direction des 
Sciences de la Matiere 

ROR 43 LU/Institute of Technology EDU 68 OU/Mathematical and 
Physical Sciences Division 

EDU 53 BAE Systems PLC IND 81 University of Liege EDU 98 

8 CNRS/Sciences de 
l’univers 

ROR 45 CEA/Direction des 
Sciences de la Matiere 

ROR 70 CNRS/Sciences physiques 
et mathematiques 

ROR 56 CNR/Earth and 
Environment 

ROR 96 Forschungszentrum 
Jülich 

ROR 103 

9 ImperialCL/Faculty of 
Engineering 

EDU 49 Fiat/Centro Richerche IND 73 ImperialCL/Faculty of 
Engineering 

EDU 56 INESC ID Lisboa ROR 97 Siemens Nixdorf 
Informationssysteme 
AG 

IND 107 

10 JRC/Institute for Environ-
ment and Sustainability 

ROR 51 CNRS/Sciences pour 
l'ingenieur 

ROR 102 CNRS/STIC ROR 61 Trinity College Dublin  EDU 101 Energy Research Cen-
tre of the Netherlands 

ROR 108 

Note: AUTH ... Aristoteles University of Thessaloniki, CEA ... Commissariat à l'Energie Atomique, CNR ... Consiglio Nazionale delle Ricerche, CNRS ... Centre National de la 
Recherche Scientifique, CNRS/STIC ... CNRS/Sciences et technologies de l'information et de la communication, LU ... Lund University, INESC ... Instituto de Engenharia de 
Sistemas e Computadores, HHG ... Helmholtz-Gemeinschaft, ImperialCL ... Imperial College London, INRA ... Institut National de la Recherche Agronomique, JRC ... Joint 
Research Centre, OU ... Oxford University, SotonU ... Southampton University, UP XI ... Université Paris-Sud XI. 
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Cambridge University, the University of Paris XI, and the Catholic University of Louvain, as 

well as, perhaps unexpectedly, Southampton University and the University of Stuttgart. 

The ranking of the most active organisations per FP reflects the changing funding priorities 

(see Figure 1). In FP1 and FP2, the most active organisations predominately conduct research 

on (nuclear) energy and IT. In the more recent FPs, the most active organisations mainly fo-

cus on life sciences, engineering and materials sciences (in particular automobiles and aero-

space), and environmental sciences. Interestingly, organisations focusing on ICT do not 

dominate the rankings, even though the majority of research funding goes to this thematic 

area. 

Defining importance by activity, however, does not capture the relational information embed-

ded in network structures. From a network perspective, an organisation is important if it oc-

cupies a central position. Participating in many projects is not a sufficient condition; centrality 

depends on to whom actors are connected. If we thus want to exploit the added value of our 

relational information, centrality is the theoretically appropriate measure to identify main ac-

tors. Unfortunately, theory offers limited guidance on the most appropriate measure of cen-

trality, so we proceed pragmatically. 

Using each of the four centrality measures described in Section 3.3.4., we compute centrality 

weights for each vertex. This is done with Pajek (Batagelj and Mrvar 2003), a free application 

for the descriptive analysis of large networks. We then compute an aggregate score of vertices 

by taking the unweighted sum of their individual rankings according to each centrality index. 

The intuition for our methodology is that truly central vertices should rank prominently along 

each of the dimensions quantified by the centrality indices. 

Table 5 displays the ten most central organisations in each FP, identified in this manner. Me-

dian aggregate centrality is lowest in FP5, followed by FP3. As expected, the centrality rank-

ings do not coincide with the activity rankings. 

Among the Top 10, universities rank higher, while firms move down the ranking. For in-

stance, Southampton University is most central in FP4 and second most central in FP3, up 

from tenth by activity in both. Lund University is 24th by activity in FP4 and the University 

of Twente ranks only 55th in FP1. In contrast, Siemens only ranks 85th by aggregate central-

ity in FP4 (19th in FP5) and BAE Systems is 30th in FP1. There is similar variation in the 

ranking of research organisations, but no discernible trend. 

To see whether these observations reflect a general trend in the data, we need to compare lar-

ger subsets. Since we are interested in the potential core of ERA, we identify the organisa-
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tions ranked in the top one and the top five percentile by participation and break them down 

by the three main organisation types. Figure 8 displays the resulting distributions. 

Figure 8: Most active organisations by organisation type, FP2-FP5 
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Note: IND … industry, EDU … universities and other higher education, ROR … non-university research, OTH 
… consulting, governmental, non-commercial and other. 

 

The figure shows that the extreme tail of the activity distribution of participants in FP3 to FP5 

comprises predominantly universities (45-60%) and research organisations (25-35%), while 

industry accounts only for a minor share (10-20%). This is particularly pronounced among the 

most active 1%. Among the top five percentile, there are relatively more firms, fewer univer-

sities (in FP4 and FP5) and fewer research organisations (FP2 to FP5). FP2 is special as re-

search organisations are particularly prominent in the top one percentile. 

These results show that the potential core of ERA, as identified by participation intensity in 

the EU FPs, is heavily skewed towards actors from science and, above all, universities. This is 

in stark contrast with the general participation patterns identified in Figure 6. While account-

ing for much total research activity, relatively few firms are part of the core. 

Next, we check whether this conclusion needs to be modified if we consider the relational 

information provided by the centrality rankings. As universities and research centres partici-

pate in more projects on average than firms, they are linked to more actors and we hence ex-

pect them to be relatively more important than participation alone would indicate. This expec-

tation is partially borne out by the top 10 ranking reported above. 

To test this, we compare the respective centrality and participation rankings for each organisa-

tion type. Tie values lead to different numbers of organisations in the resulting sets, so it is 

necessary to rescale proportionately, allowing comparison within the FPs by the difference of 
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the values. Further, we would like to compare across the FPs, so we need to rescale the differ-

ences as well. By scaling to a size of 100, we obtain a rank divergence index that is simply the 

difference between the percentages of the relevant organisations in the respective percentile of 

either ranking. This index is positive for organisation types that are more highly ranked by 

centrality and negative for those that are more highly ranked by participation. 

Figure 9 exhibits the results of this procedure. It displays index values for the three main sets 

of actors for FP2 to FP5. To facilitate comparison across FPs, index values are presented in 

three columns, each representing one organisation type. To identify variation in the extreme 

tail of the ranking distributions, we plot separate values for the top one and the top five per-

centiles. 

Absolute index values show that the two ranking methods yield greater differences for actors 

from science than for industrial actors. This suggests that network structure has a greater im-

pact on how scientific actors are positioned in the centrality rankings. This observation is con-

sistent with the result that actors from science participate in more projects than firms and 

hence may have more complex relations in the networks we study. 

Figure 9: Rank divergence index by organisation type, FP2-FP5 

 
 

However, Figure 9 refutes our conjecture on the direction of the differences between the rank-

ing methods. Across FP2-FP5, in the potential core of ERA there are fewer actors from sci-

ence and more actors from industry by centrality than by participation ranking. With the ex-

ception of the top one percentile in FP2, index values for research organisations are negative. 

 31



Universities' index values are negative in FP5 and FP2, positive in FP4 and robustly positive 

in FP3. Index values for industry are positive in FP5 and FP2, and negative in FP3. In FP4, 

the rankings based on the top one and the top five percentile yield opposite results. 

These results reveal considerable variation in the way the different sets of actors are embed-

ded in the respective R&D networks in FP2 to FP5. Differences in index values for the top 

one and the top five percentile rankings are due to variations in the distribution of organisa-

tions in the respective percentiles. This is particularly obvious if the index values produce 

opposite results, as in the case of industry in FP4 and research organisations in FP2. For ex-

ample, in FP4 there are relatively few firms in the top one percentile of the centrality ranking, 

yielding a negative index value. In contrast, they are substantially overrepresented in the top 

five percentile, yielding a positive index value. Thus, there is clearly a non-linear relationship 

between the two ranking methods caused by structural properties of the networks that we do 

not understand yet. 

5.3.2. P-graphs 

As in the O-graphs, we can discriminate sets of vertices in the P-graphs. The EU uses differ-

ent instruments to fund research in the FPs, which are likely to have different structural prop-

erties. Table 6 shows the average project size of the contract types we included in our net-

works. Since shared-cost projects were the only instrument in FP1 and FP2, we do not list 

them separately (for details, see Table 2b). To avoid biased estimates, we only consider mul-

tiple partner projects. Note that due to the scale-free distribution of the data (see Figure 4), 

some care is warranted in interpreting the results. 

Table 6: Average project size by contract type, FP3-FP5 

 CSC CRS CON DEM THN 
FP5 # multiple partner 5255 658 141 170 513 
 # available total 5271 659 173 172 534 
 mean  (StDev) 8.2  (4.2) 8.2  (2.7) 13.0  (9.4) 7.4  (4.8) 16.6  (14.0) 
FP4 # multiple partner 6956 713 242 56 125 
 # available total 7156 735 574 550 128 
 mean  (StDev) 6.7  (3.8) 8.7  (2.8) 10.7  (7.0) 5.2  (2.0) 21.6  (14.4) 
FP3 # multiple partner 3531 – 138 7 – 
 # available total 4089 – 155 7 – 
 mean  (StDev) 6.1  (4.0) – 12.1  (7.8) 13.7  (6.4) – 

Note: Available total number of projects per contract type listed parenthetically. Computations based on multiple 
partner projects. CSC ... shared-cost project, CRS ... co-operative research project, CON ... co-ordination of 
research actions, DEM ... demonstration project, THN ... thematic network. FP1 and FP2 only comprise CSC 
projects; respective values are listed in Table 2. 
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The table shows that the large majority of vertices in the P-graphs are shared-cost projects. A 

sizeable number of vertices in FP4 and FP5 are co-operative research projects aimed at SMEs; 

FP5 also includes more than 500 thematic networks. 

Comparing projects within FPs, thematic networks and co-ordinated research actions tend to 

be larger on average than the remaining project types (subject to considerable variation). 

Comparing projects over time, the detailed breakdown shows that not all project types have 

grown in size as identified as the average trend in Table 2b. Co-operative research projects 

and co-ordinated research actions have stable average sizes, and thematic networks may have 

become smaller in FP5. 

A fundamental question that has received particular prominence with the introduction of new 

instruments in FP6 is which projects are pivotal for the coherence of R&D networks in 

Europe. To shed some light on this point, we identify central projects by applying the same 

methodology as with the O-graphs. We consider the four centrality measures and compute 

aggregate rankings. Again, the intuition is that central projects should be well positioned ac-

cording to all dimensions of centrality captured by the indices. Table 7 shows the ten most 

central projects for FP3-FP5. Qualitatively, FP1 and FP2 produce similar results, but are not 

listed for lack of space. Aggregate centrality scores are considerably higher than in the O-

graphs (see Table 5), indicating greater heterogeneity in individual centrality rankings. 

Projects ranked among the Top 10 tend to be considerably larger than the average project in 

each FP. This is an expected result, in particular as we assume projects to be fully connected 

subgraphs. However, linkage structure matters, as most of the largest projects are not among 

the most central ones (only in FP3, the largest project is among the most central, ranked first). 

In terms of project type, only two thematic networks and two concerted research actions are 

among the most central projects, with the remainder being shared-cost projects. This suggests 

that the different instruments may address different groups of actors. 

These observations hold if we consider a greater part of the extreme tail of the centrality rank-

ing distribution. Repeating the same analyses as with the O-graphs, we obtain the following 

results. 

First, association between project centrality and project size rankings is unexpectedly weak. 

The rank-based Spearman-Rho correlation coefficient produces values ranging from 0.3-0.4, 

indicating a medium-strong correlation. Thus, large projects are not necessarily central pro-

jects, implying that large projects include a fair number of peripheral actors. This may have a 

positive effect on knowledge dissemination, as large projects may succeed in connecting cen- 



FP5     FP4     FP3     Rank 
PrAcr Title # Ctype Score PrAcr Title # Ctype Score PrAcr Title # Ctype Score 

1 EESD Mediterranean ocean Forecasting 
System: Toward Environmental Pre-
dictions 

48 CSC 22 MAST 3 Mediterranean Targeted Project II-Mass 
Transfer and Ecosystem Response 

56 CSC 7 BIOTEC
H 1 

Plant molecular genetics for an 
environmentally compatible 
agriculture 

78 CSC 4 

2 GROWTH The European network for supercon-
ductivity, scenet-2 

74 THN 26 MAST 3 Canary Islands Azores Gibraltar Observa-
tion 

45 CSC 49 HCM AB initio (from electronic struc-
ture) calculation of complex 
processes in materials 

39 CSC 20 

3 LIFE 
QUALITY 

Concerted action on mitochondrial 
biogenesis and disease 

41 CON 68 BIOTEC
H 2 

Extremophiles as cell factories 40 CSC 62 HCM Molecular dynamics and monte 
carlo simulations of quantum and 
classical systems 

33 CSC 29 

4 EESD European Network for Biodiversity 
Information 

66 THN 152 MAST 3 Ocean Margin EXchange II - Phase I 32 CSC 84 HCM Non linear phenomena in micro-
physics of collisionless plasmas. 
Application to space and labora-
tory plasmas. 

18 CSC 31 

5 EESD Flume Facility Co-operation Network 
for Biological Benthic Boundary 
Layer Research 

21 CON 153 BIOTEC
H 2 

Characterising and engineering abscisic 
acid action 

12 CSC 124 MAST 2 Ocean margin exchange 33 CSC 31 

6 EESD Atmospheric Deposition and Impact 
of pollutants, key elements and nutri-
ents on the Open Mediterranean Sea 

28 CSC 153 MAST 3 Ocean Margin Exchange II - Phase II 27 CSC 127 AIR A Multidisciplinary Research 
Network Study and Improve the 
Abiotic Stress Tolerance of 
European Agricultural Crops 

44 CON 83 

7 EESD The Airborne Platform for Earth 
observation Infrastructure 

20 CSC 158 MAST 3 Baltic Sea System Study 48 CSC 144 HCM European Network on AntiBody 
Catalysis 

24 CSC 92 

8 EESD Development of an Information Tech-
nology Tool for the Management of 
European Southern Lagoons under the 
influence of river-basin runoff 

22 CSC 160 ENV 2C European forum on integrated environ-
mental assessment 

26 CSC 160 HCM Structure and reactivity of mo-
lecular ions 

27 CSC 94 

9 EESD European catchments, catchments 
changes and their impact on the coast 

25 CSC 160 MAST 3 Azores mid-oceanic ridge ecosystem stud-
ies: an integrated research programme on 
deep sea hydrothermal transfers and fluxes

19 CSC 166 HCM Metal ion-nucleic acid interac-
tions and antitumour drugs 

23 CSC 106 

10 LIFE 
QUALITY 

Gene flow from transgenic plants: 
evaluation and biotechnology 

12 CSC 167 BIOTEC
H 2 

Molecular characterization of cold-active 
enzymes from psychrophilic microorgan-
isms as the basis for novel biotechnology 

11 CSC 180 HCM Selective processes and catalysis 
involving small molecules 

19 CSC 132 

Note: PrAcr ... specific programme acronym, # ... partners/project, ctype ... contract type. EESD ... Energy, Environment and Sustainable Development, GROWTH ... Competi-
tive and Sustainable Growth, LIFE QUALITY ... Quality of Life and Management of Living Resources; MAST ...  Marine Sciences and Technologies, BIOTECH ... Biotechnol-
ogy, ENV ... Environment and Climate; HCM ... Human Capital and Mobility, AIR ... Agriculture and Agro-Industry including Fisheries. 
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tral and peripheral actors. At the same time, it suggests that to create pivotal nodes, it is at 

least as important to assemble well-connected actors as it is to assemble many actors. It will 

be interesting to explore these highly policy-relevant questions in future work. 

Second, the association pattern between centrality and size ranking is also reflected in the dis-

tribution of contract types in the top one and top five percentiles of the respective ranking 

distributions. Being larger on average, thematic networks and co-ordinations of research ac-

tions are heavily overrepresented in the extreme tail of the project size rankings, compared to 

their overall share in the FPs. In contrast, they feature markedly less prominently in the top 

one and top five percentiles of the project centrality ranking distributions. In the FP4 and FP5 

P-graphs, co-ordinated research actions have rank divergence index values of about -10 and 

thematic networks of -20 to -40, while shared-cost projects range from +10 to +40. These 

differences are considerably larger than in the O-graphs and underline that different project 

types appear to be embedded differently in the respective P-graphs, attracting different groups 

of actors. 

Finally, the most central projects only partially reflect the funding priorities of the FPs. This 

is evident already from the Top 10 ranking shown in Table 7, in which biotechnology and life 

science projects are positioned centrally, while information technology, engineering and ma-

terials science projects are virtually absent. Instead, a surprisingly large number of projects 

are in environmental (marine) sciences and technologies. 

These observations can be substantiated for FP4 and FP5 by assigning the projects in the ex-

treme tail of the centrality ranking distributions to the main thematic priorities (see Figure 1) 

on the basis of their subject indices. These are standardised keywords that are available for all 

projects in the sysres EUPRO database. Roughly 40% of the projects are in the priority envi-

ronment, 25% are in industrial manufacturing, 20% (FP4) to 25% (FP5) are in life sciences, 

whereas less than 10% are in ICT and energy, respectively. Within these priorities, marine 

sciences and technologies and aeronautics are particularly prominent. Especially the former 

are usually not considered as core areas of EU funded research. This result is a strong indica-

tion that EU funded research in different thematic areas is organised differently, quite possi-

bly reflecting the technological and economic needs of the field. 

Our results on central projects only partially coincide with our results on central actors. This 

further underlines the need to gain a much better understanding of the internal structure for 

projects based on which actors participate in what kind of projects and to identify coherent 

substructures in the global networks. 
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6. Conclusions and directions for future research 

In this work, we have investigated the structure of R&D collaboration networks determined 

from research projects funded in the EU Framework Programmes. The networks are substan-

tial in terms of size, complexity, and economic impact. We observe numerous characteristics 

known from other complex networks, including scale-free degree distributions, small diame-

ters, and high clustering. The networks thus exhibit the small-world property, which has been 

identified in theoretical work as conducive to collective knowledge creation and knowledge 

transmission in exploration networks. Other features in common throughout the FPs include 

the typical project sizes and the overall shapes of the various distributions observed. Pre-

sumably, network formation mechanisms are similar for all FPs despite changes in govern-

ance rules. 

Two findings suggest the presence of a stable core of actors in science and technology since 

the early FPs: there is a significant overlap in participants for consecutive FPs and there is 

recurring collaboration amongst the same organisations within FPs. This core may constitute 

the backbone of the present day European Research Area. Moreover, the increasing clustering 

coefficient suggests that integration between collaborating organisations has increased over 

time, indicating that Europe has already been moving towards a more closely integrated 

European Research Area in the earlier Framework Programmes.  

We observe assortative mixing patterns in the project networks with positive correlation by 

degree. As organisations are the medium through which project degree correlations occur, this 

indicates that organisations tend to participate in similarly sized projects. Assuming that or-

ganisations operate in coherent fields of activity, this may reflect the needs of their field. Un-

expectedly, we find no degree correlation in the organisation networks. The reason for this is 

not clear. It may be that there simply is no trend or that subnetworks follow very different 

mixing patterns. 

Further results stem from investigating vertex properties. We find that the majority of partici-

pants are firms, but that universities and research organisations display greater participation 

intensity and are positioned more prominently in the networks analysed. We observe and 

characterise considerable variation in how the main sets of actors, universities, research or-

ganisations and firms are embedded in networks studied, both within and between Framework 

Programmes. 

Including the relational information contained in the networks shows that vertex size does not 

imply centrality. This suggests that a policy of creating larger projects may not be fully ap-
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propriate to foster networking and the connectivity of R&D collaboration networks in Europe. 

Rather, projects need to include pivotal actors, which seems to have been the case only par-

tially in first five Framework Programmes. 

We also find that the most central projects do not reflect the main funding priorities of the 

FPs. We interpret this as an indication of differences in how research in specific thematic ar-

eas is organised, possibly due to field-specific technological and economic needs. 

The present work points to considerable future work, of both empirical and conceptual nature. 

At the empirical level, it is clear that we need to refine our understanding of the substructure 

of the networks, in particular how organisations interact within projects. This includes identi-

fying thematically homogeneous subnetworks and subgroups that are homogeneous in terms 

of structural properties and organisational mixing patterns. Moreover, the additional informa-

tion included in edge weights needs to be integrated into structural investigations. Another 

major route of inquiry is the dynamic analysis of network formation and network configura-

tion. This should also yield information on how the networks have been shaped by external 

constraints, in particular the governance rules. 

Perhaps more fundamentally, there are many open questions at the conceptual level. Network-

ing activities are publicly funded because they are expected to fulfil specific functions, e.g. 

knowledge creation and knowledge diffusion. Are the network structures that emerge well-

suited for these functions? Do different network functions require different network struc-

tures? Does this introduce tensions between conflicting objectives, e.g. efficiency and equity? 

How do structure and function interact? To what extent can complex networks that involve a 

strong element of self-organised behaviour by decentralised actors be influenced through ex-

ternal stimuli, in particular by governance rules? Isolating relationships between network 

structure and function and identifying the scope for directing networks towards desirable 

structures will provide valuable guidance for policy makers in improving existing instruments 

and designing future ones. 
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Technical appendix 

Fitting power laws 

To describe the various distributions observed, we fit power laws to the empirical data. This 

appears to be a straightforward process of constructing a histogram of the data on logarithmic 

axes and using linear least squares to fit a line to the tail of the distribution. However, Gold-

stein et al. (2004) have shown that this approach is biased and can introduce substantial errors 

when not used with care. In essence, for a power law the end of the tail is constructed with 

relatively little data in comparison to the rest of the histogram, so the uncertainties at the ex-

treme end are large. Thus the histogram is heteroscedastic, violating one of the assumptions of 

OLS estimation. This can be corrected by truncating the tail; Goldstein et al. also propose a 

more robust method based on maximum likelihood estimation. In this work, we take the sim-

pler approach of truncating the tail. 

We determine the standard errors for parameters of the power law fits using a bootstrapping 

procedure (Efron and Tibshirani 1993). Bootstrapping is an approach for statistical inference 

based on resampling from an already drawn sample. Given a sample of size N and a calcu-

lated sample statistic of interest, a so-called bootstrap sample of size N is drawn with re-

placement (i.e. a particular observation may be drawn multiple times or not at all) and the 

statistic is recalculated from the bootstrap. This is repeated a large number of times, generat-

ing a set of bootstrap statistics. The uncertainty of the statistic of interest is then estimated 

using the bootstrap statistics; the standard error of the sample statistic is just the standard de-

viation of the set of bootstrap statistics. 

Eigenvector centrality 

Eigenvector centrality assigns to each vertex in a graph a centrality that depends both on the 

number and the quality of its connections. Denoting the centrality of vertex i by xi we define 

the centrality to be proportional to the average centrality of the neighbouring vertices, 

 40



∑
=

=
n

j
jiji xAx

1

1
λ

 (1), 

where λ is a constant. In an equivalent matrix form, this becomes the eigenvalue problem: 

xAx λ=  (2). 

In a connected network, the eigenvector corresponding to the largest eigenvalue is guaranteed 

to have all positive elements (by the Perron-Frobenius theorem). This eigenvector can be 

found trivially by iterating (2) until the solution stabilises. The algorithm, implemented as 

PageRank in Google, is due to Brin and Page (1998) and is essentially identical in its simplest 

form to the eigenvector centrality long used in social network analysis (Bonacich 1987, 

1972). 

As posed, PageRank is oriented towards undirected networks. A generalisation to directed 

networks was proposed by Kleinberg (1999). The mathematical effect is similar to using the 

singular value decomposition of A instead of solving the eigenvalue problem (2). This general 

method is implemented in Pajek and reduces to PageRank for undirected networks, as used in 

this work.  

Convergence of moments of power law distributions 

For a power law distribution, higher-order moments will not in general be defined. To see 

this, consider the nth moment 〈kn〉 of a power law ( ) α−= ckkp : 
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 when α>+1n . 

Thus, for moments of order one or more greater than the exponent, the moment diverges, so 

that the mean is only defined when α is greater than two. 
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