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Abstract 
We examine the impact of internal and external R&D on labor productivity in a 6-year panel of Dutch 
manufacturing firms. We apply a dynamic linear panel data model that allows for decreasing or 
increasing returns to scale in internal and external R&D and for economies of scope. We find 
complementarity between internal and external R&D, with a positive impact of external R&D only 
evident in case of sufficient internal R&D. These findings confirm the role of internal R&D in 
enhancing absorptive capacity and hence the effective utilization of external knowledge. The scope 
economies due the combination of internal and external R&D are accentuated by decreasing results to 
scale at high levels of internal and external R&D. The analysis indicates that on average productivity 
grows by increasing the share of external R&D in total R&D.  
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1. Introduction 

The growing technological diversification of companies and high demands on their portfolio of 

competencies makes successful integration of new external knowledge into the innovation process 

increasingly important. Such successful integration fosters innovation performance, while the effective use 

of external R&D strategies ultimately leads to higher profitability of the firm. Academic research in the 

fields of management and industrial economics has been focusing on these themes for some time now 

(Arora et. al., 2001; Chiesa et al, 2004). Moreover, some authors have argued that the trend of utilizing 

external sources of knowledge is accelerating due to technological convergence, declining transaction 

costs of acquiring external R&D inputs, and shortening product cycle times (Grandstrand et al. 1992b; 

Narula, 2001). This development is accompanied by a parallel decrease of the presence of internal R&D 

departments (Chesbourgh 2003; Howells et al., 2004) and is especially pronounced in research intensive 

industries (Bönte, 2003). Firms are therefore increasingly confronted by the issue of management of 

internal and external innovation strategies and have to decide what technologies should be developed in-

house and which can be sourced externally.  

It has been argued that to absorb externally acquired knowledge, an effective ‘absorptive capacity’ 

to understand and effectively utilize this knowledge is essential (Cohen and Levinthal, 1989, Griffith et 

al., 2004). In-house R&D activities are often required to create sufficient absorptive capacity, which 

suggests a complementarity between internal R&D and external technology acquisition. Empirically, the 

effective balance between internal R&D and external sourcing and interaction between these two 

strategies has however remained relatively unexplored and has been hampered by a lack of adequate data. 

Cassiman and Veugelers (2006) find that firms combining ‘make’ and ‘buy’ strategies are more 

innovative, but have to treat ‘make’ and ‘buy’ as discrete practices in their research. Audretsch et al. 

(1996) suggest that external and internal R&D are alternatives for firms in medium and low tech 

industries, but not in high tech industries. Fernandez-Bagues (2003) analyses the impact of the number of 

R&D projects started in-house and under outsourcing agreements in a panel of pharmaceutical firms and 

finds a negative relationship between ‘make’ and ‘buy’.  
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The objective of the present paper is to contribute to the empirical literature by examining the 

joint impact of internal and external R&D expenditures on productivity in a panel of innovating firms in 

the Netherlands. This is one of the first empirical studies that explore a panel data set to examine these 

effects at the firm level. Earlier work had to rely on cross sectional data, which hampered separation of 

complementarity effects from the effect of time-invariant and time-variant heterogeneity (Fernandez-

Bagües, 2003). Our study’s inferences are based on a dynamic panel data model, which allows us to 

control for persistence (fixed effects) in productivity levels and differences among firms. We look at the 

productivity effects of external and internal R&D strategies as opposed to looking at the correlation 

(adoption) structure, a method that was shown to have measurement problems and inference difficulties 

(Arora, 1996). Instead of analyzing the effect of discrete practices (‘make’ versus ‘buy’) or counts of 

practices, our analysis is of actual expenditures on internal and external R&D, allowing us to examine 

scale and scope (dis)economies in R&D. 

The results of our dynamic panel data model are robust to different estimation techniques and 

show that combining internal and external R&D significantly contributes to productivity growth. This 

finding is consistent with the frequent joint adoption of internal and external R&D strategies and provides 

evidence of complementarity between the two innovation strategies. A positive impact of external R&D is 

only present in case of sufficient internal R&D in line with the absorptive capacity argument.  

The remainder of the paper is organized as follows. The next section reviews previous research on 

“make” and “buy” R&D strategies and discusses in greater detail the potential for competing hypotheses 

on the combination of external and internal R&D. In section three we present the model and discuss our 

estimation methodology. The following section presents the data. In section five we discuss the results and 

section 6 concludes.  

 

2. External and internal R&D 

Several studies suggest that there is a trend towards increasing reliance on external sources of knowledge 

in innovation, as Chesbroughs’s ‘open innovation’ paradigm suggests (Chesbrough, 2003; UNCTAD, 
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2005). In an industry-level longitudinal study, Bönte (2003) cites evidence from the National Science 

Foundation that for the most industries the share of external R&D gradually increased since the 1980s into 

the mid 1990s. UNCTAD (2005) notes that the contract R&D sector is growing rapidly in the United 

States, in particular in the pharmaceutical industry. To an extent this is seen as part of the more general 

trend towards outsourcing non-core business operations (e.g. IT services, wage administration) to outside 

service providers. R&D outsourcing, however, is not limited to standard research or development tasks but 

includes strategic research projects where partner firms and partner institutions possess complementary 

technological capabilities not available in-house (e.g. Pisano, 1990; Bönte, 2003; Chesbrough, 2003). The 

combination of external technology sourcing and internal R&D can allow firms to benefit from research 

complementarities though involvement in multiple technological trajectories, research directions that 

cannot be developed simultaneously (at sufficient speed) in-house, and external development skills 

exploiting in-house research activities more effectively. Access to complementary research and 

development activities performed externally, hence, can improve the performance effects of internal R&D 

efforts (Cassiman and Veugelers, 2006). The rise of external technology sourcing has been attributed to a 

growing complexity, speed, and uncertainty of technological developments, combined with greater 

codification of R&D processes that has facilitated R&D contracting and segmentation of R&D activities 

(e.g. Grandstrand et al. 1992; Narula, 2001). 

Although there is a clear suggestion that internal R&D can be successfully complemented by 

external R&D and knowledge sourcing, the findings of the empirical literature have painted a mixed 

picture.4 Audretsch et al. (1996) analyze a cross-section of Dutch manufacturing firms reporting internal 

and external R&D activity and find that in low and medium technology industries external R&D is a 

substitutes for internal R&D, while the reverse was true in high-technology industries. The authors left 

open the question why this may be the case. Veugelers and Cassiman (1999) in a cross-section of Belgian 

                                                 
4 The theoretical literature on this subject is scarce. In one of the few contributions, Gans and Stern (2000) show that 
the relationship between in-house R&D and external technology sourcing is theoretically ambiguous. In their model 
of technological competition and licensing, incumbent firms consider entrants’ R&D as a strategic substitute for own 
in-house R&D when the license fee is not very high. 
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firms find that these are likely to restrict themselves to either a “make” or a “buy” strategy, possibly 

reflecting scarcity of the internal capabilities to manage both. On the other hand, larger more resourceful 

firms have a propensity to combine the strategies. Later research in Cassiman and Veugelers (2006) 

suggests that firms combining make and buy strategies show superior innovative performance. Piga and 

Vivarelli (2004) model the decision to outsource R&D jointly with the decision on internal R&D. They 

find evidence that firms that have larger internal R&D expenditures and pursue broader R&D objectives 

related to both process and product innovation have a greater propensity to engage in external R&D. 

Blonigen and Taylor (2000), in contrast, find an inverse relationship between R&D intensity and 

acquisition activity in high-tech industries, suggesting that firms opt for either a 'make' or a 'buy' strategy.  

A number of papers have examined the performance effects of internal R&D and external 

technology sourcing more specifically. Basant and Fikkert (1996) use a panel of Indian firms to estimate 

the impact of own R&D and technology purchases on their productivity. They find a robust relation that 

holds across different specifications suggesting that own R&D and technology purchase expenditures are 

substitutes, with licensing lowering the marginal productivity of internal R&D.5 Bönte (2003) analyzes the 

productivity impact of internal and external R&D using an industry-level panel data set and finds a 

positive relationship between the share of the external R&D and productivity. Beneito (2006) examines 

the impact of internal and external R&D on firms’ patent output in Spanish firms. Her results suggest that 

contracted R&D improves patent application performance only if it is combined with internal R&D. 

Griffith and co-authors (2004, 2003) make a recent contribution to the discussion about two functions 

performed by R&D. The first role is being a direct stimulus for the productivity growth, while the second 

role is to increase the absorptive capacity facilitating technology transfers from other countries. By 

examining the productivity growth at the industry level across a panel of OECD countries, the authors find 

that R&D expenditure by the business sector increases such technology transfer and allows countries that 

                                                 
5 In contrast, Deolalikar and Evenson (1989), Katrak (1985), and Mohnen and Lepine (1991) find a complementary 
relation between licensing purchases and internal R&D. Basant (1993) discusses in more detail methodological 
problems related to these previous studies. 
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are behind the technological frontier to catch up with technology leaders. They find this catch up to be 

conditional on a minimum absorptive capacity represented by business R&D expenditures.6 

Summarizing, the previous literature suggests that absorptive capacity play an important role in 

ensuring that firms can benefit from externally acquired technological knowledge. In balance, however, 

the literature is not conclusive about the complementarity between internal and external technology 

sourcing. We explore these two issues by examining the impacts of internal and external R&D on 

productivity in a dynamic panel data model.  

 

3. Modeling Framework and Econometric Specification 

We derive a modeling framework that allows estimating labor productivity as a function of internal and 

external R&D from an augmented Cobb-Douglas production function for firm i at time t: 

 
iteKCLY itititiit

σγδβα=           (1) 

 

where Y is output, L is labor input, C is the physical capital stock and K is the knowledge stock. The 

parameters β , γδ  and , are elasticities with respect to labor, physical capital, and the knowledge stock.7 

The parameter σ is a firm-specific efficiency parameter. Dividing both sides by labor, taking logarithms 

and differencing the resulting equation in two consecutive periods, we obtain the equation in the growth 

form: 

 

ititititit kcl)(q σγδβ Δ+Δ+Δ+Δ−=Δ 1        (2) 

 

                                                 
6 Other related studies have examined the effects of R&D within and outside an industry on firm performance within 
the industry. Geroski (1991) finds that the effect on productivity of the outside-industry innovations is 3.7 times 
larger compared to the effect of ‘produced’ innovations (p. 1441). 
7 The multiplicative constants iα  may represent firm-specific capabilities. They drop out when taking first 
differences in (2). 
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where )Llog()Ylog(q ititit −= denotes labor productivity, with lower case letters denoting variables in 

logarithms. We assume that the change in firm-specific efficiency levels is a function of past productivity, 

in order to allow for a gradual convergence in efficiency levels between firms.8  

 

ititit q εθσ +=Δ −1           (3) 

 

Firms that are behind the productivity frontier are more likely to be able to record strong productivity 

growth through technology spillovers from frontier firms. We expect θ  to fall within the interval [-1,0]. If 

θ  is zero there is no gradual convergence between leading firms and lagging firms; if θ  is –1 complete 

convergence materializes in one period. To allow unobserved firm-level heterogeneity in efficiency 

growth and an impact of common macro-economic efficiency shocks, the error term itε  in equation (3) 

includes firm specific fixed effects iμ  and year-specific intercept tλ  in addition to serially uncorrelated 

measurement errors vit:  

 

ititit v++= μλε      for     i = 1 ,…, N ; t = 1 ,…, T         (4) 

 

We can transform the knowledge stock portion of the specification (cf. Griffith et al., 2004, p.7; 

Jones, 2002, p. 233) as follows: 
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The change in the knowledge capital stock is assumed to be a function of investments in both internal and 

external R&D:  

 

)r,r(f)Y/R,Y/R(fY/K ext
t,i

int
t,it,i

ext
itt,i

int
itt,iit 1111111 −−−−−−− ==Δ      (6) 

 

We approximate the unknown function (6) with a second-order polynomial in R&D investment.9 

If the depreciation rate of the knowledge stock is small10 we can write: 

                                                 
8 Klette (1996), for instance, shows that the empirically observed persistent productivity differences between firms 
require a model specification that allows for gradual convergence. 
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]rr)r()r(rr[k extintextintextint
it itititititit 111111 5

2
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2
321 −−−−−−

++++=Δ ηηηηηϕγ      (7) 

 

The equation includes linear terms, quadratic terms, and the interaction term between internal and external 

R&D. Although in previous research the quadratic terms have often been suppressed (e.g. Basant and 

Fikkert, 1996), exclusion of the quadratic terms is certainly not trivial.11 Earlier empirical studies have 

provided evidence of the existence of decreasing returns to R&D (e.g. Acs and Isberg, 1991).  Cohen and 

Klepper (1996) argue that larger R&D budgets lead larger firms to also pursue marginal R&D projects 

with lower innovation impact. This is profitable because larger firms can apply the results of R&D 

projects (or: spread the costs of R&D) over a larger output (Cohen and Klepper, 1996, p. 933). In addition, 

Henderson and Cockburn (1996) in a pioneering study of pharmaceutical research productivity, have 

provided strong evidence that there are economies of scope in pursuing various R&D projects 

simultaneously. Hence, there are priori strong reasons to allow for (dis)economies of scale at the same 

time as testing for (dis)economies of scope (substitutability or complementarity). If the process of 

augmentation of the knowledge capital stock is characterized by declining returns to scale and if high 

R&D intensive firms engage in both internal and external R&D, the interaction term between internal and 

external R&D may be confounded as negative as it picks up the declining marginal impact of R&D. 

Precisely in the presence of declining returns to internal and external R&D one may expect firms to avoid 

this by combining R&D strategies. A full specification with quadratic terms is required to explore this. In 

the empirical analysis, we will estimate the productivity effects of internal and external R&D using (7). In 

                                                                                                                                                              
9 Flexible functional forms previously used in the literature can be viewed as linear-in-parameters expansions which 
approximate an arbitrary function. See Fuss et al. (1978) for known functional forms of such approximations. 
Adopting a Generalized Leontief Linear functional form (e.g. as in Basant and Fikkert, 1996) gives similar results. 
10 Higher depreciation rates lead to an upward bias of the estimate on the rate of return (Mairesse and Sassenou, 
1991). We could expand the approximation of changes in the knowledge stock by including more lags of R&D. 
However, findings in previous studies, e.g. Pakes and Schankerman (1984), Hall et al. (1986) and Klette and 
Johanson (1998), suggest that the most significant effect of R&D on productivity occurs with a one-year lag. 
11 The rationale for omitting quadratic terms has usually been the difficulty in estimating both the linear and 
quadratic terms simultaneously given the collinearity between them. Estimation of our model also suffers from this 
problem, but the availability of panel data reduces this impact. 



 12

order to show the importance of using a more general specification, we will also report the results of 

models with quadratic terms suppressed.  

Sufficiently long enough series of capital investments are not available to us in order to construct 

the capital stock variable with the perpetual inventory method. Instead we approximate the log-growth in 

the capital stock itcΔ with the log-growth in fixed capital investment. In steady state the proportional 

change in the capital stock can be approximated by the proportional change in fixed capital investments 

(Jones, 2002). 

Combining equations (2), (3), and (7), writing 1−−=Δ ititit qqq  and bringing the lagged 

productivity term to the right hand side, we arrive at the dynamic panel equation: 

 

itit
extintextintextint

itititit

v]rr)r()r(rr[        

il)(q)(q

itititititit
+++++++

+Δ+Δ−++=

−−−−−−

−

μληηηηηϕ
δβθ

111111 5
2

4
2

321

1 11
  (8) 

 

The model allows for firm fixed effects and the persistence of performance differences between firms, 

both emphasized to be important in the empirical productivity literature (Klette, 1996; Blundell and Bond, 

2000). The optimal share of external R&D in total R&D given a certain level of internal R&D can be 

derived by taking the first derivative of itq  with respect to ext
t,ir 1− : 

 

02 41521 =−+=∂∂ −− )/()r(r/q int
t,i

ext
t,iit ηηη       (9) 

 

This implies an optimal ratio of external R&D over total R&D of: 

 

]r)(/[)r()rr/(r int
t,i

int
t,i

ext
t,i

int
t,i

ext
t,i 1452152111 2 −−−−− −++=+ ηηηηη     (10) 
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We carry out the estimation of equation (8) with several panel data estimation techniques that provide 

consistent estimators, of which several are available when the number of firms is large and the number of 

years is small. We utilize difference GMM as well as system GMM. System GMM has been found to be 

more efficient, compared to difference GMM (Blundell and Bond, 1998). System GMM has also been 

shown to perform well in the presence of heteroskedasticity in a production function setting with a small 

time-series dimension. Instruments that have been chosen are reported in the footnote to Table 3. 

Although recent developments in GMM estimation make it a standard choice for estimation of a dynamic 

panel data model, it requires a non-trivial decision on the number of instruments. A potential drawback is 

that its performance may be unsatisfactory due to weak instruments (Blundell and Bond, 2000). Hence, 

alternatively, we use recently proposed fixed-effects and random-effects maximum likelihood estimators 

(MLE) for dynamic panel data models (Hsiao et al., 2002) based on the transformed likelihood function. 

The advantage of GMM over MLE estimators is that the former allows for weakly endogenous 

explanatory variables, while the latter assumes that the explanatory variables are weakly exogenous.  

 

4. Data 

The empirical analysis makes use of annual R&D surveys in the Netherlands in combination with the 

Netherlands census of manufacturers, both provided by Statistics Netherlands. The R&D surveys contain 

information on type and amount of R&D expenditures, and the census data contain information on value 

added, labor, and fixed capital investments. These merged establishment level databases provided us with 

a balanced panel of 304 manufacturing firms covering the years 1996-2001. The firms are distributed over 

industries as follows: Food (34), Textile (9), Paper (15), Printing (5), Petroleum and chemicals (41), 

Rubber and plastic (19), Metallurgy (5), Metal products (37), Machines & equipment (62), Electronics 

(28), Cars and Transport (22), and Miscellaneous industry (27).  

The dependent variable, labor productivity, is net value added per employee at constant prices. 

Internal R&D is defined as a firm’s expenditure on intramural R&D while external R&D is the 
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expenditure on contracted R&D. Investment growth is the percentage growth in gross fixed capital 

investments between t-1 and t, and employment growth is the percentage growth in employment.  

Table 1 provides descriptive statistics on the variables used in estimation and Table 2 reports 

propensities (five year means) to engage in external and internal R&D in five different R&D intensity 

classes. An inverse relationship emerges between R&D intensity and purely in-house R&D. Almost half 

of the firms in the lowest R&D intensity class report only internal R&D, but in the upper R&D intensity 

classes (6% and more) this number drops to about a third of the firms. On the other hand, the difference in 

the share of external in total R&D between the lowest and top intensity classes is not very large.  

 

5. Empirical results 

The results of the dynamic panel estimation of equation (8) are reported in Table 3. The four consistent 

estimators agree on the signs and magnitudes of most of the coefficients, while the system GMM 

estimator generates a higher F-value than difference GMM.12 The Hansen test of over-identifying 

restrictions does not reject the validity of the instruments for the GMM models, with the exception of the 

linear system GMM model in column (2).13 Arellano-Bond AR tests also indicate that there are no 

problems relating to serial correlation of the error terms. The Hausman test, however rejects the random 

effects MLE in favor of fixed effects.  

Columns (1)-(4) of Table 3 present the estimates from a specification restricting 043 ==ηη , 

hence excluding quadratic terms. Internal R&D is significant in all models, while external R&D is 

(marginally) significant in the system GMM model only. The estimated rate of return on the internal R&D 

( 1ϕη ) is in the range of 0.14 - 0.30 depending on the estimator. This rate of return is in line with other 

studies that use a similar production function framework (Mairesse and Sassenou, 1991, Fors, 1998, 
                                                 
12 GMM results are from the two-step variant of the estimator, which is more efficient than the one-step. The two-
step estimates of the standard errors tend to be downward biased (Arellano and Bond 1991; Blundell and Bond 
1998). The standard errors are corrected via a finite-sample correction to the two-step covariance matrix derived by 
Windmeijer (2005). Use of lagged right hand side values as instruments in the difference GMM estimation restricts 
the panel to 4 years and reduces the number of observations by 304. 
13 The rejection is at a significance level of 0.08. Omitting industry dummies from the instrument set does not change 
this result. 
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Basant and Fikkert, 1996). The rate of return on external R&D ( 2ϕη ) in the system GMM model is 

higher, at 0.82. The interaction term between internal and external R&D is insignificant in all models. 

These results do not support the absorptive capacity hypothesis but equally do not suggest (cf. Basant and 

Fikkert, 1996; Blonigen and Taylor, 2000; Fernandez-Bagues, 2004) that there are diseconomies of scope 

in investing in internal and external R&D simultaneously.  

The most efficient (system GMM and MLE fixed effects) estimates for the lagged dependent 

variable, reflecting movements in and out of equilibrium, indicates a convergence parameter θ  of -0.18 to 

-0.27, implying that about a fifth to a fourth of the productivity lead is neutralized by the next period.14 

The growth of employment and investment variables are positive and significant, the coefficient on labor 

growth is about -0.3 - -0.4, implying a positive effect of growth on productivity of about 0.6 - 0.7, in line 

with other studies using similar production function framework (e.g. Fors, 1998).  

Columns (5) - (8) in Table 3 report the estimates of equation (8) with quadratic terms included, 

allowing for diseconomies of scale in internal and external R&D. The different estimation methods 

produce fairly close estimates. Overall the results clearly suggest that there are diseconomies of scale in 

both internal and external R&D with the squares term of both internal and R&D negative and significant. 

This is in line with Cohen and Klepper’s (1996) R&D cost-spreading argument suggesting that R&D 

productivity declines with firm size. Furthermore, while the estimated coefficients for the linear term of 

internal R&D are large and significantly positive, the coefficients of the linear term of external R&D are 

insignificant in all models. On the other hand, allowing for diseconomies of scale leads to substantially 

higher and significantly positive estimates for the coefficient of the interaction term between internal and 

external R&D. The exception in these results is the MLE fixed effects model, which produces smaller and 

insignificant coefficients for the square term of external R&D and the interaction term between internal 

and external R&D. Overall, the results provide evidence for the existence of economies of scope in 

combining both types of R&D. This supports the notion of the importance of absorptive capacity (e.g. 

                                                 
14 Other research (e.g. Blundell and Bond, 2000; Klette, 1996) using GMM techniques find similar values for the 
lagged productivity term in production function equations. 
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Griffith et al. 2004) and suggests that a prerequisite for benefiting from external R&D is that the firm 

undertakes in-house R&D.  

To illustrate the impact of internal and external R&D on labor productivity, Figure 1 plots value 

added per employee as a function of internal and external R&D intensity based on the estimated 

coefficients in the system GMM equation. The figure plots labor productivity for a broad range of internal 

R&D (0-0,4) and external R&D (0-0,2), but it should be noted that the larger majority of firms (80 

percent) has R&D intensities in the 0,1-0,1 range. The figure illustrates that an allocation that sets one 

type of R&D to zero and maximizes the other is not optimal. At low levels of internal R&D intensity 

(internal R&D expenditures over value added), an increase in external R&D intensity (external R&D over 

value added) has a relatively small impact on productivity. Productivity levels increase initially steeper 

along the ‘internal’ R&D axis, followed by a yet steeper increase if R&D is allocated in the ‘external’ 

direction. Hence, conditional on a sufficient level of internal R&D firm can achieve higher productivity 

gains by switching from a purely internal R&D strategy to a combination with external R&D. If external 

R&D is increased further, diseconomies of scale start to reduce its marginal impact on productivity. 

Higher values of internal R&D intensity allow firms to benefit most from increases in external R&D. 

Equation (10) can be used to estimate the optimal share of external R&D in total R&D. If we take internal 

R&D at the sample average of 0.085 and using system GMM estimates, we find an optimal share of 

external R&D of 37 percent, which is considerably larger than the average share (see Table 2). This 

suggests that productivity gains can be reaped by increasing the share of external R&D. 
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Figure 1. Labor productivity as a function of internal and external R&D intensity (estimates of 
model 6 in Table 3) 

 
 

 

 

 

6. Conclusions 

This paper has produced micro-level econometric evidence that there are productivity gains for firms 

combining internal and external R&D strategies. Using a dynamic panel data model derived from an 

augmented production function framework, our analysis of labor productivity in a sample of 304 

innovating firms in the Netherlands during 1996-2001 revealed complementarity between internal and 

external R&D in combination with decreasing returns to scale for both internal and external R&D (Cohen 

and Klepper, 1996). A positive impact of external R&D was only found conditional on a sufficient level of 

internal R&D expenditures. These findings support the notion of a dual role played by internal R&D 

emphasized in recent research (e.g. Griffith et al. 2004; Cohen and Levinthal, 1989). The first role of in-
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house research and development activity is in stimulating innovation and productivity. The second role, no 

less important, is its role to enhance absorptive capacity of the firm needed to derive benefits from the 

externally acquired R&D.  The results also show that the average share of external R&D is considerably 

below the optimal share of external R&D in relation to productivity. This suggests that there are 

productivity gains to be reaped by increasing the share of external versus internal R&D. 

The findings were robust across a number of dynamic panel data estimation techniques. In 

contrast, a linear variant of the dynamic model that does not allow for decreasing returns to scale in R&D 

did not produce clear evidence of economies of scope in combining internal and external R&D. These 

results suggest that empirical studies examining complementarities between continuously measured 

practices should adopt more general non-linear specifications to allow for correct inferences.15  

The model presented in this paper assumed constant parameter values across manufacturing 

industries. A more refined analysis that allows rates of return on R&D to differ across individual 

industries could not be performed due to the limited number of observations per industry in our sample. 

This issue could be tackled in the near future as longer times series of data drawn from R&D and 

Innovation surveys become available. Other interesting avenues for future research are the impact on 

performance of the technological diversity and coherence of in-house and outsourced R&D activities (e.g. 

Nesta and Saviotti, 2005) and the potentially differential roles of foreign vs. domestic R&D outsourcing. 

Despite the need for further extensions, we believe the analysis presented in the paper serves as a tractable 

contribution to our understanding of the impact of internal and external R&D on firm-level productivity. 

                                                 
15 In addition, our findings suggest caution in interpreting a negative interaction term in a linear model as decisive 
evidence against complementarity (e.g. Basant and Fikkert, 1996). 
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Table 1 Descriptive statistics 

Variable Mean S.D. Description 

Productivity 3.921 0.483 Net value added divided by employees in constant prices, 
in logarithm 

ΔLabor 0.015 0.187 Log growth in the number of employees 

ΔInvestment  -0.069 4.061 Log growth in Fixed Capital Investment in constant prices 

R&DINTint 0.085 0.209 Expenditure on in-house R&D divided by net value added 

R&DINText 0.015 0.059 Expenditure on contracted R&D divided by net value 
added 

 

 

Table 2 Internal and External R&D by R&D intensity quintile 

R&D intensity 
quintile 

Number of 
observations 

Percentage 
internal R&D  
only 

Average share of 
external in total 
R&D (in %) 

<= 3% 525 47.2 12.5 

3% - 6% 352 49.3 9.5 

6% - 9% 199 38.2 10.7 

9% - 12% 120 40.8 10.3 

>= 12%  324 25.9 15.3 



Table 3: Dynamic Panel Data Estimates of Equation (8) 
 GMM  

(difference) 
GMM  
(system) 

MLE  
FE 

MLE  
RE 

GMM  
(difference) 

GMM  
(system) 

MLE  
FE 

MLE  
RE 

 (1) (2) (3) (4) (5) (6) (7) (8) 
Productivity-1 0.581*** 

(0.117) 
0.823*** 
(0.059) 

0.719*** 
(0.060) 

0.522*** 
(0.042) 

0.628*** 
(0.128) 

0.762*** 
(0.062) 

0.813*** 
(0.055) 

0.494*** 
(0.038) 

ΔLabor -0.361*** 
(0.057) 

-0.424*** 
(0.060) 

-0.381*** 
(0.042) 

-0.334*** 
(0.037) 

-0.408*** 
(0.068) 

-0.401*** 
(0.058) 

-0.432*** 
(0.043) 

-0.338*** 
(0.036) 

Δinvestment 0.009* 
(0.005) 

0.010** 
(0.005) 

0.009* 
(0.005) 

0.008* 
(0.004) 

0.008* 
(0.004) 

0.011* 
(0.006) 

0.008* 
(0.004) 

0.007* 
(0.004) 

R&DINTint  0.304** 
(0.112) 

0.299** 
(0.129) 

0.307*** 
(0.053) 

0.137*** 
(0.042) 

1.318*** 
(0.466) 

0.432** 
(0.194) 

1.229*** 
(0.194) 

0.230** 
(0.125) 

R&DINTint squared     -0.182*** 
(0.069) 

-0.050* 
(0.027) 

-0.166*** 
(0.031) 

-0.041** 
(0.020) 

R&DINText  0.602 
(0.690) 

0.819* 
(0.483) 

0.297 
(0.368) 

0.188 
(0.271) 

0.994 
(0.749) 

0.126 
(0.615) 

0.461 
(0.397) 

0.201 
(0.298) 

R&DINText squared     -3.486* 
(1.893) 

-3.466*** 
(1.295) 

-1.736 
(1.160) 

-2.530*** 
(0.977) 

R&DINTint * R&DINText 0.142 
(0.251) 

0.061 
(0.164) 

0.004 
(0.155) 

0.064 
(0.121) 

2.004* 
(1.207) 

2.581*** 
(0.801) 

0.862 
(0.753) 

1.668*** 
(0.634) 

Wald(df) /LL 162.57 547.75 -82.33 -332.96 345.68 353.84 -57.01 -314.35 
Hansen test (df), p-value  
 

16.11(20) 
(0.71) 

50.50(34) 
(0.08) 

  14.90(21) 
(0.83) 

35.34(27) 
(0.13) 

  

AR(1) test (p-value) -4.96(0.00) -6.98(0.00)   -4.63(0.00) -6.95(0.00)   
AR(2) test (p-value) -0.32(0.75) 0.20(0.84)   -0.09(0.93) 0.21(0.83)   
N. Obs. 1216 1520 1216 1520 1216 1520 1216 1520 
Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. System GMM and MLE random effects models include industry 
dummies. All models include year dummies. Instruments for the difference GMM equations are industry dummies and lagged values of the 
right hand side variables; the extra lag restricts the panel to 4 years and reduces the number of observations by 304. Instruments for 
the level equations are industry dummies and differenced values of the right hand side variables. Robust standard errors are in 
parentheses. For GMM estimates, the finite-sample correction to the two-step covariance matrix derived by Windmeijer (2005) is used. 
The Hausman test of random vs. fixed effects MLE is 33.4 (p<0.001) and 69.4 (p<0.001) for the linear and quadratic models, 
respectively. Estimation of GMM is carried out with the xtabond2 Stata 9.0 module by D. Roodman, Center for Global Development, 
Washington. Estimation of MLE is carried out with SAS/IML. 
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