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Abstract 
Learning through networks has been considered as an important research topic for 
several years now. Technological learning is more and more based on a combination 
of internal and external learning and firms need to develop both technological and 
social capital for that purpose. This paper analyses the relationship between both types 
of capital and their impact on the technological performance of companies in high-
tech industries. We claim and find empirical evidence for decreasing marginal returns 
on social capital. Technological capital and social capital mutually reinforce each 
other’s effect on the rate of innovation for companies with small patent and alliance 
portfolios. However, when the patent portfolio and network of alliances are extensive, 
companies risk to over-invest since optimal levels of social capital become smaller at 
higher levels of technological capital and the marginal benefits of investing in 
technological capital decreases the higher the levels of social capital. Finally, we find 
empirical evidence that companies that explore novel and pioneering technologies 
have higher levels of innovation performance in subsequent years than companies that 
solely invest in incremental innovations.  
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INTRODUCTION 

 

This study investigates the relationship between the technological performance of 

companies in high-tech industries and their technological and social capital. More 

specifically, we focus on three main research topics. First, we consider whether a 

firm’s technological and social capital - i.e. its patent stock and portfolio of 

technology alliances - are mutually enforcing factors that together determine the rate 

of innovation, or, alternatively, whether they can be considered as substitutes. We also 

address the question of whether an optimal mix of resources exists, which results into 

above average technological performance. Second, following Stuart (2000) we argue 

that not so much the size of the alliance portfolio, but the technological performance 

of the partnering firms to whom a focal firm is connected determines the rate of 

innovation of the latter. Finally, we aim to find out whether companies that explore 

new technologies have higher rates of innovation than companies that are primarily 

engaged in exploiting and strengthening their existing technology base.  

 

The apparent importance of knowledge, especially in high tech industries, gave rise to 

a stream of research focusing on knowledge as the single most important resource 

within an organisation (Kogut and Zander, 1992; Conner and Prahalad, 1996) and has 

led to the emergence of the knowledge based theory of the firm (Grant, 1997). In 

similar vein, a number of recent studies have investigated the relationship between a 

portfolio of technology alliances and (technological) firm performance (Hagedoorn 

and Schakenraad, 1994; Shan et al., 1994; Powell et al., 1996; Mitchell and Singh 

1996; Stuart, 2000). Firms are increasingly forced to combine internal technological 

strengths with those of other firms as R&D costs soar rapidly and technological 

dynamics speed up. Products require more and more sophisticated technologies and 

increasingly emerging technologies have the potential to undermine the competitive 

positions of incumbents. Many of these alliances are ‘learning alliances’ through 

which companies can speed up their capability development and exploit knowledge 

developed by others (Grant and Baden-Fuller, 1995). Because in today’s turbulent 

technological environment no single firm is able to come up with all the required 

technological capabilities themselves, firms are increasingly induced to form these 

‘learning alliances’. In order to overcome the lack of specific technological 

capabilities they tap into other companies’ technological assets. Market transactions 
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are generally considered to be a weak alternative to alliances because most valuable 

knowledge is cumulative and tacit in nature. This specific nature makes it hard to 

transfer between organizations through market transactions (Mowery, 1988; Mowery 

et al., 1995; Osborn and Baughn, 1990).  

 

Technological learning is increasingly based on a combination of internal and external 

learning: internal learning comes about by the internal development of new products 

and through internal R&D processes, external learning thrives on technology acquired 

through technology alliances. Both types of learning are considered complements 

reinforcing each other’s productivity (Cohen and Levinthal, 1990; Duysters and 

Hagedoorn, 2000). Moreover, companies can only tap into other companies’ 

technology base successfully if they have sufficient absorptive capacity (Lane and 

Lubatkin, 1998). In its turn, absorptive capacity results from investments in internal 

technological know-how. Hence, internal technological knowledge and external 

technology acquisition via alliances are considered complements. But surprisingly, 

there are to our knowledge no large-sample empirical studies that focus on the 

combined effect of internal and (quasi) external knowledge acquisition on the 

technological innovative performance4.  

  

 

THEORETICAL BACKGROUND AND HYPOTHESES 

 

Technological and social capital 

 

This paper builds on the knowledge-based view of the firm. Over time accumulated 

knowledge assets constitute the source of a firm’s sustainable competitive advantage 

in the marketplace (Kogut and Zander, 1996; Spender, 1996). Firm specific 

knowledge assets are of strategic interest – they are distinctive competences - because 

they are rare, imperfectly tradable and hard to imitate and must be build within the 

organization internally as long as part of the technological know-how is not 

                                                      
4  Ahuja (2000) focuses on the impact of technical, commercial and social capital of companies on 

the formation of new alliances. Commercial resources are those required to convert technical 
innovations to products and services. They consist of manufacturing and marketing capabilities 
and entail manufacturing facilities and service and distribution networks (Mitchell, 1989; Teece, 

  6



articulated or tacit in nature. The development of knowledge assets (or technological 

capital) is difficult, time consuming and expensive. Moreover, developing 

technological capabilities is a risky venture because R&D up-front costs may be huge 

and the technological and commercial outcomes may be highly uncertain (Mitchell 

and Singh, 1992).  

 

Because of the cumulative character of technology, the current technological position 

of a company is shaped by the path it has traveled (Teece et al., 1997). Hence, path 

dependency is crucial: previous investments in and strategic choices about technology 

development not only explain the current position of a company, but they also 

constrain the future options of companies. Therefore, companies that failed to build 

up a technological capability in the past may find it difficult to catch up later by 

means of internal development (Shan, 1990). Furthermore, existing technological 

capabilities may reduce a firm’s capacity to adapt to new commercial challenges or to 

rejuvenate its capabilities in the face of new, ‘competence destroying’ technologies 

(Abernathy and Clark, 1985). 

 

Accumulated technological competence can therefore be seen as the result of past 

innovative activities of a firm (Podolny and Stuart, 1995; Stuart et al., 1999). As a 

result, we can expect that firms with well developed technological assets will be more 

innovative than other firms under conditions of relative technological stability – i.e. 

when companies can build on their previously developed knowledge. This argument 

suggests the following hypothesis. 

 
Hypothesis 1: The larger the technological capabilities a firm has accumulated in 

the past the higher its current rate of innovation.  
 

Being centrally positioned in a network of technology alliances has been recognized 

as a distinctive and important form of capital - social capital - of innovative 

companies (Gulati, 1995, 1999). Especially in rapidly changing technological fields 

internal R&D efforts need to be complemented by external means of technology 

acquisition. The creation of a strategic alliance network can facilitate the access to 

technological resources across industries or technological fields. Alliances are often 

                                                                                                                                                        
1986). In what follows we focus on the relationship between technical and social capital and 
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used by companies as instruments to acquire technological knowledge and to develop 

new skills that reside within the partnering companies (Hamel, 1991; Hagedoorn and 

Schakenraad, 1994; Powell et al., 1996). Previous research established that alliances 

often have a positive impact on the performance of companies (Baum and Oliver, 

1991; Mitchell and Singh, 1996; Uzzi, 1996; Powell et al., 1996; Hagedoorn and 

Schakenraad, 1994). These authors found in different research settings a positive 

relationship between technological alliances and rates of innovation. A notable 

exception is the work of Stuart (2000) who found no significant relationship between 

the number of alliances and the growth rate or rate of innovation of semiconductor 

firms.  

 

A portfolio with too many alliances may lead to saturation and overembeddedness 

(Kogut et al., 1992; Uzzi, 1997). Therefore, at high levels of embeddedness marginal 

benefits of forming new linkages will be low and marginal costs of additional links 

will be relatively high (Ahuja, 2000). Nahapiet and Ghoshal (1998, p. 245) argue that 

the collective social capital resulting from dense networks can limit a firm’s 

“openness to information and to alternative ways of doing things, producing forms of 

collective blindness that sometimes have disastrous effects”. At the same time 

managerial costs increase significantly because not only individual alliances need 

management attention, but management also has to coordinate across linkages 

(Harrigan, 1985). Gomes-Casseres (1996) has shown that there is a natural limit to the 

number of alliances that a company can manage successfully. Therefore, we argue 

that there is a non-linear relationship between the social capital of a company and its 

rate of innovation. Highly embedded companies or firms with poorly developed social 

capital will have the lowest rates of innovation. In particular firms at intermediate 

levels of embeddedness will show the highest rates of innovation. This argument 

suggests the following hypothesis:  

 
Hypothesis 2: The prior involvement of a company in technology-based alliances 

is related in a curvilinear way (inverted-U shaped) to its rate of 
innovation. 

 

As discussed above, technological learning is increasingly based on a combination of 

internal and external learning. Both types of learning have been described in the 

                                                                                                                                                        
ignore the linkages with commercial capital. 
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literature as complements reinforcing each other’s productivity (Cohen and Levinthal, 

1990; Duysters and Hagedoorn, 2000).  

 

Whether social and technological capital would have mutually reinforcing effects 

under all circumstances is however open for debate. Firms with low degrees of 

technological competences and social capital, in terms of the number of alliances they 

have, will benefit considerably from entering new alliances since they provide access 

to new and valuable technological knowledge. Firms with poorly developed 

technological capital have strong incentives to get access to the technological capital 

of other firms through interorganizational alliances (Mitchell and Singh, 1996). These 

companies will also benefit from strengthening the internal knowledge base as this 

increases their absorptive capacity so that its partners’ knowledge can better be valued 

and assimilated (Lane and Lubatkin, 1998).  

 

Firms with unique internal knowledge resources are likely to be attractive to other 

firms that expect to benefit from getting access to these resources by means of 

alliances (Baum et al., 2000). As a result, firms with unique technological resources 

have more opportunities to collaborate than firms with poorly developed resources. 

However, firms that are already well endowed with technological capital have fewer 

incentives to cooperate in order to improve their own rate of innovation (Ahuja, 

2000). Because these companies have already developed leading edge technological 

competences they are likely to learn to a lesser extent from their partners than vice 

versa (Hamel et al., 1989; Kale et al., 1999; Khanna et al., 1998). As a result, a 

company that is well endowed with technological competences is likely to benefit 

only marginally from extending its alliance network beyond a critical threshold 

because it increases the chance that internally developed and externally acquired 

technology may overlap or that the marginal value of getting access to another 

company’s knowledge base is smaller than the cost to set up and manage the alliance 

(Harrigan, 1985). Hence, although it is very unlikely that companies can develop their 

technological resources completely in-house, those that have unique technological 

resources need only a relatively small alliance network to ensure high rates of 

innovation. One can imagine that beyond a critical threshold both types of capital 

substitute each other and extending social capital may become a liability. This 

argument suggests the following hypothesis: 
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Hypothesis 3: At low levels, internal technological capabilities (technological 
capital) and external acquisition of technology through 
technological alliances (social capital) reinforce each other’s effect 
on the rate of innovation. At high levels, they weaken each other’s 
effect. 

 

The combination of hypotheses 2 and 3 entails the possibility that companies can 

realize the highest rates of innovation by two different types of strategies that can 

coexist in the same industry. The first strategy is based on a considerable alliance 

network and a small (potentially specialized) technological capital. This provides the 

company with ample opportunities to tap into its partners’ technology resources or to 

co-develop innovations by combining (complementary) skills. The second strategy 

emphasizes the internal development of innovations in the company. The company 

has an extensive patent portfolio and needs only a few alliances to ensure that it has 

the required technology to strengthen or to continue its strong technological 

performance. Companies with moderate values for both types of capital, failing to 

stick to one of these two strategies, are ‘stuck in the middle’. Thus:  

 

Hypothesis 4: Companies with extensive (small) internal technological capabilities 
and a small (extensive) alliance network have the highest rates of 
innovation. Both profiles may successfully coexist in an industry.  

 

Stuart (2000) argues that the technological (and economic) performance of companies 

is not so much determined by the size of the alliance network but rather by the 

characteristics of the focal company’s alliance partners5. If companies enter alliances 

to get access to other firms’ technology, then those with a large stock of technological 

resources are highly attractive as potential alliance partners. Stuart finds evidence that 

alliances with partners that are technologically well endowed have a larger positive 

impact on post-alliance performance of the focal firm. In high-tech industries the 

technological competencies of alliance partners determine in part the focal company’s 

potential to learn. Teaming up with skilled innovative companies with unique 

technological assets offers a company the best opportunities to learn and thus to 

invigorate its competitive position.  

                                                      
5  Similarly, Baum et al. (2000) argue that the performance of biotechnology start-ups is positively 

influenced by the technological capabilities of the partnering companies.  
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Hypothesis 5: The stronger the technological capabilities of a company’s alliance 
partners, the higher its innovation rate. 

 

Exploring new technologies 

 

We have already argued that a mutual positive feedback between experience and 

competence exists. This virtuous cycle enables companies to build up unique 

technological skills, which potentially lead to competitive advantages in the 

marketplace. The increased ease of learning within particular technologies facilitates 

the exploitation of these technologies compared to the exploration of new 

technologies (Levinthal and March, 1993; March, 1991). 

 

The downside of this path dependency is that it increases the likelihood of a company 

falling in the so-called familiarity trap (Ahuja and Lampert, 2001)6. It is argued that 

experience and competence in a specific set of technologies lead to the emergence of 

a dominant and increasingly rigid technological paradigm. This, in turn, reduces the 

probability of a company’s willingness to experiment with other problem solving 

approaches. This absence of experimentation reduces the chance that a company will 

discover new technological opportunities that are assumed to be large in high tech 

industries (Jaffe, 1986; Lunn and Martin, 1986; Levin et al., 1985).  

 

To avoid familiarity traps companies can explore novel technologies - i.e. 

technologies that are new to the organization even though they may have been in 

existence earlier (Ahuja and Lampert, 2001). Experimenting with novel technologies 

allows a company to value the potential of these technologies in a more accurate way 

                                                      
6  Learning traps (Levinthal and March, 1993) are closely related to the concept of competency 

traps (Levitt and March, 1988). “Competency traps are defined to occur ‘when favorable 
performance with an inferior procedure leads an organization to accumulate more experience 
with it, thus keeping experience with a superior procedure inadequate to make it rewarding to 
use’ (Levitt and March, 1988: 322). Learning traps, on the other hand, embody the conflict 
between routines that enable the organization to perform well in the short run but may position 
the organization unfavorably for the future. Thus, while competency traps entail choices 
between two procedures or routines targeted towards the same outcome, the learning traps we 
discuss here are about the implications of the same routines for two different outcomes such as 
reliable and predictable outputs that are necessary for immediate or short-run performance, and 
breakthrough inventions that may form the basis of superior performance in the future.” (Ahuja 
and Lampert, 2001: 523) 
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(Cohen and Levinthal, 1990). Explorative companies are better positioned to discover 

the technological and commercial potentials of novel technologies. They may also be 

better prepared to value the potential competitive threat of disruptive technologies 

(Bower and Christensen, 1995; Christensen and Raynor, 2003) or competence 

destroying technologies early on (Abernathy and Clark, 1985; Tushman and 

Anderson, 1986). Exploring novel technologies challenges the dominant problem-

solving paradigm in companies (Lei et al., 1996). Unfamiliar technologies may force 

a firm to search for new cognitive maps that open up new avenues for research. 

Hence, we may expect that companies that experiment with novel technologies are 

better positioned to have a higher rate of innovation than firms that invest all their 

efforts in exploiting existing, familiar technologies.  

 

Exploring novel technologies, however, is only advantageous up to a point. Investing 

excessively in exploration of novel technologies may lead to confusion: exploration of 

unfamiliar technologies and exploitation of familiar ones have to be balanced to be 

productive. As argued by March (1991) and Levinthal and March (1993) firms 

engaging in exploration exclusively, only suffer from the costs associated with 

experimentation without exploiting its benefits. Moreover, there will always be a 

trade-off between investing in deepening and upgrading the existing technologies to 

safeguard profits today and exploring new technologies to secure future profits 

(Rowley et al., 2000; Levinthal and March, 1981). Finally, scattering R&D resources 

on many novel technologies may eventually lead to diseconomies of scale within the 

individual technologies (Ahuja and Lampert, 2001). Therefore, we argue that: 

 
Hypothesis 6: A firm’s rate of innovation is related in a curvilinear way (inverted-

U shaped) to its exploration of novel technologies in the past.  
 

Innovative firms generally search for technological solutions within the scope of what 

has been invented before. They tend to build on their own technological successes and 

on those of others. Previous solutions offer technologists or scientists an anchor to 

move forward. As a result, building on technological antecedents is less risky than 

working on a de novo innovation (Hoskisson et al., 1993; Hoskisson et al., 1994). 

 

Ahuja and Lampert (2001) refer to the tendency of firms to search near to old 

solutions as the propinquity or nearness trap. Often interesting technological fields 
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remain unexplored when companies rely too much on old solutions. The literature 

however suggests that important inventions emerge, in particular, from these 

unexplored areas (Utterback, 1994). Experimenting with pioneering technologies - i.e. 

technologies that do not build on existing technologies (Ahuja and Lampert, 2001) - is 

one possible way to circumvent the dangers of the propinquity trap. Experimenting 

with pioneering technologies is an attempt to jump to different technological 

trajectories (Dosi, 1988; Foster, 1986; Sahal, 1985). Since pioneering technologies 

offer fundamentally new solutions they may generate large future profit streams for 

the innovative company. At the same time, they entail large risks typical for radical 

innovations. However, when a company increases the number of experiments it also 

inflates the probability that a major, successful innovation will pop up sooner or later. 

We expect that a company having successfully patented a ‘pioneering technology’-

innovation will increase its rate of innovation in the subsequent years.  

 

Hypothesis 7:  A firm’s rate of innovation is positively related to its success in 
pioneering technologies in the past. 

 
 

EMPIRICAL SETTING 

 

Definition and characteristics 

The hypotheses are tested on the population of ASIC-producers that were active in the 

period 1988-1996. ASICs - i.e. application-specific integrated circuits - are a special type 

of ICs (integrated circuits) accounting for about 12 % of worldwide IC sales in 1995. In 

contrast with the general purpose ICs such as DRAMs and microprocessors, ASICs are 

build to perform only one particular function – e.g. converting digital signals of a CD 

into music7.  

 

The ASIC market is a typical high-tech industry where technology is the driving force 

shaping competition among firms. R&D-to-sales ratios are exceptionally high. The 

                                                      
7  The term 'ASIC', as now in use in the industry, is a misnomer. In reality these ICs are customer-

specific rather than application-specific since an ASIC is a device made for a specific customer. A 
device which is made for one particular type of system function (e.g. disk-drives, CD-players, 
video compressing, etc...) but is sold to more than one customer, is called an ASSP (application-
specific standard product, sometimes also called ASIPs - application-specific integrated 
processors). Although ASSPs are manufactured using ASIC technology, they are ultimately sold 
as standard devices to large numbers of users. 
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ASIC market is divided into three submarkets. According to the "Integrated Circuit 

Engineering Corporation" (ICE) the ASIC market includes the following categories of 

ICs: gate arrays (GA), full custom ICs (FC), and programmable logic devices (PLDs). 

Formal definitions are given in Table 1 and diagrammed in Figure 1. 

 

 Insert Table 1 about here 

 Insert Figure 1 about here 

 

A wide range of specific system functions can be fabricated alternatively by gate 

arrays, full custom devices or PLDs. These three ASIC-categories are different 

devices realising the same system functionalities. As a result, there is almost no 

affinity between the targeted system function and the type of ASIC to use8. ASIC 

vendors typically have to make a choice between the three ASIC types minimizing the 

volume-dependent total cost per chip. PLDs are the cheapest solution for low volume 

ASICs. Once the production volume exceeds the level of a few thousands units, gate 

arrays become the most interesting ASIC solution. Custom ICs are the most efficient 

solution for production volumes that exceed several hundred-thousands of ASICs. 

 

 Insert Figure 2 here 

 

Different players and motives for technology alliances 

The development and production of ASICs requires the interplay between different 

economic agents. The most important participants are the ASIC design houses, IC 

manufacturing facilities, electronic system houses and CAD-tool vendors. This list can 

be enlarged by a number of auxiliary and/or intermediate players, such as companies 

offering services in the microelectronics field, firms that translate customers' needs into 

the specifications for the design of ASICs, and university labs. The interplay between 

different agents is shown in Figure 3. The structure of the interplay between the different 

economic actors has not changed in a structural way during the period of observation.  

 

 Insert Figure3 here 

                                                      
8  The only exception is linear arrays, which are used to design analog or mixed (analog/digital) 

system functions. Linear arrays are applied mainly in the telecommunication and consumer 
electronics markets, where most signals are analog in nature. 
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Electronic system manufacturers usually build a foothold in the ASIC market by 

vertical integration: they want to achieve or sustain a competitive advantage for their 

electronic systems through proprietary ASIC designs. Electronic system 

manufacturers also make corporate-wide deals and second-source agreements with 

foundries. Large system manufacturers have their own ASIC design house and 

foundry or they acquire one. Vertically integrated system manufacturers still 

cooperate with specialised design houses because of recurrent peaks in design work. 

Large, integrated electronic system manufacturers have their own fab-lines. Their 

ASICs are processed together with standard ICs.9 Smaller companies set up 

agreements with different foundries to process their ASICs. Second-source 

agreements are frequently used in order to ensure availability of ASICs on time and to 

avoid lock-in situations. Captive producers - e.g., IBM and DEC - also establish 

second-source agreements because of peaks in demand. As ASIC-designs become 

increasingly complex, companies establish numerous joint development and cross-

licensing agreements. Some ASIC vendors are also active in the CAD-tool market - 

e.g., VLSI Technology. The CAD-tool market is small, and tool development is very 

expensive. Installing the same CAD-infrastructure among interacting firms greatly 

enhances technology transfer. Therefore, numerous strategic alliances are established 

between ASIC producers and CAD-tool vendors. The CAD-tool market is 

furthermore characterised by an ongoing process of acquisitions by the largest CAD-

tool vendors and entries by de novo firms and spin-offs. 

 

Given these characteristics of the industry, most strategic alliances in the ASIC-industry 

are likely to be strategic tools for external technology sourcing or joint development. In a 

high-tech environment like the ASIC-industry, firms are likely to link up with each other 

in order to keep up with the newest technologies. Stand-alone strategies might no 

longer be viable, even for the largest companies (Duysters and Hagedoorn, 1996).  

 

                                                      
 9 Processing ASICs together with standard ICs creates a considerable cost advantage, 

but is also characterised by disadvantages vis-à-vis specialized ASIC-foundries in 
terms of flexibility and the minimum efficient scale of production runs. 
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DATA, VARIABLES AND MODELING 

 

Data 

Three types of data are combined in this paper. The cumulated technology alliances 

between the different players in the ASIC technology field capture social capital. 

Technological capital is measured by means of the cumulated US patents of each 

company. Finally, a set of financial data is gathered for each ASIC producer. 

 

The data on strategic alliances were selected from the MERIT-CATI database on 

technology alliances (Duysters and Hagedoorn, 1993). The selection included strategic 

alliances10 which major focus was on (technological developments in) the ASIC-

industry. The MERIT-CATI databank covers the period between 1975 and 1996: for that 

period 288 ASIC related strategic technology alliances were detected. There were 130 

different firms involved in these alliances. A sharp increase in SAs occurred in the early 

and mid-eighties. Their popularity diminished in the late eighties and the early nineties. 

SAs in the ASIC industry are mainly non-equity agreements (79.2%) of which the 

majority is joint development agreements (56.9% of all SAs). Joint ventures, which 

account for 12.8% in the ASIC industry are the most important form of equity SAs. 

 

To measure technological capital, we used patent data from the U.S. Patent Office for 

all companies involved in the design and production of ASICs, also those based 

outside the US11. Working with U.S. patents - the largest patent market - is preferable 

to the use of several national patent systems. Nations differ in their application of 

standards, systems to grant patents and value of the protection granted (Basberg, 

1987; Griliches, 1990). Especially in industries where companies operate on a global 

scale, such as the ASIC-industry, U.S. patents are a good proxy for companies’ 

worldwide innovative performance12.  

 

                                                      
10. Strategic technology alliances include joint research projects, joint development agreements, cross 

licensing, (mutual) second source agreements, technology sharing, R&D consortia, minority holdings 
and joint ventures, but no licensing agreements or production and marketing agreements. 

11  The patents were selected by means of a query on ‘ASIC’ and related concepts/definitions such as 
‘gate array’, ‘linear array’, ‘FPGA’, ‘PLD’, ‘full custom’, ‘SPGA’ and ‘EPAC’.  

12  Patents can be categorized by means of the International Patent Classification, an internationally 
recognized hierarchical classification system comprising 118 broad sections and 624 subclasses 
nested within the classes. It is furthermore possible to subdivide the subclasses into 67.000 
groups. ASIC-related patents are classified in a relatively small set of subclasses (75 in total). 
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Financial data of ASIC producers have been gathered from different sources among 

which the annual ICE reports (McClean, 1985-1998). The data contain the ASIC-

sales, the distribution of the ASIC-sales across the three segments, R&D-intensity on 

the corporate level and total sales of these companies. We furthermore included the 

nationality of each company.  

 

Variable definitions and operationalization 

 

To test the hypotheses we constructed a number of variables. Table 2 summarizes 

them. 

 

Insert here table 2 

 
 
Dependent variable 

Explaining the technological learning capacity of different ASIC producers requires 

an operationalization of the size of a company’s technological capital. Technological 

capital is traditionally operationalized by patents granted to an innovating company. 

However, patents are not equal in value. Some patents refer to basic knowledge at the 

core of a technology, while others are merely of incremental value. The technological 

importance of innovations can thus be measured with patent citations (Albert et al., 

1991; Narin et al., 1987). Therefore, the value of patents can be incorporated in our 

dependent variable by weighting the patents by the number of received citations. In 

order to correct for right-hand censoring we estimated the number of citations patents 

would receive over their life-span, based on the number of citations they received 

with the help of Hall et al.’s (2001) simulated cumulative lag distribution tables, using 

months rather than years. The NBER citations database was used for citation-

information (Hall et al., 2001). Thereafter we used a nonlinear weighting scheme, 

assuming the marginal informational content increases with the number of citations. 

Trajtenberg (1990) provides a weighting model for this. The time the company 

applied for the patent was used rather than the year when it was granted to the firm 

because a patent application is a signal that a company has developed a technological 
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innovation. The dependent variable thus measures the number of patents that a 

company applied for in a particular year weighted by their received citations13. 

 

Independent variables 

The first 5 hypotheses suggest a relationship between a firm’s prior technological 

capital, its social capital and the technological characteristics of its alliance partners 

on the one hand and its ex post technological performance on the other hand. 

 

Cumulative technological capital is calculated as the number of ASIC-related patents 

that an ASIC-producer obtained in the previous four years. Patents granted to a 

company are used to measure in an indirect way the technological competence of a 

company (Narin et al., 1987). Studies about R&D depreciation (Griliches, 1979, 

1984) suggests that knowledge capital depreciates sharply, losing most of its 

economic value within 5 years. A moving window of 4 to 5 years is therefore the 

appropriate time frame for assessing the technological impact in high-tech industries 

(Podolny and Stuart, 1995; Stuart and Podolny, 1996; Henderson and Cockburn, 

1996; Ahuja, 2000). In this paper we use the cumulated patents obtained by a firm 

during the 4 years previous to the year of observation as a measure for the 

technological competence of an ASIC producer. Variables using a 3 and 5-year time 

window were also calculated to check for the sensitivity of this variable to the length 

of the time period. These variables are highly correlated with the 4-year time window 

(r = 0.94 for the 3 year window and 0.96 for the 5 year window), suggesting that the 

measurement of technological capital is not sensitive to the choice of any of these 

particular time windows. 

 

Following Gulati (1995), we computed social capital from matrices including all alliance 

activities of the ASIC-producers prior to a given year. In constructing measures of social 

capital based on past alliances, a number of choices have been made. First, we do not 

consider different types of alliances separately14. Second, some authors weigh each type 

                                                      
13  Of course, we only keep track of patents that have been granted by the U.S. Patent Office before 

the end of 2000. The observation period is 1988-1996. We do not have a significant bias at the 
end of that period, because most patents are granted within a period of 2 to 3 years (average time 
for all patents in the sample is 26 months). Of the 1381 patents that were filed between 1/1/1988 
and 31/12/1996 only 50 (or 3.6%) were granted after 4 years. 

14  Figure 5 gives an overview of the different alliance types: alliances vary from equity joint-ventures 
and minority holdings with a strong organizational commitment and interdependence between allies 

  18



of SA according to the ‘strength’ of their relationship (see Contractor and Lorange, 

1988; Gulati 1995; Nohria and Garcia-Pont 1991). As some technology alliances are 

more important than others in creating and transferring technological know-how we 

followed this weighting procedure to construct the social capital variable15. The third 

choice relates to the length of the period during which the existing alliance portfolio is 

likely to have an influence on the current technological performance of a company. All 

past alliances can be included into the calculation of social capital assuming that all prior 

ties, no matter how long ago they were established, have an impact on current firm 

behavior. However, we chose for a moving window approach, assuming that only 

‘ongoing’ alliances have an impact on the technological performance of the focal firm. 

For the alliance activities of the ASIC producers we have an indication about the 

termination of 62 (21.5%) alliances in the observation period 1988-1996. We assumed 

they have an impact on the rate of innovation as long as they were not terminated. For 

the other alliances we assume that the lifespan of alliances is five years (Kogut 1988, 

1989).  

 

The innovative performance of a company’s partners can be modeled in different 

ways. Basically, we follow the method developed by Stuart (2000). The innovative 

performance of a firm i at time t is denoted as dit. For each year in the observation 

period 1988-1996, an Nx1 vector dt represents the innovation scores of the N firms in 

the sample. Combining these innovation scores with alliance activity in the ASIC-

industry allows the construction of compact, time-varying innovation measures of the 

alliance partners of each company. These measures are computed by creating first a 

NxN (firm-by-firm) time changing symmetrical alliance matrices, labeled Wt=[wijt]. 

The innovative performance of the alliance partners of each ASIC-producer at time t 

(pt) is the product of the alliance matrix with the corresponding vector of innovative 

performance scores. As a result pt is a time-changing vector containing the summed 

innovative performance scores for the allies of each ASIC producer. 

                                                                                                                                                        
to non-equity alliances which imply only moderate levels of organizational commitment (although 
stronger than arms' length licensing agreements). 

15  Type    Weight Type    Weight 
 Cross licensing   1 R&D contract    4 
 Technology sharing   2 Joint development agreement 4 

(Mutual) second source agreement 3 Minority holding   5 
State intervention R&D   3 Joint venture   6 
Research corporation   3   
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The innovative performance of the partners can be measured in different ways. One 

possible way is to count the patents received by each of the companies during the 

previous 4 or 5 years (Stuart and Podolny, 1996; Ahuja, 2000; Baum, Calabrese and 

Silverman, 2000). An alternative is to weight these patents by the number of times 

they have been cited by more recent patents. In order to prevent a truncation bias in 

this weighting procedure we used the patent citations of the first five years after the 

patent was applied for only. This way, older patents were treated similarly to newer 

patents. 

  

Novel technologies are measured by the degree to which a company experiments with 

technologies this firm did not use before (Ahuja and Lampert, 2001). To construct this 

variable we used the International Patent Classification (IPC), which is an 

internationally recognized hierarchical classification system. We computed this 

variable using the subclass level of the IPC. Novel technologies were calculated as the 

number of new technology ‘subclasses’ that were entered in the previous 3 years. A 

company was assumed “…to have entered a new subclass when it first applies for a 

patent in a subclass in which it had not patented in the previous 4 years” (Ahuja and 

Lampert, 2001: p. 533). This four-year time window results from the fact that 

technological knowledge depreciates rapidly: not being active in a technology 

subclass for a considerable period of time will significantly shrink a company’s viable 

knowledge in that technological field. A time window of 4 to 5 years is considered an 

appropriate time span over which the technology is valuable for a company in high-

tech industries (Stuart and Podolny, 1996; Ahuja, 2000).  

 

Ahuja and Lampert (2001) define pioneering technologies as technologies that do not 

build on prior technologies. Patent regulations require companies to indicate how 

much they are indebted to the technological heritage by citing the patents they build 

on. Companies that apply for a patent that cite no other patents are exploring 

technological fields that have been left untouched so far. Therefore this variable is 
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computed as the number of a company’s patents that cite no more than one other 

patent16. 

 

Control variables 

We included four types of dummy variables. A first variable indicates in which 

economic block the company is headquartered. Following the Triad-concept of the world 

economy, a company can be headquartered in North America, Asia or Europe - the 

default is North-America. Firms from a different home country may differ in their 

propensity to patent. Next to that, Asian and European firms may be less inclined to 

patent in the USA even when the semiconductor industry is widely recognized as a 

global industry. 

 

Annual dummy variables were included to capture changes over time in the propensity 

of companies to patent their innovations. The number of ASIC-technology related 

patents increased from 50 patents in 1988 up to 342 in 1995. In 1996 the number 

dropped again to 289 patents. Part of this growth is the result of the growing importance 

of ASIC-products and the accelerating changes in this technological field. Moreover, 

firms are increasingly aware of the earnings they can reap from by improving intellectual 

property management (Grindley and Teece, 1997; Teece, 1998; Rivette and Kline, 

2000).  

 

Next, dummy variables were used to indicate which type of ASIC-producer a company 

is. Firms can be involved exclusively in the production of gate arrays, standard cells or 

PLDs, or they can be involved in more segments at the same time. Segments are 

important in the sense that firms in each segment face different technologies, different 

competitors and different competitive or technological dynamics. Therefore, firms can 

vary in their propensity to patent simply because they are active in other segments. 

 

A last dummy variable is included to control for possible biases due to the fact that some 

large companies produce ASICs only for their internal needs (captive market), i.e. for 

internal supply as parts in their electronic systems. These captive producers are a small 

minority of ASIC-producing companies but are nonetheless important in terms of 

                                                      
16  We choose to proxy pioneering technologies in this way because there were only a few patents 
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technological capabilities (e.g. IBM and DEC). They establish technological alliances for 

the same reasons as ASIC-vendors.  

 

We furthermore included two organizational variables. First, the natural logarithm of 

‘corporate sales’ was included as a control variable. Large companies have the 

possibility to invest large amounts of money in R&D. Assuming that there exists a 

positive correlation between technological input and output (Pakes and Griliches, 1984) 

large firms will have a higher rate of innovation than small firms. The second control 

variable is the natural logarithm of the ASIC-sales of a company. Firms with a 

considerable stake in the ASIC-market can defend or improve their market position by 

rejuvenating or reinforcing their technological capital. This, in turn, requires a high 

rate of innovation. Finally, innovation output is a function of contemporary and 

lagged flow of the firms’ annual R&D expenditures (Pakes and Griliches, 1984; Hall, 

et al.; Griliches, 1984, 1986). Since, there is a high correlation between sales and 

R&D expenditures (corr. = 0.96) we added R&D-intensity as a control. We expect 

that higher R&D-intensity will lead to higher patenting rate when controlling for size 

of the company. 

 

Finally, we introduced the annual growth rate of the ASIC market. High growth rates 

offer companies new economic opportunities stimulating them to invest more in 

R&D, which in turn should lead to more patents granted to the firm. As a result, we 

expect a positive coefficient for this variable. 

 

Model specification and econometric issues  

The dependent variable is a count variable - i.e. the weighted number of patents a firm 

filed for in a particular year. A Poisson regression approach provides a natural 

baseline model for such data (Hausman et al., 1984; Henderson and Cockburn, 1996).  

 

A Poisson regression assumes that the mean and variance of the event count are equal. 

However, for pooled cross-section count data this assumption is likely to be violated, 

since it is well know that count data suffer from overdispersion (i.e. the variance 

exceeds the mean). This overdispersion is particularly relevant in the case of 

                                                                                                                                                        
in the sample that did not cite any other patent. 
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unobserved heterogeneity, i.e. the possibility that identical firms on the measured 

characteristics are still different on unmeasured characteristics17. Unobserved 

heterogeneity may be the result of differences between companies in their innovation 

generating capabilities, and as a consequence, also in their propensity or ability to 

patent.  

 

In this case, the negative binomial model is more adequate. This model is highly 

related to the Poisson model and has the advantage over the latter that it allows for a 

different mean and variance. Since we use pooled cross-section data with several 

observations on the same firms at different points in time, we modeled the data using 

a random effects negative binomial regression (Hausman et al., 1984)18.  

 
Including the sum of patents that a firm has filed for in the last five years (moving 

window approach) as an additional variable is a common method of controlling for 

unobserved heterogeneity (Heckman and Borjas, 1980). A firm’s history in filing for 

the two types of patents is an instrumental variable that helps to partial out the 

unobserved differences across companies. Furthermore, part of the heterogeneity 

between the subsectors, country of origin or years can be captured by including 

dummy variables in the model. First, the propensity to patent may be partly 

determined by the nationality and/or the sector of the companies. Similarly, we 

introduced annual dummy variables to account for changes over time: they may 

capture the ever growing importance of intellectual capital forcing companies to file 

more patents over the years, or macroeconomic conditions that may affect the ASIC 

industry. 

 

RESULTS 

 

Table 3 presents a correlation matrix and descriptive statistics for the different 

variables. Table 4 shows the results from the random effects negative binomial 

regressions testing the different hypotheses. 

  

                                                      
17  The presence of overdispersion does not bias the regression coefficients but the computed 

standard errors in the Poisson regression are understated, so that the statistical significance is 
overestimated. 

18  In particular, we assumed that the overdispersion parameter is drawn from a beta distribution. 
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Model 1 in table 4 functions as a baseline model and includes the three types of 

dummy variables (the coefficients for the annual dummy variables are not reported), 

control variables such as corporate sales, ASIC-sales, annual market growth rate, and 

the technological capital (cumulative patent count) as a control variable for 

unobserved heterogeneity. Firm size (corporate sales) has a positive and significant 

effect on the rate of innovation: this suggests that large companies are technologically 

and financially better equipped to innovate in the ASIC technology field. Next, ASIC-

sales have a positive and significant effect on the patent rate indicating that companies 

with a considerable stake in ASIC-market also stronger invest in technology, which, 

in its turn, invigorates their competitive advantage. Captive producers have a higher 

patent citation rate but the coefficient is only weakly significant in the following 

models in table 4. ASIC market growth - which can be considered as a proxy for the 

technology maturity - has no impact on the patent citation rate. Patents of European 

based companies are less cited than those of US-based or Asian companies. Finally, 

the significant coefficients of different industry segments indicate that the patent 

citation rate is not homogenous for the whole ASIC market. 

 

Model 2 in table 4 adds the existing technological capital as an exploratory variable to 

the model. The existing technological capital of a company has a positive and highly 

significant effect on its innovative performance. An increase of one percent in the 

prior technological capital of a company leads to an increase in the patent citation rate 

of 5.4%. This supports the first hypothesis: companies that have an extensive 

technological capital get relatively more patent citations than other companies19. 

 

Model 3 includes the technology alliances formed by each company during the last 

five years. We also included the squared term because the second hypothesis suggests 

an inverted-U shaped relationship between the patent citation rate and the social 

capital of a company. The findings strongly support this hypothesis: the negative sign 

for the squared term indicates that there are decreasing returns to scale and that at 

some point there is a level of social capital beyond which companies are at risk to be 

overembedded. Model 3 also adds the interaction term between ‘social capital’ and 

                                                      
19  Negative binomial regressions assume a multiplicative relationship between the dependent 

variable and the regressors, so that the partial effect of a variable can be understood as a multiplier 
rate. 
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‘technological capital’ in order to understand how they jointly affect the rate of 

innovation of companies. The negative and highly significant coefficient corroborates 

hypothesis 3.  

 

In order to correctly understand the joint effect of social capital and technological 

capital on the innovative performance of firms, we first need to look at the partial 

effects of both types of capital on the innovative performance (i.e. multiplier of the 

patent citation rate)20. Technological capital moderates the relationship between social 

capital and innovative performance. This basically has two consequences. First, a 

larger amount of technological capital decreases the positive impact of social capital 

on the rate of innovation. In other words, companies with small internal technological 

capabilities - e.g. start-ups, technological laggards or incumbents that want to get 

access to a new technology developed by other companies - profit most from their 

network of technological alliances. Second, higher technological capital requires 

lower social capital to ‘maximize’ the patent citation rate.  

 

Similarly, social capital moderates the impact of prior technological capital on the rate 

of innovation of a company. The effect of priori technological capital on the patent 

citation rate is positive for companies that did not establish a network of alliances. 

The positive effect gradually drops the stronger the company is embedded in its 

alliances network.  

 

The total impact of both types of capital on the rate of innovation is visualized in 

figure 4: 

 

 Insert here figure 4 

 

The graph compares the innovation performance of companies with no technological 

and social capital - the benchmark - to patenting rates of companies that have invested 

previously in one or both types of capital. In order to avoid the effect of a few outliers 

we omitted five observations with the highest values for prior technological and social 

                                                      
20  The partial effect of the prior technical capital (TC) in Table 4, Model 3 is exp[TC*(0.0591-

0.0015*SC)], where SC is the social capital. The partial effect of social capital is 
exp[SC*(0.1474-0.0023*SC-0.0015*TC)].  
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capital. The resulting plane in figure 4 is restricted to firms with social capital smaller 

than 30 ‘weighted’ alliances and technological capital smaller than 34 patents.  

 

The figure shows a number of interesting points. First, there is a ‘curve of optimal 

solutions’ maximizing the rate of innovation for each ratio of technological and social 

capital: for each level of technological capital companies on the left (right) of that 

‘curve’ can improve their innovation performance by increasing (decreasing) their 

technological or/and social capital. Moreover, the ‘optimal’ size of the alliance 

network decreases with an increase of technological capital. If a company has no prior 

patent portfolio the optimal number of ‘weighted’ alliances is 32. This number is 

reduced to 21 alliances when the company has a prior technological capital of 20 

patents. Firms may over-invest in social capital as has been argued in the literature 

(Kogut et al., 1992; Harrigan, 1985): there exists an area in figure where the effect of 

social capital on innovative performance is negative. For companies with no prior 

patents this area starts at high levels of embeddedness (32 ‘weighted’ alliances) but 

this threshold decreases with increasing levels of technological capital of a 

company21.  

 

Companies can improve their innovative performance by investing in social or/and 

technological capital when the size of their existing internal technological capabilities 

and social network is small. Hence, companies that have low levels of technological 

capital and social capital can improve their innovative performance by investing in 

both types of capital. On the contrary, when a company has strong internal 

technological resources and an extensive alliance portfolio it can only improve its rate 

of innovation by reducing its alliance network. Extending a company’s patent 

portfolio when it is already extensive22 improves the innovation performance – at 

least for the companies in the sample – but its impact shrinks the larger the existing 

patent portfolio. In theory it is possible that the effect of technological capital on the 

innovative performance is negative if social capital is larger than 39 ‘weighted’ 

alliances – and thus beyond the maximal value for that variable (see table 2). 

 

                                                      
21  Only a few outliers in our sample have a social capital that exceeds this threshold. 
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Second, the plane in figure 4 provides no clear evidence for hypothesis 4. Although 

the interaction term is negative, its impact is too small to end up with two local 

optimal points reflecting two strategies that could coexist in the same industry: one 

that is based on relatively high levels of social capital combined with low levels of 

technological capital and the other one where strong internal technological 

capabilities are combined with a limited set of alliances. Figure 4 on the contrary 

shows that larger patent portfolios always enhance the innovative performance of a 

company. Consequently, ASIC-producers with extended patent stocks and a moderate 

number of partners have the highest innovative performance23. 

 

Third, a closer inspection of the plane in figure 4 shows that companies with a broad 

existing patent portfolio benefit much more from collaborating with a few alliance 

partners than their counterparts that have a small patent portfolio. The ‘absorptive 

capacity’ of the former facilitates the generation of joint knowledge with their alliance 

partners. As a result, the limited number of partners they need to reach the optimal 

innovative performance might be explained by their strong absorptive capacity that is 

the result of previous investments in technology. Similarly, the effect of prior 

technological capital on the technological performance of a company increases 

progressively with higher levels of social capital up to a level of 14 to 20 alliances24. 

In short, we have evidence that at small levels of social en technological capital 

companies can increase technological performance more than proportionately with 

increasing levels of these two types of capital. Beyond the threshold of 14-20 

alliances the impact of prior technological capital is decreasing again and even 

becomes negative after (the theoretical level of) 39 alliances.  

 

Model 4 introduces the innovative performance of the alliance partners. The 

coefficient is positive but not statistically significant indicating that the patent citation 

                                                                                                                                                        
22  A closer inspection of figure 6 shows that the impact becomes smaller once social capital is 

larger than 20 ‘weighted’ alliances for low levels of prior technological capital and larger than 
14 alliances for the highest levels of existing technological capital represented in figure 6. 

23  Hypothesis 4 is corroborated by the results, when a simple count of the patents is used as 
dependent variable. The difference in results is an indication that companies with a large patent 
stocks have relatively more important patents that are more frequently cited than companies that 
have a small technological capital. 

24  This threshold depends in its turn on the level of prior technological capital. 
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rate of ASIC-producers is on average not enhanced by the technological strengths of 

their alliance partners. As a result, we have no empirical evidence for hypothesis 5. 

 

Model 5 tests the two final hypotheses and offers support for both of them. Firms 

experimenting with novel technologies are more likely to have a higher patent citation 

rate. These firms are able to value the potential of novel technologies in a more 

accurate way. They perceive the potential threats of disruptive technologies more 

easily, and they are more open to new avenues for research. However, too much 

experimentation with unfamiliar technologies is counterproductive: the negative and 

significant coefficient for the squared term of novel technologies indicates that 

experimentation with novel technologies should be in balance with the exploitation of 

familiar technologies. In line with this argument we expect a positive sign for the 

coefficient of the ‘novel technologies’-variable and a negative sign for the squared 

term. Moreover, the magnitude of the effect is substantial: other variables held 

constant, one-standard deviation increase above the mean in the experimentation with 

novel technologies results in a 40.1 percent increase in a company’s rate of 

innovation25.  

 

Finally, hypothesis 7 suggests that experimenting with pioneering technologies 

increases the rate of innovation of a company. The results in Model 5 support this 

hypothesis although the coefficient is only weakly significant. A one-standard 

deviation increase in the experimentation of pioneering technologies leads to a 9.8 

percent (=exp[0.2754*0.34]) increase in the rate of innovation. Hence, companies that 

successfully patented a ‘pioneering technology’-innovation increase their rate of 

innovation in the subsequent years.  

 

DISCUSSION AND CONCLUSIONS  

 

The increasing requirements of the organizational environment have forced 

companies in high tech industries to establish networks of technology alliances. The 

                                                      
25  The partial effect of the novel technologies (NT) in Model 5 is exp[NT*(0.3020 -0.0304*NT)]. 

For an average company this implies a rate of innovation increase of 26.8 percent 
(exp[0.86*(0.3020-0.0304*0.86)]). For a company that is highly involved in experimenting with 
novel technologies (one-standard deviation above the mean) this increase is 66.9 percent 
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internal development of technological resources is interwoven with the external 

acquisition of technologies through alliances. Both technological and social capital 

determine the rate of innovation of companies. In the literature, both types of capital 

have been conceived as complements: they are mutually reinforcing each other’s 

effect on the rate of innovation of a company (Cohen and Levinthal, 1990; Lane and 

Lubatkin, 1998; Duysters and Hagedoorn, 2000). 

 

In this paper we claim that the effect of an increase in the internal prior technology 

capabilities of a company or an extension of the alliance portfolio on its innovation 

performance depends on the size of its existing technological and social capital. For 

low degrees of internal technological capabilities and/or small alliance portfolios 

increases in either one of both types of capital will increase progressively a 

company’s rate of innovation. Technological and social capital are found to mutually 

reinforce each other’s impact on the technological performance of a company. 

However, we also found empirical support for the change in interaction between both 

types of capital in the case technological capabilities and the alliance network of a 

company increase. At high levels, technological and social capital are substitutes: the 

company with strong technological resources does not need an extensive portfolio of 

alliances to come up with a strong technological performance. Companies with 

extended technology alliance networks benefit from a strong patent portfolio but the 

marginal benefits from increased patent stock becomes smaller the larger their social 

capital. 

 

Stuart (2000) argued that the technological performance of a company is not so much 

determined by the size of the alliance network but rather by the characteristics of the 

focal firm’s alliance partners. Contrary to his findings we find no credible support for 

this claim. It is possible that in the specific context of the ASIC industry the 

technological prominence of the partners are less important because of the continuous 

stream of ‘competence destroying’ innovations by new entrants. Another possibility is 

that slightly different variables will confirm the importance of technological 

characteristics of the partners. One possible alternative is to calculate differences 

between the technological capital of the focal firm and that of its partners.  

                                                                                                                                                        
(exp[2.17(0.3020-0.0304*2.17]). The highest possible value for the partial effect (111.6 percent) 
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Finally, companies that experiment with novel and pioneering technologies are found 

to have a higher rate of innovation in subsequent years. This is an interesting finding 

because it indicates that companies, which almost exclusively focus on the 

exploitation of their existing technologies, are likely to get trapped in their own 

technological competences. This supports the idea of Leonard-Barton (1992) that core 

competencies can turn into core rigidities if companies are not rejuvenating their 

existing capabilities by exploring new technological fields. 

 

This paper clearly contains a number of limitations. One important limitation is that 

we did not model the ‘interorganizational absorptive capacity’ of companies 

explicitly. We assumed (and found empirical evidence) that the technological capital 

in a company has a moderating effect on the relationship between its social capital 

and its rate of innovation. Modeling explicitly the industry and organizational factors 

that have an impact on the absorptive capacity of a company could improve our 

understanding of the interaction between technological capital and alliance portfolios. 

 

Future research on the dyadic level (dyad-year as unit of observation) could also 

complement the firm level analysis about the relationship between technological 

resources and alliance networks. An analysis on the dyadic level allows us to focus on 

the question how the probability of the formation of new alliances is affected by (the 

difference between) the existing technological capital of the allying companies.  

 

 

 

 

                                                                                                                                                        
is reached for companies having experimented with 4.85 novel technologies. 
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Table 1: ASIC definitions 
 
 
I. Semicustom IC: A monolithic circuit that has one or more customized mask layers, but does not have all 

mask layers customized, and is sold to only one customer. 
Gate arrays: A monolithic IC usually composed of columns and rows of transistors. One or 
more layers of metal interconnect and are used to customize the chip. 
Linear array: An array of transistors and resistors that performs the functions of several linear 
ICs and discrete devices. 

 
II. Custom IC: A monolithic circuit that is customized on all mask layers and is sold to only one customer. 

Standard cell IC: A monolithic circuit that is customized on all mask layers using a cell 
library that embodies pre-characterized circuit structures. 
Full custom IC: A monolithic circuit that is at least partially “handcrafted”. Handcrafting 
refers to custom layout and connection work that is accomplished without the aid of standard 
cells. 

 
III. Programmable Logic Device (PLD): A monolithic circuit with fuse, antifuse, or memory cell-based 

logic that may be programmed (customized), and in some cases, reprogrammed by the user. 
Field Programmable Gate Array (FPGA): A PLD that offers fully flexible interconnects, 
fully flexible logic arrays, and requires functional placement and routing. 

Electrically Programmable Analog Circuit (EPAC): A PLD that allows the user to program and 
reprogram basic analog devices. 



Table 2: Definitions of dependent and independent variables 
 
 
Variable name Variable description Expected effect 
 
Number of patents Count of the number of patents a firm filed for in the current year (t). Only patents that were granted -------- 
  to the company are taken into consideration  
Cumulative patentst-1 Count of the number of ASIC-related patents that a firm filed for during the previous four years Positive 
  (t-4 to t-1)  
Cumulative technology alliancest-1  Count of the number of technology alliances a firm established in the five previous years (t-5 to t-1)  Positive 
(Cumulative technology alliancest-1)2  Squared term of the previous variable  Negative  

(Cum. technology alliances t-1) Interaction between the number of ASIC-related patents a firm file for during the last 4 years and Negative 
 * (cum. patents t-1) the number of alliances it formed in the previous 5 years 
Innovative performance of alliance partners Sum of the patent citations received by the firm’s alliance partnersPositive 
Novel technologiest-1 Number of patents filed during the last 3 years in patent classes in which the company had not patented  Positive 
  in the previous 4 years 
(Novel technologiest-1)2 Squared term of the previous variable  Negative 
Pioneering technologiest-1 Number of a firm’s patents that cite no more than one other patent  Positive 
Log ASIC salest-1 Natural logarithm of the ASIC sales of the firm  Positive 
Firm size (log sales)t-1 Natural logarithm of the total sales of the firm  Positive 
ASIC market growtht-1 Annual growth rate of the ASIC market  Positive  
Firm is a captive producer Dummy variable denoting that the firm is not selling ASICs on the market Negative   
Firm is Asian Dummy variable denoting that the firm is headquartered in Asia 
Firm is European Dummy variable denoting that the firm is headquartered in Europe 
Firm is GA-producer Dummy variable denoting that the firm is producing only gate arrays 
Firm is SC-producer Dummy variable denoting that the firm is producing only standard cells 
Firm is PLD-producer Dummy variable denoting that the firm is producing only PLDs 
Firm is GA and SC producer Dummy variable denoting that the firm is producing gate arrays and standard cells 
Firm is GA and PLD producer Dummy variable denoting that the firm is producing gate arrays and PLDs 
 

  



1 

e n . n. . 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 6 7

Table 3: Descriptive statistics and correlation matrix 
 
  
Variabl  Mea  S.D  Mi  Max   1 1  1  
                     

1  Cumulative patentst-1 2.67 5.85 0 70                  
2  Cumulative technology alliancest-1 4.05 6.90 0 38 0.33                 
3  Innovative performance of  

 alliance partners 46.91 129.48 0 1251 0.30 0.39                
4  Novel technologiest-1 0.86 1.31 0 11 0.43 0.33 0.37               
5  Pioneering technologiest-1 0.08 0.34 0 3 -0.02 0.04 0.01 0.11              
6  R&D intensity 0.12 0.06 0.04 0.41 -0.10 -0.14 -0.06 -0.08 -0.01             
7  Log ASIC salest-1 2.95 2.03 -0.69 7.43 0.47 0.43 0.24 0.30 0.04 -0.09            
8  Firm size (log sales)t-1 6.20 3.30 -0.92 12.60 0.31 0.40 0.21 0.24 0.06 -0.59 0.52           
9  ASIC market growtht-1 0.14 0.03 0.10 0.21 -0.02 0.09 0.00 -0.05 0.03 -0.01 -0.06 -0.02          

10  Firm is a captive producer 0.11 0.31 0 1 -0.04 0.01 -0.01 -0.02 0.01 -0.20 -0.28 0.20 -0.01         
11  Firm is Asian 0.22 0.42 0 1 0.13 0.00 0.00 0.07 0.07 -0.43 0.14 0.40 0.00 -0.10        
12  Firm is European 0.17 0.38 0 1 -0.12 0.15 0.09 -0.11 -0.04 -0.04 -0.01 0.10 0.01 0.12 -0.25       
13  Firm is GA-producer 0.12 0.32 0 1 -0.13 -0.16 -0.10 -0.12 -0.03 0.10 -0.07 -0.13 0.00 -0.02 -0.12 -0.14      
14  Firm is SC-producer 0.18 0.39 0 1 -0.15 -0.15 -0.07 -0.09 -0.04 0.15 -0.12 -0.20 -0.03 0.00 -0.21 0.14 -0.17     
15  Firm is PLD-producer 0.07 0.25 0 1 0.24 -0.01 0.07 0.15 -0.02 0.25 0.16 -0.13 -0.02 -0.09 -0.14 -0.12 -0.10 -0.13    
16  Firm is GA and PLD producer 0.01 0.09 0 1 0.03 0.09 0.02 0.04 -0.01 0.06 0.07 0.00 0.04 -0.03 -0.05 -0.04 -0.03 -0.04 -0.02   
17  Firm is GA and SC producer 0.30 0.46 0 1 0.14 0.07 0.07 0.11 0.10 -0.24 0.44 0.38 0.00 -0.12 0.35 -0.03 -0.24 -0.31 -0.17 -0.06  
18  Firm is SC and PLD producer 0.01 0.08 0 1 -0.03 0.17 -0.02 0.04 -0.01 0.00 0.04 0.06 -0.01 -0.03 -0.05 -0.04 -0.03 -0.04 -0.02 -0.01 -0.06 

      

  

 
N = 830 observations 



Table 4: Determinants of the patent citation rate of ASIC producers, 1988-1996 
 
  
 Variable Model 1  Model 2 Model 3 Model 4 Model 5  
 
Cumulative patentst-1  0.0526*** 0.0591*** 0.0609*** 0.0537***  
   (0.0065) (0.0077) (0.0079) (0.0082)  
Cumulative technology   0.1474*** 0.1436*** 0.1345***  
 alliancest-1   (0.0236) (0.0238) (0.0236)  
(Cumulative technology   -0.0023*** -0.0022*** -0.0023***  
 alliancest-1)2   (0.0008) (0.0008) (0.0008)  
(Cum. technology alliances t-1)   -0.0015*** -0.0017*** -0.0018***  
 * (cum. patents t-1)   (0.0004) (0.0005) (0.0005)  
Innovative performance of    0.0004   
 alliance partners    (0.0004)   
Novel     0.3020*** 
 technologiest-1     (0.0995) 
(Novel     -0.0304* 
 technologiest-1)2     (0.0183) 
Pioneering     0.2754** 
 technologiest-1     (0.1163) 
R&D intensity 3.14166** 3.7589** 3.1553* 3.2673** 3.4754**  
  (1.6037) (1.5581) (1.6378) (1.6447) (1.6816)  
Log ASIC salest-1 0.3813*** 0.2786*** 0.1504*** 0.1586*** 0.1581***  
  (0.0504) (0.0507) (0.0536) (0.0543) (0.0540)  
Firm size 0.2323*** 0.2184*** 0.1256*** 0.1250*** 0.1212***  
 (log sales)t-1 (0.0450) (0.0438) (0.0435) (0.0436) (0.0440)  
ASIC market growtht-1 10.2939 11.2207 5.1625 5.341 10.7451  
  (12.6046) (12.4985) (11.2919) (11.3558) (12.0914)  
Firm is a captive 0.5592** 0.4449* 0.4625* 0.4767* 0.4862*  
 producer (0.2618) (0.2568) (0.2628) (0.2638) (0.2637)  
Firm is Asian 0.2721 0.2225 0.5582*** 0.5795*** 0.5948***  
  (0.1945) (0.1906) (0.2006) (0.2018) (0.1995)  
Firm is European -0.7181*** -0.6197*** -0.8246*** -0.8349*** -0.7924***  
  (0.2341) (0.2295) (0.2348) (0.2355) (0.2392)  
Firm is GA-producer -0.6963** -0.5963** -0.1918 -0.2067 -0.1661  
  (0.2879) (0.2833) (0.2935) (0.2935) (0.2893)  
Firm is SC-producer -1.0775*** -0.9512*** -0.7136*** -0.7302*** -0.6835** 
  (0.2729) (0.2692) (0.2737) (0.2738) (0.2725) 
Firm is PLD-producer 0.5550** 0.3121 0.6117** 0.5418* 0.4316 
  (0.2739) (0.2765) (0.3013) (0.3072) (0.3037) 
Firm is GA and SC -0.5111*** -0.3441** -0.1247 -0.1598 -0.2576 
 producer (0.1688) (0.1637) (0.1790) (0.1812) (0.1784) 
Firm is GA and PLD 1.2699*** 1.3787*** 1.1467** 1.0968* 1.1277** 
 producer (0.4883) (0.4639) (0.4807) (0.4841) (0.4695) 
Firm is SC and PLD -0.8289 -0.6303 -1.3176* -1.2787* -1.3258* 
 producer (0.7507) (0.7456) (0.7463) (0.7475) (0.7497) 
Year dummy variables included 
Constant -8.0146*** -7.8331*** -6.6201*** -6.6692*** -7.7684*** 
  (2.4387) (2.4169) (2.1878) (2.1996) (2.3423) 
  
Number of firms  99 99 99 99 99  
Number of firms-years 830 830 830 830 830  
Log-likelihood -2109.3 -2084.5 -2051.9 -2051.2 -2042.8  
Likelihood-ratio test  
 panel vs. pooled (χ2) 63.52*** 43.88*** 45.59*** 46.77*** 44.34***  
 
 
Notes:  *** p < 0.01; ** p < 0.05; * p < 0.10  

‘Year dummy variable’-coefficients are not reported in the table. 
The models use a random effects negative binomial regression. The sample is an unbalanced panel with 99 ASIC 
producers and 830 firm-years (units of observation). 

 

  



 
 

Figure 1: The ASIC technology field 

 Figure 2: The segments in the ASIC technology field 
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Figure 3: The ASIC technology field  
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Figure 4: Impact of social and technical capital on the patent citation rate
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