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Abstract

We consider tests of forecast encompassing for probability forecasts, for both quadratic and

logarithmic scoring rules. We propose test statistics for the null of forecast encompassing,

present the limiting distributions of the test statistics, and investigate the impact of estimating

the forecasting models’ parameters on these distributions. The small-sample performance of

the various statistics is investigated, both in terms of small numbers of forecasts and model

estimation sample sizes. Two empirical applications show the usefulness of the tests for the

evaluation of recession probability forecasts from logit models with different leading indicators

as explanatory variables, and for evaluating survey-based probability forecasts.
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1 Introduction

There is an extensive literature in economic and management science attesting to the usefulness

of forecast combination.1 That is, a linear combination of two or more forecasts may often yield

more accurate forecasts than using a single forecast. The forecast combination literature typically

assesses the out-of-sample accuracy of combinations whose weights have been determined in-sample.

Tests of forecast encompassing assess whether ex post a linear combination of forecasts results in

a statistically significant reduction in the mean squared forecast error (MSFE) relative to using

a particular forecast, and can be viewed as an indicator of when combinations might be useful

ex ante, although Chong and Hendry (1986) originally presented such tests as model-specification

tests for large-scale models where more conventional tests may be infeasible. Forecast encompassing

is formally equivalent to ‘conditional efficiency’ due to Nelson (1972) and Granger and Newbold

(1973), whereby a forecast is conditionally efficient if the variance of the forecast error from a

combination of that forecast and a rival forecast is not significantly less than that of the original

forecast alone.

Tests of forecast encompassing and the closely-related tests of equal forecast accuracy of Diebold

and Mariano (1995) are routinely calculated in forecast comparison exercises in applied work. For

the most part they are applied to forecasts of variables that, in principle at least, can take any value

on the real line. Yet as noted by Diebold and Lopez (1996) in their review of forecast evaluation

and combination, forecasts of economic and financial variables often take the form of probabilities,

e.g., forecast probabilities of recession. These authors suggest that the significance of differences

in accuracy between different probability forecasts can be tested using the Diebold-Mariano tests,

and Granger and Pesaran (2000) mention combining probability forecasts. Kamstra and Kennedy

(1998) propose a method of combining probability forecasts using logit regression. This is presented

as a computationally simple way of combining forecasts, and no optimality properties for the

derived combination are claimed. In other spheres, the combination of probability assessments is

commonplace, although the emphasis tends to be different from ours.2

In this paper we apply forecast encompassing to probability forecasts. Because of the nature of

the forecasts, our analysis will differ from the standard application of encompassing tests to point

forecasts in a number of ways. One is the nature of the loss function. Tests of encompassing applied

1See inter alia Diebold and Lopez (1996) and Newbold and Harvey (2002) for recent surveys, and Clemen (1989)
for an annotated bibliography.

2The literature on the combination of experts’ subjective probability distributions (see e.g., Genest and Zidek
(1986) and Clemen and Winkler (1999)) looks at ways of aggregating individual assessments such that the aggregate
possesses desirable properties, rather than focusing on accuracy. See also Dawid (1986) and Winkler (1996) on
probability forecasting and evaluation from a meteorological prespective, as well as a discussion of earlier contributions.
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to point forecasts invariably use mean squared error (MSE). The same measure is commonly used to

evaluate probability forecasts, in the guise of the quadratic probability score (QPS), but at least as

commonplace is the logarithmic probability score (LPS). We consider forecast encompassing tests

based on both. Secondly, our analysis differs from the standard approach because of the nature of

the models that are used to generate forecasts. We will consider the effects of parameter estimation

uncertainty on tests of forecast encompassing when the forecasting models are logit models esti-

mated by nonlinear least squares, following West (1996), West and McCracken (1998), and West

(2001). Thirdly, we wish to evaluate forecasts which are not necessarily based on formal models,

or are based on well-defined information sets but do not make optimal use of that information.

A number of related tests of forecast encompassing appear in the literature for point forecasts.

Contrary to what is often assumed, we show that these tests can give different outcomes even

in the standard case (i.e., for point forecasts). With regard to the second and third points in

the previous paragraph, we show that the asymptotic distributions of the tests are differentially

affected by parameter estimation uncertainty, extending West and McCracken (1998), and West

(2001), and that in particular, the outcomes may depend on whether or not the forecasts are the

optimal predictors for a given information set.

Our analysis assumes linear combinations of forecasts, as in the literature for encompassing

tests for standard point forecasts. Linear combination of probability forecasts is commonly used in

the literature on combining experts’ subjective probability distributions (see e.g., Genest and Zidek

(1986) for a critique and annotated bibliography), where it is referred to as the ‘linear opinion pool’.

Linear combination (equal-weighted) of individuals’ probability forecasts is also used to construct

the Survey of Professional Forecasters’ anxious index described in section 5.2.

The plan of the paper is as follows. In section 2 we discuss the two most commonly used

loss functions for probability forecasts: QPS and LPS. One of the standard ways of evaluating (or

‘scoring’) probability forecasts (QPS) motivates the use of the standard forecast encompassing test

framework, and we show that within the standard framework the different approaches to testing

for forecast encompassing are not necessarily equivalent. In section 3 we consider a different way of

testing for forecast encompassing, based on the alternative scoring method LPS. We show that the

conditions for forecast encompassing are the same as under QPS, and moreover the different testing

approaches behave in a similar fashion, in population. Section 4 presents the test statistics and cor-

responding null limiting distributions, for both QPS- and LPS-based encompassing testing methods.

In addition, the impact on the tests of estimating the models’ parameters is considered, extending

some existing results on forecast encompassing tests and parameter estimation uncertainty, and

illustrating the implications for probability forecasts. Monte Carlo simulation is employed to assess

the finite sample properties of the different tests. Section 5 contains two empirical applications:
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an evaluation of model-based forecasts, and an evaluation of survey-based forecasts. In keeping

with the majority of the literature on forecast combination and encompassing, we do not consider

the possibility of combining information at the modelling stage to produce a ‘super model’, as

an alternative strategy for generating forecasts. In some cases this may be possible, as when the

information sets on which the individual forecasts are based are observed, but is clearly impossible

for survey-based forecasts (as in our second application). Section 6 concludes.

2 Probability forecasts and forecast encompassing tests based on

QPS

In common with the literature on forecast combination, we consider linear combinations of forecasts.

Denoting the two rival forecasts by f1 and f2, then the combined forecasts is fc = α+β1f1+β2f2.

Standard approaches to testing forecast encompassing (when the forecasts are point forecasts) are

based on whether one forecast, say f1, contains all the useful information in f2, in the mean-

squared-error sense. Forecast encompassing is said to hold when the combination of f1 and f2 does

not have a MSE which is significantly smaller than that of f1 alone. More generally then, given

a loss function, forecast encompassing holds when setting β2 = 0 does not result in a statistically

significant increase in the loss function.

The two main ways of scoring probability forecasts are the quadratic and logarithmic scores.

Given a probability forecast f , of the binary event Y = 0 or Y = 1, the Brier or quadratic probability

score (QPS: Brier (1950)) is simply (f − Y )2, corresponding to the usual notion of squared-error

loss.3 The logarithmic probability score (LPS: see Brier (1950) and Good (1952)) is defined as:

−Y log (f) − (1− Y ) log (1− f).4 For a sequence of probability forecasts and outcomes, {ft, yt},
t = 1, . . . , n, these scores are calculated as:

QPS =
1

n

nX
t=1

2 (ft − yt)
2 (1)

3Note that in contrast to the evaluation of point forecasts, the actual values are not observed, so that f is compared
to a binary 0 − 1 variable rather than the true probability. Probability forecasts can be evaluated by translating
the forecasts into ‘categorical’ forecasts of the binary event, and then looking at the coincidence of predicted 1’s and
actual 1’s, for example. In general this involves a loss of information, as a forecast of 0.99 is treated identically to
a forecast probability of 0.51, if the usual 0.5 rule is used to translate forecast probabilities into event probabilities
(see, e.g., Birchenhall, Jessen, Osborn and Simpson (1999)). Granger and Pesaran (2000) consider probability and
categorical forecasts in a decison-based context, and show that only in specific circumstances will the two lead to the
same actions.

4As written, both scores give possible values on [0,+∞).
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and:

LPS = −1
n

nX
t=1

[yt ln ft + (1− yt) ln (1− ft)] (2)

As QPS is proportional to squared-error loss, the adoption of this measure leads to tests of forecast

encompassing based on whether the combination of forecasts results in a statistically significant

reduction in the expected squared error, as in the point forecast case. These two well-known

measures of scoring probability forecasts have been used in economic applications by Diebold and

Rudebusch (1989) and Anderson and Vahid (2001), inter alia. In the remainder of this section, we

consider forecast encompassing and QPS, and in the following section LPS.

We consider three tests of forecast encompassing that have been applied to point forecasts. If

we define the forecast errors as eit = yt − fit, i = 1, 2, then these tests are based on the following

three regressions:

FE(1)

yt = α+ β1f1t + β2f2t + εt

FE(2)

yt = α0 +
¡
1− β02

¢
f1t + β02f2t + εt

or, equivalently:

e1t = α0 + β02 (e1t − e2t) + εt

FE(3)

yt = α00 + f1t + β002f2t + εt

or, equivalently:

e1t = α00 + β002f2t + εt.

The null hypothesis that f1t forecast encompasses f2t is β2 = 0 in FE(1), and similarly β02 = 0

and β002 = 0 for FE(2) and FE(3) respectively. The alternative hypothesis is typically 1-sided, i.e.,

β2 > 0 (or β02 > 0, β002 > 0), precluding the possibility of a negative weight on f2t. Regression

FE(1) is the most general formulation, in that the coefficient on f1t is left unrestricted under both

the null and alternative. Fair and Shiller (1990) argue for the use of FE(1) over alternatives such

as FE(2), which restricts β1 + β2 = 1 as part of the maintained hypothesis, so that only convex

combinations are allowed. FE(3) tests β002 = 0 but with a maintained of β1 = 1. FE(3) is the

form of the original Chong and Hendry (1986) forecast encompassing test. Each of the above

regressions allows the individual forecasts to be biased. Under the null β2 = 0, f1t is unbiased
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when α = (1 − β1)E(f1t); this condition simplifies to α = 0 when β1 = 1, as assumed in FE(2)

and FE(3) under the null. Recently, West and McCracken (1998) and West (2001) have considered

FE(3) and FE(2) respectively, in the context of estimation uncertainty, and Harvey, Leybourne

and Newbold (1998) have considered the effects of conditionally heteroscedastic forecast errors in

FE(2).

Although there is little to suggest the use of one formulation over another in the literature

(except when there are unit roots: see Ericsson (1993, p. 650)), it is straightforward to show that

β2 = 0 in FE(1) does not imply either β
0
2 = 0 (in FE(2)) or β

00
2 = 0 (in FE(3)). Recall that β2 = 0

is the condition for forecast encompassing. Thus, f1 may forecast encompass f2 but tests based

on FE(2) and FE(3) will be invalid. Without making any specific assumptions about the process

{yt, f1t, f2t}, from the population values of the least squares estimators of β2, β
0
2 and β002 we have:

FE(1) : β2 = 0, if V (f1t)C(yt, f2t)−C(f1t, f2t)C(yt, f1t) = 0

FE(2) : β02 = 0, if V (f1t)−C(yt, f1t) +C(yt, f2t)−C(f1t, f2t) = 0

FE(3) : β002 = 0, if C(yt, f2t)−C(f1t, f2t) = 0. (3)

It follows that provided f2t is uncorrelated with f1t and yt, then both β2 = 0 and β002 = 0, so that

f1 encompasses f2, and FE(3) will also indicate encompassing. But the same is not true of FE(2)

in general: for β02 = 0 the additional condition that V (f1t) − C(yt, f1t) = 0 has to be satisfied.

When f2t is correlated with f1t and yt, it is possible that β2 = 0 without either β
0
2 = 0 or β

00
2 = 0.

In which case tests based on both FE(2) and FE(3) are invalid as tests of encompassing. As we

define encompassing by β2 = 0, it would seem natural to base tests on β2 = 0 in FE(1). There are

two reasons to also consider FE(2) and FE(3). We might expect tests based on these regressions

to be more powerful when the population values of the parameters satisfy β1 + β2 = 1 and β1 = 1

respectively. Secondly, as these tests are commonplace in the literature, we wish to see whether

they are likely to be misleading in practice. In order to assess the practical usefulness of FE(2) and

FE(3) we check whether β02 and β002 are zero for typical data generation processes for which β2 = 0.

2.1 Data generation process

Below we describe the probability-forecast data generation process used to investigate the three

forecast encompassing tests. We begin by deriving the population values of β2, β
0
2 and β002 for a

range of cases: when the forecasts are correlated, biased, and when there is model mis-specification;

this allows us to ascertain circumstances under which forecast encompassing holds. The same DGP

will later be used to investigate the small-sample properties of the tests of forecast encompassing,
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including the effects of parameter estimation uncertainty. The forecasts can be viewed as the

forecasts from estimated logit models, but the formulation is general enough to support other

interpretations.

The DGP is given by:

yt = 1

µ
exp(δ0 + δ1X1t + δ2X2t + δ3Zt)

1 + exp(δ0 + δ1X1t + δ2X2t + δ3Zt)
> vt

¶
(4)

f1t =
exp(θ01 + θ11X1t)

1 + exp(θ01 + θ11X1t)

f2t =
exp(θ02 + θ12X2t)

1 + exp(θ02 + θ12X2t)

where: 
X1t

X2t

Zt

 ∼ N



0

0

µZ

 ,


1 ρX1,X2

ρX1,Z

ρX1,X2
1 ρX2,Z

ρX1,Z ρX2,Z 1


 .

Here, yt is a binary variable that depends on three explanatory variables, X1t, X2t and Zt, when

δi 6= 0, for i = 1, 2, 3. yt = 1 when exp(δ0+δ1X1t+δ2X2t+δ3Zt)
1+exp(δ0+δ1X1t+δ2X2t+δ3Zt)

exceeds vt, a uniform random

variable on the unit interval, that is independent of X1t, X2t and Zt, and otherwise yt = 0. The

two rival forecasts depend on X1t and X2t, respectively. The form of the dependence restricts

fit ∈ (0, 1), i = 1, 2, so that f1t and f2t can be interpreted as probabilities. The explanatory

variables follow a multivariate normal, with variances normalized to unity and non-zero correlations,

so that C (f1t, f2t) 6= 0 in general, allowing the rival forecasts to be correlated.5
A necessary condition for f1 to encompass f2 is that δ2 = 0 (and δ1 6= 0) otherwise yt depends

on X2t directly. If in addition we set δ3 = 0, then the model underlying f1 is correctly-specified in

the sense that it contains all the variables that affect yt. Conversely, setting δ3 6= 0 allows us to
consider the effects of model mis-specification on the tests of encompassing.

2.2 Forecast encompassing based on QPS

Although conceptually straightforward, the form of the DGP does not allow us to obtain the

probability limits of β2, β
0
2 and β002 analytically. However, expressions for the moments involving

{y,f1,f2} for this DGP can be obtained, and subsequently evaluated by numerical integration for
given values of the underlying parameters (δi,i = 1, 2, 3;µZ ; ρX1,X2

; ρX1,Z ; ρX2,Z), with the resulting

values substituted into (3) to obtain β2, β
0
2 and β002. In Appendix 1 we report expressions for these

5Here and throughout the paper, we denote variance by V (.) and covariance by C(., .).
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moments for the case δ0 = 0, δ1 = 1. Note that in order to evaluate the moments numerically, we

first need the population values of θij–these cannot be obtained analytically from the underlying

parameters. We assume the interpretation that the forecasts are obtained from estimated logit

models, with the θij parameters representing the population coefficients from logit regressions of

yt on a constant and X1t, and a constant and X2t, for f1t and f2t respectively. We therefore

simulate the population θij values by taking the average of logit parameter estimates from 10, 000

replications of the DGP with n = 10, 000. Note that when f2t is independent of f1t and yt, θ12

converges in probability to zero, and therefore f2t approaches a constant in the limit. This case is

of little interest in practice, and we focus exclusively on cases where ρX1,X2
> 0.

Table 1 (Panel A) gives the population values of the parameters in the forecast encompassing

regressions for a range of values of the underlying parameters. The table displays results for

δ3 = 0 and δ3 6= 0, allowing for both correctly specified and mis-specified forecasts, and results

are reported for both biased and unbiased forecasts. Unbiased forecasts result when µZ = 0, and

the θij determining fit are the population parameters associated with logit regressions of yt on a

constant and Xit. We obtain biased forecasts when µZ = 1 (with δ3 6= 0) and the forecasts are

given by:

f1t =
exp(θ11X1t)

1 + exp(θ11X1t)

f2t =
exp(θ12X2t)

1 + exp(θ12X2t)

with the θij being the population parameters associated with logit regressions of yt on X1t and X2t

respectively, without a constant term. Results are reported for representative combinations of the

design parameter settings ρX1,X2
= {0.2, 0.5, 0.8}, ρX1,Z = {0,±0.5}, ρX2,Z = {0, 0.5}.6

The results for the model-based forecasts using QPS can be summarised as follows (assuming

throughout that δ1 6= 0, δ2 = 0 and ρX1,X2
> 0):

(a) when the model giving rise to f1 is correctly specified (because δ3 = 0), f1 encompasses f2

regardless of the correlation between X1 and X2 (and therefore f1 and f2),

(b) when the model generating f1 is mis-specified (e.g., δ3 6= 0), encompassing fails when (i) X1

is correlated with the omitted variable Z, or (ii) X2 is correlated with the omitted variable Z,

(c) model mis-specification is not sufficient for forecast encompassing to fail: f1 encompasses f2

provided Z is uncorrelated with both X1 and X2,

(d) the encompassing results for the three testing approaches FE(1), FE(2) and FE(3) coincide,

6Note that the parameter combination ρX1,X2
= 0.5, ρX1,Z

= −0.5, ρX2,Z
= −0.5 yields a singular covariance

matrix Ω and is therefore omitted.
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i.e., when β2 = 0, it is also the case that β
0
2 = β002 = 0.

Results (a)-(c) are intuitive except perhaps for (b) (i), i.e., the lack of encompassing when X1

is correlated with Z. For example, encompassing fails under (b) (ii) because X2 acts as a proxy for

the omitted variable, but under (b) (i), X2 is not correlated with Z, and it may seem surprising

that the omission of Z from the model for f1 causes a failure of encompassing in general (i.e., unless

X1 and X2 are uncorrelated). This finding is not specific to the probability forecasting case. In

Appendix 2 we illustrate the failure of encompassing in the analogous case for the standard point

forecast setup, for which analytical results can be derived.

In both the unbiased and biased model-based forecast cases, the fit are optimal predictors given

the forecasting model and the information set (an intercept and Xit, or just Xit). By construction,

the fit satisfy E [(yt − fit)Xit] = 0 in the first case, where Xit = [1,Xit]
0, and E [(yt − fit)Xit] =

0 in the second. The table also records the population values of the encompassing regression

parameters when instead the forecasts are given by f1t = exp(X1t) (1 + exp(X1t))
−1 and f2t =

exp(X2t) (1 + exp(X2t))
−1, for which E [(yt − fit)Xit] 6= 0. We refer to these as ‘non-model’-based

forecasts. They allow for an inefficient use of information in the sense that the model’s forecast

errors and explanatory variables are correlated. The expressions for the moments involving {y,f1,f2}
for the non-modelled forecasts can be obtained from Appendix 1 by setting θ01 = θ02 = 0 and

θ11 = θ12 = 1 in the general expressions given there. These moments are evaluated numerically for

particular paramater values, and substitution into the expressions for the FE(1) — FE(3) population

parameters gives the values reported in the table.

In contrast to the results for the model-based forecasts, the three testing approaches FE(1) —

FE(3) do not coincide for the non-model-based forecasts. While encompassing holds (i.e., β2 = 0)

in the same circumstances as for the model-based forecasts, the FE(2) and FE(3) regressions imply

a failure of encompassing unless δ3 = 0, in which case the non-model-based forecasts are actually

correctly specified, coinciding with the optimal model-based forecasts. When mis-specification

occurs, however, i.e., when δ3 = 1, β02 and β002 are non-zero even though β2 = 0. In these instances,

both β1 6= 1, and β1 + β2 6= 1 (see table), that is, the restrictions underlying FE(2) and FE(3)

(relative to FE(1)) are violated. The non-model-based case therefore highlights a potential weakness

in the application of tests based on FE(2) and FE(3), while FE(1) remains the more general

approach.
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3 Forecast encompassing and the logarithmic scoring rule (LPS)

The LPS loss function (2) for the combined forecast is:

LPS = −1
n

X
[yt ln(α+ β1f1t + β2f2t) + (1− yt) ln(1− α− β1f1t − β2f2t)]

Unconstrained minimisation with respect to {α, β1, β2} gives the first order population conditions:

E

·
yt

α+ β1f1t + β2f2t
− 1− yt
1− α− β1f1t − β2f2t

¸
= 0

E

·µ
yt

α+ β1f1t + β2f2t
− 1− yt
1− α− β1f1t − β2f2t

¶
f1t

¸
= 0

E

·µ
yt

α+ β1f1t + β2f2t
− 1− yt
1− α− β1f1t − β2f2t

¶
f2t

¸
= 0

If f2t is independent of yt and f1t, and encompassing held (i.e., β2 = 0), some simplification is

possible. For example, the third condition reduces to the first, and becomes redundant, so for

forecast encompassing to hold, we require a unique solution to the following two equations, for

admissible values of α and β1:

E

·
yt

α+ β1f1t
− 1− yt
1− α− β1f1t

¸
= 0 (5)

E

·µ
yt

α+ β1f1t
− 1− yt
1− α− β1f1t

¶
f1t

¸
= 0 (6)

The simplest approach to investigating the tests of forecast encompassing for LPS is by simula-

tion. For given values of the underlying parameters (δi,i = 1, 2, 3;µZ ; ρX1,X2
; ρX1,Z ; ρX2,Z), the

population values of the θij are taken to be the values that we determined by simulation when

investigating the population QPS combination weights. These values are then used in the simu-

lations proper to construct f1t and f2t as model-based forecasts. Bias is introduced as discussed

in section 2, namely, by setting µZ 6= 0 and omitting the intercepts from the logit model fore-

casts. For the non-model-based forecasts, the pre-simulations are unnecessary, as we simply set

f1t = exp(X1t) (1 + exp(X1t))
−1 and f2t = exp(X2t) (1 + exp(X2t))

−1, as for QPS.

Table 1 (Panel B) records the population values of the combination weights for LPS for the

same parameter settings as for QPS, so that the results for QPS and LPS are directly comparable.

As in the case of QPS, the FE(2) test imposes β1 = (1− β2), and the FE(3) test sets β1 = 1. It is

apparent that the results match: when forecast encompassing holds for LPS it also holds for QPS,

and the three different LPS tests match in the case of the model-based forecasts, but not otherwise.

The equivalence between the values of β (= [α, β1, β2]
0) that minimize LPS and QPS in pop-
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ulation is perhaps unsurprising as the two alternative loss functions can be viewed as two dif-

ferent estimators of the combination weights. Given that yt is binary, the combined probability

P (yt = 1) = α+ β1f1t + β2f2t implies that

E(yt| f1t, f2t) = α+ β1f1t + β2f2t

with associated regression model:

yt = α+ β1f1t + β2f2t + εt.

OLS estimation is then the same as QPS. Alternatively, the likelihood route is based on maximizing

(the log of) L =
Q

yt=1
P (yt = 1)yt

Q
yt=0

P (yt = 0)1−yt , which corresponds to LPS. In the next

section we consider tests based on LPS and QPS, as the different properties of the loss functions

(LPS penalises large errors relatively more heavily) means that a combined forecast may result in a

statistically significant reduction in loss for one loss function (forecast encompassing rejected) but

not for the other (forecast encompassing not rejected).

4 Forecast encompassing test statistics for QPS and LPS

In this section we present forecast encompassing test statistics for use with FE(1), FE(2) and FE(3)

for both QPS and LPS.

4.1 QPS tests

We follow Harvey et al. (1998) and West (2001) in considering tests of QPS forecast encompassing

based on the Diebold and Mariano (1995) (DM)-type approach. Following these papers, we assume

that the forecasts are generated from a non-nested structure. When the forecasts are from models

which are nested, an analysis along the lines of Clark and McCracken (2001) is required (see also

the review article by West (2006)). Extending the Harvey et al. (1998) analysis of tests based on

FE(2) to allow for biased forecasts, by working with deviations from means, it is straightforward

to define DM tests for both FE(2) and FE(3) as:

DM =
ndqPh−1

τ=−(h−1)
Pn

t=|τ |+1(dt − d)(dt−|τ | − d)
(7)

MDM = n−1/2[n+ 1− 2h+ n−1h(h− 1)]1/2DM

10



where
dt = (e1t − e1)[(e1t − e1)− (e2t − e2)] for FE(2)

dt = (e1t − e1)(f2t − f2) for FE(3)

and d = n−1
Pn

t=1 dt. Harvey et al. (1998) provide the rationale for the modification to improve the

small-sample performance of the DM test, that results in the MDM statistic. We also define DM

and MDM tests for FE(1) by making use of the Frisch-Waugh theorem. The population parameter

β2 in FE(1) is identical to β2 in:

η1t = β2η2t + νt

where η1t and η2t are the errors from the regression of yt and f2t, respectively, on a constant and

f1t. The null of β2 = 0 therefore holds when E(η1tη2t) = 0, allowing use of the DM and MDM

tests with:

dt = η̂1tη̂2t for FE(1).

Abstracting temporarily from the forecasts being based on models, whereby the estimation of

the models’ parameters imparts an additional source of uncertainty, then the asymptotic normality

of DM and MDM follows from standard results. In practice, we compare the MDM tests to a

Student t distribution with n−1 degrees of freedom. Alternatively, one could consider a regression-

based t-statistic of the null that β2 = 0 in FE(1) (and similarly for FE(2) and FE(3)), calculated

using an appropriate heteroskedasticity and autocorrelation consistent variance estimator. Such a

test also has a limiting standard normal distribution under the null. Preliminary findings indicated

that tests based on the DM approach (especially MDM) generally outperformed regression-based

t-statistics. The DM approach can also be readily extended to consider the effects of parameter

estimation: see section 4.3.

A final point is that although it may appear that the form of the denominator in (7) is inap-

propriate for FE(1) and FE(3) when {yt, f1t, f2t} is autocorrelated, allowing for dependence only
up to order h− 1 in dt is in fact appropriate for all three approaches for ‘well-specified’ forecasts.

In the case of FE(2), dt depends only on the forecast errors, with dependence structure that can

reasonably be assumed to be no more than an MA(h− 1) for a horizon of h. Thus the form of

the denominator in (7) is readily justified for FE(2). For FE(1) and FE(3) we arrive at the same

conclusion, although the argument is a little more involved. First consider FE(3) when h = 1.

Regardless of any autocorrelation in f1t and yt, for well conceived forecasts we expect e1t to be

free of autocorrelation. As dt is the product of (e1t − e1) and a potentially autocorrelated process

(f2t − f2), it follows that dt should also be serially uncorrelated. For FE(1) a similar argument

establishes that dt is serially uncorrelated for h = 1: η̂1t is the residual from a regression of yt on

a constant and f1t, and will therefore behave like a (bias-corrected) 1-step forecast error, so that

11



dt will be free of autocorrelation regardless of the autocorrelation structure of η̂2t. Turning now

to h-step-ahead forecasts, the same arguments go through, except now we would expect (e1t − e1)

and η̂1t to be autocorrelated to a maximum order of MA(h− 1). Thus for both FE(1) and FE(3)
dt should be autocorrelated no more than order (h− 1).

The non-model-based forecasts do not give rise to h-step forecast errors which exhibit correlation

of no more than h−1. For forecasts such as these additional covariance terms need to be included in
the long-run variance estimator. Various kernel functions for weighting the covariance terms could

be used, although the simplest approach is to continue with the uniform, but with the Newey-

West lag truncation L = trun
³
4(n/100)

2
9

´
replacing h − 1 in the denominator. The advantage

of maintaining uniform weighting is that the MDM small-sample modification is derived assuming

the use of this variance estimator in the DM statistic. Because L < h − 1 is possible for small
estimation sample sizes, we suggest using max (L,h− 1).

4.2 LPS tests

LPS-based tests of forecast encompassing are based on the MLE of the likelihood:

lnL =
X

lnLt =
X

[yt ln ft + (1− yt) ln(1− ft)] (8)

noting that this likelihood corresponds to −n−1 times LPS. For the test based on the FE(1) ap-
proach, ft = α+β1f1t+β2f2t, with obvious modifications for tests based of FE(2) and FE(3). For

the DGP given in section 2.1 it is straightforward to show that (8) is the true likelihood so that

the consistency of the MLE β̂ for β follows under standard conditions. We use the OPG estimator

of the covariance matrix of β̂, denoted V̂ G = (g0g)−1
¯̄̄
α̂,β̂1,β̂2

, where g is the n × 3 gradient ma-
trix with typical row gt =

∂ lnLt

∂α , ∂ lnLt

∂β1
, ∂ lnLt

∂β2
, and let ĝt (and ĝ) denote this quantity evaluated

at β̂. For LPS, the ‘sandwich estimator’ is identical to the OPG estimator, because the hessian

H = ∂2 lnL
∂β∂β0 is identical to −g0g. Therefore the sandwich estimator V̂ S = V̂ H ĝ0ĝV̂ H = V̂ G where

V̂ H = (−H)−1
¯̄̄
α̂,β̂1,β̂2

.

When the {yt, f1t, f2t} are autocorrelated, we need to use an autocorrelation-consistent estima-
tor of the covariance of β̂. Unlike for the (M)DM test denominator for QPS-forecast encompassing,

we need to allow for general autocorrelation in excess of order h− 1, as the arguments that permit
us to restrict the dependence to h − 1 in that context no longer hold. Put another way, we need
an autocorrelation correction even for h = 1 when the data and forecasts display serial correlation.

The autocorrelation-consistent variance estimator we employ is given by:

V̂E = V̂ GΓ̂V̂ G

12



where:

Γ̂ =
nX

i=1

nX
j=1

|i−j|≤L

w (i−j) ĝ
0
iĝj

with w (i−j) = 1 − |i−j|
1+L and the Newey-West lag truncation L = trun

³
4(n/100)

2
9

´
rather than

L = h − 1 (provided L > h − 1). Under the null, t = β̂2/

r³
V̂E

´
3,3
has a standard normal

distribution in the limit. In practice, we compare the test statistic to a Student t with n−3 degrees
of freedom (n− 2 for the FE(2) and FE(3) versions).

4.3 Parameter estimation uncertainty

When forecasts are derived from models with estimated parameters, as will typically be the case

in practice, it has recently been shown that the asymptotic distributions of tests of predictive

accuracy may be affected: see West (1996), West and McCracken (1998) and West (2001). West

(2001) establishes that forecast encompassing tests of the sort we describe as FE(2) will be affected

by the additional source of uncertainty from estimating the models’ parameters, and West and

McCracken (1998) show that the same is true for the FE(3) tests. West and McCracken (1998)

and West (2001) show by Monte Carlo the influence of estimation uncertainty and illustrate the

properties of tests which make an allowance for estimation uncertainty. Both studies consider linear

models estimated by OLS, and assume a squared-error loss function (corresponding to QPS). In

this section we extend their results to cover the FE(1) tests, and forecasts obtained from estimated

logit models, maintaining the assumption of a QPS loss function. We show that, in contrast to tests

based on FE(2) and FE(3), tests based on FE(1) are unaffected by estimating parameters in linear

models, and by simulation that the same is true of logit/probit models estimated by maximum

likelihood (ML).

Beginning with the linear model setup in West (2001), we suppose forecasts are obtained from

models with regressors X1t and X2t, assumed here to be single variables for convenience:7

yt = X1tθ1 + e1t

yt = X2tθ2 + e2t (9)

When the parameters are known, and when the forecast errors are assumed to have zero mean, the

FE(2) DM test that the first model encompasses the second utilises dt = e1t(e1t − e2t). Under the

7If X1t and X2t are vectors, they may have variables in common, but we require that neither is a subset of the
other. For the nested case, see Clark and McCracken (2001).
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null that E (dt) = 0, the sample average ed = n−1
PR+n

t=R+1 dt scaled as
√
ned/√S is asymptotically

N (0, 1), where S = V (dt), and S is estimated by the sample variance of dt.8 When instead the

forecasts are generated from models with estimated parameters, so d = n−1
PR+n

t=R+1 ê1t (ê1t − ê2t),

with êit = Xit

³
θi − θ̂i

´
+ eit, West and McCracken (1998) show that:

√
n
£
d−E(dt)

¤ a∼ N (0,Ω) (10)

where Ω = S + πDVθD
0.9 Here, Vθ is the asymptotic covariance matrix of θ, where θ = (θ1, θ2)0,

D = E
¡
∂dt
∂θ0
¢
, and π = n/R, as n,R → ∞, π < ∞. We can show that estimation uncertainty

affects tests of predictive accuracy of probability forecasts from logit (or probit) models estimated

by ML in the same general way that it affects OLS estimation of linear models: that is, (10)

holds for estimated logit forecasts. This follows by checking that the assumptions in West (1996)

that give rise to (10) are also satisfied by ML estimation of logit models. That the assumptions

are satisfied follows immediately from West (1996, Assumption 2). In the nonlinear regression

equation, yt = g (Xt, θ
∗) + et, we need to be able to write θ̂ − θ∗ = B (t)H (t), where H (t) is a

sample average of the population orthogonality conditions, and B (t) weights these conditions. We

then require that B (t) a.s→ B and H (t) = t−1
Pt

s=1 hs (θ
∗) with E[hs (θ

∗)] = 0. For the logit model,

g (Xt, θ
∗) = Λ (Xt, θ

∗) = exp
¡
θ∗0Xt

¢ ¡
1 + exp

¡
θ∗0Xt

¢¢−1 is a smooth function of θ (as required).
The model is estimated by ML, so that, as noted by West, H (t) is the score and B (t) the inverse

of the Hessian evaluated at a point θ0, between θ∗ and θ̂. For the logit model:

hs =
h
ys − exp

¡
θ∗0Xs

¢ ¡
1 + exp

¡
θ∗0Xs

¢¢−1i
Xs

and

B (t) =

"
−t−1

tX
s=1

³
exp

¡
θ00Xs

¢ ¡
1 + exp

¡
θ00Xs

¢¢2´
XsX

0
s

#−1
.

In general (that is, for linear models estimated by OLS, and logit/probit models estimated by

ML), for the three tests of forecast encompassing we have the following expressions for dt:

8We follow the convention in West (1996) and subsequent papers of R denoting the estimation sample, and R+1 to
R+n the set of (1-step) forecasts. We consider the ‘fixed’ forecasting scheme, whereby model estimates are obtained
once only on the first R observations and are subsequently held fixed for all the forecasts.

9For ‘rolling’ and ‘recursive’ schemes (a fixed window moved through the data, and an expanding window) there
are additional terms in the expression for Ω, but these are all zero when D = 0.
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FE(1) dt =

½
[yt −E(yt)]− C(yt, f1t)

V (f1t)
[f1t −E(f1t)]

¾½
[f2t −E(f2t)]− C(f1t, f2t)

V (f1t)
[f1t −E(f1t)]

¾
FE(2) dt = {[yt −E(yt)]− [f1t −E(f1t)]} {[f2t −E(f2t)]− [f1t −E(f1t)]} (11)

FE(3) dt = {[yt −E(yt)]− [f1t −E(f1t)]} [f2t −E(f2t)]

The expressions for dt for FE(2) and FE(3) follow immediately, while FE(1) is discussed below.

Although our interest is in the logit models, the linear model set up (9) turns out to be informative.

The results for FE(2) and FE(3) are in the literature we have cited. For the DM test based on

the FE(2) regression, we have D = [−2E(e1tX1t)+E(e2tX1t), E(e1tX2t)] = [E(e2tX1t),E(e1tX2t)],

using E(e1tX1t) = 0. Because D 6= (0, 0), Ω 6= S and parameter estimation affects the asymptotic

distribution of the forecast encompassing test. Similarly for the DM test based on FE(3): in

population terms, dt = [e1t−E(e1t)][f2t−E(f2t)], so thatD = [−θ2C(X1t,X2t), C(e1t,X2t)] 6= (0, 0)
in general.10

The effects of estimation uncertainty on tests based on FE(1) have not been considered to date.

Recall that our DM type test for FE(1) is based on testing E(dt) = 0, where dt = η1tη2t, with η1t

and η2t denoting the errors from the regressions

yt = γ1 + γ2f1t + η1t

f2t = φ1 + φ2f1t + η2t. (12)

Using the population values of the regression parameters we obtain:

η1t = yt −E(yt)− C(yt, f1t)

V (f1t)
[f1t −E(f1t)]

η2t = f2t −E(f2t)− C(f1t, f2t)

V (f1t)
[f1t −E(f1t)] (13)

For forecasts from linear models, e.g., fit = Xitθi, so that E (fit) = E (Xit) θi, the errors η1t and

η2t can be written as functions of moments of the data:

η1t = [yt −E(yt)]− C(yt,X1t)

V (X1t)
[X1t −E(X1t)]

10When f2t is independent of f1t and yt, then it follows immediately from (11) that D = E
(
∂dt

∂θ0
)
= 0 for FE(1)

— FE(3), so that the limiting distributions of the tests are unaffected by estimation uncertainty. However, as noted
earlier, this case is of little interest in practice, with f2t = X2tθ̂2 approaching a constant as the estimation sample R
gets large.
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η2t = θ2

½
[X2t −E(X2t)]− C(X1t,X2t)

V (X1t)
[X1t −E(X1t)]

¾
so that we obtain dt as:

dt = θ2

½
[yt −E(yt)]− C(yt,X1t)

V (X1t)
[X1t −E(X1t)]

¾½
[X2t −E(X2t)]− C(X1t,X2t)

V (X1t)
[X1t −E(X1t)]

¾
.

(14)

Clearly, ∂dt/∂θ1 = 0, and:

E

µ
∂dt
∂θ2

¶
= C(yt,X2t)− C(X1t,X2t)C(yt,X1t)

V (X1t)
(15)

The null hypothesis, β2 = 0, implies that V (f1t)C(yt, f2t)− C(f1t, f2t)C(yt, f1t) = 0. Substituting

for f1t and f2t in this expression, and dividing both sides by θ21θ2 (noting that θ1 6= 0, θ2 6= 0),

we find that the right-hand-side of (15) equals zero. So D = (0, 0) under the null, and estimation

uncertainty is irrelevant asymptotically. This contrasts with the findings using the DM variants of

the FE(2) and FE(3) tests.

Consider now logit model forecasts, fit =
exp(θ0i+θ1iXit)
1+exp(θ0i+θ1iXit)

, where the parameter vector is now

θ = (θ01, θ11, θ02, θ12). In order to determine the effects of estimation uncertainty, we need D =

E
¡
∂dt
∂θ0
¢
for each of the three cases FE(1), FE(2) and FE(3). For FE(1) we have:

∂dt
∂θj1

= [f2t −E(f2t)]
∂ {[yt −E(yt)]− [f1t −E(f1t)]}

∂θj1
, j = 0, 1

∂dt
∂θj2

= {[yt −E(yt)]− [f1t −E(f1t)]} ∂[f2t −E(f2t)]

∂θj2
, j = 0, 1.

and similar expressions can be obtained for FE(2) and FE(3). Unlike in the linear case (where fit =

Xitθi), fit is a non-linear function of θi, and calculating D appears to be analytically intractable,

and so we proceed by Monte Carlo. It also appears that little progress can be made when instead

the loss function is given by LPS, so that the impact of parameter estimation on tests of forecast

encompassing for logit-model forecasts under LPS is also investigated by simulation.

4.4 A Monte Carlo of the small-sample test performance

As part of the overall assessment of the small-sample performance of the tests of forecast encom-

passing based on QPS and LPS, we design experiments that show up the effects of estimation uncer-

tainty, as well as the effects of the size of the sample of available forecasts. Data is generated from

the DGP (equation (4)) for t = 1, . . . , R,R+1, . . . , R+n, and the models are estimated on observa-

tions 1 through R, and forecasts are generated of R+1 to R+n. We use n = {25, 50, 100, 200, 500},
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and values of R such that for each n, n/R = {2, 1, 0.5, 0.25, 0.125, 0.0625, 0}, where the limiting
value of zero corresponds to the case of no parameter estimation uncertainty (using the simulated

population θij values as described in section 2.2), and n/R = 2 indicates twice as many forecasts

as in-sample observations. All simulations were computed using 10,000 Monte Carlo replications.

The parameter values used to simulate data in the Monte Carlo match those underlying the

estimates reported in Table 1. Note that the forecasting models match the logit models of the

first empirical application in section 5, and so the results of the Monte Carlo will serve as a guide

to the properties of the tests in that application, as well as showing up the effects of parameter

estimation uncertainty. The encompassing tests are implemented as described in sections 4.1 and

4.2. The LPS tests we report include an autocorrelation-correction. This is not necessary here as

we consider iid data and h = 1, but we do so as it is prudent in practical applications to apply such

a correction.

Table 2 presents the Monte Carlo estimates of size for 1-sided 5% level QPS-MDM and LPS-t

tests, for the three test approaches (FE(1), FE(2) and FE(3)), using the DGP given by (4) with

δ3 = 0 and ρX1,X2
= 0.5. The results for the probability forecast setup match the analytical findings

for the linear-model case, in that the QPS and LPS tests based on FE(1) are immune to parameter

estimation effects, while the tests based on FE(2) and FE(3) are not. For FE(1), the empirical

sizes depend on n, and the LPS-t test is clearly over-sized for the smaller values of n, but for a

given n are largely invariant to changes in n/R (that is, across columns). For FE(2) and FE(3)

the empirical sizes approach the nominal 5% as n gets large and n/R → 0, but are over-sized for

larger n/R. The actual sizes are approximately 14% for FE(2) when n = 2R, for large n, and

approximately 8%− 10% for FE(3). The limiting case of no estimation uncertainty is recorded in

the final column. For both the QPS and LPS tests, tests based on FE(2) display under-sizing in

small samples, while those based on FE(3) exhibit over-sizing. Qualitatively similar results were

obtained for the mis-specified case (the DGP given by (4) with δ3 = 1, µZ = 0, ρX1,Z = ρX2,Z = 0)

and for the biased foreast case (the DGP given by (4) with δ3 = 1, µZ = 1, ρX1,Z = ρX2,Z = 0).
11

Table 3 reports empirical sizes for the same DGPs but using non-model-based forecasts. Here,

the additional autocorrelation correction is applied to the QPS-MDM tests, as described in section

4.1. The FE(1) tests are correctly sized in large samples for both QPS and LPS, and are somewhat

over-sized for small n. When the non-model-based forecasts are correctly specified, i.e., when

δ3 = 0, the FE(2) and FE(3) tests are also correctly sized for large n, as would be expected given

the population results of Table 1. However, for large n when δ3 = 1, the FE(2) tests are over-sized

and the FE(3) tests are under-sized. This is again consistent with our earlier results, since, in

11These results are available from the authors on request.
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population, β02 > 0 and β002 < 0 for non-model-based forecasts when δ3 = 1, and the size results

reported pertain to 1-sided tests. Size distortions also persist for the FE(2) and FE(3) tests in

small samples.

Finally, Table 4 presents estimated powers of the tests for the case δ3 = 0, ρX1,X2
= 0.5, for two

alternative hypothesis DGPs, given by δ1 = 0.5, δ2 = 0.5, and δ1 = 0, δ2 = 1. We abstract from the

issue of parameter estimation uncertainty for the purposes of this power comparison. The power of

all the tests is increasing in n, and higher for the δ1 = 0, δ2 = 1 DGP than the δ1 = 0.5, δ2 = 0.5

DGP, as would be expected. For the model-based forecasts, the FE(1) based tests have generally

the higher power compared to FE(2) and FE(3), under both QPS and LPS. The power advantages

of FE(1) over both FE(2) and FE(3) are often substantial, while on the relatively few occasions

where FE(1) is outperformed, the power losses are slight. For the non-model-based forecasts, FE(3)

is always considerably inferior in terms of power compared to the other two approaches. Neither

FE(1) nor FE(2) dominates the other, and although FE(2) has greater power than FE(1) in many

cases, the differences in power are not great.

Overall, tests based on FE(1) appear to have the most desirable finite sample properties. They

are robust to the effects of parameter estimation uncertainty, have good finite sample size and

power relative to approaches based on FE(2) and FE(3), and are more reliable when the forecasts

are non-model-based. We therefore recommend that the QPS-MDM and LPS-t tests based on the

FE(1) approach should be used in practical application.

5 Empirical illustrations

Our first empirical application of the QPS and LPS probability forecast encompassing tests is

to the evaluation of rival model-based forecast probabilities of recession. The second assesses

the accuracy of individual survey respondents’ probability forecasts relative to the ‘consensus’ or

average probability forecasts of the phenomena of interest.

5.1 Evaluating model-based US recession forecast probabilities

The forecast encompassing tests are used to assess the relative information value of two leading

indicators for post War US recessions. Forecasts of the probabilities of recession are generated from

logit models that use, respectively, interest rate spreads, and some transformation of the oil price.

Recessionary periods are those defined by the NBER’s Business Cycle Dating Committee12. The

motivation for focusing on spreads and oil prices is as follows. The usefulness of financial variables

12See http://www.nber.org/cycles.html.
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for predicting US recessions has been established by Estrella and Mishkin (1998), Anderson and

Vahid (2001) and Hamilton and Kim (2000), inter alia. The slope of the yield curve tends to

dominate other financial variables as a predictor of recessions, in that the yield curve is often

the single best choice, and the incremental benefit of including other financial variables is often

small. Chauvet and Potter (2002) allow for structural breaks in probit models that use the yield

curve to predict recessions, but we use simple constant-parameter models as our aim is simply

to illustrate the use of the forecast encompassing tests. Recent research also suggests a role for

oil prices as an indicator for output growth (e.g., Hamilton (1983), Mork (1989), Hooker (1996),

Hamilton (1996), Carruth, Hooker and Oswald (1998) and Hamilton (2000)), and by association,

for recessions, although there is some debate over the form of the relationship. We follow Lee, Ni

and Ratti (1995) and Hamilton (1996) and use the net increase in oil prices over the previous year,

and downweight increases in oil prices at times of relatively high volatility.

We use quarterly spread and oil price data for the period 1960:1—1999:4.13 We divide the

period into an in-sample estimation period (1960:1—1979:4) and a forecast period (1980:1—1999:4).

Preliminary work suggested that the logit models of the recession indicator on the spread (and an

intercept) appeared to work best if the spread is lagged three or four periods, and we chose a three

period lag. For the oil price model, the recession indicator was regressed on the net increase lagged

two periods. The in-sample fits of the two logit regression models are summarized in Table 5. The

superior individual performance of the spread is apparent from the QPS and LPS, although from the

p-values of the pseudo-R2 statistics for both models it is evident that both leading indicators have

significant in-sample predictive power for recessions.14 It is therefore of interest to assess whether

the oil price-logit model forecast probabilities contain useful information in terms of delivering a

statistically-significant reduction in QPS and/or LPS when used in combination with the yield

curve predicted probabilities.

Table 6 reports results using the two recommended forecast encompassing tests–the FE(1)

based QPS-MDM test, and the FE(1) based autocorrelation-consistent LPS-t test (given that the

13The spread data is the 10-year treasury constant maturity rate less the 3-month treasury bill at secondary
market rate. These are popular choices of long and short rates. Quarterly data is obtained from the monthly data
by averaging. The data were taken from the FRED website http://research.stlouisfed.org/fred2. The oil price
data are available from James Hamilton’s web page http://weber.ucsd.edu/~jhamilto.
14Various R2 measures have been proposed in the literature for discrete choice models. We follow Estrella and

Mishkin (1998) and report a measure defined as:

R
2 = 1−

(
llu

llr

)−( 2
n
llr)

where llu and llr are the unrestricted maximised value of log likelihood, and the value imposing the restriction that
the slope coefficients are zero. The p-value is of the standard likelihood ratio test compared to a χ2 distribution with
one degree of freedom, as there is a single slope parameter.
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data is autocorrelated). The forecast probabilities underlying the results are 1-step ahead forecasts

for 1980:1—1999:4 (n = 80), generated using the coefficient estimates for 1960:1—1979:4. The tests

are conducted using a 1-sided alternative, and the corresponding p-values are reported in the table.

The null that the oil price-model forecasts encompass the spread-model forecasts is clearly rejected.

This is consistent with the superior in-sample performance of the spread-model probability forecasts.

This holds regardless of whether accuracy is assessed by QPS or LPS; for LPS the null is rejected

at the 1% level. The more interesting hypothesis is whether the spread-model forecasts encompass

the oil-price model forecasts. The null of encompassing in this direction is not rejected at the 5%

level for either QPS or LPS. The p-value for the LPS-t test is 0.060, but we have already established

that it is likely to be over-sized in small samples. Consequently, we arrive at the conclusion that

encompassing holds in one direction only, with the spread-model forecasts encompassing the oil-

price-model forecasts.

5.2 Evaluation of survey-based expectations

The tests of forecast encompassing are also illustated using the probabilities of output decline

recorded by the respondents to the Survey of Professional Forecasters (SPF).15 Amongst other

things, respondents report the probabilities they attach to declines in real output in the current

quarter and in each of the following four quarters. We focus on the next quarter and the four-

quarter ahead forecasts, which correspond to h = 2 and h = 5 step-ahead forecasts. The individual

forecasts will be compared to an average or ‘consensus’ forecast of the individual assessments. For

h = 2, this average forecast corresponds to the ‘anxious index’ reported by the SPF. The question

we address is whether the average indices contain all the useful information in the individuals’

probability assessments: do the average indices encompass the individual forecasts? We calculate

tests in a pairwise fashion for the anxiety indices against each of the individuals’ forecasts in turn.

Comparing each individual to the average of those who respond has the advantage of allowing the

tests to employ all the occasions on which a particular individual responded.

The binary series of whether output declines in quarter t, {yt}, is calculated from the series of

quarterly real-time data sets for real output maintained by the Federal Reserve Bank of Philadelphia

(see Croushore and Stark (2001)). Consider a respondent to the 1995 first-quarter SPF survey who

reports forecast probabilities of a decline in 95:Q2 relative to 95:Q1 (our h = 2 forecast), and of a

decline in 96:Q1 relative to 95:Q4 (a h = 5 forecast). We determine whether there was a decline

15The SPF is a quarterly survey of macroeconomic forecasters of the US economy that began in 1968 as the ASA-
NBER survey, administered by the American Statistical Association and the National Bureau of Economic Research,
and since June 1990 has been run by the Philadelphia Fed, under its current name. Detailed information on the
survey is available at the URL http://www.phil.frb.org/econ/spf.
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in 95:Q2 relative to 95:Q1 based on the values of real output in these two quarters in the August

1995 real-time data set (which contains the advance release figures for 95:Q2), and we use the May

1996 real-time data set to evaluate whether there was a decline in 96:Q1. In this way, declines are

calculated based on the first-available figures. This seems preferable to using later vintage series

which will typically contain revisions and definitional changes that were largely unpredictable at

the time (see, e.g., Koenig, Dolmas and Piger (2003), and Faust, Rogers and Wright (2005, 2003)).

Table 7 records p-values of the FE(1) forecast encompassing tests of the null that the individual

forecast encompasses the average, and of encompassing in the reverse direction. As we have no

knowledge of how the forecasts are formed, the test statistics for corrected for general autocorre-

lation, as described earlier. Results are presented for some individuals who made at least sixty 2-

and 5-step forecasts. Note that the historical time periods for which we have observations will vary

from individual to individual, and that as the averages were constructed from all available forecasts

at each time point and horizon, the number of constituent forecasts differ over time period, horizon

and individual.

For h = 2, for all but the first individual, we reject the null that the individuals’ forecasts

encompass the consensus for both QPS and LPS (at a 10% significance level). Tests that the

average encompasses the individual forecasts reject in only one instance for both QPS and LPS

(the same individual). We conclude that for h = 2 the equal-weighted linear combinations of the

individuals’ forecasts (such as the ‘anxiety index’) convey all the useful information in the individual

forecasts with one exception. For h = 5 the QPS and LPS tests indicate that encompassing holds in

both directions: the respondents encompass the average and are encompassed by the average. This

is consistent with the individuals’ forecasts and the average forecast containing similar information.

The last rows of each panel of table 7 report the results of encompassing tests of the average

SPF forecasts against the logit-model forecasts using the spread as a leading indicator, as in the

previous section. To ensure a fair comparison with the survey predictions, the logit-model forecasts

are generated recursively using at each point in time the vintage of data that was available to the

respondents to the corresponding survey. For h = 2, both the QPS and LPS tests indicate that

encompassing is rejected in both directions: both the survey and model-based forecasts contain

useful additional information not contained in the other. For h = 5 there is clear evidence that the

model-based forecasts dominate: they encompass, but are not encompassed by, the survey-based

forecasts. This is consistent with Estrella and Mishkin (1998) who find that the yield curve has

good predictive power at more than two quarters ahead.
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6 Conclusions

We have investigated the use of tests of forecast encompassing for evaluating probability forecasts.

Probability forecasts are commonly evaluated using both quadratic and logarithmic scoring rules

(QPS and LPS), and we have considered tests of forecast encompassing based on both. The use of

QPS leads to encompassing tests based on OLS estimation of the encompassing regression, as in

the standard point forecast evaluation literature. For LPS we use maximum likelihood. We derive

tests which have limiting standard normal distributions under the null of encompassing for both

loss functions.

In the literature on forecast encompassing for standard (i.e., not probability) point forecasts,

tests are often based on one of a number of regression approaches which differ in terms of the

restrictions imposed in the maintained model. We show that the choice of which of these approaches

to use may matter for at least two reasons. Firstly, we are able to establish analytically that, in

the standard setup, the limiting distribution of the test based on the more general regression (that

advocated by Fair and Shiller (1990)) is unaffected by parameter estimation uncertainty, although

this is not the case for tests based on the two more restricted regressions which have been the focus of

the recent literature (see, e.g., West and McCracken (1998) and West (2001) on the more restricted

regressions FE(3) and FE(2)). Analytical results for the (non-linear) probability forecasting case

are difficult to obtain, and instead we rely on a Monte Carlo study to show that the same is true

for probability forecasts for tests based on both QPS and LPS.

Secondly, tests based on the more restricted forms of the encompassing regression (as frequently

used in the point forecast context) may reject encompassing when encompassing holds. This will

occur when the implicit assumptions underpinning the more restricted regressions do not hold.

This may occur for forecasts which do not make an efficient use of the information on which they

are based, as may be the case for some non-model-based forecasts.

The tests are illustrated with two empirical applications. The first is typical of the literature

on assessing the usefulness of various leading indicators for predicting the probabilities of post War

US recessions. Logit models are used to derive predicted recession probabilities using two leading

indicators of recession–the yield curve and the oil price. We conclude that encompassing holds in

one direction only, with forecasts from the model with the yield curve encompassing predictions

from the oil price model. The second empirical illustration compared individual SPF respondents’

probability assessments of declines in output against the ‘consensus’, to see whether the implicit

equal-weighting of the consensus could be improved upon. Comparing the consensus and yield-

curve model forecasts, we also found that there was useful incremental information in the latter at

longer horizons.
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Appendix 1. Moments of forecasts for probability forecast DGP

In this Appendix we derive the moments of {yt, f1t, f2t} for the data generating process given by
equation (4) in section 2.1. The expressions for the moments can then be evaluated using numerical

methods to derive population values of the parameters in the QPS encompassing regressions.

Firstly, consider the unbiased forecast case where µZ = 0. Recall that the forecasts are given

by:

f1t =
exp(θ01 + θ11X1t)

1 + exp(θ01 + θ11X1t)
, f2t =

exp(θ02 + θ12X2t)

1 + exp(θ02 + θ12X2t)

where θij can be interpreted as the population parameters associated with logit regressions of yt

on a constant and X1t, and a constant and X2t, respectively. Then, for i = 1, 2:

E(fi) =

Z ∞

−∞
exp(θ0i + θ1iXi)

1 + exp(θ0i + θ1iXi)
f(Xi)dXi

=

Z ∞

−∞
exp(θ0i + θ1iXi)

1 + exp(θ0i + θ1iXi)

1√
2π
exp

µ
−1
2
X2

i

¶
dXi

=
1√
2π

Z ∞

−∞

exp(θ0i + θ1iXi − 1
2X

2
i )

1 + exp(θ0i + θ1iXi)
dXi

E(f2i ) =

Z ∞

−∞

·
exp(θ0i + θ1iXi)

1 + exp(θ0i + θ1iXi)

¸2
f(Xi)dXi

=
1√
2π

Z ∞

−∞

exp(2θ0i + 2θ1iXi − 1
2X

2
i )

[1 + exp(θ0i + θ1iXi)]
2 dXi

E(f1f2) =

Z ∞

−∞

Z ∞

−∞
exp(θ01 + θ11X1)

1 + exp(θ01 + θ11X1)

exp(θ02 + θ12X2)

1 + exp(θ02 + θ12X2)
f(X1,X2)∂X1∂X2

=
1

2π
p|Ω2×2|

Z ∞

−∞

Z ∞

−∞
exp(θ01 + θ02 + θ11X1 + θ12X2)

[1 + exp(θ01 + θ11X1)][1 + exp(θ02 + θ12X2)]

× exp
µ
−1
2
x02×1Ω

−1
2×2x2×1

¶
∂X1∂X2

where:

x2×1 =

"
X1

X2

#
, Ω2×2 =

"
1 ρX1,X2

ρX1,X2
1

#

23



so that, for example, when ρX1,X2
= 0.5:

E(f1f2) =
1

2π
√
0.75

∞Z
−∞

∞Z
−∞

exp(θ01 + θ02 + θ11X1 + θ12X2 − 2
3X

2
1 − 2

3X
2
2 +

2
3X1X2)

[1 + exp(θ01 + θ11X1)] [1 + exp(θ02 + θ12X2)]
∂X1∂X2

In the specification for yt, consider the potentially encompassing situation where δ2 = 0. Also,

let δ0 = 0 and δ1 = 1. Then:

E(yt) =

∞Z
−∞

∞Z
−∞

∞Z
−∞

1Z
0

1

µ
exp(X1 + δ3Z)

1 + exp(X1 + δ3Z)
> v

¶
f(X1,X2, Z)∂v∂X1∂X2∂Z

=

∞Z
−∞

∞Z
−∞

∞Z
−∞

Z exp(X1+δ3Z)
1+exp(X1+δ3Z)

0
1.∂vf(X1,X2, Z)∂X1∂X2∂Z

=

∞Z
−∞

∞Z
−∞

∞Z
−∞

exp(X1 + δ3Z)

1 + exp(X1 + δ3Z)
f(X1,X2, Z)∂X1∂X2∂Z

=
1

(2π)3/2
p|Ω|

∞Z
−∞

∞Z
−∞

∞Z
−∞

exp(X1 + δ3Z)

1 + exp(X1 + δ3Z)
exp

µ
−1
2
x0Ω−1x

¶
∂X1∂X2∂Z

where:

x =


X1

X2

Z

 , Ω =


1 ρX1,X2

ρX1,Z

ρX1,X2
1 ρX2,Z

ρX1,Z ρX2,Z 1


In addition, we obtain for E(ytf1t):

∞Z
−∞

∞Z
−∞

∞Z
−∞

1Z
0

1

µ
exp(X1 + δ3Z)

1 + exp(X1 + δ3Z)
> v

¶
exp(θ01 + θ11X1)

1 + exp(θ01 + θ11X1)
f(X1,X2, Z)∂v∂X1∂X2∂Z

=

∞Z
−∞

∞Z
−∞

∞Z
−∞

exp(X1 + δ3Z)

1 + exp(X1 + δ3Z)

exp(θ01 + θ11X1)

1 + exp(θ01 + θ11X1)
f(X1,X2, Z)∂X1∂X2∂Z

=
1

(2π)3/2
p|Ω|

∞Z
−∞

∞Z
−∞

∞Z
−∞

exp(θ01 + (1 + θ11)X1 + δ3Z)

[1 + exp(X1 + δ3Z)][1 + exp(θ01 + θ11X1)]
exp

µ
−1
2
x0Ω−1x

¶
∂X1∂X2∂Z
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and for E(ytf2t):

∞Z
−∞

∞Z
−∞

∞Z
−∞

1Z
0

1

µ
exp(X1 + δ3Z)

1 + exp(X1 + δ3Z)
> v

¶
exp(θ02 + θ12X2)

1 + exp(θ02 + θ12X2)
f(X1,X2, Z)∂v∂X1∂X2∂Z

=
1

(2π)3/2
p|Ω|

∞Z
−∞

∞Z
−∞

∞Z
−∞

exp(θ02 +X1 + θ12X2 + δ3Z)

[1 + exp(X1 + δ3Z)][1 + exp(θ02 + θ12X2)]
exp

µ
−1
2
x0Ω−1x

¶
∂X1∂X2∂Z

A special case exists where δ3 = 0 so that Zt does enter the DGP. In this case we have:

E(yt) =

Z ∞

−∞

Z ∞

−∞
exp(X1)

1 + exp(X1)
f(X1,X2)∂X1∂X2

=
1

2π
p|Ω2×2|

Z ∞

−∞

Z ∞

−∞
exp(X1)

1 + exp(X1)
exp

µ
−1
2
x02×1Ω

−1
2×2x2×1

¶
∂X1∂X2

E(ytf1t) =
1

2π
p|Ω2×2|

∞Z
−∞

∞Z
−∞

exp(θ01 + (1 + θ11)X1)

[1 + exp(X1)][1 + exp(θ01 + θ11X1)]
exp

µ
−1
2
x02×1Ω

−1
2×2x2×1

¶
∂X1∂X2

E(ytf2t) =
1

2π
p|Ω2×2|

∞Z
−∞

∞Z
−∞

exp(θ02 +X1 + θ12X2)

[1 + exp(X1)][1 + exp(θ02 + θ12X2)]
exp

µ
−1
2
x02×1Ω

−1
2×2x2×1

¶
∂X1∂X2

Consider now the biased forecast case where µZ = 1. The forecasts are given by:

f1t =
exp(θ11X1t)

1 + exp(θ11X1t)
, f2t =

exp(θ12X2t)

1 + exp(θ12X2t)

with the θij being the population parameters associated with logit regressions of yt on X1t and X2t

respectively, without a constant term. We have, for i = 1, 2:

E(fi) =

Z ∞

−∞
exp(θ1iXi)

1 + exp(θ1iXi)
f(Xi)dXi

=
1√
2π

Z ∞

−∞

exp(θ1iX1 − 1
2X

2
i )

1 + exp(θ1iXi)
dXi

E(f2i ) =

Z ∞

−∞

·
exp(θ1iXi)

1 + exp(θ1iXi)

¸2
f(Xi)dXi

=
1√
2π

Z ∞

−∞

exp(2θ1iXi − 1
2X

2
i )

[1 + exp(θ1iXi)]
2 dXi
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E(f1f2) =

∞Z
−∞

∞Z
−∞

exp(θ11X1)

1 + exp(θ11X1)

exp(θ12X2)

1 + exp(θ12X2)
f(X1,X2)∂X1∂X2

=
1

2π
p|Ω2×2|

∞Z
−∞

∞Z
−∞

exp(θ11X1 + θ12X2)

[1 + exp(θ11X1)][1 + exp(θ12X2)]
exp

µ
−1
2
x02×1Ω

−1
2×2x2×1

¶
∂X1∂X2

E(yt) =

∞Z
−∞

∞Z
−∞

∞Z
−∞

1Z
0

1

µ
exp(X1 + δ3Z)

1 + exp(X1 + δ3Z)
> v

¶
f(X1,X2, Z)∂v∂X1∂X2∂Z

=
1

(2π)3/2
p|Ω|

∞Z
−∞

∞Z
−∞

∞Z
−∞

exp(X1 + δ3Z)

1 + exp(X1 + δ3Z)
exp

µ
−1
2
(x− µ)0Ω−1(x− µ)

¶
∂X1∂X2∂Z.

For E(ytf1t) and E(ytf2t), respectively:

∞Z
−∞

∞Z
−∞

∞Z
−∞

1Z
0

1

µ
exp(X1 + δ3Z)

1 + exp(X1 + δ3Z)
> v

¶
exp(θ11X1)

1 + exp(θ11X1)
f(X1,X2, Z)∂v∂X1∂X2∂Z

=
1

(2π)3/2
p|Ω|

∞Z
−∞

∞Z
−∞

∞Z
−∞

exp((1 + θ11)X1 + δ3Z)

[1 + exp(X1 + δ3Z)][1 + exp(θ11X1)]
exp

µ
−1
2
(x− µ)0Ω−1(x− µ)

¶
∂X1∂X2∂Z

∞Z
−∞

∞Z
−∞

∞Z
−∞

1Z
0

1

µ
exp(X1 + δ3Z)

1 + exp(X1 + δ3Z)
> v

¶
exp(θ12X2)

1 + exp(θ12X2)
f(X1,X2, Z)∂v∂X1∂X2∂Z

=
1

(2π)3/2
p|Ω|

∞Z
−∞

∞Z
−∞

∞Z
−∞

exp(X1 + θ12X2 + δ3Z)

[1 + exp(X1 + δ3Z)][1 + exp(θ12X2)]
exp

µ
−1
2
(x− µ)0Ω−1(x− µ)

¶
∂X1∂X2∂Z

where µ = [0 0 1]0.

Appendix 2. Lack of encompassing when X1 and Z correlated

We consider a linear version of our setup, whereby the DGP is given by:

yt = δ0 + δ1X1t + δ2X2t + δ3Zt + εt,

with δ2 = 0, to allow the possibility that f1 encompasses f2. X1t, X2t and Zt are generated as

in equation (4), but with ρX2,Z = 0, so X2 is uncorrelated with the omitted variable, Z, and
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ρX1,X2
6= 0. Consider forecasts

f1t = θ̂01 + θ̂1X1t

f2t = θ̂02 + θ̂2X2t,

obtained from the linear regressions yt = θ01+ θ1X1t+u1t and yt = θ02+ θ2X2t+u2t, respectively.

In the limit the forecasts will be given by:

f1t
p→ C(yt,X1t)

V (X1t)
X1t =

·
δ1 + δ3

C(X1t, Zt)

V (X1t)

¸
X1t

f2t
p→ C(yt,X2t)

V (X2t)
X2t =

·
δ1

C(X1t,X2t)

V (X2t)

¸
X2t.

After some algebra, we find that the population value of β2 in the encompassing regression is:

β2 =
−δ3C(X1t, Zt)V (X2t)

δ1 [V (X1t)V (X2t)−C(X1t,X2t)2]
=
−δ3λ1
δ1

where λ1 is a population coefficient from the regression:

Zt = λ0 + λ1X1t + λ2X2t + ηt.

For β2 = 0 we require that λ1 = 0, so that X1 and Z are uncorrelated, or that the model with X1

is correctly specified, i.e., δ3 = 0.

References

Anderson, H. M., and Vahid, F. (2001). Predicting the probability of a recession with nonlinear

autoregressive leading indicator models. Macroeconomic Dynamics, 5, 482—505.

Birchenhall, C. R., Jessen, H., Osborn, D., and Simpson, P. (1999). Predicting U.S. business cycle

regimes. Journal of Business & Economic statistics, 17, No. 3, (July), 313—323.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather

Review, 75, 1—3.

Carruth, A. A., Hooker, M. A., and Oswald, A. J. (1998). Unemployment equilibria and input

prices: Theory and evidence from the United States. Review of Economics and Statistics, 80,

621—628.

Chauvet, C., and Potter, S. (2002). Predicting a recession: evidence from the yield curve in the

presence of structural breaks. Economic Letters, 77, 245—253.

Chong, Y. Y., and Hendry, D. F. (1986). Econometric evaluation of linear macro-economic models.

27



Review of Economic Studies, 53, 671—690. Reprinted in Granger, C. W. J. (ed.) (1990),

Modelling Economic Series. Oxford: Clarendon Press.

Clark, T. E., and McCracken, M. W. (2001). Tests of equal forecast accuracy and encompassing

for nested models. Journal of Econometrics, 105, 85—110.

Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International

Journal of Forecasting, 5, 559—583. Reprinted in Mills, T. C. (ed.) (1999), Economic Fore-

casting. The International Library of Critical Writings in Economics. Cheltenham: Edward

Elgar.

Clemen, R. T., and Winkler, R. L. (1999). Combining probability distributions from experts in

risk analysis. Risk Analysis, 19, 187—203.

Croushore, D., and Stark, T. (2001). A real-time data set for macroeconomists. Journal of Econo-

metrics, 105(November), 111—130.

Dawid, A. P. (1986). Probability forecasting. In Kotz, S., Johnson, N. L., and Read, C. B. (eds.),

Encyclopedia of Statistical Sciences, vol. 7, pp. 210—218: John Wiley and Sons.

Diebold, F. X., and Lopez, J. A. (1996). Forecast evaluation and combination. In Maddala, G. S.,

and Rao, C. R. (eds.), Handbook of Statistics, Vol. 14, pp. 241—268: Amsterdam: North—

Holland.

Diebold, F. X., and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business

and Economic Statistics, 13, 253—263. Reprinted in Mills, T. C. (ed.) (1999), Economic Fore-

casting. The International Library of Critical Writings in Economics. Cheltenham: Edward

Elgar.

Diebold, F. X., and Rudebusch, G. D. (1989). Scoring the leading indicators. Journal of Business,

62, 369—391.

Ericsson, N. R. (1993). Comment on ‘On the limitations of comparing mean squared forecast

errors’, by M.P. Clements and D.F. Hendry. Journal of Forecasting, 12, 644—651.

Estrella, A., and Mishkin, F. S. (1998). Predicting US recessions: Financial variables as leading

indicators. Review of Economics and Statistics, 80, 45—61.

Fair, R. C., and Shiller, R. J. (1990). Comparing information in forecasts from econometric models.

American Economic Review, 80, 39—50.

Faust, J., Rogers, J. H., and Wright, J. H. (2003). Exchange rate forecasting: The errors we’ve

really made. Journal of International Economic Review, 60, 35—39.

Faust, J., Rogers, J. H., and Wright, J. H. (2005). News and noise in G-7 GDP announcements.

Journal of Money, Credit and Banking, 37 (3), 403—417.

28



Genest, C., and Zidek, J. V. (1986). Combining probability distributions: A critique and an

annotated bibliography. Statistical Science, 1, 114—148.

Good, I. (1952). Rational decisions. Journal of the Royal Statistical Society. Series B, 14 (No.

1), 107—114.

Granger, C. W. J., and Newbold, P. (1973). Some comments on the evaluation of economic forecasts.

Applied Economics, 5, 35—47. Reprinted in Mills, T. C. (ed.) (1999), Economic Forecasting.

The International Library of Critical Writings in Economics. Cheltenham: Edward Elgar.

Granger, C. W. J., and Pesaran, M. H. (2000). Economic and statistical measures of forecast

accuracy. Journal of Forecasting, 19, 537—560.

Hamilton, J. D. (1983). Oil and the Macroeconomy since World War II. Journal of Political

Economy, 91, 228—248.

Hamilton, J. D. (1996). This is what happened to the oil price-macroeconomy relationship. Journal

of Monetary Economics, 38, 215—220.

Hamilton, J. D. (2000). What is an Oil Shock?. Journal of Econometrics, 113, 363—398.

Hamilton, J. D., and Kim, D. H. (2000). A re-examination of the predictability of economic activity

using the yield spread. NBER Working Papers, 7954.

Harvey, D. I., Leybourne, S., and Newbold, P. (1998). Tests for forecast encompassing. Journal of

Business and Economic Statistics, 16, 254—259. Reprinted in Mills, T. C. (ed.) (1999), Eco-

nomic Forecasting. The International Library of Critical Writings in Economics. Cheltenham:

Edward Elgar.

Hooker, M. A. (1996). Whatever happened to the oil price-macroeconomy relationship?. Journal

of Monetary Economics, 38, 195—213.

Kamstra, M., and Kennedy, P. (1998). Combining qualitative forecasts using logit. International

Journal of Forecasting, 14, 83—93.

Koenig, E. F., Dolmas, S., and Piger, J. (2003). The use and abuse of real-time data in economic

forecasting. The Review of Economics and Statistics, 85(3), 618—628.

Lee, K., Ni, S., and Ratti, A. (1995). Oil shocks and the macroeconomy: The role of price variability.

Energy Journal, 16, 39—56.

Mork, K. A. (1989). Oil and the Macroeconomy when prices go up and down: An extension of

Hamilton’s results. Journal of Political Economy, 97, 740—744.

Nelson, C. R. (1972). The prediction performance of the FRB-MIT-PENN model of the US econ-

omy. American Economic Review, 62, 902—917. Reprinted in Mills, T. C. (ed.) (1999),

Economic Forecasting. The International Library of Critical Writings in Economics. Chel-

29



tenham: Edward Elgar.

Newbold, P., and Harvey, D. I. (2002). Forecasting combination and encompassing. In Clements,

M. P., and Hendry, D. F. (eds.), A Companion to Economic Forecasting, pp. 268—283: Oxford:

Blackwells.

West, K. D. (1996). Asymptotic inference about predictive ability. Econometrica, 64, 1067—1084.

West, K. D. (2001). Tests for forecast encompassing when forecasts depend on estimated regression

parameters. Journal of Business and Economic Statistics, 19, 29—33.

West, K. D. (2006). Forecasting evaluation. In Elliott, G., Granger, C., and Timmermann, A.

(eds.), Handbook of Economic Forecasting, Volume 1. Handbook of Economics 24, pp. 99—

134: Elsevier, Horth-Holland.

West, K. D., and McCracken, M. W. (1998). Regression-based tests of predictive ability. Interna-

tional Economic Review, 39, 817—840.

Winkler, R. L. (1996). Scoring rules and the evaluation of probabilities (with discussion). Test, 5

(No. 1), 1—60.

30



Table 1. Population values of FE(1), FE(2) and FE(3) optimal forecast combination parameters

Panel A. QPS

δ3 µZ ρX1,X2
ρX1,Z

ρX2,Z
α β1 β2 α0 β02 α00 β002

Unbiased model-based forecasts

0 - 0.2 - - 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.5 - - 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.8 - - 0.00 1.00 0.00 0.00 0.00 0.00 0.00

1 0 0.5 0.0 0.0 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.0 0.5 −0.17 0.67 0.67 0.00 0.50 −0.25 0.50

−0.5 0.0 −0.17 0.67 0.67 0.00 0.50 −0.25 0.50
0.5 0.0 0.28 1.11 −0.66 0.00 −0.07 0.25 −0.50
0.5 0.5 −0.11 0.89 0.33 0.00 0.14 −0.13 0.25

Biased model-based forecasts

1 1 0.5 0.0 0.0 0.18 1.00 0.00 0.18 0.00 0.18 0.00
0.0 0.5 0.01 0.67 0.67 0.18 0.50 −0.08 0.50

−0.5 0.0 0.03 0.67 0.67 0.20 0.50 −0.05 0.50
0.5 0.0 0.44 1.10 −0.66 0.16 −0.07 0.41 −0.50
0.5 0.5 0.05 0.89 0.33 0.16 0.14 0.03 0.25

Non-model-based forecasts

0 - 0.5 - - 0.00 1.00 0.00 0.00 0.00 0.00 0.00
1 0 0.5 0.0 0.0 0.06 0.87 0.00 0.00 0.06 0.03 −0.06
1 1 0.5 0.0 0.0 0.28 0.78 0.00 0.18 0.11 0.23 −0.11

Panel B. LPS

δ3 µZ ρX1,X2
ρX1,Z

ρX2,Z
α β1 β2 α0 β02 α00 β002

Unbiased model-based forecasts

0 - 0.2 - - 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.5 - - 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.8 - - 0.00 1.00 0.00 0.00 0.00 0.00 0.00

1 0 0.5 0.0 0.0 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.0 0.5 −0.17 0.67 0.67 0.00 0.50 −0.25 0.50

−0.5 0.0 −0.17 0.67 0.67 0.00 0.50 −0.25 0.50
0.5 0.0 0.27 1.11 −0.65 0.00 −0.05 0.25 −0.50
0.5 0.5 −0.11 0.89 0.33 0.00 0.10 −0.13 0.25

Biased model-based forecasts

1 1 0.5 0.0 0.0 0.17 1.00 0.00 0.17 0.01 0.17 0.00
0.0 0.5 0.01 0.67 0.67 0.18 0.50 −0.08 0.51

−0.5 0.0 0.03 0.67 0.67 0.20 0.50 −0.05 0.50
0.5 0.0 0.43 1.11 −0.66 0.16 −0.20 0.41 −0.50
0.5 0.5 0.04 0.89 0.34 0.17 0.13 0.03 0.26

Non-model-based forecasts

0 - 0.5 - - 0.00 1.00 0.00 0.00 0.00 0.00 0.00
1 0 0.5 0.0 0.0 0.06 0.87 0.00 0.00 0.07 0.03 −0.06
1 1 0.5 0.0 0.0 0.28 0.78 0.00 0.17 0.11 0.23 −0.10
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Table 2. Empirical sizes of 1-sided nominal 0.05-level forecast encompassing tests with
parameter estimation uncertainty: unbiased model-based forecasts, δ3 = 0, ρX1,X2

= 0.5

Panel A. QPS-MDM

n/R

n 2 1 0.5 0.25 0.125 0.0625 0

FE(1) 25 0.059 0.054 0.057 0.055 0.057 0.055 0.053
50 0.057 0.053 0.049 0.053 0.054 0.053 0.054
100 0.053 0.051 0.052 0.050 0.052 0.050 0.050
200 0.054 0.051 0.050 0.052 0.047 0.048 0.050
500 0.050 0.051 0.048 0.050 0.049 0.049 0.051

FE(2) 25 0.165 0.087 0.051 0.039 0.034 0.031 0.027
50 0.145 0.082 0.056 0.045 0.037 0.034 0.030
100 0.136 0.088 0.064 0.052 0.042 0.041 0.035
200 0.138 0.087 0.071 0.057 0.044 0.043 0.039
500 0.135 0.103 0.071 0.060 0.047 0.045 0.040

FE(3) 25 0.075 0.071 0.076 0.075 0.075 0.076 0.076
50 0.075 0.075 0.069 0.070 0.072 0.070 0.073
100 0.078 0.074 0.069 0.067 0.065 0.061 0.062
200 0.087 0.077 0.068 0.060 0.059 0.059 0.059
500 0.083 0.071 0.065 0.058 0.057 0.055 0.054

Panel B. LPS-t

n/R

n 2 1 0.5 0.25 0.125 0.0625 0

FE(1) 25 0.107 0.101 0.111 0.110 0.112 0.118 0.114
50 0.082 0.086 0.084 0.091 0.088 0.090 0.095
100 0.072 0.071 0.074 0.066 0.074 0.073 0.075
200 0.066 0.059 0.063 0.068 0.060 0.060 0.064
500 0.055 0.058 0.056 0.052 0.056 0.053 0.055

FE(2) 25 0.078 0.060 0.049 0.046 0.040 0.040 0.036
50 0.082 0.061 0.051 0.046 0.038 0.040 0.035
100 0.098 0.077 0.063 0.053 0.045 0.040 0.038
200 0.128 0.084 0.070 0.053 0.047 0.043 0.038
500 0.139 0.106 0.072 0.056 0.047 0.041 0.039

FE(3) 25 0.128 0.124 0.136 0.135 0.139 0.135 0.137
50 0.121 0.118 0.115 0.119 0.117 0.120 0.117
100 0.117 0.114 0.111 0.097 0.103 0.097 0.104
200 0.118 0.104 0.091 0.090 0.089 0.083 0.089
500 0.105 0.087 0.084 0.070 0.075 0.073 0.070
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Table 3. Empirical sizes of 1-sided nominal 0.05-level forecast encompassing tests:
non-model-based forecasts, ρX1,X2

= 0.5, ρX1,Z
= ρX2,Z

= 0

δ3 = 0 δ3 = 1, µZ = 0 δ3 = 1, µZ = 1

n QPS-MDM LPS-t QPS-MDM LPS-t QPS-MDM LPS-t

FE(1) 25 0.077 0.105 0.075 0.095 0.075 0.095
50 0.073 0.084 0.076 0.077 0.080 0.069
100 0.064 0.067 0.062 0.059 0.069 0.065
200 0.055 0.058 0.054 0.052 0.056 0.067
500 0.053 0.051 0.055 0.053 0.054 0.056

FE(2) 25 0.059 0.043 0.072 0.059 0.095 0.059
50 0.061 0.042 0.085 0.070 0.120 0.063
100 0.057 0.039 0.094 0.084 0.143 0.077
200 0.047 0.039 0.104 0.107 0.179 0.114
500 0.047 0.040 0.156 0.176 0.329 0.253

FE(3) 25 0.095 0.127 0.074 0.103 0.057 0.099
50 0.089 0.107 0.064 0.075 0.044 0.060
100 0.077 0.097 0.042 0.052 0.028 0.055
200 0.066 0.083 0.029 0.032 0.013 0.046
500 0.057 0.066 0.015 0.013 0.004 0.019

Table 4. Estimated powers of 1-sided nominal 0.05-level forecast encompassing tests: δ3 = 0, ρX1,X2
= 0.5

Model-based forecasts, n/R = 0 Non-model-based forecasts

δ1 = 0.5, δ2 = 0.5 δ1 = 0, δ2 = 1 δ1 = 0.5, δ2 = 0.5 δ1 = 0, δ2 = 1

n QPS-MDM LPS-t QPS-MDM LPS-t QPS-MDM LPS-t QPS-MDM LPS-t

FE(1) 25 0.249 0.323 0.578 0.618 0.248 0.293 0.576 0.569
50 0.404 0.429 0.852 0.847 0.401 0.386 0.850 0.777
100 0.625 0.619 0.985 0.984 0.622 0.562 0.985 0.964
200 0.875 0.855 1.000 1.000 0.874 0.820 1.000 1.000
500 0.997 0.995 1.000 1.000 0.997 0.994 1.000 1.000

FE(2) 25 0.176 0.196 0.586 0.613 0.233 0.235 0.620 0.581
50 0.299 0.293 0.855 0.848 0.420 0.378 0.903 0.851
100 0.497 0.445 0.987 0.984 0.684 0.618 0.996 0.988
200 0.770 0.701 1.000 1.000 0.926 0.888 1.000 1.000
500 0.986 0.968 1.000 1.000 0.999 0.998 1.000 1.000

FE(3) 25 0.262 0.328 0.536 0.559 0.195 0.269 0.342 0.412
50 0.385 0.407 0.789 0.767 0.268 0.286 0.518 0.453
100 0.576 0.558 0.964 0.950 0.382 0.339 0.751 0.549
200 0.823 0.770 0.999 0.999 0.584 0.417 0.941 0.666
500 0.991 0.978 1.000 1.000 0.903 0.642 1.000 0.888
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Table 5. In-sample fits of recession logit models

QPS LPS R2 Slope p-value

Spread 0.154 0.258 0.316 0.000
Oil price 0.233 0.394 0.070 0.019

Table 6. FE(1) forecast encompassing tests of model-based
probability forecasts of recession

H0: Spread ε Oil price H0: Oil price ε Spread

QPS-MDM 0.111 0.026
LPS-t 0.060 0.004

Notes: The entries are p-values of the forecast encompassing null
against a 1-sided alternative. ε denotes “forecast encompasses".

Table 7. FE(1) forecast encompassing tests of SPF respondents’
probability forecasts of recession

Panel A. 1-quarter forecasts (h = 2)

QPS-MDM LPS-t QPS-MDM LPS-t

I.D. n H0: Individual ε Average H0: Average ε Individual

84 104 0.29 0.56 0.02 0.05
65 95 0.03 0.00 0.87 1.00
70 75 0.00 0.00 0.76 0.41
20 67 0.05 0.01 0.48 0.66
82 64 0.08 0.00 0.21 0.10

H0: Average ε Spread H0: Spread ε Average

0.04 0.00 0.08 0.00

Panel B. 4-quarter forecasts (h = 5)

QPS-MDM LPS-t QPS-MDM LPS-t

I.D. n H0: Individual ε Average H0: Average ε Individual

84 100 0.63 0.33 0.98 0.96
65 90 0.12 0.08 0.97 0.98
70 70 1.00 0.98 0.50 0.51
20 63 0.71 0.73 0.30 0.36
82 63 0.72 0.74 0.36 0.34

H0: Average ε Spread H0: Spread ε Average

0.01 0.00 0.75 0.78

Notes: The entries are p-values of the forecast encompassing null against a
1-sided alternative. ε denotes “forecast encompasses".
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