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Abstract

This paper analyzes the formation of communication networks
when players choose endogenously their investment on communication
links. We consider two alternative de�nitions of network reliability;
product reliability, where the decay of information depends on the
product of the strength of communication links, and min reliability
where the speed of connection is a¤ected by the weakest communi-
cation link. When investments are separable, the architecture of the
e¢ cient network depends crucially on the shape of the transformation
function linking investments to the quality of communication links.
With increasing marginal returns to investment, the e¢ cient network
is a star ; with decreasing marginal returns, the con�ict between max-
imization of direct and indirect bene�ts prevents a complete char-
acterization of e¢ cient networks. However, with min reliability, the
e¢ cient network must be a tree. Furthermore, in the particular case of
linear transformation functions, in an e¢ cient network, all links must
have equal strength. When investments are perfect complements, the
results change drastically: under product reliability, the e¢ cient net-
work must contain a cycle, and is in fact a circle for small societies.
With min reliability, the e¢ cient network is either a circle or a line.

�We thank C.Blackorby and M. Jackson for helpful discussions. We have bene�ted
from the comments of participants in seminars and conferences at Guanajuato...

yBloch is at GREQAM, Universite d�Aix-Marseille, 2 rue de Charite, 13002 Marseille,
France. Dutta is in the Department of Economics, University of Warwick, Coventry CV4
7AL, England.
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As in classical models of network formation, e¢ cient networks may
not be supported by private invesment decisions. We provide exam-
ples to show that the star may not be stable when the transformation
functions is strictly convex. We also note that with perfect substitutes
and perfect complements (when the e¢ cient network displays a very
symmetric structure), the e¢ cient network can indeed be supported
by private investments when the society is large.
JEL Classi�cation Numbers: D85, C70
Keywords: communication networks, network reliability
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1 Introduction

Networks play a fundamental role in the di¤usion of information. Both formal
communication networks (like the telephone and the internet) and informal
social networks are extensively used to transmit information about job op-
portunities, technological innovations, new ideas, social and cultural events.1

In recent years, economists have studied how networks are formed by self-
interested agents, paying particular attention to communication networks
(Bala and Goyal (2000a) and Jackson and Wolinsky (1996)�s connections
model). For the most part, this literature assumes that all communication
links have the same quality. However, the strength of links in actual com-
munication networks varies widely. In formal communication networks, the
reliability of a communication link depends on the physical characteristics of
the connection, which varies across the network. In informal social networks,
the strength of a social link depends on the frequency and the length of so-
cial interactions which also display a wide variation across a given network.
In this paper, our objective is to extend the analysis of the formation of
formal and informal communication networks by allowing agents to choose
endogenously the strength of communication links.2

In communication networks, agents derive a positive utility from the
agents to whom they are connected.3 When communication links have a
�xed value, agents incur a �xed cost per link, and the formation of commu-
nication networks results from the trade-o¤ between connection bene�ts and
the �xed cost of communication links. Bala and Goyal (2000a) and Jackson
and Wolinsky (1996) characterize stable and e¢ cient networks as a function
of the �xed cost. Interestingly, social and private incentives are not neces-
sarily aligned, and there exist values of the �xed cost for which stable and
e¢ cient networks di¤er.
In this paper, we take a very di¤erent perspective on the cost of link

1The use of social networks in job referrals has been studied,a mong others, by Gra-
novetter (1974), Boorman (1975), Montgomery (1991), Calvo-Armengol and Jackson
(1994). A classic reference on the role of social networks in the di¤usion of innovation
is Coleman, Katz and Menzel (1966).

2See Goyal(2004), which emphasizes the importance of studying networks where the
srength of links can be chosen endogenously.

3For most of their analysis, Bala and Goyal (2000a) suppose that every connection
(direct or indirect) provides the same bene�ts. Jackson and Wolinsky (1996) assume that
the bene�t of a connection is inversely related to the shortest distance between agents in
the network.
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formation. We suppose that agents are endowed with a �xed endowment
X that they allocate across di¤erent connections. In formal communication
networks, X should be interpreted as a total budget that the agent can invest
on communication links ; in informal social networks, X represents the �xed
amount of time that an agent can spend on di¤erent social links. The strength
of a communication link is an increasing function of the investments of the
two parties, and is normalized to lie in the interval [0; 1]. In this setting,
agents face the following choice: they can either spend their endowment on
a small number of strong links, or on a large number of weak links.
In most of the analysis, we assume that investments are separable, so

that every agent can unilaterally contribute to the formation of the commu-
nication link.4 A special case of this formulation is the perfect substitutes
case where the quality of a link is the sum of individual investments. In
general, we distinguish between two situations: either the quality of a link
is a convex transformation or a concave transformation of the investment.
Convex transformations correspond to situations where the marginal returns
to investments in physical communication links or social links are increasing
; concave transformations to the case where marginal returns are decreasing.
In our view, there is no reason to select one of the two alternatives, and
both situations are likely to arise in di¤erent settings. At the end of the
paper, we contrast the case of separable investments with the case of perfect
complements. When investments are perfect complements, as in Jackson and
Wolinsky (1996), both agents must contribute to the formation of a commu-
nication link, and the quality of the link depends on the minimal contribution
of the two agents.
Once the strength of communication links is computed, we can specify

the utility that agents derive from the communication network. When two
agents are connected in the network, we compute the reliability of all paths
connecting the two agents, and assume that they will communicate through
the path of maximal reliability. We consider two alternative de�nitions of
path reliability, corresponding to two di¤erent notions of reliability of com-
munication links. In the product reliability model, the reliability of a path
is given by the product of the strength of communication links along the
path. This speci�cation seems adequate to describe communication in social
networks, where the di¤usion of information depends on the strength of so-

4In this sense, the model is close to Bala and Goyal (2000a) who also assume that a
bilateral link can be formed by a single agent.
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cial links (the frequency and length of social interactions), and the value of
a communication path is a function of the strength of all social links along
the path. In the min reliability model, the reliability of a path is given by
the strength of the weakest link along the path. This model corresponds to
some formal communication networks (like the internet) where the speed of
a connection between two agents depends on the bottleneck of the network,
and hence the value of a connection path is a function of the weakest link
along the path.5

The utility that one agent gets from another is simply the reliability of
the optimal path connecting the two agents. Notice that if the two agents
are directly connected to one another, then the optimal path may be the
shortest path - namely the one consisting of the direct link. In this case,
we will say that the agents derive direct bene�ts fron one another. If two
connected agents do not serve direct bene�ts from one another, then we will
say that they obtain indirect bene�ts.
The main results of our analysis concern the characterization of strongly

e¢ cient networks, which maximize the sum of utilities of all agents. With
separable investments, we point out a crucial di¤erence between the cases of
increasing and decreasing marginal returns. With increasing returns, direct
bene�ts are maximized when all agents concentrate their investment on a
single link. This concentration of investments results in very strong links
and points towards e¢ cient network architectures which are minimally con-
nected. We obtain a complete characterization of e¢ cient networks when the
transformation function is convex. In the product reliability model, where
the length of indirect connections matters, the e¢ cient network architecture
is a star which minimizes the distance between agents. In the min reliability
model, where distance is irrelevant, di¤erent network architectures can be
supported as e¢ cient networks, but in all of them, all agents but one con-
centrate their investment on a single link. In the particular case of perfect

5The di¤erence between the product reliability and min reliability models can also be
interpreted in terms of decay of information. In the product reliability model, messages
are transformed along the communication network (parts of the messages can be lost, or
changed), and the rate of transformation depends on the quality of the communication link.
The total decay of information can thus be computed as the product of the decay along
all communication links. In the min reliability model, there is no decay of information
and the only issue is the speed of connection. The strength of a link is an index of the
capacity of that link, and the speed of a connection only depends on the minimal capacity
in the network.
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substitutes, we furthermore show that all links must have equal strength,
so that the hub of the star distributes equally its investment on all periph-
eral agents in the product reliability model, and any tree with links of equal
strength can be supported as an e¢ cient network in the min reliability model.
When returns to investment are decreasing, there is a con�ict between

the maximization of direct and indirect bene�ts The con�ict arises because
direct bene�ts are maximized when all agents distribute their investments
on links with all other players, resulting in very weak communication links.
Notice that in a complete graph where all links have the same strength, there
are no indirect bene�ts at all. In general, weak communication links make
indirect connections very poor, and the total value of the network depends
on a complex trade-o¤ between the strength of direct links and the value
of indirect connections. In the product reliability model, we construct an
example to show that di¤erent network architectures (including the complete
network) can be e¢ cient. In the min reliability model, e¢ cient networks must
be minimally connected, and we prove that the star is never e¢ cient when
the transformation function is strictly concave.
When investments are perfect complements, we obtain very di¤erent re-

sults. In the product reliability model, we show that trees cannot be e¢ cient,
and that the circle is e¢ cient for small numbers of agents. However, an ex-
ample shows that the e¢ cient architecture is much more complex than the
circle for larger numbers of agents. In the min-reliability case, the e¢ cient
architecture is either the circle or the line, which maximize the strengths of
links in the network.
In the cases where we obtain a full characterization of e¢ cient networks,

we also investigate whether e¢ cient networks can be supported by individ-
ual choices of agents, considering both the notion of Nash stability (Nash
equilibria of a noncooperative game of link formation), and a version of the
notion of pairwise stability introduced by Jackson and Wolinsky (1996). The
tension between e¢ ciency and stability noted in models with �xed quality of
links also appears when agents choose the strength of links. We show that
e¢ cient networks may fail to be stable, except in two notable cases: perfect
substitutes and perfect complements with min reliability. In these cases, the
e¢ cient network is perfectly symmetric, and any reallocation of investments
results in asymmetric links which necessarily reduce the value of the weakest
link in the network.

Related Work
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We consider our analysis as a �rst step in the study of network formation
with weighted links. In recent years, other studies have looked at networks
with links of varying strength, and we now relate our contribution to these
alternative studies.
We have already mentioned the papers of Bala and Goyal (2000a) and

Jackson and Wolinsky (1996). We will discuss the relationship between these
papers and ours later after describing our model formally. Bala and Goyal
(2000b) model reliability as the exogenous probability that a link forms once
agents have paid the cost of establishing the link. Communication networks
are thus random graphs, and expected bene�ts can be computed as a polyno-
mial function of the exogenous probability of link success. This formulation
of network reliability in a probabilistic environment is very di¤erent from
our modeling of the quality of links a¤ecting the decay of information in a
deterministic setting. In a speci�c model of strategic alliances among �rms,
Goyal and Moraga Gonzales (2001) consider a two-stage model where �rms
�rst form links and then decide their R&D investment in every bilateral re-
lationship. The strength of a link (measured by the investments in R&D by
both partners in the alliance) is thus determined endogenously. The analysis
is conducted with a speci�c cost and demand formulation, and the main focus
of the analysis is on regular networks (where all �rms have the same number
of links), and the e¤ect of the number of links on the R&D investments.
Durieu, Haller and Solal (2004) construct a model of nonspeci�c networking.
Agents choose a single investment, which applies to the links with all other
agents. This formulation seems adequate for settings where agents cannot
discriminate among other agents in the society, but does not capture situa-
tions where agents choose to form bilateral links. Finally, Brueckner (2003)
considers a model of friendship networks which is closely related to ours.
Agents choose to invest in relationships, and the value of indirect bene�ts is
given by the product of the strength of links, as in our model of min reliabil-
ity. For most of his analysis, Brueckner (2003) concentrates on three player
networks, and studies the e¤ect of the network structure on the investment
choices in the complete and star networks. In this paper, we consider an
arbitrary number of agents, and simultaneously solve for the formation of
the network and the choice of investments.
The rest of the paper is organized as follows. We introduce the model

and notations in Section 2. In Section 3, we study networks with separable
investments. Section 4 is devoted to the analysis of networks with perfect
complements. Section 5 contains our Conclusions.
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2 Model and Notations

Let N = f1; 2; :::; ng be a set of individuals. Individuals derive bene�ts
from links to other individuals. These bene�ts may be the pleasure from
friendship, or the utility from (non-rival) information possessed by other
individuals, and so on. In order to �x ideas, we will henceforth interpret
bene�ts as coming from information possessed by other individuals. Each
individual has a total resource (time, money) of X > 0, and has to decide on
how to allocate X in establishing links with others.
Let xji denote the amount of resource invested by player i in the rela-

tionship with j. Then, the strength of the relationship between i and j is
a function of xji and x

i
j. Let sij denote this strength as a function of the

amounts xji and x
i
j. Let this functional dependence be denoted as

sij = f(x
j
i ; x

i
j)

with sij 2 [0; 1].
Alternative assumptions can be made about the functional form of f .

Throughout much of the paper, we will focus on the following case.

Assumption 1 (Separable Investments) : For each i; j 2 N , f(xji ; xij) =
�(xji ) + �(x

i
j), where � is strictly increasing, with �(0) = 0 and �(X) � 1=2:

With separable investments, every agent can individually form a link,
and there is no complementarity in the investments by the two parties. A
special case is when the function � is linear, �(x) = �x for all x. In this
case, the contributions of any i and j to the link ij are perfect substitutes.
When the function � is convex, returns to investments are increasing, and
agents have an incentive to invest in a single link ; when the function � is
concave, returns to investments are decreasing, and agents have an incentive
to distribute their investments equally across all links.

An alternative assumption is the following.

Assumption 2 (Perfect Complements): For each i; j 2 N , f(xji ; xij) =
min(xji ; x

i
j).

Assumption 2 says that the contributions of i and j are perfect comple-
ments.

We say that individuals i and j are linked if and only if sij > 0. Each
pattern of allocations of X, that is the vector x � (xji )fi;j2N;i6=jg results in
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a weighted graph, which we denote by g(x). 6 We say that ij 2 g(x) if
xji + x

i
j > 0.

Given any g, a path between individuals i and j is a sequence i0 =
i; i1; :::; im; :::; iM = j such that im�1im 2 g for all m: Two individuals are
connected if there exists a path between them. Connectedness de�nes an
equivalence relation, and we can partition the set of individuals according
to this relation. Blocks of that partition are called components, and we let
N (g) denote the set of components of the graph g.
Suppose i and j are connected. Then, the bene�t that i derives from j

depends on the reliability with which i can access j�s information.
For any pair of individuals i and j and graph g let P (i; j) denote the set

of paths linking i to j. De�ne

p�(i; j) = arg max
p(i;j)2P (i;j)

sii1 :::sim�1im :::siM�1j;

Rp(i; j) = max
p(i;j)2P (i;j)

sii1 :::sim�1im :::siM�1j:

So, for any two individuals i and j, p�(i; j) denotes the path which has the
highest reliability, as measured by the products of strengths of the links on
that path. The reliability of that path is denoted Rp(i; j).
As an alternative, we will also de�ne reliability of any path in terms of

the strength of the weakest link in that chain. Hence, we would have

Rm(i; j) = max
p(i;j)2P (i;j)

min
sim�1im2p(i;j)

sim�1im

Henceforth, we will refer to Rp and Rm as Product-Reliability and Min-
Reliability respectively.
The utility that individual i gets from j is then Rp(i; j) or Rm(i; j) de-

pending on the notion of reliability.
Notice that the optimal path between i and j could be the path fi; jg

itself. In this case, we will say that i and j derive direct bene�ts from each
other. Of course, the direct bene�t equals sij.
Individual i�s payo¤ from a graph g is then given by

Ui(g) =
X
j2Nni

Rp(i; j) or Ui(g) =
X
j2Nni

Rm(i; j)

6To simplify notation, we will sometimes ignore the dependence of g on the speci�c
pattern of allocations.
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The value of a weighted graph g is given by V (g) =
P

i Ui(g):

De�nition 1 A graph g is e¢ cient if V (g) � V (g0) for all g0.

Our model is related to the original connections model of Jackson and
Wolinsky (1996) and to the two-way �ow model of Bala and Goyal (2000).
However, there are signi�cant di¤erences. First, Jackson andWolinsky (1996)
and Bala and Goyal (2000a) assumed that a link between i and j either exists
or not. That is, either sij = 1 or sij = 0. In contrast, we allow sij to take
on any value between 0 and 1. Second, Jackson and Wolinsky (1996) assume
that i and j each pay an exogenously given cost c if they form the link ij.
Bala and Goyal (2000a), by contrast, suppose that the �xed cost is only paid
by one of the agents. As we have described earlier, there are no exogenous
costs of forming a speci�c link in our model. Instead, individuals have a
�budget constraint" and only face opportunity costs for investing in one
relation rather than in another. Lastly, the reliability function in Jackson
and Wolinsky (1996) and Bala and Goyal (2000a) is also di¤erent from ours
- they assume that the indirect bene�t that i derives from j is �d�1, where d
is the geodesic distance between i and j, while � 2 (0; 1) is a parameter.
Jackson and Wolinsky (1996) initiated the analysis of the potential con-

�ict between e¢ ciency and �stability" of endogenously formed networks. We
now describe the concepts of stability that will be used in this paper.
Given any pattern of investments x, and individual i, (x�i; x0i) denotes

the vector where i deviates from xi to x0i. Similarly, (x�i;j; x
0
i;j) denotes the

vector where i and j have jointly deviated from (xi; xj) to (x0i; x
0
j).

De�nition 2 A graph g(x) is Nash stable if there is no individual i and x0i
such that Ui(g(x�i; x0i)) > Ui(g(x)).

So, a graph g induced by a vector x is Nash stable if no individual can
change her pattern of investment in the di¤erent links and obtain a higher
utility.

De�nition 3 A graph g(x) is Strongly Pairwise Stable if there is no pair of
individuals (i; j) and joint deviation (x0i; x

0
j) such that

Ui(g(x�i;j; x
0
i;j)) + Uj(g(x�i;j; x

0
i;j)) > Ui(g(x)) + Uj(g(x))
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So, a graph is strongly pairwise stable if no pair of individuals can be
jointly better o¤ by changing their pattern of investment. Notice that we
de�ne a pair to be better o¤ if the sum of their utilities is higher after the
deviation. This leads to a stronger de�nition of stability than a corresponding
de�nition with the requirement that both individuals be strictly better o¤
after the deviation. The current de�nition implicitly assumes that individuals
can make side payments to one another. The availability of side payments is
consistent with our de�nition of e¢ ciency - a graph is de�ned to be e¢ cient
if it maximises the sum of utilities of all individuals.7

Jackson and Wolinsky (1996) de�ne a weaker notion of stability - pairwise
stability. They basically restrict deviations by assuming that only one link
at a time can be changed.8

Some speci�c network architectures will be important in subsequent sec-
tions. We de�ne these below.

De�nition 4 A graph g is a star if there is some i 2 N such that g =
fikjk 2 N; k 6= ig.

The distinguished individual i �guring in the de�nition will be referred
to as the �hub".

The degree of a node i in graph g is #fjjij 2 gg. That is, the degree of
a node equals the number of its neighbours.

De�nition 5 A k-regular graph is a graph where every node has degree k.
A circle is the unique 2-regular graph.

De�nition 6 A graph g is a line if there is a labelling of individuals i1; : : : ; iN
such that g = fikik+1jk = 1; : : : ; N � 1g.

7While we allow for side-payments among agents, we also assume that initial endow-
ments are not transferable across players. If X is a �xed allocation of time, this is clearly
understood. If X is a �xed budget, we assume that individuals can only make side-
payments ex post, once the communication network has formed, but cannot trade their
initial endowments.

8Our current de�nition corresponds to the de�nition of pairwise stability used by Dutta
and Mutuswami (1997).See also Gilles and Sarangi (2004) and Bloch and Jackson (2004)
for a comparison of di¤erent stability concepts.
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3 Separable Investments

3.1 Product Reliability

In this subsection, we discuss the nature of e¢ cient graphs with separable
investments under product reliability. It will become clear in what follows
that the e¢ cient architecture involves a trade-o¤ between the graphs which
maximise direct and indirect bene�ts. It is easy to see that the network ar-
chitectures which maximize direct bene�ts depend crucially on the concavity
or convexity of the function �. If the function � is concave, direct bene�ts
are maximized when all agents invest an equal amount X=(n � 1) on every
link. Hence, direct bene�ts are maximized in the complete graph with sym-
metric value on every link. If the function � is convex, direct bene�ts are
maximized when every agent invests in a single link. This implies that there
are at most n links in the optimal graph (but there can be as few as n=2 and
the graph can be disconnected), and that every link has value either �(X)
or 2�(X). In both cases, graphs which maximize direct bene�ts may fail
to maximize indirect bene�ts: In the concave case, in the complete graph,
indirect bene�ts are equal to zero ; in the convex case, the concentration of
resources on a single link may reduce aggregate indirect bene�ts. The con-
�ict between maximization of direct and indirect bene�ts disappears when
the function � is linear. With perfect substitutes, direct bene�ts are maxi-
mal for any allocation of resources, and the characterization of the e¢ cient
network only involves the maximization of indirect bene�ts.This enables us
to get particularly sharp characterizations of e¢ cient graphs in this case.
Notice that a star connecting everyone has two important properties.

First, it is a tree, and so minimizes the number of direct connections amongst
all connected graphs. This increases the average strength of direct links.
Also, the fewer the number of direct links, the greater is the scope for indirect
bene�ts. Second, it also minimizes the distance between all nodes which
do not have a direct connection. Given the product form of the reliability
function, the latter also increases the scope of higher indirect bene�ts. Thus,
for all these reasons, a star should be the most desirable architecture when
returns to investments are increasing. The following theorem veri�es this
intuition.

Theorem 1 Suppose Assumption 1 holds and that � is convex. Then,

12



(i) The unique e¢ cient graph is a star with every peripheral agent invest-
ing fully in the arc with the hub.
(ii) Morover, if � is linear, the hub invests X

n�1 on every link with a
peripheral agent and all links have the same strength.

Proof. : We prove the �rst part of the theorem in three steps. Consider any
feasible component h of g of size m.
Step 1: We construct a star Ŝ with higher aggregate utility than h.
Step 2: If Ŝ is infeasible, then we construct a feasible star S�which has

higher aggregate utility than Ŝ.
Step 3: If the graph g contains di¤erent components, we construct a

single connected star which has higher aggregate utility than the sum of the
stars S�

Proof of Step 1: Let h have K � m� 1 links. We label the strength of
these links zk and assume, without loss of generality, that

z1 � z2 � : : : � zK

We construct the star Ŝ with hub m as follows. For each i 6= m, de�ne

�xmi = min(�
�1(zi); X); �x

i
m = �

�1(zi)� �xmi

If g is a tree, then K = m� 1. Let x̂ji = �x
j
i for all i; j, and Ŝ � h(x̂).

If g is not a tree, then K > m � 1, and the investments involved in
fzm; : : : ; zKg have not been distributed.
Since zi � zi+1, �xmi � �xmi+1. If �xmi = X for all i = 1; : : : ;m� 1, then from

convexity of �,
m�1P
i=1

�xim < X. In this case, let �x
m
i = x̂

m
i for all i = 1; : : : ;m�1,

and x̂1m = X �
m�1P
k=2

�xkm > �x1m, and x̂
k
m = �xkm for k = 2; : : : ;m � 1. Let

Ŝ � h(x̂).9
Otherwise, let ~k � 1 be the smallest integer such that �xm~k < X. De�ne

x̂mi = �xmi = X for all i < ~k. Then, distribute fzm; : : : ; zKg sequentially

9Notice that in this case Ŝ is a feasible graph since
mP

j=1;j 6=i
xji = X for all i.
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amongst f~k; : : : ;m� 1g as follows:

x̂m~k = min(X; �xm~k +

KX
j=m

��1(zj))

for k > ~k; x̂mk = min(X; �xmk +
KX
j=m

��1(zj)�
k�1X
k0=~k

(x̂mk0 � �xmk0))

Finally, if this procedure has not exhausted
KP
j=m

��1(zj), then distribute the

excess sequentially to x̂1m; x̂
2
m; : : :, while satisfying the constraint that none

of them exceeds X. Again, de�ne Ŝ � h(x̂).
Suppose h is a tree. Then, from convexity of �, we know that

�(x̂mi ) + �(x̂
i
m) � zi for all i = 1; : : : ;m� 1 (1)

This implies that direct bene�ts are at least as high in Ŝ as in h. A similar
argument ensures that direct bene�ts are at least as high in Ŝ as in h even
when the latter is not a tree.
Now, we check that indirect bene�ts are strictly higher in Ŝ. We distin-

guish between two cases.

Case 1 : h is a tree.
Let D = fijjij =2 hg. For each pair i; j in D, let zki and zkj denote the

strengths of the �rst and last links in the path p�(i; j). Notice that while the
choice of which link is �rst and which is last is arbitrary, the pair (zki ; zkj)
is uniquely de�ned. Clearly, for all i; j 2 D,

Rp(i; j) � zkizkj

Moreover, since h is not a star, the inequality must be strict for some pair
i; j. Hence, letting I denote the sum of indirect bene�ts in h and bI the
corresponding sum in bS, we have

I < 2
m�1X

i6=j;i;j=1

zizj � bI
where the last inequality follows from equation 1.

Case 2 : h is not a tree.
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Let h have K > m � 1 links. Again, let D be the pairs which derive
indirect bene�ts from each other in h, and zki ; zkj the strengths of the �rst
and last links in p�(i; j).10 Similarly, let I and bI denote the sum of indirect
bene�ts in h and Ŝ respectively. Now, the number of pairs of agents deriving
indirect bene�ts in h is strictly less than (m�1)(m�2)

2
, which is the number

of pairs deriving indirect bene�ts in Ŝ. Recalling that zi � zi+1 for all
i = 1; : : : ; K,

I <
m�1X

i6=j;i;j=1

zizj � bI
This concludes the proof of Step 1.

Proof of Step 2: Notice that by construction, x̂mi � X for all i =
1; : : : ;m� 1. So, either Ŝ is feasible, or

P
x̂im > X. We now show that if Ŝ

is not feasible, then we can construct a star S� with hub m which has higher
total utility compared to Ŝ.
Although Ŝ is not feasible,

m�1X
i=1

�
x̂mi + x̂

i
m

�
� mX (2)

Also,
x̂mm�1 < X

This follows because x̂mm�1 � x̂mi for all i < m� 1, and from equation 2.
Consider the star S� where

(i) xm�i = x̂mi for all i 6= m� 1 and xi�m = x̂im for all i 6= 1.

(ii) xm�m�1 = min(X; x̂
m
m�1 + x̂

1
m), and x

1�
m = x̂

m
m�1 + x̂

1
m � xm�m�1.

Then,
�(xm�m�1) + �(x

1�
m ) � �(x̂mm�1) + �(x̂1m) (3)

with strict inequality holding if � is strictly convex. So, the sum of direct
bene�ts in S� is at least as large as in Ŝ.
We now show that the sum of indirect bene�ts in S� is also at least as

high as in Ŝ. Let I� and Î represent the indirect bene�ts from S� and Ŝ

10Since h is no longer a tree, the path p�(i; j) is not uniquely de�ned. The choice of
best path is immaterial in what follows.
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respectively. Since x̂mm�1 < X, x̂m�1m = 0. Also, x̂m1 = X since x̂1m > 0.
Hence,

I� � Î � �(X)[�(xm�m�1)� �(x̂mm�1)] + �(x1�m )�(xm�m�1)� �(x̂1m)�(x̂mm�1)

Now, if xm�m�1 < X, then x
1�
m = 0 and �(x

m�
m�1) � �(x̂mm�1) + �(x̂1m). Since

�(X) � �(x̂1m), this implies that I� � Î.
Suppose xm�m�1 = X. Then, I

� � Î if

�(X)(�(X) + �(x1�m )) � (�(X) + �(x̂1m))�(x̂mm�1) (4)

Convexity of � ensures that

�(X) + �(x1�m ) � �(x̂1m) + �(x̂mm�1)

Since X � x̂1m, this ensures that equation 4 is satis�ed.

Note that
m�1P
i=1

(xi�m � x̂im) < 0. If S is not feasible, clearly we can proceed
in this way by increasing xmm�2; x

m
m�3, etc. until a feasible star is obtained.

This completes the proof of Step 2.
Proof of Step 3: Consider two feasible stars S�1 and S

�
2 of sizes m1 and

m2. Construct a new star S��of size m1 +m2 centered around the hub of S�2
with the following investments:

xm2��
i = X for all i < m2

xi��m2
= xi�m2

As � is increasing and convex, the aggregate direct bene�ts in star S�� are
at least as high as the sum of aggregate bene�ts in the two stars S�1 and
S�2 . Consider then indirect bene�ts in the new star, I�� and the sum of
indirect bene�ts in the two stars, I�1 + I

�
2 . Indirect bene�ts inside the star S

�
2

have not changed, and peripheral nodes have gained access to new indirect
connections. The di¤erence in aggregate indirect bene�ts for agents in the
star S�1 is given by
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I��1 � I�1 =
X

i2S1nfm1g;j2S2nfm2g

�(X)(�(X) + �(xj�m2
)) +m1(m1 � 1)�(X)2

�
X

i2S1nfm1g;j2S1nfm1g

(�(xm1�
i ) + �(xi�m1

))(�(xm1�
j ) + �(xj�m1

))

> m1(m1 � 1)�(X)2 �
X

i2S1nfm1g;j2S1nfm1g

(�(X) + �(xi�m1
))(�(X) + �(xj�m1

))

= 2(m1 � 1)�(X)2 � 2(m� 2)�(X)
X

i2S1nfm1g

(�(xm1�
i )� 2

X
i;j2S1nfm1g

�(xi�m1
)�(xj�m1

):

By convexity of �; X
i2S1nfm1g

(�(xm1�
i ) � �(X)

and X
i;j2S1nfm1g

�(xi�m1
)�(xj�m1

) < (
X

i2S1nfm1g

(�(xm1�
i ))2 � �(X)2

so that
I�� > I�1 + I

�
2 :

As the same argument can be repated with any pair of stars, this argument
completes step 3 and the proof of the �rst part of the Theorem.

(ii)Suppose �(x) = �x for all x. Let S� be the star with hub at n, where
all arcs have strength X + X

n�1 . Let S be any other star with hub n where

sin may not be equal to sjn for i 6= j, but where
n�1P
i=1

(xni + x
i
n) = nX. It is

straightforward to check that total direct bene�ts are maximised at both S�

and S. We now show that the sum of indirect bene�ts in S� is greater than
that in S.
Without loss of generality let s1n and s2n denote the weakest and strongest

links in S. Consider the e¤ect of increasing investment on s1n by " and
simultaneously decreasing investment on s2n by ":
The e¤ect on the overall value can be computed as

�V = 2["(s2n � s1n)� "2]

Hence, for " small enough, �V > 0 and so local changes in the direction
of equalization are pro�table. But this implies that the symmetric star has
higher value than the asymmetric star.
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Theorem 1 shows that with increasing returns the e¢ cient architecture is
a star where all peripheral nodes invest fully in the link with the hub, but does
not characterize the allocation of investments by the hub. Except in the case
where investments are perfect substitutes, there is a con�ict between maxi-
mization of direct and indirect bene�ts. In order to maximize direct bene�ts,
the hub should invest fully in one link with a peripheral node. This however
lowers aggregate bene�ts for all other peripheral nodes, and may result in
a lower total value of the network. The optimal distribution of investments
of the hub thus depends on the curvature of the function �. To illustrate
this point, we consider in the following example a quadratic transformation
function, and characterize the optimal allocation of investments in the hub
as a function of the parameters of the utility function.

Example 1 Let �(x) = 1
2
[�x + (1 � �)x2], for some � 2 [0; 1] and assume

X = 1

For � = 1, the transformation function is linear, and for � = 0, the
function is quadratic. Lower values of the parameter � correspond to higher
degrees of convexity of the transformation function. Consider a star where
the hub, denoted n, allocates his investments on the di¤erent peripheral
nodes, x1n; :::; x

n�1
n and each peripheral node invests fully on the link to the

hub. The value of the star is given by:

V =
n(n� 1)

2
+ 2n(1� �) + (�2 � 2n(1� �))

X
i

X
j

xinx
j
n

+�(1� �)
X
i

X
j

xinx
j
n(x

i
n + x

j
n) + (1� �)2

X
i

X
j

(xinx
j
n)
2:

If xkn is given for all k 6= i; j, (xin+xjn) = 1�
P

k 6=i;j x
k
n is �xed, and V can be

written as a quadratic convex function of the product xinx
j
n. As V is a convex

function, it reaches its maximum either at xinx
j
n = 0 or x

i
nx

j
n = (x

i
n+ x

j
n)
2=4.

We thus conclude that, at the optimum, if the hub invests a positive amount
on two nodes xin and x

j
n, then it must invest the same amount on these two

nodes. In other words, at the optimum, the hub chooses the number k of links
on which it invests, and invests an equal amount 1=k on each of those links.
The following table lists, for n = 5 and di¤erent values of �, the number of
links on which the hub invests at the optimum.
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� optimal number of links
0 1
0:9 1
0:91 2
0:92 3
0:93 4
1 4

Table 1: optimal allocation of the hub�s investment with a quadratic
function

Table 1 shows that for a large fraction of the paramater range, the hub
optimally invests in a single link. As the degree of convexity of the transfor-
mation function goes down, the number of links on which the hub optimally
invests increases, and when the function is linear, the hub invests equally on
all links, as we showed in Theorem 1.

When the transformation function � is concave, the optimal network ar-
chitecture depends on the speci�cation of the transformation function. This
is easily illustrated in the simplest case with three agents. Depending on
the function �, either the complete symmetric network or the star network
where the hub invests equally on the two links with peripheral agents can be
e¢ cient. More precisely, the complete network is e¢ cient if and only if:

4�(X=2)� 2�(X) � (�(X) + �(X=2))2:

Hence, the complete network will be e¢ cient when the degree of concavity
of the transformation function is high, and the value of a connection is low.
With more agents, a number of network architectures can emerge as e¢ cient
architectures, depending on the degree of concavity of the transformation
function, as illustrated in the following example.

Example 2 Suppose that �(x) = � log(1 + x) ; X = 1 and � � 1=(2 log 2):.
Let n = 4.

We compare the value of bene�ts for three network architectures: the
symmetric complete graph C, the symmetric cycle Y , and the symmetric
star S.11 We compute:
11Given that � is concave, these allocations of investments are optimal for the given

network architectures.
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V C = 24� log(4=3);

V Y = 16� log(3=2) + 16�2(log(3=2))2;

V S = 6�(log 2 + log(4=3)) + 6�2(log 2 + log(4=3))2

Let �1 =
3 log(4=3)�2 log(3=2)

2(log(3=2))2
� 0:158 and �2 =

8 log(3=2)�6(log 2+log(4=3))
6(log 2+log(4=3))2�8(log(3=2))2 �

0:185. We can easily check that the complete network dominates the two
other architectures for � � �1, that the symmetric star dominates the two
other architectures for � � �2 and that the circle dominates the two other
architectures for �1 � � � �2. While this example does not explicitly
characterize the optimal architecture, it shows that for intermediate values
of concavity, neither the complete graph nor the star are optimal.
We now turn our attention to stable networks. Since Jackson and Wolin-

sky (1996), it is well known that stable and e¢ cient networks may not co-
incide when agents only choose the set of links that they form. This con�ict
between private and social incentives to build links derives from two sources.
First, in Jackson and Wolinsky (1996), agents face a coordination problem in
the formation of links, as both agents must agree for the link to be formed.12

Second, in most formulations of network bene�ts, the formation of a link
induces externalities on the other agents, and these externalities cannot be
internalized in standard models of network formation.13

When investments are separable, every agent can independently con-
tribute to the formation of the link, and the coordination problem is not
too severe. However, externalities still play a crucial role, and may prevent
the private formation of e¢ cient networks. To understand this fact, consider
a situation without externalities, where every agent only derives utility from
the agents she is directly connected to.It is easy to see that in that case,
the set of e¢ cient and Nash stable networks coincide. If � is concave, it is
a dominant strategy for every agent to allocate his resources symmetrically
on all links ; if � is convex, it is a dominant strategy for all the agents to
concentrate all their investments on a single link.
When agents derive utility from indirect connections, externalities become

important, and the model with endogenous link strength does not behave
12It is precisely this coordination problem which led Jackson and Wolinsky to de�ne the

concept of pairwise stability, where pairs of agents can coordinate their moves to form a
new link.
13See Bloch and Jackson (2004) for the study of a model with transfers, where agents

can internalize some of those externalities.
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di¤erently from standard models of link formation. There is generally a
con�ict between stable and e¢ cient networks. Consider again Example 1:
For � high enough, the e¢ cient graph is a star where the hub does not
specialize completely in one of the links. But, then such a graph cannot be
Nash stable because the agent at the hub is strictly better o¤ by investing X
in just one of the links - the hub does not derive any indirect bene�ts and so
is better o¤ by maximising her own direct bene�t.
Now, consider the case when �(x) = �x for all x. Suppose n = 3. In the

symmetric star, the hub (say individual 1) derives bene�ts of 3X and will
never want to deviate from the star. Consider peripheral individuals 2 and
3. It is easy to check that the best joint deviation is for both 2 and 3 to
set x32 = x23 = X. Then, 2 and 3 each get additional direct bene�ts of X.
However, they lose indirect bene�ts from each other. This loss equals 9

4
X2.

Hence, the star is stable i¤X � 4
9
.

Suppose n > 3. Again, let 1 be the hub. As before, individual 1 has no
pro�table deviation. Consider 2 and 3, and potentially mutually pro�table
deviations where x32 = �2; x

1
2 = X � �2 and x23 = �3; x

1
3 = X � �3, while

other investments are as in the symmetric star. Without loss of generality,
let �2 � �3.
Individual 3 gains an additional direct bene�t of �2 from 2, but loses

the indirect bene�t of (X + X
n�1)

2 from 2. In addition, 2 also su¤ers a loss
in indirect bene�t from each of the other peripheral nodes. The exact loss
depends on whether p�(3; i) for i > 3 includes 31 or (32; 21).14 Hence, the loss
in indirect bene�t from each of the other nodes 4; : : : ; n is at least �2(X+ X

n�1).
So, the deviation is pro�table if

�2 > �2(n� 3)(X +
X

n� 1) + (X +
X

n� 1)
2

If this inequality holds for some �2 < X, it must also hold for �2 = X.
Substituting this value of �2, and simplifying, we get

X <
(n� 1)2

n(n2 � 3n+ 3)

Putting these observations together, we get the following.

14The latter is a possibility since we have assumed �3 � �2.
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Theorem 2 Suppose that Assumption 1 holds.
(i) There exists a convex function � such that no e¢ cient graph is Nash

stable.
(ii) Suppose � is linear. Then, the symmetric star, which is the unique

e¢ cient graph, is strongly pairwise stable i¤ X � (n�1)2
n(n2�3n+3) .

Theorem 2 thus illustrates the classic con�ict between e¢ ciency and sta-
bility in our model. In the case of perfect substitutes, we note that, for
n � 3, (n�1)2

n(n2�3n+3) is decreasing in n so that, as n increases, the lower bound
on X decreases. This is easily interpreted. If two nodes divert investment
from their links with the hub, they lose indirect bene�ts from other periph-
eral nodes. This loss increases with the number of peripheral nodes. As a
consequence, it is easier to sustain the e¢ cient network as a stable network
when the number of agents in the society increases.

3.2 Min Reliability

In this subsection, we �rst describe e¢ cient networks when the reliability of
a path is measured by the strength of its weakest link. We then go on to
check whether e¢ cient networks are stable.
Our �rst result shows that the e¢ cient network must be a tree. With

increasing returns, as in the case of product reliability, the star where all
peripheral agents invest fully in their relation with the hub is e¢ cient. With
perfect substitutes, the hub invests equally in all its relations with the pe-
ripheral agents. With decreasing returns, the con�ict between maximization
of direct and indirect bene�ts again prevents a complete characterization of
the e¢ cient networks.

Theorem 3 Suppose that Assumption 1 holds.
(i) For any strictly increasing function �, the e¢ cient network is a tree.
(ii) If � is convex, any e¢ cient network is equivalent to a star where all

peripheral agents invest fully in their relation with the hub.
(iii) Moreover, if � is linear, any e¢ cient network is equivalent to a star

where the hub invests equally on all its links with peripheral agents.

Proof. (i) Consider a graph g with a cycle, and pick one of the links of
the cycle with minimal strength. Label i and j the two nodes connected
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by this link, and assume without loss of generality that xji > 0: Let k be a
node directly connected to i such that p�(i; k) = sik (the value of the direct
connection between i and k is at least as high as the value of any indirect
path between i and k ). Consider then a new graph architecture g where
xji = 0 and x

k
i = x

k
i + x

j
i > x

k
i . We claim that aggregate bene�ts are higher

in g than in g. For any nodes l;m such that ij =2 p�(l;m), the value of
the connection is at least as high under g than under g. Furthermore, as
�(xki ) > �(x

k
i ), the value of the connection between i and k is strictly greater

in the new graph g. Next, consider l;m such that ij 2 p�(l;m). Let l and
m now be connected by using the path i; i � 1; :::; j + 1:Because ij is a link
of minimal strength in the cycle, the new path must have value at least as
high as ij. This argument shows that the value of the connection between l
and m in the graph g is at least as high as the value of the connection in the
graph g.

(ii) The proof follows the same lines as the proof of Theorem 1
Step 1: Start with a tree g of size m and label the link strengths:

z1 � z2 � : : : � zm�1

Construct the star S as in the proof of Theorem 1. Direct bene�ts are at
least as large in S as in g. The sum of indirect bene�ts in the star S is easily
calculated.

I = 2
m�2X
i=1

(m� i� 1)zm�i

To check this, note that the link zm�1 is the minimum in all comparisons,
and so the sum of indirect bene�ts obtained between m� 1 and other nodes
is 2(m � 2)zm�1. Similarly, zm�2 is the minimum in (m � 3) comparisons
and so on. Note that the arc zm�1 must also be involved in at least (m� 2)
comparisons in the graph g (the minimum being attained if zm�1 connects
some terminal node). Similarly, the arcs fzm�2; zm�1g must be the minimum
in at least (2m� 5) connections, and so on. This establishes that the sum of
direct and indirect bene�ts is at least as high in S as in g.
Suppose that S is feasible. If zm�1 < �(X), then clearly there is a feasible

star whose total utility is strictly higher than that of S and hence that of
g. If zm�1 = �(X), then either direct bene�ts are strictly higher in S or the
original g was such that m� 1 nodes specialized fully in their investment.
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Step 2: Suppose that S is not feasible. Then, zm�1 < �(X). That is,
xmm�1 = �

�1(zm�1) < X. Let

i = minfkjxmk < Xg

and
j = maxfkjxkm > 0g

Construct the star �S where all arcs except the following are the same as in
S.

�xi
m = min(X; xmi + x

j
m); �x

j
m = x

j
m � �xmi + xmi

Strict convexity ensures that direct bene�ts are at least as high since

�(�xmi ) + �(�x
j
m) � �(xmi ) + �(xjm) (5)

Note that the following is true for all k; l = 1; : : : ;m� 1:

(xmk + x
k
m) � (xml + xlm)! (�xmk + �x

k
m) � (�xml + �xlm)

That is the ordering of nodes 1; 2 : : : ;m� 1 in terms of (decreasing) order of
strength of links is the same in the two stars. Since zj > zi, the reallocation
must have increased indirect bene�ts too.
Step 3: The argument can be repeated for all components of the graph.

We now show that if the graph contains two stars S1 and S2, it is dominated
by the graph where the two stars are merged into a single stars, as in the
proof of Theorem 1. By merging the two stars centered around m1 and m2

into a single star with hub m2, direct bene�ts have increased. Furthermore,
indirect bene�ts for players in star S2 have strictly increased. For a peripheral
agent i in star S1, indirect bene�ts were equal to

Ii =
X

j2S1nm1

�(X) + minf�(xim1
); �((xjm1

)g

= (m1 � 1)�(X) +
X

j2S1nm1

minf�(xim1
); �((xjm1

)g:

In the new star, indirect bene�ts are given by:

I�i = (m1 +m2 � 1)�(X):

As m2 � 1 and �(X) �
P

j2S1nm1
minf�(xim1

); �((xjm1
)g; I�i � Ii and indirect

bene�ts cannot have decreased.
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(iii) Suppose that � is linear, and that the hub invests di¤erent amounts
on its links with peripehral nodes. Let i be a node for which xin is maximal,
and j a node for which xjn is minimal. Consider a reallocation of investments,fxin = xin�",fxjn = xjn+". This reallocation does not a¤ect direct bene�ts. For
" small enough, it only reduces indirect bene�ts between i and other players
who are connected to the hub by links of maximal strength by ". Indirect
bene�ts between player j and all these players have been increased by ",
and indirect bene�ts between players iand j have strictly increased. Hence,
this reallocation of investments has strictly increased the value of the graph,
showing that the hub must put equal weight on all links with peripheral
agents.
Theorem 3 shows that every pair of agents is connected by a single path

when reliability is measured by the strength of the weakest link. This result
is easily explained: if two agents are connected by two paths, a reallocation
of investments towards one of the two paths will necessarily increase the
minimal value of the connection, and result in higher bene�ts. When the
function � is convex, Theorem 3 shows that a star is e¢ cient, but does
not determine the allocation of the investments of the hub. As in the case
of product reliability, the following example shows that the hub will either
choose to invest fully in one link, or to allocate its investment across di¤erent
links, depending on the convexity of the function �:

Example 3 Let �(x) = 1
2
x� with � � 1 and X = 1:

For n = 3, we compute the value of the star when the hub allocates x on
its link with one of the nodes, and (1� x) on the other:

V =
3

2
+
1

2
fx� + (1� x)� +minfx; 1� xg�g:

It is easy to check that V is a convex function of x on the two intervals [0; 1=2]
and [1=2; 1], so that the maximum is either obtained for x = 0 or x = 1=2
or x = 1. A simple computation shows that if � � log 3

log 2
, the maximum is

attained at x = 1=2 and if � � log 3
log 2
, the maximum is attained either at x = 0

or x = 1:
Contrary to the case of product reliability, the star need not be the only

e¢ cient architecture. Because distances do not matter with min reliability, a
number of alternative network architectures can give rise to the same value
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as the star. Suppose for example that a star where the hub invests fully in
one of the links is e¢ cient. Then a line, where the second node invests fully
in its connection with the �rst agent gives rise to the same aggregate bene�ts
as the star. In the case of perfect substitutes, a star where the hub invests
equally in all its links is e¢ cient. Then, as the following proposition shows,
any tree where all links have equal strength is an e¢ cient network.

Proposition 1 Suppose that Assumption 1 holds. If � is linear, then any
tree can be supported as an e¢ cient network.

Proof. We propose an algorithm which shows that for any tree, there exists a
feasible allocation of investments such that all links have equal strength.Pick
any node x0 as the root of the tree. De�ne then a binary predecessor relation
corresponding to this root : i � j if and only if i 2 P (j; x0) where P (j; x0) is
the unique path from j to x0: One may also de�ne the immediate predecessor
of a node j as the node i such that i � j and if k � j and k 6= i then
k � i. Given that the network is a tree, this unique immediate predecessor
is well de�ned. Now, to any node x in the tree, attach an integer �(x)
which corresponds to the number of nodes which have x as a predecessor,
i.e., �(x) = #fi; x � ig. Clearly, if x is a leaf of the tree, �(x) = 0 and for the
root; �(x0) = n�1: For any node x, let I(x) = fy1; :::; ym; :::; yMg denote the
set of nodes which admit x as an immediate predecessor. Finally, consider
the following allocation of resources for node x: invest X(�(ym)+ 1)=(n� 1)
on each point ym 2 I(x) and invest the remainder, X(n� 1� �(x))=(n� 1)
on the relation with the unique immediate predecessor of x. Clearly, this
allocation of resources satis�es individual budget balance. Now, consider any
link between x and y and assume without loss of generality that x is the
immediate predecessor of y. Then the value of the link is X(�(y) + 1 + n�
1��(y))=(n�1) = nX=(n�1) which is independent of x and y. Hence, this
allocation of resources results in all links having equal strength.
Turning to the case of decreasing returns, we face the same con�ict be-

tween maximization of direct and indirect bene�ts as in the case of product
reliability. The following Proposition provides a very partial characterization
of e¢ cient networks in that case. It implies that a star can never be e¢ cient.

Proposition 2 Suppose that Assumption 1 holds , the function � is strictly
concave and n � 4. If a network is e¢ cient, then no agent can put positive
investment on two or more terminal nodes.
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Proof. Consider a graph where some agent i is connected to two terminal
agents j and k. Because n � 4, agent i is also connected to some other
agent l in the network from whom i derives direct bene�ts. Without loss of
generality, suppose that xji � xki > 0 so that sij = X + x

j
i � sik = X + xki .

Consider �rst the case where xji + x
k
i = X. We then have sil � X < sij.

Consider then a reallocation bxli = xli + " = ", bxji = xji � ". By concavity, for
" small enough,

�(bxli) + �(bxji ) > �(xli) + �(xji ),
so this allocation results in an increase in direct bene�ts. Furthermore, con-
sider indirect bene�ts. This reallocation has reduced all indirect bene�ts
from player j through player i where sij is the minimum link value. (So
in particular, this does not change indirect bene�ts using the link il). For
all these indirect bene�ts, the loss is equal to �(bxji )� �(xji ). On the other
hand, this reallocation has increased at least all indirect connections from
player l through player i where sil is the mimimum link value. For all these
indirect bene�ts, the increase is equal to �(bxli) � �(xli). Clearly, the num-
ber of indirect connections increased by the reallocation is at least as large
as the number of indirect connections reduced by the reallocation, and as
�(bxli) + �(bxji ) > �(xli) + �(x

j
i ) the total value of indirect connections has

increased. This shows that the initial graph cannot be e¢ cient.
Consider now the case where xji + x

k
i < X and consider the following

reallocation bxji = xji + x
k
i , bxij = X � xki , bxkj = xki ; bxjk = X. After this

reallocation, the links become sij; sjk and the value of the terminal link, sjk
is the same as the value of the terminal link sik. On the other hand, we claim
that the value of link sij has strictly increased. In fact,

bsij = �(bxji ) + �(bxij) = �(xji + xki ) + �(X � xki )
whereas

sij = �(x
j
i ) + �(X):

As long as xji + x
k
i < X, xji � xki > 0 and , and by strict concavity of the

function �;
�(xji + x

k
i ) + �(X � xki ) > �(x

j
i ) + �(X):

This argument shows that this reallocation has strictly increased direct ben-
e�ts. But the only indirect bene�ts which have been a¤ected by this reallo-
cation are the indirect bene�ts �owing from connections to j and k. Now ascsij > sij � sik = csik, the value of indirect connections to player k are at least
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as large after the reallocation. Similarly, as bsij > sij, the value of indirect
connections to player j cannot have beend reduced by the reallocation. This
shows that the initial network cannot be e¢ cient.

Corollary 1 Suppose Assumption 1 holds, and � is strictly concave. If n �
4, then an e¢ cient graph cannot be a star.

Proof. Suppose g is a star. Then, if g is e¢ cient, the hub must be investing
fully on one link. Then, the aggregate utility from g is equivalent to that of
a line g0 where one of the links, say ij has strength sij = 2�(X), while all
other links have strength �(X).
Without loss of generality, let i not be a peripheral node in g0, and suppose

ik 2 g. Let i split her investment between j and k. From strict convexity,
direct bene�ts go up. Also, since g0 is a line where all links other than ij
have strength �(X), there is no loss in indirect bene�ts. Hence, g0 (and so
g) cannot be e¢ cient.

We now examine the stability of e¢ cient networks when the reliability
function is Rm. If � is strictly convex, Example 3 shows that the e¢ cient
network architecture may fail to be Nash stable. As in the case of product
reliability, the maximization of indirect bene�ts requires that the hub divides
its investment over two nodes for � low enough. However, the hub of the
star has an incentive to concentrate its investment on a single link in order
to maximize his private bene�ts. In the case of perfect substitutes, no agent
has an incentive to deviate from an equal allocation of link strengths, as this
would reduce the value of the weakest link. Hence, we obtain:

Theorem 4 Suppose that Assumption 1 holds.
(i) There exists a strictly convex � such that the e¢ cient network is not

Nash stable.
(ii)If � is linear, then, any tree with equal strength on all links is strongly

pairwise stable.

Proof. We only prove (ii). Every link in a symmetric tree has strength
n
n�1X. Since distance between nodes does not matter under R

m, every node
derives a bene�t of n

n�1X from every other node. It is easy to check that no
deviation by a pair can improve both individuals�payo¤s.
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4 Perfect Complements

We now consider the case of perfect complements. In this case, both agents
need to invest for the link to be formed. This corresponds to friendship
networks where both agents must exert e¤ort for a communication link to
be established. We �rst obtain a partial characterization result for product
reliability, and then give a complete description of e¢ cient networks for min
reliability.

4.1 Product reliability

When reliability is measured by the product of the strengths of communica-
tion links, we �rst show that, as opposed to the case of separable investments,
the e¢ cient network must contain a cycle.

Proposition 3 Suppose Assumption 2 holds. If g is e¢ cient, it cannot have
any component with three or more nodes which is a tree.

Proof. Suppose g is e¢ cient and has a component with three or more nodes,
where two nodes have degree one. Denote these nodes by i and j and their
immediate predecessors by k and l respectively. Because the component is
connected, the degrees of k and l are necessarily greater than one. But
this implies that xik < X and xjl < X. Furthermore because

P
m2Nnfig

xmk �

X; xmk � X � xik for all node m 6= i to which k is connected. Now, this
implies that the value of the indirect connection between i and j in the graph
is strictly smaller than minfX � xik; X � xjl g): Furthermore, in an e¢ cient
graph, xki = xik and x

l
j = xjl so that individual i can invest X � xik in the

direct link with j and individual j can invest X � xjl in the link with i. But,
because the value of the indirect link is smaller than minfX � xik; X � x

j
l g,

the investment in the direct link strictly increases the value of the graph,
yielding a contradiction.
The proof of the theorem is completed with the observation that in a tree,

at least two nodes have degree one.

Unfortunately, we have been unable to characterize completely e¢ cient
networks when inputs are perfect complements. For low values of n, we can
show that the circle is the unique e¢ cient network structure.
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Proposition 4 Suppose Assumption 2 holds. For 3 � n � 7, the circle
where every link has value X=2 is the unique e¢ cient network.

Proof. For n = 3, the circle is the only connected graph which is not a tree.
Now, notice that direct bene�ts are equal to nX and hence are maximal in
the circle. For n = 4; 5, we show that the circle also maximizes the value
of indirect bene�ts. Notice �rst that the value of an indirect connection is
always bounded above by (X=2)2 as the middle player must allocate X over
at least two links. For n = 4 and n = 5 all indirect connections in the
circle are of length 2 and have value (X=2)2. Hence, the circle achieves the
highest sum of indirect links and is e¢ cient. It is easy to check that any
other allocation of investments results in a lower value of indirect links, so
the circle with links of equal strength is uniquely e¢ cient.
Suppose now that n = 6; 7. The indirect bene�t for any node in the circle

is

I =
X2

2
+
X3

4

Consider any other graph g. If this graph is to �dominate" the cycle,
then at least one node (say i�) has to derive an indirect bene�t exceeding I.
For each k, check that the circle maximises indirect bene�ts from nodes at a
distance of k. So, if i is to derive a larger indirect bene�t in g, it must have
more than two nodes at a distance of 2.15

It is tedious to show that the maximum indirect bene�t that i� can de-
rive occurs when i� has two neighbours, j1; j2, with each neighbour of i�

having three neighbours including i� itself. Moreover, the optimum pattern
of allocation from the point of view of i� is

xj1i = x
j2
i = x

i
j2
= xij2 =

1

2

This yields i� a total indirect bene�t of X
2

2
< I.

For larger numbers of players, the above argument does not hold. The
circle may be dominated by denser graphs, where the number of indirect
connections is lower but the distance of indirect connections is lower as well.
The following example shows that the circle can indeed be dominated by
another network architecture (the �Petersen graph")16 for n = 10:

15Since n � 7, the maximum distance between any two nodes in the circle is 3.
16See Holton and Sheehan(1993).
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Figure 1: The Petersen graph

Remark 1 Let n = 10. The circle may be dominated by the Petersen graph.

The Petersen graph is a regular graph of degree 3 such that, for any
node i, and any neighbors j and k of i, the set of direct neighbors of j
and k (other than i ) is disjoint. Consider the Petersen graph where every
link has value X=3. The direct bene�ts are maximized, and each player has 6
indirect connections of length 2 and value (X=3)2. Hence, the value of indirect
connections for any player is 6X2=9 = 2X2=3: In the circle, each player has 2
indirect connections of length 2, 2 indirect connections of length 3, 2 indirect
connections of length 4 and 1 indirect connection of length 5, so the total
value of indirect connections is given by

IC =
X2

2
+
X3

4
+
X4

8
+
X5

32
:

For small values of X, it is obvious that

IC <
2X2

3

so that the Petersen graph dominates the circle.

The symmetric cycle is always stable, as the following Proposition shows.

Proposition 5 Let Assumption 2 hold. Then, the symmetric cycle is both
Nash stable and strongly pairwise stable.
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Proof. : It is straightforward to check that the symmetric cycle is Nash
stable. We just show that the symmetric cycle is strongly pairwise stable.
In the symmetric cycle, each i gets a direct bene�t of X. No pattern

of investment can result in higher direct bene�ts. So, we check whether a
deviation by i and j can improve their indirect bene�ts.
Suppose i and j are neighbours in the cycle. Consider the e¤ect on i of

increasing investment to X
2
+y by both i and j on the link ij, and decreasing

their investments on their other neighbours by y. The change in indirect
bene�t for i from j�s other neighbour is (X

2
+y)(X

2
�y)� (X

2
)2 < 0. A similar

calculation shows that i also loses from nodes which are further away.
Suppose i and j ae not neighbours in the cycle. Let i and j mutually

invest y each on the link ij and simultaneously decrease investment on their
previous neighbours by y

2
. It is easy to check that this is the best possible

deviation.
Clearly, this can only increase indirect bene�t for i if there is some k such

that the distance between i and k is now lower. This means that i accesses
k through j. Let k be a neighbour of j. Then, the indirect bene�t for i from
k is

I = y(
X � y
2

) =
Xy

2
� y

2

2

Now, i has reduced the strength of links with each of its previous neigh-
bours by y

2
. Also, since k is not at a distance of 2 from i in the cycle, there

must be some node m, distinct from k which is at a distance of 2 from i. The
loss in indirect bene�t for i from m is

I 0 = (
X � y
2

)
X

2
� X

2

4
=
Xy

2

Hence, the indirect been�t for i from k is lower than the loss in indirect
bene�t from m.
Repeating this argument, it can be shown that i�s total indirect bene�t

will actually go down as a result of the deviation.

4.2 Min Reliability

E¢ cient networks architectures are easily characterized with min reliability.

Proposition 6 If Assumption 2 holds, the e¢ cient graphs are the symmetric
line and the cycle.
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Proof. Consider any node i, and suppose that j is a neighbour of i. The
maximum indirect bene�t that i can get from any node using a path involving
ij is min(xji ; X �x

j
i ), since x

i
j +x

k
j � X for all k 6= i; j. Hence, for any node,

the maximal indirect bene�t from any other node is X
2
, which is obtained

by equalizing the value of every link at X=2: Any other architecture must
involve some link of value smaller than X=2 and hence decrease the value.
Note that the symmetric cycle yields every node a total bene�t of (n� 1)X

2
.

Hence, these must be e¢ cient architectures.
Clearly, no node with degree greater than 2 can attain this value. Also,

no disconnected graph can be e¢ cient. Hence, the line and cycle must be
the only e¢ cient graphs.

Because distances do not matter with min reliability, in the symmetric
line and cycle, each node derives a bene�t of X

2
from every other node. It is

trivial to check that no deviation by a pair (or coalition) can improve mutual
payo¤s. Hence, we have the following result.

Proposition 7 Suppose Assumption 2 holds. Then, the symmetric line and
the cycle are both Nash stable and strongly pairwise stable.

5 Conclusion

In this paper, we analyze the formation of communication networks when
players choose endogenously their investment on communication links. We
consider two alternative de�nitions of network reliability; product reliability,
where the decay of information depends on the product of the strength of
communication links, and min reliability where the speed of connection is af-
fected by the weakest communication link. When investments are separable,
we show that the architecture of the e¢ cient network depends crucially on
the shape of the transformation function linking investments to the quality
of communication links. With increasing marginal returns to investment,
the e¢ cient network is a star ; with decreasing marginal returns, the con�ict
between maximization of direct and indirect bene�ts prevents us from ob-
taining a complete characterization of e¢ cient networks. However, we show
that with min reliability, the e¢ cient network must be a tree. Furthermore,
in the particular case of linear transformation functions, we show that in an
e¢ cient network, all links must have equal strength. When investments are
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perfect complements, the results change drastically: under product reliabil-
ity, the e¢ cient network must contain a cycle, and is in fact a circle for small
societies. With min reliability, the e¢ cient network is either a circle or a line.
As in classical models of network formation, because of widespread exter-

nalities, e¢ cient networks may not be supported by private investment deci-
sions. We provide examples to show that the star may not be stable when the
transformation functions is strictly convex. We also note that with perfect
substitutes and perfect complements (when the e¢ cient network displays a
very symmetric structure), the e¢ cient network can indeed be supported by
private investments when the society is large.
In our view, this paper provides a �rst step in the study of networks where

agents endogenously choose the quality of the links they form. An ambitious
objective would be to revisit the recent literature on strategic network for-
mation assuming that networks are represented by weighted graphs, but the
complexity of the analysis in the simple case of communication networks indi-
cates that a general study of weighted networks may be intractable. Instead,
we would like to suggest three possible directions fo further research. First,
we would like to extend the analysis to situations where agents face invest-
ment costs, rather than opportunity costs due to a �xed budget. Second, we
plan to analyze network formation for other speci�cations of indirect bene-
�ts, assuming for example that information decays completely for paths of
length greater than two. Finally, we need to understand better the relation
between investments and network structures, and wish to study in more de-
tail the pattern of link investments for �xed network architectures, and the
comparative statics of investments with respect to changes in the network
structure.
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