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Abstract: In the literature of psychology and economics it is frequently
observed that individuals tend to imitate similar individuals. A fundamental
question is whether the outcome of such imitation can be consistent with self-
interested behavior. We propose that this consistency requires the existence
of a Nash equilibrium that induces a partition of the player set into relatively
few groups of similar individuals playing the same or similar strategies. In
this paper we define and characterize a family of games admitting existence
of approximate Nash equilibria in pure strategies that induce partitions of
the player sets with the desired properties. We also introduce the Conley-
Wooders concept of ‘crowding types’ into our description of players and
distinguish between the crowding type of a player - those characteristics of
a player that have direct effects on others— and his tastes, taken to directly
affect only that player. With the assumptions of ‘within crowding type
anonymity’ and a ‘convexity of taste-types’ assumption we show that the
number of groups can be uniformly bounded.

1 Social learning

Individuals belonging to the same society typically have commonalities of
language, social and behavioral norms, and customs. Social learning con-
sists, at least in part, in learning the norms and behavior patterns of the
society into which one is born and in those other groups that one may join
— professional associations, faculty clubs, and communities, for example.
Individuals may learn by observing and imitating individuals in the same
groups. A fundamental question is whether the outcome of such imitation
can be consistent with self-interested behavior. From the perspective of
game theory, we propose that this consistency requires the existence of a
Nash equilibrium or an approximate equilibrium where individuals within
the same society play the same or similar strategies and where most or all
societies are nontrivial in size; the Nash equilibrium captures a notion of
self-interested behavior while the existence of societies that are nontrivial in
size facilitates imitation within societies. In this paper we provide a family
of games where an equilibrium with the desired properties exists.

In an economic context there are many reasons why an individual may
be influenced by the actions of others, leading to imitation or conformity.
For example, an individual who is boundedly rational or has imperfect infor-
mation may choose to imitate someone he believes is better informed than
himself (Gale and Rosenthal 1999, Schleifer 2000). Similarly, in a coordina-



tion game with multiple equilibria an individual may benefit from observing
and conforming to the actions of others (Ellison and Fudenberg 1995, Young
2001). Finally, a player may be motivated by desires for prestige, popularity
or acceptance and so conforms to the actions of others to ‘fit in’ (Bernheim
1994). An individual will typically, however, only be influenced by a certain
groups of individuals with whom he identifies (Gross 1996). He may not, for
example, imitate people he perceives as less informed than himself or people
whose acceptance he does not desire.

To address the question of whether conformity is individually rational
we introduce a structure generating games with the property that, in games
with many players, for most players, there are many similar players. We
take as given a metric space () of player attributes and a finite set S of pure
strategies. An attribute w € ) is interpreted as specifying the characteristics
of a player and the metric on attribute space {2 allows measurement of
similarity of players. A universal payoff function A is also taken as given.
These three elements, 2, S, and h, are called a (noncooperative) pregame.
Given a finite set of players and an attribute function, ascribing a point
in attribute space to each player, a pregame induces a game, according to
standard definitions, on the player set. The definition of i ensures that any
induced game has a certain anonymity property — only the attributes, and
not the names, of other players are relevant. A pregame allows us to model
a family of games all induced from a common strategic structure.

The pregame framework accommodates diverse situations. As a simple
example, consider an economy where each agent offers 0 or 1 units of labour
towards the provision of a public good. The amount of the public good
produced depends on the average offer. The payoff function of an individ-
ual is increasing in the amount of public good provided but decreasing in
the amount of labour he offers. Suppose payoff functions are drawn from
some compact set ). A universal payoff function h, with domain in terms
of strategy vectors, can be constructed to reflects these preferences. The
construction of h reflects the anonymity property implicit in the descrip-
tion of the economy; the payoff to an individual player depends only on his
contribution and the average contribution of the other players in the econ-
omy. The set €, the function h, and the set of strategies {0, 1} determine a
pregame. Note that since a total player set has not been specified, a pregame
is not a game. But given a finite population of players, described by the the
preferences of the individuals in the population, a game satisfying the stan-
dard definition is induced on that population by the pregame. An infinite
number of games can be induced by this one pregame — two player games,
three player games, ... and the players in the games may have different pref-



erences (albeit all drawn from 2). Many such examples can be generated;
three more appear in the body of the paper.

Given a pregame, an induced game and a strategy profile for the game,
we define a collection of players A as a society if every player belonging to A
has attributes in some convex subset of attribute space {24 and every player
with attributes in in the interior of 24 plays the same strategy.! Further,
since it is difficult to motivate the use of mixed strategies if players imitate
or conform, we require that all players belonging to A to play the same pure
strategy.

To obtain our results, we make two assumptions on a pregame. The first
ensures that players whose attributes are close in the metric on attribute
space are indeed similar as players in induced games and the second ensures
that the strategy choices of individual players have near-negligible impacts
on other players. Our main result can be summarized:

Conformity: Given any ¢ > 0 there are integers n(¢) and L(¢) such that any
game with at least 7(e) players has a Nash e-equilibrium in pure strategies
that induces a partition of the population into at most L(e) societies.

Note that the bound on the number of societies L is independent of the
size of the population. Thus, if there are ‘many’ players then most societies
must be large. Moreover, the smaller the number of societies, the greater
the possible difference between players in the same society and the stronger
the conformity. Generally, however, the bound L is not independent of e.
With an additional assumption, we also demonstrate:

Uniform boundedness of the number of societies: With ‘convexity in
taste types,’ the bound on the number of societies L is independent of e.

To the best of our knowledge, our conformity results have no analogues in
the extant literature. Bernheim (1994) provides conditions for the existence
of a Nash equilibrium consistent with conformity. As we discuss in Section
3.2, however, Bernheim assumes players have explicit desires to ‘fit in” with
social norms; we treat games where this may or may not be the case. Con-
formity within subgroups (clubs or jurisdictions) of the population has been
an issues in the literature of local public goods and clubs; see, for example,

'Our definition of a society is, of course, highly stylized. In part, this is due to the
complete information aspect of our model. Nevertheless, the definition captures the idea
that individuals within a society are similar and conform to the same norms or standards
of behavior. In the framework of a standard noncooperative game, conformity appears
in the choice of strategy.



Wooders (1978), Greenberg and Weber (1986), Conley and Wooders (1996)
and Demange (1994), where equilibrium/core jurisdictions consist of similar
individuals. The approach of these papers however is based on cooperative
and /or price-(or tax) taking behavior. A further related literature concerns
dynamic models of social learning; see. for example, Kandori, Mailath and
Rob (1993), Ellison and Fudenberg (1995), and Young (2001). The mo-
tivation for these dynamic models is analogous to ours in questioning the
effectiveness of social learning. Typically, however, in these dynamic models
there trivially exists a Nash equilibrium that is consistent with the assumed
social learning dynamic; the motivating issues are whether play converges
to a Nash equilibrium and, if so, which one.

We proceed as follows: Section 2 introduces notation and definitions. In
Section 3 we treat conformity beginning with some simple examples before
providing our two main results and a discussion on normative influence. In
Section 4 we conclude and an Appendix contains remaining proofs.

2 Notation and definitions

A game T is given by a triple (N, S, {u; }icn) consisting of a finite player set
N, a finite set of pure strategies S, and a set of payoff functions {u;}en.
A pure strategy vector for game T' is given by m = (ml,...,m|N|) where
m; € S denotes the pure strategy of player i. The set of pure strategy
vectors is given by SY. We note that for each i € N the payoff function u;
maps SV into the real line.

Let  be a metric space, called an attribute space, let S be a finite set
of strategies, and let W be the set of all mappings from 2 x S into R
with finite support.? A member of W is called a weight function. A non-
cooperative pregame is a triple G = (2,5, h) consisting of an attribute space
), a set of pure strategies S and a function h : Q@ x S x W — R,. As
we formalize below, the function A determines a payoff function for each
player in any game induced by a pregame; the payoff to a player depends
on the attributes of that player, his strategy choice, and the weight function
induced by the strategy choices of the other players.

Take as given a pregame G = (2, S, h). Let N = {1, ...,|N|} be a finite set
and let a be a mapping from N to €, called an attribute function. The pair
(N, ) is a population, a set of players and their attributes. A pure strategy
vector for the population (N,a) is given by a vector m = (my,...,my))
where m; € S ascribes a pure strategy to ¢ € N.

*Where R, denotes the non-negative real numbers.



Given a population (N, ) and a pure strategy vector m € SV we say
that weight function wa,m € W is relative to m if,

Wam(w,sk) = [{t € N : a(i) =w and m; = si}|

for all s, € S and all w € Q. Thus, wam(w,s;) denotes the number of
players with attribute w who play strategy si. An induced game T'(N,«)
can now be defined:

F(N’O[) = (Na‘S? {uza : SN - R+}i€N)

where

def
uf(m) = h(w, mi, wem)

for all w € a(N) and m € ¥,. We note that players who are ascribed the
same attribute have the same payoff function.

Other than finiteness of the strategy set, a pregame need not imply any
assumptions on the games induced. A pregame, however, provides a useful
framework in which (a) to treat a family of games all induced from a common
strategic situation as given by the attribute space €2 and pure strategy set .5,
and (b) to be able, relatively simply, to impose assumptions on that family
of games through the function h. We demonstrate this later point in Section
3.

We will assume throughout that players play pure strategies. We invoke,
however, the standard von Neumann Morgenstern assumptions with regard
to expected utility of (mixed) strategies. The standard definition of a Nash
equilibrium applies. Given € > 0, a strategy vector m is a Nash e-equilibrium
in pure strategies or, informally, an approximate Nash equilibrium in pure
strategies, only if,

gt (mg, m—;) > ui*(sg,m—i) — € (1)

for alli € N and s; € S.

2.1 Societies

Throughout we assume, for convenience, a particular form of attribute space.
Let C = {1,2,...,C} be a finite set of crowding types.> We assume that 2 is
given by C x [0,1]* for some finite integer F.* We will typically denote an

3The term ‘crowding type’ is taken from Conley and Wooders (1996, 1997,2001).
Crowding types are described further in the next section, where they play a larger role.

*This appears more than general enough to cover many potential applications. Results
with a more general form of attribute space are obtained by Wooders, Cartwright and
Selten (2001).



attribute by w = (c,t) where ¢ € C and t € [0,1]F". We use the metric on
whereby the distance between two attributes w = (¢, t) and ' = (¢, t') is 2 if

¢ # ¢ and equals the maxy ’t ;= t’f’ otherwise. In interpretation, therefore,

two players ¢ and j with the same crowding type are always seen as ‘more
similar’ than two players with different crowding types. The attribute space
will be treated in more detail in Section 3.3 and 3.4.

Given a set A we denote by con(A) the convex hull of A and by int(A)
the interior of A.

A society: Given population (N, «) and strategy vector m a set of players
D C N is a society (relative to @ and m) if

1. all players ¢ € D play the same pure strategy,
2. all players ¢ € D have the same crowding type, and

3. for any player ¢ € N, if a(i) € int(con(a(D)) then i € D.

We say that a pure strategy vector m induces a partition of the population
(N,«) into a set of societies S = {1, ..., Ng} if each player i € N belongs
to a unique society Ny, € S and if each society N, € S is relative to «
and m. Note that if m induces a partition of the population (N, «) into @
societies then there exists a partition of €2 into () convex subsets {Qq}?zl
such that, for any two players 4,j € N and any €y, if (i), a(j) € int(€)y)
then m; = m;.

The definition of a society captures two key features. First, players in
the same society play the same strategy; this is clearly motivated by the
observation that conformity within a society may lead to common behavior.
Second, players in the same society have a commonality of attribute; this
is motivated by the observation that a player will only conform to those
with whom he identifies. That players in a society have a commonality of
attribute is demonstrated by the fact that players in a society have the same
crowding type and that to each society we can associate a convex subset of
attribute space.

We note that any strategy vector induces a partition of a population
(N, ) into | N| societies where each society consists of one player.” A crucial
aspect of our main results will thus be to bound the number of societies

®That a society could have just one member is not unreasonable as this may represent
a player who chooses not to conform (Bernheim 1994) to the actions of similar players.



independently of the size of the player set. In games with many players,
this will ensure that most societies contain many players. We treat other
implications of the definition of a society after stating our main result in
Section 3.3.

3 Conformity

In this section we demonstrate conditions under which all sufficiently large
games have approximate Nash equilibria in pure strategies that induce par-
titions of the player sets into a uniformly bounded number of societies.
Before introducing our results we provide two simple examples to show why
the desired equilibrium may not exist.

Example 1: Players have to choose between two locations A and B. The
attribute space is given by {X, P} where a player with crowding type X is
a celebrity and a player with crowding type P an ‘ordinary’ member of the
public. Members of the public like living in the same location as celebrities.
Thus, the payoff of a player with attribute P is equal to the proportion of
celebrities whose choice of location he matches. Celebrities, by contrast,
prefer avoiding the public and thus the payoff of a player with attribute
X is equal to the proportion of members of the public whose choice of
location she mismatches. Arbitrarily large games induced from this pregame
need not have an approximate Nash equilibrium in pure strategies consistent
with conformity. This follows from the fact that there may not exist an
approximate Nash equilibrium in pure strategies. This is easily seen by
supposing that there is only one celebrity.¢

Example 1 illustrates that some conditions will be required to guarantee
the existence of an approximate Nash equilibrium in pure strategies. Our
second example demonstrates that even if there exists an approximate Nash
equilibrium in pure strategies there need not exist one that is consistent
with conformity.

Example 2: Players choose between locations A and B. The attribute
space is [0, 1]. A player’s attribute determines whether he prefers location A
or B. Whether a player prefers A or B can, however, be seen as essentially
a random event. More formally, assume that if a player has attribute w
where w is a rational number then he is assigned a payoff of 1 for choosing
A and 0 for choosing B. If a player has attribute w where w is an irrational
number then he is assigned a payoff of 1 for choosing B and 0 for choosing A.



Games induced from this pregame clearly have a Nash equilibrium in pure
strategies. For arbitrarily large games, however, it is clear that no bound
can be put on the number of societies that a Nash equilibrium would induce.
For example, in a game where alternate players (in terms of the size of their
attribute) have rational and irrational attributes the number of societies is
as large as the player set.4

Example 2 illustrates that some continuity assumption on attributes is
necessary. In particular, we require that players with close attributes are
similar. It would appear that a simple redefinition of an attribute would
solve the observed problem with conformity in Example 2; for example, we
could state that there are two attributes to represent those who like location
A and those who like location B. Note, however, that the number w may
signify an observable characteristic of a player that is irrelevant in terms of
his payoff but does influence whether or not other players will identify with
him; for example, w may represent age and a player conforms to those with
a similar age to himself. This suggests that conformity on the basis of w may
be observed, implying that [0,1] is a relevant attribute space to consider.

3.1 Large games

To derive our main result we make two assumptions on pregames - continuity
in attributes and global interaction. We introduce each in turn.

Continuity in Attributes: The pregame G = (12, S, h) satisfies continuity
in attributes if for any e > 0 there exists a real number 6.(g) > 0 such that,
for any two games I'(N, o) and I'(N, @), if for all ¢ € N it holds that

dist(a(i),a(i)) < bc(e)
then for any j € NV and for any pure strategy vector m,
|u§ (m) —u§(m)| <e.
Continuity in attributes dictates that, given strategy choices, if the at-

tribute function changes only slightly, then payoffs change only slightly. We
note that the pregame of Example 2 does not satisfy continuity in attributes.

To define global interaction we introduce a metric p, on pure strategy
vectors for a given game I'(IV,a). Consider two arbitrary pure strategy



vectors m,s € SV and denote by w,, and g, the respective induced weight
functions. Define p, by

palim, ) dzef|—jv|§j S (@, 55) — go(w, )]

sLES weEa(N)

Thus, pure strategy vectors m and s are seen as ‘close’ if the proportion of
players with each attribute playing each strategy is approximately the same.

Global Interaction: The pregame G = (2, S, h) satisfies global interaction
when for any € > 0 there exists a real number 64(¢) > 0 such that, for any
game I'(IV, ) and any two pure strategy vectors m and s, if

pa(m7 8) < 69(5)
then for any j € N where m; = s;

}u?(m) - u;’(s)} <e. (2)

The assumption of global interaction states that a player is nearly indif-
ferent to small changes in the proportion, relative to the total population,
of players of each attribute playing each strategy. Thus, the actions of any
one player have little influence on the payoffs of others. We note that the
pregame of Example 1 does not satisfy global interaction.

The pregame G = (2,5, h) is said to satisfy the large game property if
it satisfies both continuity in attributes and global interaction. The large
game property implies a form of continuity of A with respect to changes
in the weight function and attribute. Indeed, to summarize: continuity in
attributes is a bound on the payoff difference when the attributes of players
change but their strategies do not. By contrast, global interaction is a
bound on the payoff difference when the strategies of players change but
their attributes do not. The pregame of Example 1, for instance, satisfies
continuity in attributes but not global interaction. The pregame of Example
2, by contrast, satisfies global interaction but not continuity in attributes.

3.2 Purification

It is difficult to motivate the use of mixed strategies if players imitate or
conform. A preliminary to treating the individual rationality of conformity
is thus to treat the individual rationality of using pure strategies. The
following result demonstrates that in sufficiently large games induced from

10



a pregame satisfying the large game property there exists an approximate
Nash equilibrium in pure strategies. This result is most easily obtained using
a purification theorem due to Kalai (2000). Wooders, Cartwright and Selten
(2001) provide generalizations of Theorem 1.9

Theorem 1: Consider a pregame G = (€2, 5, h) that satisfies the large game
property. Given any real number £ > 0 there exists a real number 7(e) such
that for any population (N, ) where |[N| > 7(e) the induced game I'(V, «)
has a Nash e-equilibrium in pure strategies.

Proof: Suppose not. Then there exists an ¢ > 0 and, for every integer
v, a game I'(N”,a”) such that |[N”| > v and game I'(N”,a”) has no Nash
e-equilibrium. Let § = 4. (%) be the real number implied by continuity
in attributes for a payoff bound of §. Partition §2 into a finite number of
subsets (21, ...,{)g each of diameter less than ¢. For each ), pick a point
wq € §y. For each v consider a population (N¥,a") satisfying, for alli € NV,
the property that @”(i) = wq if and only if o”(i) € ©,. We note that, by
the well known Nash existence theorem, each game I'(N",@") has a Nash
equilibrium. Consider the set of games G = {I'(N",@)},. Given that the
set of attributes for G is finite it can trivially be seen that G is a subset of a
family of semi-anonymous Bayesian games as defined by Kalai (2000). From
this (global interaction and the existence of Nash equilibrium) it is equally
trivial that Theorem 1 of Kalai (2000) implies there exists v* such that any
game I'(N”, @) where v > v* has a Nash $-equilibrium in pure strategies
m”. By continuity in attributes and the choice of §

i (s ) = (s )| < 5
for all s € S. Thus, m” is a Nash e-equilibrium in pure strategies of game
D(NY,a") ifv >v*l

3.3 Main Result

Theorem 2 demonstrates that in sufficiently large games there exists an ap-
proximate Nash equilibrium in pure strategies that partitions the population

% We note that Kalai (2000) and Wooders, Cartwright and Selten (2001) are independent
and concurrent research endeavours. The purification result of Kalai (2000) is sufficient
for the purposes of the current paper (and the reader interested in this paper may also
be interested in the other results of Kalai 2000). Seminal results on purification appear
in Schmeidler (1973). Pascoa (1993) studies situations with a continuum of agents but
nevertheless uses assumptions similar to ours. The literature on purification is surveyed
in Khan and Sun (2002).
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into a bounded number of societies. A fundamental aspect of Theorem 2 is
that the bound is independent of population size. Note that the smaller is
the bound the more dissimilar players in the same society may be. Theorem
2 is proved in an appendix.

Theorem 2: Let G = (2,5, h) be a pregame satisfying the large game prop-
erty. Given any real number £ > 0 there exists real number 7(¢) and integer
A(e) such that for any population (N, «) where |[N| > n(e) the induced game
I'(N, a) has a Nash e-equilibrium in pure strategies that induces a partition
of the population (N, «a) into @ < A(e) K societies.

Theorem 2 suggests that conformity can be individually rational in suffi-
ciently large games. We highlight that the result applies to games in which
all players have different attributes.

Note how the definitions of a society and of a partition of the population
into societies leaves open the possibility that two players ¢, € N with
the same attributes could belong to different societies and play different
strategies. A result such as Theorem 2 cannot be obtained unless this is
permitted.” To see this, consider a game I'( N, o) where all players have the
same attribute and any Nash equilibrium has the property that a positive
fraction of the players choose one strategy and a positive fraction choose
another strategy.

Another important feature of Theorem 2 is the convexity aspect of so-
cieties. For some attribute spaces, for example, 2 = C x [0, 1], Theorem 2
implies the existence of an approximate Nash equilibria in pure strategies
with the property that most players are playing the same strategy as their
nearest neighbors in attribute space. This, however, is a special case; see
Wooders, Cartwright and Selten (2001) for further discussion.

3.4 Bounding the number of societies independently of ¢

In some cases it is possible to bound the number of societies independently
of e. We provide one such example.

Recall that the attribute space is given by Q = C x [0, 1]¥. In this section
we shall assume that if a player has attribute (c,t) the value ¢ characterizes

"Wooders, Cartwright and Selten (2001) obtain a complementary result to Theorem 1
in which players with the same attribute do belong to the same society. This is possible
by treating populations in which the number of players of any one attribute is bounded.
Similarly the literature on non-atomic games demonstrates the existence of a symmetric
Nash equilibrium in pure strategies in games with a continuum of players if the distribution
of players over attributes is atomless (see Pascoa 1993).
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his external influence on others - his crowding type - while ¢ characterizes his
payoff function - his taste type. We think of the crowding type of a player
as such characteristics as gender, educational level, height, ability to salsa,
and so on, that are observable to other players and may have direct effects
on them. In contrast, we think of a player’s taste type as of direct relevance
only to himself, for example, whether he enjoys school or whether he likes
to dance. Two assumptions on crowding and taste types are required.

The first assumption, within type anonymity, implies that two players of
the same crowding type, playing the same strategy, have the same influence
on the payoffs of others.

Within (crowding) type anonymity: Pregame G = (2,5, h) satisfies
within type anonymity when for any induced game I'(N, ) and for any two
pure strategy vectors m and s if

Z W (w, s) = Z ws(w, sg)

wiw=(c,") wiw=(c,")
for all ¢ € C then for any ¢ € N where m; = s;
g (mi, m—;) = ug*(si, 5-i).

That is, if any two strategy vectors have the property that, from the per-
spective of player ¢, the weight functions induced by these strategy vectors
assign the same weight to each strategy chosen by players of each crowding
type, then player ¢’s is indifferent between two situations.

Our second assumption is on payoff functions. An explanation follows
the definition.

Convexity in taste types: Pregame G = (0, S,h) satisfies convexity in
taste types if there exists a function y : C x S x W — R and a function
x:C xS x W — RF such that for any induced game I'(N, a) and any pure
strategy vector m the payoff of player i € N where a(i) = (c,t) is given by

uza(m“ m—i) = y(ca mi; wm) + t . x(C, mi; wm)-
We recall that a player’s taste type is determined by a vector ¢ € [0, 1]
All else equal, if a player’s taste type is a convex combination of the taste

types of two other players (and all three players have the same crowding
type), then his payoff is the same convex combination of the payoffs of the

13



other two players. Intuitively, we could think of there being a ‘representative
player’ for each crowding type with, say, taste type (0.5,0.5,...,0.5). The
payoff of a player with taste type ¢t can then be thought of as a linear
function of how much his attribute differs from that of the representative
for his crowding type.

In Section 3.5 we consider a pregame that satisfies within type anonymity
and convexity in taste types. Our second main result, Theorem 3, places a
bound that is independent of £ on the number of societies. For simplicity,
we state and prove the Theorem for the case of only two pure strategies and
one dimensional space of taste types. After the proof we discuss the general
case.

Theorem 3: Let G = (2, 5,h) be a pregame satisfying the large game
property, within type anonymity and convexity in taste types. Let K = 2
and F' = 1. Given any real number ¢ > 0 there exists real number 7(e) such
that for any population (NN, o) where |N| > n(e) the induced game I'(N, «)
has a Nash e-equilibrium in pure strategies that induces a partition of the
population (N, ) into @ < CK societies.

Proof: Suppose not. By Theorem 1 for any sufficiently large population
(N, «) the induced game T'(N, ) has a Nash e-equilibrium in pure strategies
m*. Let M denote the set of pure strategy vectors such that m € M if and
only if ™ is a Nash e-equilibrium and

Z wm*(w,sk): Z W(wvsk)

wiw=(c,") wiw=(c,)

for all ¢ and si. We note that m* € M and so M is non-empty.

Consider pure strategy vector m € M. For each ¢ and sy, let Ty, C [0, 1]
be such that ¢t € T if and only if there exists a player ¢ € N such that
a(i) = (¢, t) and m; = si. Let X C N be such that j € X if and only
if a(j) = (c,t) where t € int(con(Ty)) and mj # si. Let X = UgpXek-
Suppose, without any loss, that m minimizes | X|.® If X = 0 then m induces
a partition of the population into C'K societies; this is a contradiction to
our initial supposition. Therefore |X| > 0. We will construct from m a
pure strategy vector m‘ € M that diminishes |X| by one, thus providing a
contradiction and completing the proof.

Given that | X| > 0, we can select a nonempty set X for some ¢ and
sk and a player j € Xo. Thus, a(j) = (¢,t) and t € int(con(Te)) yet

8Of course | X| depends on our inital choice of m.
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mj # sk. Assume that m; = sz. Let Ay C N be such that i € Ay
where a(i) = (c,t) if and only if m; = s and t belongs to the boundary
of con(Ty).? For each 1€ Ag let m® be the pure strategy vector with the
properties that m; = sg, mz = s and ml = my for all other [ € N; thus
players ¢ and j have ‘exchanged’ pure strategies. We conjecture (* ) that
for some i* € A, the pure strategy vector m’ is a Nash e-equilibrium.
Provided this conjecture holds, given that ¢* belongs to the boundary of
con(T,,) and K = 2 the value of |X| is one less for m® then for m giving
the desired contradiction.

To prove the conjecture (*) observe that within type anonymity and
convexity in taste types implies that for some [y, 8a, ..., 34, [where 1 >

B; = 0and 3 5; =1]
u zm,] Zﬁzzzm—z)

1€AqL
for all z € S. Given that m is a Nash e-equilibrium
ug (sg,m—j) > uf(sg,m—j) — e
Thus, there exists some i* € A, and corresponding m! where

Sk

(Mm%,

Sk

m¥ ) > ul (sp,mb ) — e

e}
U”i*

It is clear, by within type anonymity, that
u?(mg*ami—*ﬂ > u?(zami—*l) —¢

forall z € Sand ! € N, [ # ¢*,j. It thus remains to consider player j. Let
l € Ag and [ # ¢*. Within type anonymity and convexity of taste types
implies that

u?(zvmijj) = Z Biug(z,m",) + Bpug:(z,m! ;)

€A \’L*

for all z € S. Within type anonymity and that m is a Nash e-equilibrium
implies that

u; (m] ,m" )>u (sk,mi* ) —e.

Thus m® is a Nash e-equilibrium.l

?There must be some such player since the convex hull int(con(Te)) is determined by
players in Ack and int(con(Tex)) # 2.
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Remark: Analogous results to that of Theorem 3 can be obtained for K >
2 and F' > 1; a proof is available from the authors on request. Using
the notation from the proof of Theorem 3, we briefly explain, however,
why extending Theorem 3 is not trivial - and significantly complicates the
analysis. Consider a player j where a(j) = (c¢,t) and t € int(con(T.))
yet m; # sp. As we show in the proof of Theorem 3 there will exist a
player i belonging to the boundary of con(T;) for whom ul(sg,m’;) >
u(sg,mt;) —e. If K = 2 this is sufficient to show that playing sz is an
‘e-best response’ for player i. As a result we can exchange the strategies of
players ¢ and j and retain a Nash e-equilibrium. If, however, K = 3 we have
not done enough to show that sy is a ‘e-best response’ for player 7 - there is
the third pure strategy option that must be considered. As a result playing
sz may be only a ‘2e-best response’ for player ¢. Thus, for the K = 3 case,
modifying the above proof would require commencing with a pure strategy
vector m that is a Nash §-equilibrium. Also note that simply exchanging
the pure strategies of players ¢* and j may not be enough to reduce | X| by
one if K > 2 or F' > 1; thus, an additional exchange of pure strategies may
be required.

3.5 Normative Influence and conformity

In a number of game theoretic models of social situations, there is some fea-
ture built into the model that ensures conformity. For example, Bernheim
(1994) obtains such a result for a model in which individuals care about
status and behavior (or strategy) serves as a signal of status. Since indi-
viduals gain from playing the most commonly chosen strategy this creates a
normative influence. The following example illustrates that with such nor-
mative influence it is ‘easier’ to have conformity as defined in this paper.
Indeed, we demonstrate that the existence of normative influence can imply
the existence of exact equilibria satisfying conformity with a fewer number
of societies.

The attribute space is given by Q = {P, R} x [0, 1] where a player with
attribute (P, -) is referred to as poor and a player with attribute (R,-) as
rich. The set of pure strategies is S = { A, B} where A and B are interpreted
as different locations. Given pure strategy vector m let rb(m) denote the
proportion of the population that is rich and chooses location B; formally

1

rb(m) = o] | Z(:R.)wm(w,B).
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We define ra(m), pb(m) and pa(m) in an analogous way.
The payoff function of a poor player i € N with attribute (i) = (P, )
is given by

ui(A,m—;) = 2ra(m_;)+t and
ui(B,m_;) = 2rb(m_;)+1—t.

Thus, a poor player receives a higher payoff the more rich players he matches
in choice of location. The value ¢ can be interpreted as player i’s preference
for living in location A as opposed to B.

The payoff function of a rich player can be seen as composed of two
parts - one part that is free from normative influence and another part
that captures normative influence. Let real number 3 denote the degree
of normative influence. The payoff function of a rich player ¢ € N with
attribute a(i) = (R, t) is given by

uf(A,m—;) = 14t —pa(m_;)+ Pra(m—;) and
ui(B,m—;) = 2—1t—pb(m;)+ fro(m—;).

A rich player thus receives a higher payoff the fewer poor people he matches
in choice of location. The value t can be interpreted as the player 7’s prefer-
ence for living in location A. If 8 = 0 then we say that there is no normative
influence. If 8 > 0 then we say that there is normative influence — a player’s
payoff is increasing in the number of rich players that choose the same loca-
tion as himself.

It is clear that Theorem 3 can be applied to demonstrate the existence,
for sufficiently large populations, of an approximate Nash equilibrium in pure
strategies that partitions the population into 4 societies. For this example, it
is, of course, fairly simple to explicitly derive the Nash equilibria of induced
games. We find, however, that if 3 = 0 then we generally cannot improve
upon Theorem 2. If 3 > 0 then we may be able to do so. To illustrate,
consider the following two cases.

e Suppose that 3 = 0. Consider a population (N,«) in which there
are n rich and n poor players where n is an odd number. Further,
assume each player has attribute (-,0.5). It is clear (using argument by
contradiction) that game I'(IV, &) does not have a Nash equilibrium in
pure strategies. It is equally simple to see that any approximate Nash
equilibrium would induce four societies - ‘rich societies’ in locations A
and B and ‘poor societies’ in locations A and B.
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e Suppose that 3 = 4. Consider a population (N,«) in which there
are n players of attribute (R,0), n players of attribute (R,1) and
similarly n players of attributes (P,0) and (P,1). Thus, half of the
population is poor and half rich. Also, half of the population have a
strong preference for location A and half for location B. It is easily
checked that there exists an exact Nash equilibria of game I'(N, «)
wherein every player chooses the same location, thus inducing only
two societies.

This illustrates how the presence of normative influence can lead to existence
of an exact equilibrium in pure strategies that induces a smaller number of
societies. Another interesting aspect of this example is how the normative
influence of the rich has a ‘knock on’ effect on the conformity amongst poor;
the desire of the rich to conform in their choice of location leads to observed
conformity by the poor.

4 Conclusions

If individuals are influenced by, imitate, and conform to the actions of others
then this poses a challenge to the individual rationality assumption of game
theory. This challenge leads us to question the possible existence of an
approximate Nash equilibrium consistent with conformity and imitation. In
this paper we demonstrate the existence of such an equilibrium in games
with many players. This result is made more interesting by observing that
in these games, where for most players there are many similar players, it
seems intuitively most likely that players will base decisions on processes
such as conformity and imitation.

Issues that still remain include: (i). We only demonstrate the existence
of an approximate Nash equilibrium with conformity; we do not address
directly, the question of whether players actually learn to play that equilib-
rium. (ii). Conformity in mixed strategy equilibrium is not treated. To treat
conformity in mixed strategies may seem unmotivated given our insistence
on pure strategy equilibria. Note, however, that while it may seem unnat-
ural that a player would use a mixed strategy it need not be unnatural that
a society would ‘play a mixed strategy’. In Cartwright and Wooders (2003)
we consider this possibility by formulating conformity in terms of mixed
strategies and incomplete information. Turning to question (ii), there are
many reasons why players who learn through imitation or conformity fail to
learn to play an approximate Nash equilibrium even if an equilibrium con-
sistent with conformity exists. This is discussed by Cartwright (2003) where
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sufficient conditions are provided under which play will indeed converge to
the desired equilibrium.

5 Appendix

Lemma 1: Let G = (£2,5,h) be a pregame satisfying the large game prop-
erty. For any induced game I'(N,«), for any partition of {2 into a finite
number of subsets )y, ..., {24, each of diameter less than 6. (%) , and for any
two pure strategy vectors m and m where

Z We,m (W, S) = Z Wa,m (W, Sk), (3)

u)GQa weﬂa

if m is a Nash %—

in pure strategies.

equilibrium in pure strategies then 7 is a Nash e-equilibrium
10

Proof: Given an induced game (N, «) and two pure strategy vectors m
and m satisfying (3), it is immediate that there exists a one-to-one mapping
R(i) : N — N such that,

M = Mp() (4)

for all 7 € N and,
dist(a(i), a(R(3))) < 6e (%) . (5)

Informally, we can treat equivalently: (a) player ¢ having attribute w = «(3)
and playing strategy mpg(;) and (b) player R(i) playing strategy mp(;) and
having attribute w = (7). Thus, consider the population (N, @) where,

a(R(i)) = a(i) (6)

for all i € N. Our method of proof is to (i) demonstrate that m is a Nash
e-equilibrium in pure strategies of game I'(N, @) before (ii) demonstrating
how this implies that m is a Nash e-equilibrium in pure strategies of game
I'(N, ).

The assumption of continuity in attributes and (5) implies,

a 9
(s ) — (s )| < 5 (7
'OWhere 6. (%) is the real number implied by continuity in attributes for a payoff bound
of £.
3
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for all s, € S and all i € N. Given that m is a Nash §-equilibrium in pure
strategies for T'(IV, «) it follows that

€
ug (mi,m_;) > ug*(sg, m—;) — 3
The above two inequalities yield

uia(mia m*i) > u?(miam*i) - %
Z U?_(Sk’m,i) - % (8)

> U?(sk,m_i) —¢&

for all ¢ € N and s; € S. Thus, m is a Nash e-equilibrium in pure strategies
of game I'(N, @).
By (4) and (6)
(@(R()), mp)) = (i), mpg)) = (a(i),m;) 9)

for all ¢ € N. It follows that
Wiy (8K M Rsy) = Ut (s, M-4) (10)
for all i € N and all s € S. It is immediate from (8) and (10) that 7 is a

Nash e-equilibrium in pure strategies of game I'(N, o).l

We recall that Q = {1,2,...,C} x [0, 1]¥ for some finite integers C' and F.
We make use of a lexicographic ordering on elements of [0,1]¥". Formally,
we define the binary relations <j and =p, as follows: Take any two points
t = (t1,...,tp), 7 = (T1,...,7F) € [0,1]F. We say that t = 7 if and only if
ty =7y forall f=1,...,F. We say that ¢t <, 7 if either:

1. thf <Zf7—f or,
2. > sty =>_; 7y and for some f* we have {y« < Ty and ty = 7 for all
f<r.

We say that t <;, 7 if either t <;, T or t =, 7.

Lemma 2: Given any two finite sets of points Q; = {t!,...,t/} and Qg =
{71, ..., 7%} (where t', ...t 71, ... 7% € [0,1]F) if / <p 79 for all j and q
then the interior of the convex hulls of )7 and (2 are either distinct or both
empty.

[Note that given #/ € Q, the hypotheses of the Lemma require that t/ < 79
for all 71 € Qq. If F =1, for example, this implies that the interiors of the

20



convex hulls are both empty or that the two sets have in common at most
one point. If the two sets have no points in common, then all the points in
1y are smaller, according to <, than all the points in Q.|

Proof: Suppose the claim is false. Then there exists a point w € {2 such
that w € I(Co(€2y)) and w € I(Co(f2g)). Thus, for non-negative numbers

f}/l’ ...”}/‘] and 51’ seny /6Q
Zﬁq:Z%’:l (11)
q J
and, for each f=1,..., F,
o= Yt = Y0, )
J q

This implies that

Dot =2 BT (13)
7 4 7

7

By assumption, for each #/ € ©Q; and 7 € Q it holds that Y, #} <
Zf t(}. Suppose, for some t € Qyand 77 € Qq, that Zf tjc < Zf T?
Given (13) it must be that either 47 =0 or 7 = 0. Let Q7 denote the set
of tJ € Q1 given positive weight 7, > 0 and Qg the' set of all 79 € Qg gi\'/en
positive weight 3, > 0. It is immediate that 3, ¢} = >, 7% for each ¢/ €
Q}' and 77 € Qg

If Q'} = Qa then we easily obtain the desired contradiction. When Q7 =
Qg and for each element tJ in Q}r it holds that t/ <; t? then the sets must
each contain only one element and, in this case, the interiors of the convex
hulls are both empty.

Let Q1" = Qj\Qg and Qg+ = Qa\QJJr Either' Q" or QaJr is non-
empty. Suppose that Q'JH' is non-empty. For every t/ € Q'JH' and 7¢ € Qa
there is some f* € {1,...,F — 1} for which /. < T‘}* and t]f' = T? for all
f < f*. Take the minimum of these f* over all points t/ € Q'}"r and 7¢ €
Qg By choice of f* it holds that 7, < 7%, for all j € QF and g € Qg and
t;* < T?* for some j € Q3" and g € Qg This must contradict either (11)

r (12). The case where Qa"' is non-empty can be treated in an analogous
manner.ll
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Proof of Theorem 2: We proceed by contradiction. Suppose that the
statement of the Theorem does not hold for some g9 > 0. We proceed by
first determining a value for A(eg) and then showing that this A(eq) satisfies
the claim of the Theorem for ¢ = g9. Given ¢¢ set § = 6. (%0) > 0, where
be¢ (%0) is the real number implied by continuity in attributes for a payoff

bound of . Use compactness of € to write (2 as the disjoint union of a

finite number A % A(eg) of conver non-empty subsets €, ..., 4, each of
diameter less than 6. We now claim that A satisfies the conditions required
by the Theorem. Suppose not. Then, for each integer v there is a population
(NY, o) where |[N¥| > v and induced game I'(N”, a”) does not have a Nash
gp-equilibrium in pure strategies that induces a partition of the population
(N”,a”) into Q < AK societies. By Theorem 1, for sufficiently large v,
I'(N",a”) has a Nash %-equilibrium in pure strategies, say m"”.

Consider a change of pure strategy vector from m” to m”, for all v, where
mY satisfies:

1. for all ©, and s € S,

Z Waw mr (W, i) = Z Wer v (W, Sk),

wEN, wEN,

2. for any i,j € NV where o”(i),a”(j) € €2, for some a, if m{ = s; and
my = sp where k < k then (i) < a”(j).

Given that the finite set of points a(NV) is well ordered for all v, it is
always possible to construct such a pure strategy vector m” by a simple
‘reassignment’ of pure strategies. Given the choice of ¢ and that m” is a
Nash %-equilibrium in pure strategies it is immediate from Lemma 1 that,
for sufficiently large v, m” is a Nash eg-equilibrium in pure strategies. By
applying Lemma 2 and recalling that each €2, is convex it is clear that m”
is a Nash gg-equilibrium in pure strategies that induces a partition of the
population into at most AK societies.Hl
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