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Abstract

In a model of majority voting with common values and costly but voluntary par-

ticipation, we show that in the vicinity of equilibrium, it is always Pareto-improving

for more agents, on the average, to vote. This demonstrates that the negative vot-

ing externality identified by Borgers(2001) in the context of private values is always

dominated by a positive informational externality. In addition, we show that mul-

tiple Pareto-ranked voting equilibria may exist and moreover, majority voting with

compulsory participation can Pareto dominate majority voting with voluntary par-

ticipation. Finally, we show that the inefficiency result is robust to limited preference

heterogeneity.
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1. Introduction

Many decisions are made by majority voting. In most cases, participation in the vot-

ing process is both voluntary and costly. The question then arises whether the level of

participation is efficient i.e. is there too much or too little voting?

In a model with costly voting and private values, Borgers (2001) identifies a negative

externality from voting: the decision of one voter to vote lowers the probability that

any other voter is pivotal, and thus reduces the benefit to voting of all other agents. A

consequence of the negative externality is that compulsory voting is never desirable: all

voters are strictly better off at the (unique) voluntary voting equilibrium. An implication

of this global result is a local one: in the vicinity of an equilibrium it is always Pareto-

improving for fewer agents, on the average, to vote.

In this paper, we re-examine the nature of inefficiency of majority voting in a model

with costly participation and common values. Our motivation is two-fold. First, we

believe there is good reason to suppose that many decisions made by majority voting

have a significant common-values component. By a common-values component, we mean

that voters basically agree on the correct course of action, given full information about

the environment, but in practice, information is very imperfect due to the complexity of

the issue. An example would be state referenda in the US over issues1 such as gun control

and legalization of marijuana2.

What links these two issues is major disagreement over the evidence, combined with

some consensus over what the right course of action would be, were there to be agreement

on the evidence. For example, there is disagreement in the US over whether more relaxed

gun control actually leads to greater crime, but general agreement that crimes such as

murder, robbery and so on are unacceptable. Again, there is disagreement over whether

consumption of marijuana is more harmful than consumption of alcohol, and whether

the former leads on to harder drugs, but increasing consensus that if neither of these

things is true, then it is not really consistent for consumption of alcohol to be legal, but

1Note that we do not include fiscal issues such as referenda on property taxes, etc. on this list, as almost
by definition, there are gainers and losers from such measures, and so preferences will be heterogenous.

2For example, in the Cogressional elections of November 2000, 42 states had 204 ballot initiatives
which offered voters the choice on this kind of issue. “Marijuana, a hardy perennial on the ballot, was
approved for medical use in Colorado and Nevada, but a proposal for full-scale legalisation of pot in
Alaska (where medical marijuana is already legal) fell well short of passing. In Oregon and Utah voters
approved initiatives to reform asset-forfeiture laws, which often apply in drug cases...Californians voted,
by a large margin, to mandate treatment rather than prison for non-violent drug offenders, but voters in

Massachusetts narrowly rejected a similar initiative.” (The Economist, 11 November 2000).
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consumption of marijuana to be illegal.

Our second motivation is that in a common values environment, in addition to the

negative “pivot” externality identified by Borgers (2001), there is3 a positive informational

externality from voting: an individual voter, by basing his voting decision on his informa-

tive signal, improves the quality of the collective decision for all voters. On the face of it,

it is not at all obvious, in general, which of these two externalities dominates. To put it

another way: will potential voters participate too little or too much in decision-making?

We show the following. First, we demonstrate that the payoff to voting for any one

individual can be decomposed into two parts: a term equal to the probability that the

voter is pivotal, times the probability that she makes the correct decision in this case, plus

a term giving her expected payoff if she is not pivotal. The first term is decreasing in the

probability that any other voter votes (this is the “pivot” externality), but with common

values, the second term is increasing in the probability that any other voter votes (the

information externality). Second - and this is our main result - we show that the second

externality always dominates the first: overall any voter’s payoff from voting (or indeed,

not voting) is always increasing in the probability that any other voter votes4.

We also demonstrate a simple intuition for the main result, which we call a weak

swing voter’s curse, following Fedderson and Pesendorfer(1996). In our setting, when any

particular voter faces an odd number of other voters, conditional on being pivotal, she is

indifferent about voting or abstaining, because this situation can only arise when in total

there are equal numbers of signals in favor and against the two alternatives. This effect

lowers the overall ex ante benefit to any voter from participation below what is socially

optimal.

In moving to common values, we show additionally that voting equilibrium is no longer

unique: typically, there will be several equilibria. Nevertheless, we show that starting

at any voting equilibrium, an increase in the probability that agents vote always leads

to a Pareto-improvement5. So, compared to the private values case, the inefficiency of

voting equilibrium is reversed: with costly participation, majority voting fails to aggregate

3As Borgers remarks, “In a common value model of voting...there will be positive externalities to voting
which can mitigate or outweigh the negative externality which we identify. In such a model one cannot
expect as clear-cut results as we obtain here”.

4It may seem surprising that this dominance holds even when the informativeness of the signals is
low, as then the positive informational externality is weak. However, in this event the pivot externality
must be weak also, as the value to any voter of being pivotal is small, as his voting decision is based on
a signal that is not very informative.

5In section 4, we demonstrate the robustness of this key result to the introduction of limited preference
heterogeneity.
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information efficiently because not enough voters, on the average, participate in the voting

process. One policy implication of our result is that by providing voting subsidies and

recovering the cost through lump-sum taxes, all voters can be made better-off.

Additional results that follow are that under some conditions, voting equilibria can be

Pareto-ranked, with an equilibrium with more voters Pareto-dominating the equilibrium

with fewer voters, on the average. We also show that there are conditions under which

compulsory voting Pareto-dominates voluntary majority voting. By contrast, in Borgers

(2001), the unique voluntary voting equilibrium always Pareto dominates compulsory

majority voting.

Finally, show that our main result on the nature of inefficiency of voting equilibria is

robust to the introduction of preference heterogeneity. Specifically, we consider a utility

function that is a convex combination of the common value specification of this paper,

and the private values specification of Borgers. We characterize the maximum weight

on the private values component such that the model has a voting equilibrium where all

agents vote with their signals, rather than according to their idiosyncratic preference. We

are then able to show that as long as the private values component is weighted by less

than this maximum, the main results of the paper all carry over to this considerably more

general specification.

Apart from Borgers’ paper, this paper is related to a few other recent papers on

voting with incomplete information6. In a model of voting with common values with

partisan voters and uninformed agents, Feddersen and Pesendorfer (1996)7 show that

voting does not aggregate information efficiently in a finite electorate. The presence of

partisan voters and uninformed voters adds noise to the voting process. In the absence of

partisan voters, uninformed voters would abstain, implying that majority voting would

aggregate information efficiently: as participation is costless, the remaining, symmetrically

informed, non-partisan voters would all vote. In their set-up, voting fails to aggregate

information efficiently as too many voters participate. In contrast, here we show that even

with symmetrically informed, non-partisan voters, majority voting may fail to aggregate

information efficiently if participation is costly because there is too little voting on the

average.

6We should also mention Osborne, Rosenthal and Turner (2000) who study a model of costly par-
ticipation. However, the focus of our paper and the formal model differs from their paper. They do
not explicitly model voting and agents have complete information. Moreover, they do not consider the
efficiency of participation equilibria.

7Other papers on information aggregation include Feddersen and Pessendorfer (1997) and Dekel and
Piccione (2000).
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Our model is also closely related to that of Persico(2001), who considers the design

of voting rules and committee size when committee members have to pay for informative

signals8. Our model is more general in what it assumes about the cost of observing signals

(costs may be heterogenous, and are privately observed, whereas in Persico’s paper, there

is a homogenous cost which is common knowledge), but otherwise, more special (it does

not allow for asymmetry in priors or over the cost of different types of mistaken decisions).

However, we are addressing a rather different issue; Persico studies the optimal design of

a committee (numbers of members, voting rule) subject to the constraint that members

are given the correct incentives to acquire information: we are looking at how information

acquisition is sub-optimal, given a voting particular rule (majority voting)9 and fixed size

of the electorate.

In the next section, we set out the model. Section 3 characterizes participation equi-

libria. Section 4 contains the main results on the sign of the externalities and efficiency

of equilibrium. Section 5 discusses the extension to the case of heterogenous preferences,

and the last section concludes.

2. The Model

There is a setN = {1, ..n} of agents, who can collectively choose between two alternatives,
A and B. Voters have identical payoffs over alternatives, but their payoffs are state-

dependent. Specifically, there are two states of nature sA, sB. The the payoff for all voters

is a map u : {A,B}×{sA, sB}→ < such that u(A, sA) = u(B, sB) = 0 and −1 otherwise:
so, there is a cost of making the wrong decision, normalized at 1.

Agents have identical priors over the two states: all believe that each state is equally

likely. However, prior to the decision to vote, voters receive private signals about the

state of nature. Specifically, each i ∈ N privately observes signal σi ∈ {σA,σB}, where σi
is uncorrelated with σj for all i, j ∈ N . We assume that signals are informative i.e. the
probability of signal σk, conditional on state sk is q > 0.5, k = A,B.

We also assume that participation in the election is costly: i.e. it is costly to attend

a meeting, or go to a polling station. Specifically, each voter i ∈ N incurs a privately

observed cost of participation, ci: if he wishes to vote, he must pay this cost10. We

8This paper by Persico extends the Condorcet jury literature (Austen-Smith and Banks (1996), Fed-

dersen and Pessendorfer (1998)) to allow for endogenous acquisition of information.
9However, we strongly conjecture that majority voting is optimal in our set-up, in a well-defined sense:

study of the choice of voting rule in our set-up is a topic for future work.
10Below, we argue that under very weak assumptions, this can also be interpreted as the cost of
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assume that the ci are independently and identically distributed across individuals: ci

is distributed on support [c, c̄] ⊂ <++ with the probability distribution F (c). Moreover,
we also assume that ci is independently distributed from σi for each individual i. The

sequence of events is as follows.

Step 0. Each i ∈ N privately observes his cost of voting, and decides whether to

participate or not.

Step 1. The state of the world is realized, and each i ∈ N privately observes her signal

σi of the state.

Step 2. All i who have decided to participate11, vote either for A or for B.

Step 3. The alternative with the most votes is selected. If both A,B get equal numbers

of votes, each is selected with probability 0.5.

Note that Step 3 embodies the assumption that there is no distinguished status quo.

In particular, if no-one votes, each alternative is selected with equal probability. We

focus on the subgame-perfect Bayesian equilibria of the above game. Also, we impose

three relatively weak assumptions12 on strategies. First, we suppose all agents behave

alike in equilibrium (anonymity). Second, we rule out randomization. Second, we assume

that player’s equilibrium strategy at the voting stage is weakly undominated. Call any

subgame-perfect Bayesian equilibrium satisfying these three conditions a participation

equilibrium.

3. Participation Equilibrium

In the above environment, the n voters play a two-stage game of incomplete information.

We solve the game backwards in the usual way, so we begin with the voting subgame

when potential voters have made their participation decisions.

purchasing, or observing, the signal, σi.
11We have not specified whether voters observe the total number of participants, say l, at Step 2. One

possibility is that they do i.e. at Step 2, i0s information set is (ci,σi, l). This is the natural assumption
to make if voting takes place at a meeting of some kind. An alternative is that they do not i.e. at Step 2,
i0s information set is (ci,σi). This is the natural assumption to make if voting is in a general election or
referendum, where members of the public attend polling stations. Under the assumptions made below on
strategies in the voting subgame, it makes no difference which of these assumptions hold: there is always
a unique equilibrium at the voting stage.
12We are following Borgers(2001) in making these three assumptions.
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3.1. Voting

At stage 2, a strategy for i is of the form γ : {σA,σB}→ {A,B}.In this case, a voter has
four possible strategies: (i) ignore her information i.e. choose either A or B independently

of her signal: (ii) vote with her signal (i.e. vote for A if σi = σA and for B otherwise): (iii)

voter against her signal i.e. vote for B if σi = σA and for B otherwise. It is easy to see that

only (ii) is weakly undominated, as the others are all sub-optimal in the event that i is

pivotal, and i is always pivotal for some γ of the other voters13. Following Persico(2001),

we will call strategy (ii) sincere voting. So, the only possible voting equilibrium is where

all participants vote sincerely.

3.2. Participation

Let p denote the ex-ante probability, before learning (σi, ci), that any individual i participates.

So, the probability that exactly l voters other than i have chosen to participate is given

by

v(l : p) =

Ã
n− 1
l

!
pl(1− p)n−1−l. (3.1)

We now calculate the gain to participating relative to not for some i : when combined with

the cost of participating, this will allow us to characterize i0s equilibrium voting strategy.
Case 1: l even. Here, i is pivotal only when there is a tie i.e. exactly l

2
voters vote for

A while the other l
2
voters vote for B. In this event, what is i0s gain to participating? If

he does not vote, both alternatives will be selected with probability 0.5, and this yields

him a payoff of 0.5. If he does vote, how will he vote? As he is pivotal, he knows that

the l agents who vote have received l/2 signals in favor of A, and l/2 in favor of B. In

this case, the voting behavior of other players conveys no additional information to voter

i about the state of the world, and so he votes according to his signal i.e. sincerely, so he

will select the correct alternative with probability q. So, his gain to voting is q − 0.5.
The probability that i is pivotal, given exactly l other voters and his private informa-

tion, ci, is calculated as follows. Obviously, ci is uninformative about the signals received

by other voters. Given that other voters vote according to their signals, the unconditional

13This fact depends crucially on the fact that the majority voting rule is statistically optimal in the

model - Persico(2001). Were it not, a voter who is pivotal would generally not wish to vote sincerely.
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probability that l/2 voters receive a signal in favor of each alternative is simply14

π(l : q) =

Ã
l
l
2

!
q
l
2 (1− q) l2 (3.2)

Case 2: l odd. In this case, the only situation where i0s is pivotal is when l+1
2
voters

have voted for one alternative, and l−1
2
for the other. In this case, the voting behavior of

other players does convey information to i. In particular, suppose that i has observed a

signal in favor of A. The first possibility is where l+1
2
others are voting for A. Then, the

event that i is pivotal implies that i has l+1
2
+1 signals favoring A and l−1

2
signals favoring

B. Therefore, voter i prefers A, but knows that he does not need to vote for alternative

A to be selected; there is already a majority for alternative A. In the second case, player

i0s updated information set has l−1
2
+ 1 signals favoring A and l+1

2
signals favoring B.

Therefore, voter i is indifferent between A and B. So, we conclude that voter i has zero

gain from voting when l is odd, even when he is pivotal. This is the weak swing voter’s

curse referred to in the introduction.

The preceding discussion implies that the unconditional expected gain to voting is:

B(p) = (q − 1
2
)
n−1X
l=0

v(l : p)β(l : q) (3.3)

where

β(l : q) =

(
π(l : q) l even

0 l odd
(3.4)

It is now clear that if all other voters play a voting strategy γ with voting probability

p, then i0s (strict) best response is to vote if ci < B(p) and not if ci > B(p). Following
Borgers, we call this a cutoff strategy, and we denote the cutoff generally by ĉ. Generally,

c∗ is an equilibrium cutoff strategy if c ≤ B(F (c∗)), all c ≤ c∗, and c ≥ B(F (c∗)), all
c ≥ c∗. A symmetric Bayesian equilibrium in cutoff strategies is a γ∗ where every voter
votes according to his signal if c ≤ c∗ and abstains otherwise. We can now show that
there is at least one symmetric Bayesian equilibrium in threshold strategies.

14If l = 0, i is pivotal with probability 1, so we set π(0 : ρ) = 1.

8



Proposition 1. There is at least one symmetric Bayesian equilibrium in cutoff strategies.
If c∗ solves B(F (c∗)) = c∗, then c∗ is an equilibrium cutoff. If B(1) > c, then c∗ = c is
an equilibrium cutoff. If q− 1

2
< c, then c∗ = c is the unique equilibrium cutoff. Finally,

B(1) =

 (q − 1
2
)

Ã
n− 1
(n− 1)/2

!
q
n−1
2 (1− q)n−12 if n− 1 even

0 if n− 1 odd
Proof. Existence of some equilibrium follows from the continuity of B(F (.)) on [c, c]. The
remaining parts follow directly from the definition of equilibrium, except the last part.

This follows from the fact that
Pn−1

l=0 v(l : p)β(l : q) < 1, so B(p) < B(0), all p > 0, so

if B(0) < c, neither of the other types of equilibria are possible. Finally, the formula for

B(1) follows from (1.1)-(1.5). ¤
This result leaves open the possibility that multiple equilibria exist, and the following

example confirms this.

Example 1 (Multiple Equilibria).

Assume n = 3, and that c is uniform on [0, c]. In this case, from (3.3),(3.4), we have:

B(p) = (q − 0.5)[2p2q(1− q) + (1− p)2] (3.5)

Note that p∗ = F (c∗) = c∗/c, so assuming an interior equilibrium, the equilibrium condi-

tion B(F (c)) = c can be rewritten in terms of p as B(p) = pc, or explicitly as

(q − 0.5)[2p2q(1− q) + (1− p)2] = pc (3.6)

This is a quadratic in p, with two roots:

p =

(2 + α)
+

−
p
(2 + α)2 − 8q(1− q)− 4

2[2q(1− q) + 1] (3.7)

where α = c/(q− 0.5). If we take q = 0.75, and c = 0.09, then it is easy to check that the
two roots are

p∗ =
1. 3119

1. 375
, p∗∗ =

1. 0481

1. 375

i.e. the voting game has two interior equilibria.Note also for these numbers that B(1) =

0.09375 > c, so there is also a corner equilibrium where p∗∗∗ = 1. All these equilibria are
illustrated in Figure 1 below.k

Figure 1 in here
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In the preceding example, the multiple equilibria are due to the non-monotonicity of

the benefit function B(p). This is in contrast to the case of private values, where the

benefit from voting is strictly decreasing in p, and hence there is a unique equilibrium

(Borgers(2001), Proposition 2).

3.3. Comparing Common and Private Values

The equilibria of our model can in fact be compared to the voting equilibrium with private

values in Borgers(2001). The first step is to note that the gain from voting with private

values is, in our notation:

BPV (p) =
1

2

n−1X
l=0

v(l : p)π(l : 0.5) (3.8)

Note three differences between (3.3) and (3.8). First, in the private values case, there is

a benefit to voting even when the number of voters is odd. Second q is replaced by 0.5

in π(l : .) as any voter cannot predict how any other will vote, given that he decides to

vote at all. As q(1− q) is maximized at q = 0.5, we can assert that π(l : 0.5) > π(l : q),

all q 6= 0.5. Finally, the benefit from one’s most preferred alternative relative to random

selection rises from q − 0.5 to 0.5 as in the private values case, voters are sure which
alternative is best. It is clear that all these three differences raise the benefit to voting in

the private values case, so that it is always true that

BPV (p) > B(p), 0 ≤ p ≤ 1 (3.9)

Moreover, as shown by Borgers, BPV (p) is decreasing in p, and so there is always a

unique equilibrium in the private values case. Let cPV be the unique equilibrium cost

cutoff in the private values case, and let cmax be the highest equilibrium cutoff in the

common values case (this is well-defined by Proposition 1). Then we have:

Proposition 2. cmax ≤ cPV , and cmax < cPV if cPV < c̄.
Proof. Case 1. BPV (1) > c̄. Then cPV = c̄. Also, BPV (1) > B(1) by (3.9), so by

Proposition 1, with common values, cmax ≤ cPV .
Case 2. BPV (cPV ) = cPV , some c̃ ∈ [c, c̄). In this case, as B(p) lies everywhere below

BPV (p), and p = F (c) is increasing in c, B(F (c)) < BPV (F (c)), c ∈ [c, c̄]. Therefore, if c∗
solves B(F (c∗)) = c∗ then c∗ < cPV , and in particular cmax < cPV . ¤
So, in a well-defined sense, a switch from private to common values lowers the probabil-

ity of voting in equilibrium, and thus the fraction of the electorate who vote in equilibrium,

when n is large.
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4. The Inefficiency of Participation Equilibria

The central and striking result with private values and costly voting is that the nega-

tive externalities from voting decisions imply that compulsory voting is never desirable

(Borgers (2001)). An implication of this “global” result is a “local” one: starting at the

Bayes-Nash equilibrium cutoff c∗, it is always Pareto-improving to lower the cutoff slightly,
so that fewer agents vote on average. This could be implemented (for example) by taxing

voting and returning the revenue as a lump-sum. Here, we investigate the robustness of

this result.

4.1. Participation Externalities

We begin by defining the ex ante payoff to any citizen (i.e. prior to observing σi, ci), ignoring

participation costs, but conditional on participating or not participating. Consider the ex

ante payoff to any citizen if exactlym citizens vote sincerely i.e. according to their signals.

As all agents have identical prior beliefs that each state is equally likely and losses from

type-I errors (choosing B when the state is sA) and type-II errors ((choosing A when the

state is sB) are the same, the ex ante payoff is simply minus the cost of making the wrong

decision (a type-I or type-II error), given majority voting:

u(m) =


−Pm

k=(m+1)/2

Ã
m

k

!
(1− q)kqm−k if m is odd

−Pm
k=m

2
+1

Ã
m

k

!
(1− q)kqm−k + 0.5

Ã
m

k

!
(1− q)m/2qm/2 if m is even

It is well-known that u(m + 1) > u(m) i.e. more signals there are, the lower the prob-

ability of error. Now, let u1(p), u0(p) be the expected payoffs from participation and

non-participation for a given citizen i respectively, given that all j 6= i participate with

probability p. These are:

u0(p) =
n−1X
m=0

fm(p)u(m), u1(p) =
n−1X
m=0

fm(p)u(m+ 1)

where {fm(p)}n−1m=0 is the Binomial distribution, with parameters n− 1, p.
If u1(p), u0(p) are increasing (resp. decreasing) in p, we will say that there is a pos-

itive (resp. negative) participation externality. In the private-values setting of Borgers,

the participation externality is unambiguously negative, as an increase in p reduces the

probability that any voter is pivotal, and with private values, voters always prefer to be
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pivotal. In the common values setting, the first part of this statement is still true. The

ambiguity arises because the increase in p can increase the expected utility of a voter

when he is not pivotal, as more information is brought to the decision.

This can be shown most clearly in the case of three voters. Then, by direct calculation,

we have:

u1(p) = (1− p)2q + 2p(1− p)(q2 + 2q(1− q)0.5) + p2[q3 + 3q2(1− q)] (4.1)

The explanation is as follows.

• With probability (1 − p)2, only 1 votes, so the correct decision will be taken with
probability q.

• With probability 2p(1 − p), only 1 and either 2 or 3 vote, so the correct decision
will be taken with probability 1 when both receive the correct signal (which occurs

with probability q2) or with probability half when both receive different signals

• With probability p2, all voters vote, so the correct decision will be taken with proba-
bility 1 when all receive the correct signal (which occurs with probability q3) or when

two out of three receive the correct signal (which occurs with probability 3q2(1−q))

Now (4.1) can be decomposed in the following way:

u1(p) = qΛ(p) + p
2q2, Λ(p) =

©
1− p2 + p22q(1− q)ª (4.2)

where Λ(p) is the probability that 1 is pivotal. To see this, note that 1 is always pivotal if

no, or one other citizens participate, which occurs with probability 1− p2, and is pivotal
when two other citizens participate only if they receive different signals, which occurs with

probability 2q(1 − q). This decomposition is also possible in the general case, although
the formula is complex and unenlightening15.

Clearly, Λ(p) is decreasing in p. This is as in private values case. But, unlike in private

values case, 1 receives a positive benefit from an increase in p when he is not pivotal,

as term p2q2 is increasing in p. By computation, it follows that when n = 3, this second

effect dominates the first, and the overall participation externality is positive. We can

prove that it is also true in the general case.

15Generally, u1(p) = qΛ(p) + g(p), where Λ(p) is the probability of being pivotal, and g(p) is the
expected payoff when not pivotal.
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Proposition 3. Both u1(p), u0(p) are increasing in p for all p ∈ [0, 1). That is, with
common values, the overall participation externality is positive.

Proof. First, let fm(p) denote the probability that 0 ≤ m ≤ n− 1 other voters than
i vote when the probability of participation is p. Clearly, these are the probabilities of a

Binomial distribution with parameters n− 1, p. So

u1(p) =
n−1X
m=0

fm(p)u(m+ 1)

So,

u1(p
0)− u1(p) =

n−1X
m=0

(fm(p
0)− fm(p))u(m+ 1).

Now, for p0 > p, {fm(p0)}n−1m=0 first-order stochastically dominates {fm(p)}n−1m=0 .As u(m+1)

is monotonically increasing in m, we know that16

u1(p
0)− u1(p) =

n−1X
m=0

(fm(p
0)− fm(p))u(m+ 1) ≥ 0

The proof is the same for u0(p). ¤

4.2. Inefficiency of Equilibrium

In view of Proposition 3, one might expect any of the participation equilibria characterized

in Proposition 1 to be inefficient, with too little participation, and here we prove that this

is the case. The ex ante expected utility of any voter (i.e. prior to observation of (σi, ci))

in an equilibrium with participation probability p is:

U(p) = (1− p)u0(p) + pu1(p)−
Z F−1(p)

c

cf(c)dc (4.3)

So, differentiating:

U 0(ĉ) = (1− p)u00(p) + pu01(p) +
¡
u1(p)− u0(p)− F−1(p)

¢
(4.4)

= (1− p)u00(p) + pu01(p) +
¡
B(p)− F−1(p)¢

where the second line follows from the definition of B(p) in Section 2 above. Evaluated

at an interior Bayes-Nash equilibrium i.e. ĉ = c∗, c< c∗ < c, the last term vanishes, as

p = F (c∗), so B(p)− F−1(p) = B(F (c∗))− c∗ = 0. So, from (4.4), we have:

U 0(F (c∗)) = (1− F (c∗))u00(F (c∗)) + F (c∗)u01(F (c∗)) (4.5)

16See, for instance, Hadar and Russell(1969), Theorem 1, or Rothschild and Stiglitz (1970).
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But by Proposition 3, as u0, u1 are increasing in p, U 0(F (c∗)) > 0. So, we have proved:

Proposition 4. For all 1 ≥ q > 0.5, starting any interior symmetric Bayesian equilibrium
c∗ ∈ (c, c), a small increase in the cutoff ĉ from c∗ is always ex ante Pareto-improving.

Proposition 4 contrasts sharply with Borgers’ results. His global result with private val-

ues establishes that it is never optimal to force agents to vote i.e. to raise ĉ to c. However,

the proof of this result also establishes the local result that a small decrease in the cutoff

ĉ from c∗ is always ex ante Pareto-improving. In this sense, Proposition 4 shows how
a move from private values to common values reverses the nature of the inefficiency of

voting equilibria.

Now consider two symmetric voting rules with cutoffs c∗ and c∗∗ such that c∗ < c∗∗.
Then, the difference between the expected payoffs at the two equilibria can be written as

U(c∗∗)− U(c∗) =
Z c∗∗

c∗
(u00(F (c)) + F (c)B

0(F (c))) f(c)dc+
Z c∗∗

c∗
(B(F (c))− c) f(c)dc

(4.6)

where U(c) ≡ U(F (C)). By Proposition 3, we know that the first integral is positive. How-
ever, the sign of the second integral is ambiguous as B(p) is, in general, non-monotonic.

This makes it impossible to obtain a general Pareto-ranking of equilibria. In particular,

we cannot show that, in general, a Bayesian equilibrium with a higher cutoff value Pareto

dominates a Bayesian equilibrium with a lower cutoff value. In general, it is also not

possible to show that compulsory majority voting Pareto dominates Bayesian equilibrium

outcomes with voluntary majority voting. However, the following results can be stated.

Proposition 5. Suppose that there are multiple voting equilibria as represented by cut-
offs: c1 < .. < ck < ... < cm. If either (a) m ≥ 2, and B(1) < c or (b) m ≥ 3, there
is some k, 1 ≤ k ≤ m − 1, such that the voting equilibrium ck+1 Pareto dominates the

voting equilibrium ck. If B(1) ≥ c, then cm = c, and this equilibrium Pareto-dominates

equilibrium cm−1 i.e. starting at cm−1, imposing compulsory voting is Pareto-improving.
Proof. As B(1) < c remark that at p = F (cm), B0(p) < 0. As m ≥ 2, it follows that
there is at least one Bayesian equilibrium with cutoff ck, for some k, 1 ≤ k ≤ m − 1
so that B0(p) > 0, p = F (ck) for some k < m. As B0(p) > 0, p = F (ck), for some

k < m, B(F (c)) > c, c ∈ (ck, ck+1). Alternatively, suppose there exist at least three
voting equilibria. Then, there is at least one voting equilibrium with cutoff ck so that

B0(p) ≥ 0, p = F (ck) for some k < m. As B0(p) ≥ 0, p = F (ck), for some k < m,

B(F (c)) ≥ c, c ∈ (ck, ck+1).So, in both cases, from (4.6), U(ck+1) > U(ck) i.e. the voting

equilibrium with the cutoff ck+1 Pareto dominates the voting equilibrium with cutoff ck.

Next, given that B(1) ≥ c, cm = c follows directly from Proposition 1. By definition
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of cm, cm−1, B(F (c)) ≥ c, c ∈ (cm−1, cm). So, from (4.6), U(c) = U(cm) > U(cm−1) i.e.
compulsory voting Pareto-dominates voluntary voting equilibrium cm.

Can compulsory voting lead to a Pareto-improvement when c̄ is not a voting equi-

librium threshold? The following example shows that this a robust possibility. In this

example, there is a unique equilibrium with ĉ < c, and starting at this equilibrium, im-

posing compulsory voting leads to a strict Pareto-improvement.

Example 2 (Compulsory Voting May be Desirable).
The Example is the same as Example 1 i.e. n = 3 and uniform distribution of costs.

Ex ante payoffs in this example can be computed from formula (4.3), which in this case

simplifies to

U(p) = u0(p) + pB(p)− 1
c

Z pc

0

cdc = u0(p) + pB(p)− cp2/2

for any voting probability p. We already have computed a formula for B(p) i.e. (3.5) in

Example 1. Also, note that

u0(p) = 0.5(1− p)2 + 2p(1− p)q + p2q

So, using (3.5), in the above formula, we conclude that

U(p) = 0.5(1− p)2 + 2p(1− p)q + p2q + p(q − 0.5)[2p2q(1− q) + (1− p)2]− cp2/2 (4.7)

Now let q = 0.75, and ψ be the value of c for which the larger root of (3.6) is equal to 1.

This will be the value for which B(1) = ψ, and B(1) = (q−0.5)2q(1−q) = 0.09375. Then
from Figure 1, it is clear that for c > ψ, there will be a unique equilibrium given by the

smaller root to (3.6): the larger root is greater than 1 and so cannot be an equilibrium

probability. So, take c = 0.0938. Then α = c/(q − 0.5) = 0.3752. In this case, there is a
unique interior equilibrium with voting probability given by the smaller root to (3.7) i.e.

p∗ =
0. 99947

1. 375
= 0. 72689 (4.8)

Now substituting c̄ = 0.0938 and q = 0.75 in (4.7), after some simplification, we get:

U(p) = 0.5 + 0.75p− 0.7969p2 + 0.34375p3 (4.9)

So, U(1) = 0.79685 > 0.75613 = U(p∗) i.e. compulsory voting leads to a strict Pareto-
improvement. Indeed, from (4.9), it can be shown that U(p) is everywhere increasing in

p ∈ [0, 1]. k

15



Finally, we conclude this section by examining what happens when signals become

uninformative. The following proposition shows that as signals become uninformative

both the negative pivot externality and the positive information externality, and thus

their overall effect, become negligible.

Proposition 6. As signals become uninformative, i.e. q → 0.5, U 0(F (c∗)) tends to
zero i.e. the welfare gain from raising participation from its equilibrium level becomes

negligible .

Proof. As q → 0.5, u(m) → −0.5, all m. So, u1(p), u0(p) → −0.5, all p ∈ [0, 1]. So,
u01(p), u

0
0(p)→ 0 and the result then follows from (4.5). ¤

On the face of it, this result is somewhat counter-intuitive as the informativeness of the

signal becomes small, one would think that the positive information externality becomes

small, but not necessarily the pivot externality. However, the pivot externality becomes

small because the value of being pivotal (to the pivotal voter) goes to zero with q − 0.5 :
if one’s signal is almost uninformative, the gain to being pivotal becomes negligible.

5. Preference Heterogeneity

It may be argued that while many collective decision problems have a common values

component, voters almost always have personal or idiosyncratic preferences on issues.

So, it is interesting to ask how robust our results are to the introduction of preference

heterogeneity across voters17. In this section, we study this issue and obtain some results

that go beyond the usual claim that results are robust to “small enough” perturbations

in preferences. In particular, we can explicitly characterize the size of the deviation away

from common values (in a well-defined sense) such that voters are willing to ignore their

personal preferences on the alternatives and vote with their signal. In this event, our main

results, Propositions 4 and 5, still hold.

We model preference heterogeneity as follows. Let ai be a random draw from {A,B}
with Pr(ai = A) = 0.5, and define u0 : {A,B} × {A,B} → < with u0(L, ai) = 0, when
ai 6= L, and u0(L, ai) = 1 if ai = L. We also assume that the (a1..an) are indepen-

dently distributed. The interpretation of ai is that it is an individual preference param-

17Note also that all agents have identical prior beliefs that each state is equally likely and losses from
type-I errors (choosing B when the state is sA) and type-II errors ((choosing A when the state is sB) are
the same. Relaxing these assumptions would effectively generate the model studied in the Condorcet Jury
literature ((Austen-Smith and Banks (1996), Feddersen and Pessendorfer (1998)). In an earlier version of

this paper, it was shown that our main results are robust to small perturbations away from equal priors
and equal losses.
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eter. In Borgers’ (2001) model of pure private values, agents all have utility functions

u0(a
i,K). Now define we define a new utility function:

ui(K, s) = (1− ε)u(K, s) + εu0(a
i, K), K = A,B, 0 ≤ ε ≤ 1

where u(K, s) is the common values utility defined above. We now define the mixed

preference (common values, private values) model as following. At step 1, nature now

generates a pair (ai,σi) for each i ∈ N which is transmitted privately to each i. In

subsequent play, agents are assumed to have utility functions (u1...un) over actions and

states. In all other respects, the mixed model is the same as the common values model

defined in Section 2. Note that if ε = 0, the mixed model reduces to the common values

model. Our robustness result is the following:

Proposition 7. In the mixed preference model, there is an equilibrium where those

participating vote according to their signal if the weight on private values is sufficiently

small, i.e. ε < min{ε̂, ε̃}, ε̃ = (q− 0.5)/(1+ q− 0.5), ε̂ = (χ− 0.5)/(2+ (χ− 0.5)), where
χ = q2/(q2+(1− q)2). Moreover, expected payoffs at this equilibrium to non-participants
and participants are (1− ε)u0(p)− 0.5ε, (1− ε)u1(p)− 0.5ε respectively, where p is the
equilibrium participation probability. Consequently, for ε < min{ε̂, ε̃}, Propositions 4
and 5 apply in the mixed preference model.

Proof. (i) The bound on ε.We proceed by calculating the gain to a voter i from voting

according to her signal, rather than voting according to her private preference, conditional

on fixed l. We make this calculation under the assumption that all j 6= i vote according
to their signals.

Case 1: l even. Here, i is pivotal only when there is a tie i.e. exactly l
2
voters vote

for A while the other l
2
voters vote for B. The gain to voting according to the signal is

lowest when the signal and the personal preference parameter are opposed i.e. σi = σK ,

ai = L, L 6= K. Then, the payoff to voting according to the signal is (1 − ε)(q − 1) − ε.

The payoff to voting according to personal preference is −(1 − ε)0.5. So, it is preferable

to vote according to personal preference if ε < ε̃ = (q − 0.5)/(1 + q − 0.5).
Case 2: l odd. In this case, there are two subcases where i is pivotal. Assume w.l.o.g.

that i0s signal is in favor of alternative A. The first subcase is where l+1
2
voters have voted

for A, and l−1
2
for B. In this case, i infers that the probability of A is χ = q2/(q2+(1−q)2),

as he has observed two signals more signals in favor of q than against18. Then, the payoff

18Formally, χ is equal to the posterior probability that the state is (say) A, given that there are l + 1
(resp. l − 1) signals in favour of A (resp. B). Using Bayes’ rule, after some simplification, we get the
formula in the text.
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to voting according to signal is (1 − ε)(χ − 1) − ε. The payoff to voting according to

personal preference is (1− ε)0.5.

The second subcase is where l+1
2
voters have voted for B, and l−1

2
for A. In this case,

i infers that the probability of A is 0.5, as he has effectively observed equal numbers of

signals in favor of A and B. Then, the payoff to voting according to signal is (1− ε)(0.5−
1)− ε, and the payoff to voting according to personal preference is −(1− ε)0.5.

Conditional on l odd, i does not know which of these two subcases has occurred when

he decides whether to vote with his signal or with his personal preference. But, as the

signals are i.i.d., knowing σi does not help predict the signals of others. So, these two

events will be equally likely. So, the overall expected gain to i from voting according to

his signal, rather than for his personal preference, is always at least

∆ = 0.5(1− ε)(0.5− 1) + 0.5(1− ε)(χ− 1)− ε+ (1− ε)0.5

So, ∆ > 0 if ε < ε̂ = (χ− 0.5)/(2 + (χ− 0.5)). So, if ε < min{ε̂, ε̃}, the best response to
all j 6= i voting with their signals is for i to vote with her signal, whatever l.
(ii) Remainder of proof. In an equilibrium where all participants vote according to

their signals, the expected value of the common value component of ui is u0(p) if i does

not participate, and u1(p) if she does. The expected value of the private value component

of ui is simply −0.5, as the collective decision is taken on information that is uncorrelated
with ai. The formulae for equilibrium payoffs follow immediately. These formulae say that

equilibrium payoffs are just affine transformations of equilibrium payoffs in the original

common game, and it is clear from the inspection of proofs of Propositions 4 and 5 that

these proofs are unaffected by affine transformations of payoffs. ¤
Several points on the bound min{ε̂, ε̃} are worth noting. First, it only depends on

the informativeness of the signal, q. As the signal is informative q > 0.5, χ > 0.5,

and so ε̂, ε̃ > 0 always: moreover, upper bounds on ε̂, ε̃ is when q = 1, in which case

ε̂ = 1/5, ε̃ = 1/3.

6. Conclusion

In this paper, we have shown that in a model of costly voting with common values, the

nature of the inefficiency of voting equilibrium identified in Borgers (2001) is reversed: in

the vicinity of a Bayesian equilibrium, it is always Pareto-improving for more agents, on

the average, to vote. In addition, we have also shown that there Pareto ranked multiple

Bayesian equilibria can exists and moreover, compulsory majority voting can Pareto dom-

inate voluntary majority voting. The key behind all the results in this paper lies in the
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finding that there are two different externalities at work: the negative “pivot” externality

identified by Borgers (2001) and the positive information externality. In the vicinity of

a Bayesian equilibrium, the positive informational externality always outweighs the neg-

ative “pivot” externality implying that too few voters, on the average, participate in the

voting process.
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Figure 1 : Multiple Symmetric Bayesian Equilibria
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