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Abstract

Intepret a set of players all playing the same pure strategy and all

with similar attributes as a society. Is it consistent with self interested

behaviour for a population to organise itself into a relatively small

number of societies? In a companion paper we characterized how large

" must be, in terms of parameters describing individual games, for

an equilibrium to exhibit conformity in pure strategies. In this paper

we provide a wide class of games where such conformity is boundedly

rational, that is, where " can be chosen to be small.
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1 Conformity, bounded rationality and equilibrium

We suggest that in games with many players common elements of bounded

rational behavior are the use of pure strategies and conformity in the sense

that a player is inclined to choose the same strategy as players he perceives

as similar to himself. If this is the case, and we take Nash equilibrium as

an outcome of fully rational behavior, then the consistency of boundedly

rational behavior and rationality requires the existence of an approximate

Nash equilibrium exhibiting conformity. In this paper we provide a family

of games with many players where the desired equilibrium exists.

This paper extends, in important respects, previous results of Wood-

ers, Cartwright and Selten, WCS, (2002) and Cartwright and Wooders,

CW, (2003a). In WCS we treat collections of games with complete infor-

mation and demonstrate existence of an approximate Nash equilibrium in

pure strategies and conformity. The class of games considered in WCS are

all derived from a common, underlying structure. In contrast to the ear-

lier research in WCS, CW treats individual games. Also, CW introduces

a new notion of conformity that allows individuals within the same society

to adhere to the same social norms – that is, to play the same strategy –

while taking on di¤erent roles in that society. For example, according to

one social norm, in females cook dinner and males mow the lawn. Given

an individual game, CW determines bounds, depending on the parameters

describing the game, so that if " is larger than the bounds, an "-equilibrium

exhibiting conformity exists. Roughly, the parameters describing a game

are the number of ‘player classes’ and a measure of the closeness of players

within classes. The novel features of CW are thus the notion of conformity,

the notion of player classes in strategic games, and the treatment of individ-

ual games rather than games with many players (as in WCS and the prior

literature on puri…cation of Nash equilibria).
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An important question not addressed in CW is whether, for games with

many players - large games - the parameters describing individual games,

and thus ", can be chosen to be small. In this paper we introduce a frame-

work of games with incomplete information and demonstrate conditions un-

der which the numbers of player classes can be chosen to be relatively small

while the distance between any two players of the same class is small. Con-

formity and existence of an approximate equilibrium in pure strategies then

follows from our prior results.

To treat a family of games of incomplete information we take as given a

set of attributes ­, a set of player types T and a set of actions A: A player’s

attribute is assumed to be publicly observable while a player’s type, deter-

mined by nature, is not. A universal payo¤ function h details the payo¤ of

a player as a function of his attribute, type and action and the attributes,

types and actions of the complementary player set. A universal beliefs func-

tion b details the probability distribution over type pro…les - players are

assumed to have consistent beliefs with respect to this distribution. We re-

fer to the tuple G = (­;A;T ; b; h) as a non-cooperative pregame. A player

set and an attribute function, assigning an attribute to each player, induce,

through the pregame, a game.

We provide conditions on a pregame so that all su¢ciently large games

induced from that pregame have an approximate Nash equilibrium in pure

strategies that is consistent with conformity. To formalize the idea of con-

sistency with conformity we introduce the notion of a society. A society is

de…ned as a collection of players who all play the same strategy and who all

have attributes in some convex subset of attribute space. A strategy vector

induces a partition of the population into societies and, in interpretation,

the fewer are the number of societies then the stronger the conformity. In

our main result we provide a bound on the number of societies induced that
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is independent of the number of players. Thus, in large populations societies

must also be large.

Following CW we permit an endogenous assignment of roles within a

society. A player is assigned a role according to some probability distribution

determined by the society and can make his action choice conditional on his

role. This approach allows us to model the case where players could be

seen as conforming (or belonging to the same society) even though they

may perform di¤erent actions: Given that players can make action choice

conditional on role or type, two players can play the same strategy and yet

(because they have been allocated di¤erent roles or types) play di¤erent

actions.

As well as treating the bounded rationality of conformity in pure strate-

gies we also treat in isolation the bounded rationality of playing pure strate-

gies and the bounded rationality of conformity. In both cases we provide

su¢cient conditions on a pregame for the existence of an approximate Nash

equilibrium satisfying the desired properties - either one in pure strategies

or one consistent with conformity.

Elaborating further on the prior literature, WCS provide a family of

games with many players for which there exists an approximate Nash equi-

librium in pure strategies that partitions the player set into a bounded num-

ber of societies. Two limitations of the results due to WCS are: …rst, it only

treats games of perfect information which, amongst other things, does not

allow us to model an assignment of roles within a society. Second, the bound

on number of societies is proportional to the number of strategies; given that

the framework of WCS can be extended to allow a countable set of strategies

(see Cartwright and Wooders 2003b) this appears a signi…cant limitation.

In the companion paper CW we consider the bounded rationality of

conformity in pure strategies for arbitrary games of incomplete information.
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This is done by introducing the concept of a (±;Q)-class game - any …nite

game is (±; Q)-class game for some values of ± and Q. Given a (±; Q)-class

game a bound on " permitting existence of a Bayesian Nash "-equilibrium in

pure strategies consistent with social conformity, is provided as a function

of ± and Q. The approach of CW has the advantage of treating individual

games and permitting incomplete information. In addition, CW are able

to bound the number of societies independently of the number of strate-

gies. CW, however, only put a bound on the " for which there exists an

"-equilibrium satisfying the desired properties - they do not provide condi-

tions under which the " is small.

In this paper we address some of the issues that arise from WCS and

CW. First, we extend the pregame framework of WCS to permit incomplete

information. We then demonstrate a connection between (±;Q)-class games

and games induced from a pregame. This allows us to apply the results of

CW and in doing so provide a family of games where the use of pure strate-

gies and conformity can be consistent with individually rational behavior.

Further, in the results of this paper, the number of societies is bounded

independently of the number of strategies.

We proceed as follows: Section 2 introduces de…nitions and notation and

Section 3 reviews the de…nition of a (±; Q)-class game. In Section 4 we treat

conformity, in Section 5 we treat pure strategies and in Section 6 we treat

conformity in pure strategies. In Section 7 we conclude.

2 De…nitions and notation

We begin this section by de…ning a Bayesian game. The pregame framework

is then introduced and we demonstrate how Bayesian games can be induced

through a pregame. Next, we consider the strategies available to players

in a Bayesian game and discuss expected payo¤s. We conclude the section

5



with the de…nition of a Nash equilibrium.

2.1 A Bayesian Game

A Bayesian game ¡ is given by a tuple (N; A;T; g; u) where N is a …nite

player set, A is a set of action pro…les, T is a set of type pro…les, g is a

probability distribution over type pro…les and u is a set of utility functions.

We de…ne these components in turn.

Let N = f1; :::; ng be a …nite player set, let A denote a …nite set of actions

and let T denote a …nite set of types. ‘Nature’ assigns each player a type.

Informed of his own type but not the types of his opponents, each player

chooses an action. We say that a game is a game of perfect information if

jT j = 1. Let A ´ AN be the set of action pro…les and let T ´ T N be the

set of type pro…les. Given action pro…le a and type pro…le t we let ai and ti

denote respectively the action and type of player i 2 N .

A player’s payo¤ depends on the attributes, actions and types of players.

Formally, in game ¡, for each player i 2 N there exists a utility function

ui : A £ T ! R. In interpretation ui(a; t) denotes the payo¤ of player i if

the action pro…le is a and the type pro…le t. Let u denote the set of utility

functions.

A player, once informed of his own type, selects an action without know-

ing the types of the other players. A player therefore forms beliefs over the

types he expects others to be. These beliefs are represented by a function pi

where pi(t¡ijti) denotes the probability that player i assigns to type pro…le

(ti; t¡i) given that i is of type ti. Throughout we will assume consistent

beliefs. Formally, for some probability distribution g over type pro…les, we

assume:

pi(t¡ijti) =
g(ti; t¡i)P

t0¡i2T¡i
g(ti; t0¡i)

(1)
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for all i 2 N and ti 2 T .1

2.2 Pregames

Let ­ be a compact metric space, called an attribute space and let N be a

…nite player set. A function ® mapping from N to ­ is called an attribute

function. The pair (N;®) is a population. In interpretation, an attribute

function ascribes an attribute to each player in a population. Taking as

given a …nite set of actions A and types T a population (N;®) induces a

Bayesian game ¡(N; ®) ´ (N;A; T; g®; u®) as we now formalize.

Denote by W the set of all mappings from ­ £ A £ T into Z+; the

non-negative integers. A member of W is called a weight function. Given

population (N;®) we say that a weight function w®;a;t is relative to action

pro…le a and type pro…le t if and only if:

w®;a;t(!; al; tz) =
¯̄
¯
n
i 2 N : ®(i) = !; ai = al and ti = tz

o¯̄
¯ :

Thus, w(!; al; tz) denotes the number of players with attribute ! and type

tz who take action al.

A universal payo¤ function h maps ­ £ A £ T £ W into R+, the non-

negative real numbers. The function h will determine payo¤ functions for

every game induced by the pregame. Given a population (N;®), the payo¤

of a player will depend on his attribute, his action, his type and the weight

function induced by the attributes, actions and types of the complementary

player set. Formally:

u®i (a; t) def= h(®(i); ai; ti; w®;a;t):

Denote by D the set of all mappings from ­ £ T into Z+. A member

of D is called a type function. Given population (N;®) we say that type
1We assume that the denominator of (1) is always positive - i.e. there is positive

probability that a player i 2 N will be of type ti for each ti 2 T .
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function d®;t is relative to type pro…le t if:

d®;t(!; tz) = jfi 2 N : ®(i) = ! and ti = tzgj :

Thus, d®;t(!; tz) denotes the number of players with attribute ! and type

tz.2 A universal beliefs function b maps D into [0; 1]. The value b(d®;t) is

interpreted as the probability of type pro…le t. Formally:

g®(t) def= b(d®;t)

where g® is the probability distribution over type pro…les induced by b and

®. Players are assumed to have consistent beliefs with respect to g®. It is

important to realize the di¤erences between functions g® and b. Function

g® is de…ned relative to a population (N; ®) and its domain is T N . Function

b, however, is de…ned independently of any speci…c game and has domain

D.

A pregame is given by a tuple

G = (­;A;T ; b; h);

consisting of a compact metric space ­ of attributes, …nite action and type

sets A and T , a universal beliefs function b : D ¡! [0; 1] and a universal

payo¤ function h : ­ £ A £ T £ W ¡! R+. As discussed above we refer to

a population (N; ®) as inducing, through the pregame, a Bayesian game

¡(N;®) ´ (N;A; T; g®; u®):

2.3 Strategies and expected payo¤s

Take as given a population (N; ®) and induced Bayesian game (N; A;T; g®; u®).

As discussed above, knowing his own type, but not those of his opponents

a player chooses an action. A pure strategy details the action a player will
2Note that d®;t is a projection of w®;a;t onto ­£ T .

8



take for each type tz 2 T and is given by a function sk : T ! A where

sk(tz) is the action taken by the player if he is of type tz. Denote the set

of pure strategies by S and let K = jAjjT j = jSj denote the number of pure

strategies.

A (mixed) strategy is given by a probability distribution over the set of

pure strategies. The set of strategies is denoted by ¢(S). Given a strategy x

we denote by x(sk) the probability that a player takes pure strategy sk 2 S.

We denote by x(aljtz) the probability that a player takes action al given

that he is of type tz. Let § = ¢(S)N denote the set of strategy vectors. We

refer to a strategy vector m as degenerate if for all i 2 N and tz 2 T there

exists some action al for which mi(aljtz) = 1.

We assume that players are motivated by expected payo¤s. Given a

strategy vector ¾, a type tz 2 T and beliefs about the type pro…le p®i the

probability that player i puts on the action pro…le-type pro…le pair a =

(a1; :::; an) and t = (t1; :::; ti¡1; tz; ti+i; :::; tn) is given by:

Pr(a; t¡ijtz) def= p®i (t¡ijtz)¾1(a1jt1):::¾i(aijtz):::¾n(anjtn).

Thus, given any strategy vector ¾, for any type tz 2 T and any player i

of type tz, the expected payo¤ of player i can be calculated. Let U®i (¢jtz) :

§ ! R denote the expected utility function of player i conditional on his

type being tz where:

U®i (¾jtz) def=
X

a2A

X

t¡i2T¡i
Pr(a; t¡ijtz)u®i (a; tz; t¡i).

Denote by EW the set of functions mapping ­ £ A £ T into R+, the

non-negative reals. We refer to ew; eg 2 EW as expected weight functions.

Given a population (N; ®) we say that an expected weight function ew®;¾ is

relative to strategy pro…le ¾ if and only if:

ew®;¾(!; al; tz) =
X

a2A

X

t2T
w®;a;t(!; al; tz) Pr(a; t)
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for all !; al and tz. Thus, ew®;¾(!; al; tz) denotes the expected number of

players of attribute ! who will have type tz and play action al. Note that

this expectation is taken before any player is aware of his type.

2.4 Nash equilibrium

The standard de…nition of a Bayesian Nash equilibrium applies. A strategy

vector ¾ is a Bayesian Nash "-equilibrium (or informally an approximate

Bayesian Nash equilibrium) if and only if:

U®i (¾i; ¾¡ijtz) ¸ U®i (x; ¾¡ijtz) ¡ "

for all x 2 ¢(S), all tz 2 T and for all i 2 N . We say that a Bayesian Nash

" equilibrium m is a Bayesian Nash "-equilibrium in pure strategies if m is

degenerate.

3 (±;Q)-class games

Informally, a game ¡(N; ®) = (N; A;T; g®; u®) is a (±;Q)-class game if the

population N can be partitioned into Q subsets N1; :::; NQ; called classes,

where (1) any two players in the same class are ‘±-substitutes’ for each other

and (2) roughly, the payo¤ to a player depends only on his own strategy

choice and the ‘aggregate strategy’ of the players in each class. The concept

of a (±;Q)-class game was introduced in CW.

To formally de…ne a (±; Q)-class game we require notions of approximate

substitute players. Take as given a game ¡(N;®) and a partition of the

player set N =fN1; :::;NQg.

Partition N is a ±I-interaction substitute partition when: For any two

strategy vectors ¾1; ¾2 2 § if:
X

i2Nq
¾1
i (s
k) =

X

i2Nq
¾2
i (s
k);
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for all Nq and all sk 2 S, then:

¯̄
U®i (x; ¾1

¡ijtz) ¡ U®i (x; ¾2
¡ijtz)

¯̄
· ±I

for any player i 2 N and any strategy x 2 ¢(S).

Informally, N is a ±I-interaction substitute partition if a player’s payo¤

changes by at most ±I when other players of the same class ‘exchange’ strate-

gies, with his own strategy choice held constant.

Partition N is a ±P -individual substitute partition when: For any Nq, for

any two players i; j 2 Nq and for any strategy vector ¾ 2 § such that

¾i = ¾j :

¯̄
U®i (x; ¾¡ijtz) ¡ U®j (x; ¾¡j jtz)

¯̄
· ±P

for any strategy x 2 ¢(S).

Informally, N is a ±P -individual substitute partition if the payo¤s of any two

players in the same class, when they both play the same strategy and the

strategies of other players are held constant, are within ±P .

Partition N is a ±C-strategy switching partition when: For any two strategy

vectors ¾1; ¾2 2 § if:

X

i2Nq

¯̄
¯¾1
i (s
k) ¡ ¾2

i (s
k)

¯̄
¯ · 1, (2)

for all Nq and all sk 2 S then:

¯̄
U®i (x; ¾1

¡ijtz) ¡ U®i (x; ¾2
¡ijtz)

¯̄
· ±C

for any player i 2 N and any strategy x 2 ¢(S).
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Thus, given a small proportional change in the ‘aggregate strategy’ of a class,

if N is a ±C-strategy switching partition then payo¤s will change by at most

±C .

Game ¡(N;®) is said to be a (±I ; ±P ; ±C ;Q)-class game if there exists a

partition N of the player set into Q classes such that N is a ±I-interaction

substitute partition, a ±P -individual substitute and a ±C-strategy switching

partition. If ±I ; ±P ; ±C · ± then we refer to ¡(N;®) as a (±;Q)-class game.

Given a (±;Q)-class game ¡(N; ®) we refer to a partition N as a proper

partition of the player set into classes if it is a ±-substitute partition and

±-strategy switching partition.

4 Games With Many Players

We will assume throughout a relatively mild continuity property with respect

to attributes. This assumption, introduced in WCS, dictates that a player’s

payo¤ is relatively invariant to a small perturbation of the attributes of

players (including himself). Such an assumption would be satis…ed, for

example, in a private goods economy where individual preferences depend

only on own consumption of commodities. Formally:

Continuity in attributes: Pregame G = (­;A;T ; b; h) is said to satisfy

continuity in attributes when: for any " > 0 and any two induced games

¡(N; ®) and ¡(N;®), if, for all i 2 N ,

dist(®(i); ®(i)) < "

then, for all i 2 N , all tz 2 T and any strategy vector ¾ 2 §:

¯̄
U®i (¾jtz) ¡ U®i (¾jtz)

¯̄
< ":

We note that the assumption of continuity in attributes considers a
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change in attributes while the strategies are held constant. The assump-

tion comprises essentially two distinct elements: (1) A player should be

relatively indi¤erent to small changes in the attributes of others - this would

suggest, amongst other things, that the probability distribution over types

is largely una¤ected by a small change in the attribute function. (2) Players

with similar attributes receive similar payo¤s. This later point will clearly

have a role to play in demonstrating the existence of ±P -individual substitute

partitions for small values of ±.

4.1 Societies

We de…ne a society. Given a game (N; ®) and a strategy vector ¾ we in-

terpret a set of players D as a society if (i) there exists some strategy

x 2 ¢(S) such that ¾i = x for all i 2 D, and (ii) for any player i 2 N ,

if ®(i) 2 con(®(D)) then i 2 D.3 Thus, any two players belonging to a

society D must play the same strategy. Furthermore, to any society D we

can associate a convex subset ­D of attribute space ­ with the properties

that any player belonging to D has an attribute in ­D while there exists no

player who has an attribute in ­D that does not belong to D. 4

We say that a strategy vector ¾ induces a partition of the player set

into Q societies if there exists a Q member partition of the player set N =

fN1; :::; NQg such that each subset Nq is a society.

Given a population (N; ®) we say that a partition N =fN1; :::;NQg is a

partition of (N; ®) into convex subsets if there exists a partition f­1; :::;­Qg
of ­ into convex subsets with the property that if i 2 Nq then ®(i) 2 ­q for

3Where con(®(D)) denotes the convex hull of ®(D).
4This is a stronger notion of conformity than used by WCS. In WCS condition (ii)

becomes: for any player i 2 N if ®(i) 2 int(con(®(D))) then i 2 D where int(A) denotes

the interior of set A.
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all i 2 N .5

4.2 Conformity

In this section we demonstrate that for a large family of games we can put a

bound Q on the number of societies, where Q is independent of population

size, such that any game within this family has an approximate Nash equi-

librium that partitions the population into at most Q societies. Note that

in this section we make no assumption that players use pure strategies.

We introduce a second assumption:

Risk Neutrality property: We say that a pregame G satis…es the risk

neutrality property when: for any population (N; ®) and any two strategy

pro…les ¾; ¾ 2 §N with expected weight functions ew®;¾ and ew®;¾ respec-

tively, where:

ew®;¾(!; al; tz) = ew®;¾(!; al; tz)

for all !; al and tz, if ¾i = ¾i then:

U®i (¾jtz) = U®i (¾jtz)

for any tz 2 T .

The risk neutrality property requires players to be risk neutral with respect

to the strategies of others. For example, consider two players i and j who

both have attribute ! and consider some other player l. The risk neutrality

property dictates that player l should be indi¤erent as to whether (i) player

i plays strategy s1 and player j plays strategy s2, (ii) player j plays strategy

s1 and player i plays strategy s2, and (iii) both players choose strategy
5Of course the sets ­q are required to be only relatively convex since ­ may not be

convex.
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s1 and s2 with probability one half. There are many instances where this

assumption would appear mild - we consider one case later.

Before stating our …rst Theorem, we recall that it follows from Theorem

2 of CW that any (0; 0; ±; Q(¿))-class Bayesian game has a Bayesian Nash

equilibrium (a 0-equilibrium) with the property that any two players in the

same class play the same strategy. Our …rst Theorem demonstrates that

for any game induced by a pregame there is a ‘near-by’ (0; 0; ±;Q) game for

some ± and Q. The existence of such games allows us to infer properties of

games induced by pregames.

Theorem 1: Consider a pregame G = (­;A;T ; b; h) that satis…es the risk

neutrality property. Given real number ¿ > 0 there is a real number Q(¿)

such that for any population (N; ®) there is another population (N; ®) sat-

isfying dist(®(i); ®(i)) < ¿ for all i 2 N and, for some ±, the induced game

¡(N; ®) is a (0; 0; ±; Q(¿))-class Bayesian game. Furthermore, there exists

a partition N of N that is both a proper partition into classes for game

¡(N; ®) and a partition of (N; ®) into convex subsets.

Proof: Partition ­ into convex subsets ­1; :::;­Q each of diameter less than

¿ > 0. For each subset ­q choose and …x an attribute !q 2 ­q. Consider an

arbitrary game ¡(N;®). De…ne attribute function ® as follows for all i 2 N :

®(i) = !q if and only if ®(i) 2 ­q.

Clearly dist(®(i); ®(i)) < ¿ for all i 2 N . For each q, de…ne Nq = fi 2 N :

®(i) = !qg. We conjecture that the partition N ´ fN1; :::;NQg satis…es the

desired properties. We note that all players of the same class have the same

attribute. It is, thus, immediate from the de…nition of individual substitute

partitions that N is a 0-individual substitute partition for ¡(N; ®). Also,

by the risk neutrality property N is a 0-interaction substitute partition for
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¡(N; ®). Thus, game ¡(N;®) is a (0; 0; ±;Q)-class Bayesian game and N
is a proper partition of N . It is immediate that N partitions (N;®) into

convex subsets.¥

Theorem 1 leads to Proposition 1, a consequence of the above result and

Theorem 2 of CW:

Proposition 1: Consider a pregame G = (­; A; T ; b; h) that satis…es the

risk neutrality property and continuity in attributes. Given real number

" > 0 there exists real number Q1(") > 0 such that for any population

(N;®) the induced game ¡(N;®) has a Bayesian Nash "-equilibrium that

induces a partition of the player set into Q1(") societies.

Proof: Given an " > 0, de…ne ¿ ´ 1
2". By Theorem 1 there exists real

number Q(¿) such that for any population (N; ®) there exists a popula-

tion (N; ®) such that maxi2Nfdist(®(i); ®(i))g < ¿ and the induced game

¡(N; ®) is a (0; 0; ±;Q)-substitute Bayesian game for some ±. Further there

exists a proper partition of N into classes N for game ¡(N;®) that is a

partition of (N;®) into convex subsets. Theorem 2 of CW states that any

(0; 0; ±; Q)-class Bayesian game has a Bayesian Nash 0-equilibrium m with

the property that any two players of the same class play the same strategy.

Thus, game ¡(N; ®) has a Bayesian Nash 0-equilibrium m with the property

that any two players of the same class play the same strategy. By continuity

in attributes, for all i 2 N :

¯̄
U®i (x;m¡ijtz) ¡ U®i (x; m¡ijtz)

¯̄
<

"
2
:

for all x 2 ¢(S) and tz 2 T . Thus:

U®i (mi;m¡ijtz) > U®i (x; m¡ijtz) ¡ "

for all x 2 ¢(S). This completes the proof.¥
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If the number of attributes is …nite then we can go further. Of course with

a …nite number of attributes conformity is less interesting. The following

Theorem, also a consequence of Theorem 2 of CW, simply states that there

exists a possibly mixed strategy where all players who are identical play the

same strategy.

Proposition 2: Consider a pregame G that satis…es the risk neutrality

property and where the number of attributes is a …nite integer Q. For

any population (N;®) the induced game ¡(N;®) has a Bayesian Nash 0-

equilibrium that induces a partition of the player set into Q societies.

Proof: Take as given game ¡(N; ®). Let ­ = f!1; ::::; !Qg be the space of

attributes and let N = fN1; :::; NQg denote the partition of the player set

where i 2 Nq if and only if ®(i) = !q. Partition N is a 0-interaction substi-

tute partition and a 0-substitute partition. Thus, ¡(N;®) is a (0; 0; ±; Q)-

class Bayesian game. Theorem 2 of CW states that any (0; 0; ±; Q)-class

Bayesian game has a Bayesian Nash 0-equilibrium m with the property that

any two players of the same class play the same strategy. This completes

the proof.¥

5 Pure Strategy Equilibrium

The risk neutrality property proves insu¢cient for the existence of an ap-

proximate Nash equilibrium in pure strategies. We therefore introduce a

stronger large game property. First, taking a population (N; ®) as given, we

de…ne a metric on the space EW® of expected weight functions:

dist2(ew; eg) =
1

jN j
X

!2®(N)

X

al2A

X

tz2T

¯̄
¯ew(!; al; tz) ¡ eg(!; al; tz)

¯̄
¯

for any ew; eg 2 EW®. Thus, two expected weight functions are ‘close’ if

the expected proportion of players with each attribute and each type that
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are playing each action are close.

Large game property: We say that a pregame G satis…es the large game

property when: for any " > 0, any population (N;®) and any two strategy

pro…les ¾; ¾ 2 §N where:

dist2(ew®;¾; ew®;¾) < "

if ¾i = ¾i then:

jU®i (¾jtz) ¡ U®i (¾jtz)j < ":

for any tz 2 T .

If a pregame satis…es the large game property then we can think of payo¤

functions as satisfying one principal condition - a player is nearly indi¤erent

to a change in the proportion of players of each attribute and of each type

playing each action (provided his own strategy is unchanged); thus, the

behavior of no one individual or small group of individuals can have large

e¤ects on a player’s payo¤. This contrasts with the risk neutrality property

where one individual can have a large in‡uence.6 Risk neutrality is also

required to hold under the large game property but an assumption of risk

neutrality is mild in this context; with large player sets, …nite sets of pure

strategies and …nite types the law of large numbers dictates that the actual

proportion of players playing each action will, with high probability, be close

to the expected proportion (Kalai 2002).

We state our second theorem:

Theorem 2: Consider a pregame G that satis…es the large game property.

Given real numbers ± > 0 and ¿ > 0 there are integers ´(±; ¿) and Q(±; ¿)

such that for any population (N; ®), where jN j > ´(±; ¿), there exists a
6This could be the case if there is a unique player with a certain attribute.
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similar population (N;®) with dist(®(i); ®(i)) < ¿ for all i 2 N and the

induced game ¡(N; ®) is a (±;Q(±; ¿))-substitute Bayesian game. Further

there exists a proper partition into classes N for game ¡(N; ®) that is a

partition of (N;®) into convex subsets.

Proof: Suppose that the statement of the lemma is false. Then there is

some ± > 0 and ¿ > 0, such that for any real number Q and for each

integer º there is a population (Nº ; ®º) where jNº j > º and such that for

no population (Nº ; ®º) where maxi2Nfdist(®(i); ®(i))g < ¿ is the induced

game ¡(Nº ; ®º) a (±;Q)-substitute Bayesian game.

Partition ­ into convex subsets ­1; :::;­Q each of diameter less than ¿ .

To each subset ­q choose and …x an attribute !q. For each (Nº ; ®º) de…ne

the attribute function ®º as follows: for all i 2 Nº :

®º(i) = !q if and only if ®(i) 2 ­q.

Given game (Nº ; ®º) let N º = fNº1 ; :::; NºQg denote the partition of the

player set such that i 2 Nºq if and only if ®º(i) = !q. We note that the

value Q is …xed independently of the game (Nº ; ®º). The partition N º

is a 0-individual substitute partition for all º and, given the large game

property, a ±-interaction substitute partition. Also, for su¢ciently large º,

by the large game property, N º is a ±-strategy switching partition. Thus,

game ¡(Nº ; ®º) is a (±;Q)-substitute Bayesian game.¥

Our third proposition demonstrates the existence of an approximate

Nash equilibrium in pure strategies and obtains a puri…cation result as a

consequence of the puri…cation result in CW for (±; Q) class-games.

Proposition 3: Consider a pregame G that satis…es the large game property

and continuity in attributes. Given real number " > 0 there exists real
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number ´2(") > 0 such that any induced game ¡(N;®) where jN j > ´2(")

has a Bayesian Nash "-equilibrium in pure strategies.

Proof: Let ± ´ 1
6". By Theorem 2 there are real numbers ´ and Q such that

for any population (N; ®), where jN j > ´, there exists a population (N;®)

such that maxi2Nfdist(®(i); ®(i))g < ± and the induced game ¡(N; ®) is a

(±;Q)-substitute Bayesian game. Theorem 1 of CW states that any (±; Q)-

class game has a Nash 4±-equilibrium. Let m be a Nash 4±-equilibrium of

game ¡(N;®). By continuity in attributes, for all i 2 N :

¯̄
U®i (x;m¡ijtz) ¡ U®i (x;m¡ijtz)

¯̄
< ±:

for all x 2 ¢(S) and tz 2 T . Thus:

U®i (mjtz) > U®i (x; m¡ijtz) ¡ 6±

for all x 2 ¢(S). This completes the proof.¥

6 Conformity in Pure Strategies with Roles

Following the approach of CW we consider the possibility that players may

conform in their choice of strategy yet play di¤erent actions. The existence

of imperfect information permits this as a player’s action is conditional on

his type. We assume that players can endogenously create imperfect in-

formation through an allocation of roles within a society. To simplify the

analysis we assume that play ‘begins’ with a game of perfect information.

Take as given a pregame G = (­;A;T ; b; h) where jT j = 1. Games

induced through this pregame are games of perfect information. Assume

that there exists a set of roles R = fr1; :::; rKg. Consider game ¡(N; ®). Let

R ´ RN be the set of role pro…les. Take as given a probability distribution

f over the set of role pro…les R where f(r) denotes the probability of role

20



pro…le r. We consider a Bayesian game with endogenous roles ¡(f)(N;®).

In game ¡(f)(N;®) roles are (Harsanyi) types. Thus, roles are randomly

allocated to players, a player can make his action choice conditional on

his role and makes his choice of action knowing his role but not those of

players in the complementary player set. A player’s payo¤, however, does not

depend directly on the role pro…le. We assume that players have consistent

beliefs with respect to the distribution over roles f . Formally, we can de…ne

game ¡(f)(N;®) = (N; A;T (f); g®(f); u®(f)) to satisfy:

1. T (f) ´ R,

2. for all r 2 R,

g®(f)(r) ´ f(r)

3. u®i (f)(a; r) ´ u®i (a) for all a 2 A, r 2 R and all i 2 N .

Condition 1 states that roles are equivalent to types. Condition 2 states

that players have consistent beliefs with respect to the distribution of roles.

Condition 3 states that payo¤s are not directly e¤ected by the role pro…le.

We highlight that roles and a probability distribution over role pro…les

are de…ned relative to a speci…c game ¡(N;®) rather than a pregame. This

re‡ects the idea that roles are endogenously created within a population.

Thus, it is more natural to think of a probability distribution over roles

taking as given a speci…c game ¡(N;®). Note that this observation is also

re‡ected in the statement of Proposition 4, to follow.

As discussed further by CW, to retain a notion of society in which players

can truly be seen as conforming, assumptions are required on the probability

distribution over roles f . For instance, it seems desirable, if players are

conforming, that every player should have an equal chance of being each

role; if this were not the case then it might be argued that players who
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are playing the same strategy are not exhibiting the same behaviour. This

motivates our …rst condition.

Within class anonymity: A probability distribution over roles f satis…es

within class anonymity if the probability that a player from a class Nq will

have role rk is (a priori) identical for all players belonging to that class.

Formally, if i; j 2 Nq for some q then:

X

r2R:ri=rk
f(r) =

X

r2R:rj=rk
f(r)

for all rk 2 R.

To motivate the next requirement, consider the example of a male-female

household following the roles of ‘he goes out to work, she stays home’. For

this norm to be successful, it is necessary that no player, knowing the struc-

ture of society – the number of players with each role in his or her class –

after roles are assigned, wishes to change role assignment. This motivates a

second condition.

Within class determination: Given a role pro…le r let z(r; k; q) be the

number of players in class Nq who have role rk. A probability distribution

over roles f is within class determined if for any class Nq and for any two

role pro…les r and r, if f(r); f(r) > 0 then z(r; k; q) = z(r; k; q) for all classes

q and for all rk 2 R.

In sum, within class anonymity requires that each player in a class has an

equal probability of being allocated each role. Within class determination

implies that the number of players who have each role can be known with

certainty ex ante - the only uncertainty is who will have each role. These are

strong requirements on f: We propose they capture the notion that players
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in the same class who play the same strategy are conforming to some norm

of behavior.

Before stating our …nal result we introduce one further de…nition. We

use the concept of ex-post Nash equilibrium as introduced by Kalai (2002).

Ex-post Nash implies that, knowing the action pro…le and the type pro…le,

no player has a strong incentive to change her own action. Formally, given

population ¡(N; ®) an action pro…le, type pro…le pair a; t is said to be "

ex-Post Nash if for all i 2 N :

u®i (a; t) ¸ u®i (a
l; a¡i; t) ¡ "

for all al 2 A. A strategy pro…le ¾ is said to be a Bayesian " ex-Post Nash

equilibrium if it yields an " ex-Post Nash action pro…le, type pro…le pair with

probability one. If a strategy vector is a Bayesian ex-Post Nash equilibrium

then, as discussed further by Kalai (2002), no player would wish to change

his action after knowing the types (or roles) and the actions of the other

players. The proof is based on that of CW (Theorem 3).

Proposition 4: Consider a pregame G that satis…es the large game prop-

erty and continuity in attributes and where jT j = 1. Given a real number

" > 0 there are real numbers ´4(") > 0 and Q 4(") such that for any popu-

lation (N;®) where jN j > ´4(") there exists a probability distribution over

role pro…les f (that is within class anonymous and determined) with the

property that game ¡(f)(N;®) has a Bayesian " ex-Post Nash equilibrium

in pure strategies that induces a partition of the player set into at most

Q4(") societies.

Proof: Let ± ´ 1
12". By Theorem 2 there are real numbers ´ and Q such

that for any population (N; ®), where jN j > ´, there exists a population

(N;®) such that dist(®(i); ®(i)) < ± for all i 2 N and the induced game
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¡(N; ®) is a (±;Q)-substitute Bayesian game. Further there exists a proper

partition into classes N for game ¡(N;®) that is a partition of (N; ®) into

convex subsets.

Theorem 3 of CW states that any given any (±;Q)-class game ¡(N;®)

and proper partition N there exists a probability distribution over role pro-

…les f (that is within class anonymous and determined) such that ¡(f)(N;®)

has a Bayesian 10± ex–Post Nash equilibrium with the property that every

player of the same class plays the same pure strategy. Let m be such an

equilibrium of game ¡(N;®). By continuity in attributes, for all i 2 N :

¯̄
U®i (x;m¡ijtz) ¡ U®i (x;m¡ijtz)

¯̄
< ±:

for all x 2 ¢(S) and tz 2 T . Thus:

U®i (mi;m¡ijtz) > U®i (x; m¡ijtz) ¡ 12±

for all x 2 ¢(S). This completes the proof.¥

7 Conclusion

In this paper we provide a family of games with many players for which

there exists an approximate Nash equilibrium in pure strategies exhibiting

conformity. A strategy vector exhibits conformity when the population could

be partitioned into a relatively small number of societies - players in the same

society play the same strategy and have similar attributes. The existence

of roles within a society was permitted, thus allowing the possibility that

players play the same strategy and yet perform di¤erent actions.

Our results complement and extend those due to WCS and CW. In

WCS we also provide a family of games for which there exists an approxi-

mate Nash equilibrium in pure strategies exhibiting conformity. The current
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paper, however, extends that of WCS in considering games of imperfect in-

formation. This allows a di¤erent interpretation of conformity and of a

society. As a consequence we are able to bound the number of societies

independently of the number of strategies (in contrast to WCS). In CW

we treat individual games and provide a bound on the ", depending on the

parameters describing the game, allowing existence of a Nash "-equilibrium

in pure strategies exhibiting conformity. CW do not, however, demonstrate

that in large games this bound, and thus ", can be taken to be small. This

paper applies the results of CW in focussing on large games.
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