
 
 
 

Monte Carlo Simulation of Macroeconomic Risk 
with a Continuum Agents: The General Case 

 
Peter J. Hammond and Yeneng Sun 

  
No 803 

 
 
 
 
 
 

 
WARWICK ECONOMIC RESEARCH PAPERS 

 
 

 
 

DEPARTMENT OF ECONOMICS 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6939573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Monte Carlo Simulation of Macroeconomic Risk
with a Continuum Agents: The General Case∗

Peter J. Hammond† and Yeneng Sun‡

Revised June 2007

Abstract

In large random economies with heterogeneous agents, a standard
stochastic framework presumes a random macro state, combined with
idiosyncratic micro shocks. This can be formally represented by a ran-
dom process consisting of a continuum of random variables that are
conditionally independent given the macro state. However, this pro-
cess satisfies a standard joint measurability condition only if there is
essentially no idiosyncratic risk at all. Based on iteratively complete
product measure spaces, we characterize the validity of the standard
stochastic framework via Monte Carlo simulation as well as event-wise
measurable conditional probabilities. These general characterizations
also allow us to strengthen some earlier results related to exchange-
ability and independence.
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1 Introduction

Macroeconomic risks are the common random shocks that influence a sig-
nificant portion of the population. Reality suggests that these are supple-
mented by risks at the individual level that influence a negligible portion of
the population. Indeed, a standard stochastic framework where many agents
face interpersonally correlated risks presumes some kind of random macro
state, combined with idiosyncratic micro shocks.1 Such a framework can
be formally represented by a random process consisting of a continuum of
random variables that are conditionally independent given the macro state.
As shown in Proposition 3.4 below, however, this process satisfies a standard
joint measurability condition only if there is essentially no idiosyncratic risk
at all.2 So, in the absence of joint measurability, the question is whether one
can still find reasonable conditions which guarantee the existence of such a
stochastic macro structure.

For the important special case when individual risks are symmetrically
distributed, one way of justifying this standard framework is provided in [9]
under a special assumption of pairwise measurable probabilities.3 Yet often
the agents in a macroeconomic model face risks whose probability distribu-
tions are affected by non-stochastic individual variables such as location or
household type. Then the symmetry assumption is clearly violated. The
purpose of this paper is therefore to characterize the validity of the stan-
dard stochastic framework for many heterogeneous agents facing individual
uncertainty.

As in [9], the approach taken here is inspired by the Monte Carlo method
for finding numerical approximations to an ordinary multiple integral by
taking the average of the integrand evaluated at randomly selected points.
We extend this method in order to simulate macroeconomic uncertainty
when many heterogeneous agents face both macroeconomic and individual
risks. It is shown that a corresponding Monte Carlo σ-algebra gives all the
non-redundant macro states. Indeed, our Theorem 1 and Proposition 3.2
show that, provided there is weak convergence of the empirical distributions

1See, for example, [4], [12] and [23] for models with a continuum of agents, or [14], [17],
[18] for models with a large finite number of agents.

2Proposition 3.4 of this paper generalizes the type of non-measurability result shown
for independent random variables in Proposition 1 of [21], and for exchangeable random
variables in Proposition 2 of [9]. See [5], [6], [9], [15], [20] and [22] for further discussions
of the measurability issue.

3See Footnote 9 below or [9, p. 750] for a formal definition.

1



even for just one typical random draw from the agent space, a stochastic
macro structure exists.

The rest of the paper is organized as follows. Section 2 of the paper sets
out the basic framework. Then Section 3 gives formal statements of our
main results. Section 4 focuses on two important special cases. The last
Section 5 is an appendix containing all the proofs. They rely on the itera-
tively complete product measure spaces introduced in the recent paper [11].
In particular, this allows us to remove the special assumption of pairwise
measurable probabilities that was used in [9].

2 Basic formulation

2.1 Countably generated sub-σ-algebras

Let (Ω,A, P ) denote a probability space that models all the uncertainty in
an economy.

A set N ⊂ Ω is null if there exists A ∈ A with P (A) = 0 such that
N ⊆ A. We assume that (Ω,A, P ) is complete — i.e., that the σ-algebra
A includes all null sets. For the rest of the paper, let C ⊆ A denote a
sub-σ-algebra of A.

Countably generated sub-σ-algebras of A, which generalize finitely gen-
erated σ-algebras, will play an important role in this paper because of their
ability to represent macroeconomic risk.

Definition 2.1 (1) The relative completion of C is the smallest σ-algebra
that contains both C and all the subsets of sets C ∈ C such that P (C) = 0.
The completion of C is the smallest σ-algebra that contains both C and all
the null sets of (Ω,A, P ).

(2) The sub-σ-algebra C ⊆ A is countably generated if there is a count-
able family F ⊆ A such that C is contained in the completion of the σ-algebra
σ(F) generated by F .4

(3) Given two sub-σ-algebras C, C′ ⊆ A, say that C is a sub-σ-algebra of
C′, and write C ⊆ C′, if C is contained in the completion of C′.

4This modifies the terminology of Billingsley [1] by allowing the σ-algebra generated
by a countable set to be completed by the addition of null sets.
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2.2 Iteratively complete product spaces

Let (Tk, Tk, λk) (k ∈ N) be a sequence of probability spaces. Then

n∏
k=1

(Tk, Tk, λk) :=

(
n∏
k=1

Tk,⊗nk=1Tk,⊗nk=1λk

)
(1)

is the product of the first n probability spaces, whereas

∞∏
k=1

(Tk, Tk, λk) :=

( ∞∏
k=1

Tk,⊗∞k=1Tk,⊗∞k=1λk

)
(2)

is the infinite product of the entire sequence of probability spaces.
In order to state as simply as possible conditions which are necessary

as well as sufficient to ensure that macroeconomic risk can be simulated,
a stronger form of completion will be used for the products (1) and (2),
involving more null sets. The following definition extends what Bledsoe and
Morse [2] suggested for the case of two measure spaces — see also Dudley
[7, p. 108].

Definition 2.2 The set E ⊆
∏n
k=1 Tk is said to be iteratively null if for

every permutation π on {1, . . . , n} one has (t1, t2, . . . , tn) /∈ E for λπ(1)-a.e.
tπ(1) ∈ Tπ(1), λπ(2)-a.e. tπ(2) ∈ Tπ(2), . . . , λπ(n)-a.e. tπ(n) ∈ Tπ(n). That is,
for each k = 1, . . . , n, the section Etk ⊆

∏
j 6=k Tj is iteratively null (or null

when n = 2) for λk-a.e. tk ∈ Tk.

The following two propositions concern product spaces that are com-
pleted to include all iteratively null sets. Proofs can be found in [11].

Proposition 2.3 Given any n ∈ N, let En denote the family of all itera-
tively null sets in

∏n
k=1 Tk. Then there exists an iteratively complete product

probability space (
∏n
k=1 Tk, ⊗̄

n
k=1Tk, ⊗̄nk=1λk) that satisfies the Fubini prop-

erty, in which:

1. ⊗̄nk=1Tk is the σ-algebra σ([⊗nk=1Tk]∪En), which is equal to the collec-
tion [⊗nk=1Tk]4 En := {B 4 E : B ∈ ⊗nk=1Tk, E ∈ En };

2. ⊗̄nk=1λk is the unique probability measure satisfying [⊗̄nk=1λk] (B4E) =
[⊗nk=1λk] (B) whenever B ∈ ⊗nk=1Tk and E ∈ En.

Proposition 2.4 There exists an iteratively complete infinite product prob-
ability space (

∏∞
k=1 Tk, ⊗̄

∞
k=1Tk, ⊗̄∞k=1λk) in which:
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1. ⊗̄∞k=1Tk is the σ-algebra generated by the union G := ∪∞n=1Gn of the
families Gn of cylinder sets taking the form A ×

∏∞
k=n+1 Tk for some

n ∈ N and A ∈ ⊗̄nk=1Tk;

2. ⊗̄∞k=1λk is the unique countably additive extension to this σ-algebra of
the set function µ : G → [0, 1] defined so that µ(A ×

∏∞
k=n+1 Tk) :=

⊗̄nk=1λk(A) for all A ∈ ⊗̄nk=1Tk.

When each probability space (Tk, Tk, λk) (k ∈ N) is a copy of (T, T , λ),
let (Tn, T̄ n, λ̄n) and (T∞, T̄ ∞, λ̄∞) respectively denote the iterative com-
pletions of the n-fold and infinite product probability spaces, with typical
members denoted by tn and t∞.

2.3 A Continuum of Random Variables

Let X be a Polish space (i.e., topologically homeomorphic to a complete
separable metric space) with Borel σ-algebra B. Recall that there must
exist a countable π-system Bπ = {Bm}∞m=1 ⊆ B (i.e., a family of sets that is
closed under finite intersections) that generates the σ-algebra B.

Let M(X,B) be the space of Borel probability measures on the Polish
space (X,B), equipped with the topology of weak convergence of measures.
This makesM(X,B) itself a Polish space — see, for example, [1, pp. 72–73].
It is noted in Lemma 1 of [9] that a mapping µ(·) from a probability space
to M(X,B) is measurable if and only if for each B ∈ B, the real-valued
mapping µ(·)(B) is measurable function on the probability space. These
two concepts of measurability are therefore interchangeable.

Let (T, T , λ) be a complete atomless probability space, which we call the
index space or space of economic agents. We assume throughout that the
economic uncertainty of interest can be modeled as a process g : T ×Ω→ X
with the property that, for each t ∈ T , the component mapping ω 7→ gt(ω)
is measurable, thus making every gt a random variable defined on (Ω,A, P )
with distribution Pg−1

t on (X,B) (where Pg−1
t (B) = P (g−1

t (B)) for each
B ∈ B). Let M(T ×X, T ⊗ B) be the space of probability measures on the
measurable space (T ×X, T ⊗ B).
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3 General Results

3.1 Monte Carlo Convergence

As discussed earlier, the process g is intended to model an economy with
many agents who face random shocks at both the macroeconomic and in-
dividual level. For this process it is natural to consider the convergence
properties of the random variables obtained by taking a random sequential
draw from the agent space T . Such a general procedure is called “Monte
Carlo convergence” in [9].

Given a typical sequential draw t∞ ∈ T∞, consider the finite sample
t1, t2, . . . , tn for each n. The relevant question then is whether, as n → ∞,
there is “Monte Carlo” convergence of the proportion of these n agents for
whom either g(t, ω) or the pair (t, g(t, ω)) belongs to a particular family of
sets. Depending on what family of sets we consider, Definition 3.1 below
provides several different versions of Monte Carlo convergence. The first
involves any set J in the product σ-algebra T ⊗ B on T ×X. The second
only considers product sets S × B with S ∈ T and B ∈ B. Both concern
the pair (t, g(t, ω)). Part (3) of Definition 3.1 is a very special case of parts
(1) and (2), whereas part (4) considers convergence in distribution of the
random outcomes g(t, ω) ∈ X.

Definition 3.1 (1) The process g is said to be Monte Carlo convergent if
there is a function γ : Ω → M(T × X, T ⊗ B) such that, for each fixed
set J ∈ T ⊗ B, the mapping ω 7→ γω(J) is A-measurable, and for λ̄∞-a.e.
sequence t∞ ∈ T∞, one has

1
n

n∑
i=1

1J(ti, g(ti, ω)) −−→
P−a.s.

γω(J).

In this case, we say that the mapping ω 7→ γω is the Monte Carlo limit
measure of g.5

(2) The process g is said to be Monte Carlo convergent on product sets
if there is a Monte Carlo limit function γ : T ×B×Ω→ [0, 1] such that, for
each S ∈ T and B ∈ B, and for λ̄∞-a.e. sequence t∞ ∈ T∞, one has

1
n

n∑
i=1

1S(ti)1B(g(ti, ω)) −−→
P−a.s.

γ(S,B, ω). (3)

5We weaken the corresponding definition in [9] by replacing λ∞ with λ̄∞.

5



Then the Monte Carlo σ-algebra Cg is defined as the smallest σ-algebra on
Ω w.r.t. which the family of Monte Carlo limit functions ω 7→ γ(S,B, ω)
(S ∈ T , B ∈ B) are all measurable.

(3) The process g is said to be restricted Monte Carlo convergent if
for each B ∈ B and for λ̄∞-a.e. sequence t∞ ∈ T∞, the sample average
1
n

∑n
i=1 1B(g(ti, ω)) converges P -a.s. as n→∞.

(4) For each x ∈ X, let δx denote the degenerate probability measure
attaching probability 1 to x. Then, given any single randomly drawn se-
quence t∞ ∈ T∞ and any ω ∈ Ω, for each n = 1, 2, . . . the measure defined
by νnt∞,ω := 1

n

∑n
i=1 δg(ti,ω) is the empirical distribution on (X,B) generated

by the n observations g(ti, ω) (i = 1, 2, . . . , n). The process g is said to be
restricted Monte Carlo convergent in distribution if there exists a random
variable ω 7→ τω taking values in the space of Borel probability measures
M(X,B) such that, for λ̄∞-a.e. sequence t∞ ∈ T∞, the empirical distribu-
tion νnt∞,ω converges weakly P -a.s. to τω.

The following proposition, showing that all four different versions of
Monte Carlo convergence are equivalent, will be proved in Subsection 5.4.

Proposition 3.2 The following conditions are equivalent to each other.

1. The process g is Monte Carlo convergent.

2. The process g is Monte Carlo convergent on product sets.

3. The process g is restricted Monte Carlo convergent.

4. The process g is restricted Monte Carlo convergent in distribution.

3.2 Stochastic Macro Structure

Definition 3.3 Let C be a countably generated sub-σ-algebra of A.
(1) Two random variables φ and ψ from (Ω,A, P ) to X are said to be

conditionally independent given C if, for any Borel sets B1, B2 ∈ B, the
conditional probabilities satisfy

P (φ−1(B1) ∩ ψ−1(B2)|C) = P (φ−1(B1)|C)P (ψ−1(B2)|C). (4)

(2) The process g is said to be essentially pairwise conditionally inde-
pendent given C if, for λ̄2-a.e. (t1, t2) ∈ T 2, the random variables gt1 and
gt2 are conditionally independent given C.
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(3) A T ⊗ C-measurable mapping µ from T × Ω to M(X,B) is said
to be an essentially regular conditional distribution process of g if, for λ-
a.e. t ∈ T , the C-measurable mapping ω 7→ µtω is a regular conditional
distribution P (g−1

t |C) of the random variable gt.
(4) The process g is said to have a stochastic macro structure given C

if g admits an essentially regular conditional distribution process given C,
and is essentially pairwise conditionally independent given C. The process
g is said to have a stochastic macro structure if there exists a countably
generated sub-σ-algebra C ⊆ A such that g has a stochastic macro structure
given C. When C is generated by a random variable α from (Ω,A, P ) to a
Polish space W , the elements of W are said to be macro states, and α is
said to be a macro state function for the process g.6 We say that α is a
non-redundant macro state function if σ(α) ⊆ σ(α′) for any macro state
function α′.

(5) The process g is said to have event-wise measurable conditional prob-
abilities if for each event A ∈ A with P (A) > 0, the function on T that maps
t to the conditional probability P (g−1

t (B)|A) is T -measurable for each B ∈ B.
This property is obviously equivalent to the requirement that for all A ∈ A
and B ∈ B the mapping t 7→ P (A ∩ g−1

t (B)) is T -measurable.

3.3 Main Theorem

The following theorem shows that a process is Monte Carlo convergent if
and only if it has a stochastic macro structure, which is also equivalent to it
having event-wise measurable conditional probabilities. More specifically, it
claims that Cg is countably generated, and essentially the smallest σ-algebra
such that, conditioned on the information represented by Cg, the randomness
faced by individual economic agents is (essentially) independent. In this
sense, the Monte Carlo σ-algebra Cg represents all the relevant aggregate
risk. The proof of the theorem will be given in Subsection 5.4, together with
that of Proposition 3.2.

Theorem 1 The following conditions are equivalent to each other.

1. The process g has a stochastic macro structure.

2. The process g is Monte Carlo convergent.

3. The process g has event-wise measurable conditional probabilities.
6It is well known that a countably generated σ-algebra is always generated by some

random variable; see, for example, Section 2.4 of [9].
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Moreover, let C ⊆ A be any countably generated σ-algebra on Ω. Then the
process g has a stochastic macro structure given C if and only if C contains
the Monte Carlo σ-algebra Cg. It follows that any macro state function which
generates Cg is non-redundant.

3.4 Joint measurability implies no idiosyncratic risk

The following proposition shows that if a standard joint measurability con-
dition is imposed on a process g with a stochastic macro structure, then
there is essentially no idiosyncratic risk at all. The proof will be presented
in Subsection 5.5 of the Appendix.

Proposition 3.4 If a process g has a stochastic macro structure and is
jointly measurable with respect to the usual product σ-algebra T ⊗ A, then
gt is Cg-measurable for λ-almost all t ∈ T .

The following remark illustrates a general way to construct processes
that combine nontrivial idiosyncratic with arbitrary macro risk.

Remark 3.5 Let f be any process from T × Ω to R such that the random
variables ft, t ∈ T are essentially pairwise independent.7 Let C be a count-
ably generated sub-σ-algebra of A. It is well known that it can be generated by
a real valued random variable θ on (Ω,A, P ); see [1], Ex. 20.1, p. 270. Let
g be the process from T ×Ω to R2 such that g(t, ω) = (θ(ω), f(t, ω)) for each
(t, ω) ∈ T × Ω. By Proposition 3 in [11], the random variables ft(·), t ∈ T
are also essentially pairwise conditionally independent given C; so too are
the random variables gt(·), t ∈ T , and their transformations ht(gt(·)), where
h : T × R2 → R is jointly measurable.

4 Special cases

The proofs of the results in this section will be presented in Subsection 5.6
of the Appendix.

4.1 Independent risks

We first consider the case when Cg is the trivial σ-algebra {∅,Ω}, implying
that there is no macro risk.

7By the classical Kolmogorov Extension Theorem, there exists a collection of indepen-
dent random variables with a general index set; see, for example, [1] and [6].
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The family of random variables gt (t ∈ T ) is said to be essentially pair-
wise independent if for λ̄2-a.e. (t1, t2) ∈ T 2 the two random variables gt1 and
gt2 are independent.8

In the essential i.i.d. setting, Proposition 1 in [9] relies on the special
assumption of pairwise measurable probabilities — i.e., for each A ∈ A and
B1, B2 ∈ B, the mapping (t1, t2) 7→ P (A∩ g−1

t1
(B1)∩ g−1

t2
(B2)) is measurable

w.r.t. the usual product σ-algebra T ⊗ T on the set of pairs T × T .9 The
following result generalizes that proposition to the general case of indepen-
dence without assuming pairwise measurable probabilities.

Proposition 4.1 Let µt be a measurable mapping from (T, T ) toM(X,B).
The following three conditions are equivalent:

1. the process g is essentially pairwise independent with µt = Pg−1
t for

λ-a.e. t ∈ T ;

2. for each S ∈ T and B ∈ B, and for λ̄∞-a.e. sequence t∞ ∈ T∞, one
has

1
n

n∑
i=1

1S(ti) 1B(g(ti, ω)) −−→
P−a.s.

∫
S
µt(B)dλ. (5)

That is, g is Monte Carlo convergent on measurable product sets S×B,
with Monte Carlo limit function γ(S,B, ω) =

∫
S µt(B)dλ;

3. the process g is Monte Carlo convergent with Monte Carlo limit mea-
sure γ on (T × X, T ⊗ B), defined by γ(J) :=

∫
T µt(Jt)dλ for each

J ∈ T ⊗ B, where Jt is t-section of J (i.e. Jt = {x ∈ X : (t, x) ∈ J}).

One can view the implication (1) =⇒ (2) in Proposition 4.1 as follows.
Take any S ∈ T and B ∈ B. Suppose the process g is essentially pairwise
independent, with µt = Pg−1

t for λ-a.e. t ∈ T . Then, for λ̄∞-a.e. t∞ ∈ T∞,
the sequence of random variables gti (i = 1, 2, . . .) is mutually independent.10

Thus, for λ∞-a.e. t∞ ∈ T∞, the sequence 1S(ti)[1B(gti) − µti(B)] (i =
1, 2, . . .) of uniformly bounded random variables is mutually independent

8A condition like this is called “almost sure pairwise independence” in [20].
9See [9, p. 750]. Note that “pairwise measurable probabilities” is a global condition that

was always assumed for the process g in [9], whereas the similar condition of “event-wise
measurable conditional probabilities” used here is only one of the equivalent conditions in
Theorem 1.

10See Proposition 3.4 of [21] and Corollary 1 of [11].
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with mean zero; a version of the law of large numbers (see [8], Theorem 8.2
on p. 52) therefore implies that the sequence

1
n

n∑
i=1

1S(ti)[1B(gti(ω))− µti(B)] −−→
P−a.s.

0

as n → ∞. On the other hand, the function 1B(t)µt(B) is T -measurable,
so the usual strong law of large numbers implies that for λ∞-a.e. t∞ ∈ T∞,
1
n

∑n
i=1 1S(ti)µti(B) converges to

∫
S µt(B)dλ. Hence, for λ̄∞-a.e. sequence

t∞ ∈ T∞,
1
n

n∑
i=1

1S(ti) 1B(g(ti, ω)) −−→
P−a.s.

∫
S
µt(B)dλ.

Thus, the implication (1) =⇒ (2) in Proposition 4.1 is simply an obvious
version of the “classical” law of large numbers restated in the continuum
setting. What is surprising is that essential pairwise independence is also
necessary for this convergence property to hold in this setting — i.e., (2)
=⇒ (1), as a converse of the classical law of large numbers.11

4.2 Exchangeable risks

The second special case arises when the random variables gt are symmetric
or exchangeable in the sense that P (A ∩ g−1

t (B)) is essentially constant
for each A ∈ A and B ∈ B. The following proposition demonstrates that
Theorem 1 in [9] is still valid for a general symmetric process g, even without
the assumption made there of pairwise measurable probabilities.

Proposition 4.2 Suppose ω 7→ µω is a measurable mapping from (Ω,A) to
M(X,B). Let C be the σ-algebra on Ω which is (countably) generated by this
mapping. Then the following conditions are equivalent:

1. for each A ∈ A and B ∈ B, one has P (A ∩ g−1
t (B)) =

∫
A µω(B) dP

for λ-a.e. t ∈ T ;

2. the process g is essentially i.i.d. conditioned on C, with P (g−1
t |C) = µω

for λ-a.e. t ∈ T ;
11In an extended framework where the process g is jointly measurable with respect to

a Fubini extension of the usual product measure-theoretic framework on T ×Ω, Theorem
7.6 of [20], Proposition 3.1 of [21], and Theorem 2.8 in [22] show that essential pairwise
independence is necessary as well as sufficient for an exact law of large numbers to hold.
Proposition 4.1 here is a counterpart of that result in the sequential or Monte Carlo setting
considered in this paper.
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3. for each S ∈ T , B ∈ B, and for λ̄∞-a.e. sequence t∞ ∈ T∞, one has

1
n

n∑
i=1

1S(ti) 1B(g(ti, ω)) −−→
P−a.s.

λ(S)µω(B);

4. the process g is Monte Carlo convergent, with Monte Carlo limit given
by the product probability measure λ× µω on (T ×X, T ⊗ B).

For the reader’s convenience we recall some basic definitions from [9].

Definition 4.3 (1) The process g is said to be essentially pairwise exchange-
able if there exists a common joint probability measure π on (X ×X,B⊗B)
such that almost all pairs of random variables in {gt : t ∈ T} have the same
joint distribution π — i.e., for λ̄2-a.e. (t1, t2) ∈ T 2, one has

P (g−1
t1

(B1) ∩ g−1
t2

(B2)) = π(B1 ×B2) = π(B2 ×B1)

for all B1, B2 ∈ B.12

(2) The process g is said to be essentially symmetric if, for each A ∈ A
and B ∈ B, the probability P (A∩g−1

t (B)) is essentially constant (or in other
words, λ-a.e. independent of t).

(3) Let C be a countably generated sub-σ-algebra of A, and let µ be a
C-measurable mapping from Ω to M(X,B). The process g is said to be
essentially i.i.d. conditioned on C if g is essentially conditionally independent
given C, and for λ-a.e. t ∈ T , the C-measurable mapping ω 7→ µω is a regular
conditional distribution P (g−1

t |C) of the random variable gt.

The next proposition generalizes Theorem 2 in [9] by dropping the special
assumption of pairwise measurable probabilities.

Proposition 4.4 The following conditions are equivalent:

1. the process g is essentially pairwise exchangeable;

2. the process g is essentially symmetric;

3. there exists a measurable mapping ω 7→ µω from (Ω,A) to M(X,B),
together with the corresponding countably generated σ-algebra C =
σ(µ), such that all four equivalent conditions of Proposition 4.2 are
satisfied;

4. there exists a countably generated σ-algebra C′ such that the process g
is essentially i.i.d. conditioned on C′.

12Since we do not assume pairwise measurable probabilities as in [9], we use the itera-
tively complete product measure λ̄2 instead of the usual λ2.
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5 Appendix: Proofs

The Appendix is organized as follows. Subsection 5.1 generalizes a result
of Talagrand in order to derive an appropriate measurability property from
Monte Carlo convergence. Then the properties of a measure-valued mapping
µtω from T × Ω to M(X,B) are systematically studied in Subsection 5.2.
The main purpose of that subsection is to obtain a countably generated
sub-σ-algebra of A that relates to some particular integrals based on µtω.
These will be used to identify the stochastic macro structure of g with the
Monte Carlo σ-algebra Cg. Preliminary properties of the process g are shown
in a series of lemmas in Subsection 5.3. The proofs of Proposition 3.2 and
Theorem 1 are presented in Subsection 5.4. The last two subsections present
respectively the proof of Proposition 3.4 and of the results in Section 4.

5.1 A Generalization of Talagrand’s result

The following lemma generalizes Lemma 2.1 in [13, p. 304] to the more gen-
eral setting of iteratively complete product spaces. We follow the notation
in Subsection 2.2.

Lemma 5.1 For each n ∈ N, let Sn be a subset of Tn with λn-outer measure
one. Then the ⊗̄∞k=1λk-outer measure of

∏∞
k=1 Sk is also one.

Proof: Let Sn denote the σ-algebra Sn∩Tn = {Sn∩A | A ∈ Tn}. Since the
outer measure λ∗n(Sn) = 1, one can define a countably additive probability
measure νn on (Sn,Sn) by letting νn(Sn ∩ A) := λn(A) for all A ∈ Tn. For
the sequence of probability spaces (Sn,Sn, νn), one can construct the usual
product probability spaces and then their iterative completions to obtain
(
∏n
k=1 Sk, ⊗̄

n
k=1Sk, ⊗̄nk=1νk) and (

∏∞
k=1 Sk, ⊗̄

∞
k=1Sk, ⊗̄∞k=1νk).

For any n ∈ N, it is clear that the identity

⊗̄nk=1νk

(
F ∩

n∏
k=1

Sk

)
= ⊗̄nk=1λk(F ) (6)

holds for any measurable rectangle F =
∏n
k=1Ak with Ak ∈ Tk for k =

1, 2, . . . , n. It is obvious that the family Fn of sets F ∈ ⊗̄nk=1Tk that sat-
isfy Equation (6) is a λ-class — i.e., it contains

∏n
k=1 Tk, as well as all

complements and all countable disjoint unions of its members. Since the
family of measurable rectangles is a π-system, the classical Dynkin π–λ the-
orem implies that ⊗nk=1Tk ⊆ Fn — see, for example, [1, p. 42]. Now take
any iteratively null set E ∈ En as in Proposition 2.3. It is clear that the
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subset E ∩
∏n
k=1 Sk is iteratively null w.r.t. the probability measures νk

(k = 1, . . . , n). Hence Fn = ⊗̄nk=1Tk.
Next, consider the infinite product version of Equation (6) — namely

⊗̄∞k=1νk

(
F ∩

∞∏
k=1

Sk

)
= ⊗̄∞k=1λk(F ). (7)

The previous paragraph shows that Equation (7) holds for every set F in
the union G = ∪∞n=1Gn of the families Gn of cylinder sets, as defined in
Proposition 2.4. By the same Dynkin π–λ argument as above, Equation (7)
holds for any set F ∈ σ(G) = ⊗̄∞k=1Tk. Hence, for any F ∈ ⊗̄∞k=1Tk with∏∞
k=1 Sk ⊆ F , Equation (7) implies that ⊗̄∞k=1λk(F ) = 1, which shows that

the ⊗̄∞k=1λk-outer measure of
∏∞
k=1 Sk is one.

The following lemma will be used to derive event-wise measurable con-
ditional probabilities from different versions of Monte Carlo convergence in
Subsection 5.4. It generalizes to iteratively complete products one part of
Theorem 2.4 in [13, p. 310], due to M. Talagrand. Exactly the same proof
works here provided that one replaces the use of Lemma 2.1 in [13] by Lemma
5.1 above.

Lemma 5.2 Let g be a real-valued function on T . Suppose there is a con-
stant c which, for λ̄∞-a.e. sequence t∞ = {tn}∞n=1 ∈ T∞, satisfies c =
limn→∞

1
n [g(t1) + · · ·+ g(tn)]. Then g is an integrable function on (T, T , λ).

5.2 Measure-valued mappings on a product space

The results in this subsection concern any T ⊗ A-measurable mapping
(t, ω) 7→ µtω from T × Ω to M(X,B). Let Bπ = {Bm}∞m=1 ⊆ B denote
a fixed countable π-system that generates the Borel σ-algebra B on X.

The following lemma shows that there is a countably generated sub-σ-
algebra C′ of A such that µtω is T ⊗ C′-measurable.

Lemma 5.3 There exists a countable π-system Cπ in A such that, given
the completed σ-algebra C′ generated by Cπ, for each set B ∈ B the mapping
(t, ω) 7→ µtω(B) is T ⊗ C′-measurable.

Proof: For each set Bm of the countable π-system Bπ, the mapping (t, ω) 7→
µtω(Bm) is T ⊗A-measurable. Because T ⊗A is generated by the family {S×
A | S ∈ T , A ∈ A} of measurable rectangles, it follows that each mapping
(t, ω) 7→ µtω(Bm) is measurable w.r.t. the σ-algebra generated by the family
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{ 1S×A | S ∈ T , A ∈ A} of indicator functions. By Theorem 5 in [3,
p. 17], each mapping (t, ω) 7→ µtω(Bm) must therefore be measurable w.r.t.
the σ-algebra generated by some countable subfamily {1Smk×Amk

}∞k=1 of
these indicator functions, and so by the corresponding countable subfamily
{Smk × Amk}∞k=1 of measurable rectangles. Thus, every mapping (t, ω) 7→
µtω(Bm) (m = 1, 2, . . .) must be measurable w.r.t. the common σ-algebra
generated by {Smk ×Amk}∞m,k=1.

Take as Cπ the countable π-system {An}∞n=1 constructed by taking all
possible finite intersections of the sets in {Amk}∞m,k=1. Let C′ be the com-
pleted σ-algebra generated by Cπ. For each Bm ∈ Bπ, the mapping (t, ω) 7→
µtω(Bm) is T ⊗ C′-measurable.

Define B′ as the family of Borel sets B ∈ B such that the mapping
(t, ω) 7→ µtω(B) is T ⊗C′-measurable. This family is a λ-class that contains
the π-system Bπ. By Dynkin’s π–λ theorem, the family B′ is the σ-algebra
generated by Bπ, which is precisely B.

The rest of this subsection obtains a countably generated sub-σ-algebra
Cµ of A which is generated by integrals of

∫
S µtωdλ for suitable measurable

sets S ∈ T . Such a construction will allow us to identify the stochastic
macro structure of g with the Monte Carlo σ-algebra Cg in Subsection 5.4.

Lemma 5.4 Let T ′ and A′ be sub-σ-algebras of T and of A respectively
such that, for each set B ∈ B, the mapping (t, ω) 7→ µtω(B) is T ′ ⊗ A′-
measurable. Suppose A′π is a π-system that generates A′. Let T ′′ be the
smallest σ-algebra on T such that, for every A′ ∈ A′π and B ∈ Bπ, the
mapping t 7→

∫
A′ µtω(B) dP is measurable. Then T ′′ is a sub-σ-algebra of

T ′, and for each set B ∈ B, the mapping (t, ω) 7→ µtω(B) is T ′′ ⊗ A′-
measurable.

Proof: First, fix any A′ ∈ A′π and B ∈ Bπ. Since the mapping (t, ω) 7→
µtω(B) is T ′⊗A′-measurable, the Fubini property implies that the mapping
t 7→

∫
A′ µtω(B)dP is T ′-measurable. Hence, T ′′ is a sub-σ-algebra of T ′.

Next, we observe that the collection of those A′ ∈ A′ such that the
mapping t 7→

∫
A′ µtω(B) dP is T ′′-measurable for every setB ∈ Bπ forms a λ-

class that contains the π-system A′π. So the collection is A′ itself. Therefore,
for every A′ ∈ A′ and B ∈ Bπ, the mapping t 7→

∫
A′ µtω(B) dP is T ′′-

measurable.
Now fix any B ∈ Bπ, and define h as the conditional expectation of

µtω(B) w.r.t. T ′′ ⊗ A′ — i.e., h(t, ω) := E(µtω(B)|T ′′ ⊗ A′). Fix any A′ ∈
A′. Then the mapping t 7→

∫
A′ µtω(B) dP is T ′′-measurable. Because h is
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T ′′ ⊗ A′-measurable, the Fubini theorem implies that
∫
A′ h(t, ω) dP is T ′′-

measurable. Next, let k(t, ω) := h(t, ω) − µtω(B). For any S′′ ∈ T ′′, the
definition of conditional expectation implies that∫

S′′

[∫
A′
k(t, ω)dP

]
dλ =

∫
S′′×A′

k(t, ω) dλ× P = 0. (8)

Since
∫
A′ k(t, ω) dP is T ′′-measurable, Equation (8) and the arbitrary choice

of S′′ ∈ T ′′ imply that
∫
A′ k(t, ω)dP = 0 for λ-a.e. t ∈ T . Therefore, for any

S′ ∈ T ′, we have∫
S′×A′

k(t, ω) dλ× P =
∫
S′

[∫
A′
k(t, ω)dP

]
dλ = 0. (9)

Since T ′′ ⊆ T ′, it is clear that h is T ′ ⊗ A′-measurable. So therefore is k.
Equation (9) and the arbitrary choices of S′ ∈ T ′, A′ ∈ A′ then imply that
k(t, ω) = 0 and so h(t, ω) = µtω(B) for λ× P -almost all (t, ω).

Now, the collection B′ of those B ∈ B for which the mapping t 7→ µtω(B)
is T ′′ ⊗ A′-measurable forms a λ-class that contains the π-system Bπ. By
Dynkin’s π–λ theorem, it follows that B′ = B.

By symmetry, we can obtain the following result as in Lemma 5.4.

Lemma 5.5 Let T ′ and A′ be sub-σ-algebras of T and A respectively such
that for each set B ∈ B, the mapping (t, ω) 7→ µtω(B) is T ′⊗A′-measurable.
Suppose T ′π is a π-system that generates T ′. Let A′′ be the smallest σ-
algebra on Ω such that the mapping ω 7→

∫
S′ µtω(B)dλ is measurable for

every S′ ∈ T ′π and B ∈ Bπ. Then A′′ is a sub-σ-algebra of A′, and for each
set B ∈ B the mapping (t, ω) 7→ µtω(B) is T ′ ⊗A′′-measurable.

Definition 5.6 Given the two π-systems Bπ = {Bm}∞m=1 ⊆ B and Cπ =
{An}∞n=1 ⊆ C′ as in Lemma 5.3, let Sµ := σ

(
{
∫
An
µtω(Bm)dP}∞m,n=1

)
be

the smallest σ-algebra on T such that each mapping t 7→
∫
An
µtω(Bm)dP

(m,n = 1, 2, . . .) is measurable.

Since Sµ is countably generated, there is a countable π-system Sµπ =
{Sn}∞n=1 ⊆ Sµ that generates Sµ.

Definition 5.7 Given the two π-systems {Sn}∞n=1 in T and Bπ = {Bm}∞m=1

in B, let Cµ := σ
(
{
∫
Sn
µtω(Bm)dλ}∞m,n=1

)
be the smallest σ-algebra on Ω

such that each mapping ω 7→
∫
Sn
µtω(Bm)dλ (m,n = 1, 2, . . .) is measurable.
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Lemma 5.8 Fix any B ∈ B.
(1) The mapping (t, ω) 7→ µtω(B) is Sµ ⊗ Cµ-measurable.
(2) The mapping ω 7→

∫
S µtω(B)dλ is Cµ-measurable for each S ∈ T .

Proof: (1) Because of Lemma 5.3, we can apply Lemma 5.4 with T ′ = T ,
A′ = C′ and A′π = Cπ; then T ′′ = Sµ. By the Fubini property and the
above definition, Sµ is a sub-σ-algebra of T . Also, for each set B ∈ B, the
mapping (t, ω) 7→ µtω(B) is Sµ ⊗ C′-measurable.

Next, apply Lemma 5.5 with T ′ = Sµ, T ′π = Sµπ and A′ = C′; then
A′′ = Cµ. The above paragraph and Lemma 5.5 imply that Cµ is a sub-
σ-algebra of C′, and for each set B ∈ B the mapping (t, ω) 7→ µtω(B) is
Sµ ⊗ Cµ-measurable.

(2) Because of (1), the mapping (t, ω) 7→ µtω(B) is T ⊗ Cµ-measurable.
So the Fubini property implies that ω 7→

∫
S µtω(B)dλ is Cµ-measurable for

any S ∈ T .

Lemma 5.9 (1) For P -almost every ω ∈ Ω, there is a well-defined proba-
bility measure γµω on (T ×X, T ⊗ B) given by γµω(J) :=

∫
T µtω(Jt)dλ for all

J ∈ T ⊗ B.
(2) For each J ∈ T ⊗ B, the mapping ω 7→ γµω(J) is Cµ-measurable.

Proof: (1) As discussed in Subsection 2.3, for each B ∈ B the mapping
(t, ω) 7→ µtω(B) is T ⊗ A-measurable. The generalized Fubini property in
the appendix to [10] implies that γµω is a well-defined probability measure.

(2) Let J denote the family of sets J ∈ T ⊗ B such that ω 7→ γµω(J) is
Cµ-measurable. By (2) in Lemma 5.8, one has S × B ∈ J for any S ∈ T
and B ∈ B. But J is obviously a λ-class which contains the π-system
{S × B : S ∈ T , B ∈ B}. By Dynkin’s π–λ theorem, J is the σ-algebra
generated by this π-system, which implies that J = T ⊗ B.

5.3 Preliminary properties of the process

The following lemma uses the assumption of event-wise measurable condi-
tional probabilities to derive a measure-valued mapping µtω from T × Ω to
M(X,B), to which the results of Subsection 5.2 can therefore be applied.

Lemma 5.10 Assume that for all A ∈ A and B ∈ B, the mapping t 7→
P (A∩g−1

t (B)) is T -measurable. Then there is a T ⊗A-measurable mapping
(t, ω) 7→ µtω from T × Ω to M(X,B) such that, for all A ∈ A and B ∈ B,

P (A ∩ g−1
t (B)) =

∫
A
µtω(B)dP for λ-almost all t ∈ T . (10)
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Moreover any other T ⊗A-measurable mapping µ′ : T ×Ω→M(X,B) with
the same property must satisfy µ′tω = µtω for (λ× P )-a.e. (t, ω) ∈ T × Ω.

Proof. By the Borel Isormorphism Theorem, because X is a Polish space,
there is a Borel bijection φ between X and a Borel subset φ(X) of R — see
[7, Section 13.1], for example. Consider the real-valued process f = φ ◦ g.
Then it is clear that for all A ∈ A and all Borel subsets B of R, the mapping
t 7→ P (A ∩ f−1

t (B)) is T -measurable.
Fix any Borel subset B of R. By the usual π–λ argument, the mapping

t 7→ P (Et ∩ f−1
t (B)), which is T -measurable whenever E is a measurable

rectangle S × A with S ∈ T and A ∈ A, is also T -measurable for every
E ∈ T ⊗ A. Evidently the mapping E 7→ νB(E) :=

∫
T P (Et ∩ f−1

t (B))dλ
is a countably additive measure on (T × Ω, T ⊗ A). Evidently νB(E) = 0
whenever (λ× P )(E) = 0 because then P (Et) = 0 for λ-a.e. t ∈ T . By the
Radon–Nikodym theorem, there is a T ⊗ A-measurable function hB from
T × Ω to R+ such that for any E ∈ T ⊗A,∫

E
hB(t, ω) d(λ× P ) =

∫
T
P (Et ∩ f−1

t (B)) dλ. (11)

We now follow the standard proof that a regular conditional distribu-
tion exists — see, for example, [3, p. 225] or [16, p. 107]. For any r in the
set Q of rational numbers, consider the Borel set (−∞, r] and the corre-
sponding T ⊗ A-measurable function h(−∞,r] that satisfies Equation (11).
For simplicity, let χr(t, ω) denote the function h(−∞,r](t, ω). After excluding
points in a countable collection of (λ × P )-null sets, there remains a set J
with (λ × P )(J) = 1 such that, for any (t, ω) ∈ J : (i) r1 < r2 implies
that χr1(t, ω) ≤ χr2(t, ω); (ii) limr→q χr(t, ω) = χq(t, ω) for any q ∈ Q; (iii)
limr→−∞ χr(t, ω) = 0; (iv) limr→+∞ χr(t, ω) = 1.

By the argument of [16, p. 107], for each (t, ω) ∈ J there is a probability
measure τtω on R such that τtω((−∞, r]) = χr(t, ω) for all r ∈ Q. Because
the function χr is T ⊗A-measurable, so is the mapping (t, ω) 7→ τtω((−∞, r]).
This implies that (t, ω) 7→ τtω(B) defines a T ⊗ A-measurable function for
each B ∈ B(R).

Given any E ∈ T ⊗A, Equation (11) implies that∫
E
τtω(B)d(λ× P ) =

∫
T
P (Et ∩ f−1

t (B))dλ (12)

holds when B is any of the sets (−∞, r] (r ∈ Q). By the π–λ Theorem, it
follows that Equation (12) also holds for any E ∈ T ⊗ A and any Borel set
B ⊆ R.
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Because φ(X) is a Borel set in R, the definition of f implies that∫
T
P (f−1

t (φ(X)))dλ =
∫
T
P (g−1

t (X))dλ = 1.

Then applying Equation (12) with E = T × Ω and B = φ(X) gives∫
T×Ω

τtω(φ(X))d(λ× P ) =
∫
T
P (f−1

t (φ(X)))dλ = 1,

which implies that τtω(φ(X)) = 1 for (λ × P )-almost all (t, ω) ∈ T × Ω.
Thus there is a T ⊗A-measurable mapping µ from T ×Ω toM(X,B) such
that, for all B ∈ B, one has µtω(B) = τtω(φ(B)) for (λ × P )-almost all
(t, ω) ∈ T × Ω. Hence∫

E
µtω(B)d(λ× P ) =

∫
T
P (Et ∩ g−1

t (B))dλ (13)

holds for any E ∈ T ⊗A and any Borel set B ⊆ R.
Fix A ∈ A and B ∈ B. Then for any S ∈ T , applying Equation (13)

with E = S ×A implies that∫
S

[∫
A
µtω(B)dP

]
dλ =

∫
S
P (A ∩ g−1

t (B))dλ. (14)

But any Radon–Nikodym derivative is essentially unique, so

P (A ∩ g−1
t (B)) =

∫
A
µtω(B)dP for λ-a.e. t ∈ T . (15)

Finally, suppose another T ⊗ A-measurable mapping µ′ : T × Ω →
M(X,B) also satisfies Equation (15). Then, for any S ∈ T , A ∈ A and
B ∈ B, one has∫

S
P (A ∩ g−1

t (B)) dλ =
∫
S×A

µtω(B) d(λ× P ) =
∫
S×A

µ′tω(B) d(λ× P ).

A familiar application of Dynkin’s π–λ Theorem implies that the equality∫
E µtω(B) d(λ × P ) =

∫
E µ
′
tω(B) d(λ × P ) must then hold for every E ∈

T ⊗ A. The desired result follows from the essential uniqueness of the
Radon–Nikodym derivative.

The following lemma, which gives a conditional independence structure
for the process g, is a special case of Lemma 2 in [11].
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Lemma 5.11 Let C ⊆ A be a countably generated σ-algebra on Ω. Suppose
that µ is a T ⊗ C-measurable mapping from (T × Ω, T ⊗ A) to M(X,B)
which, for each A ∈ A and B ∈ B, satisfies Equation (10). Then the process
g is essentially pairwise independent conditioned on C, with P (g−1

t |C) = µtω
for λ-a.e. t ∈ T .

The next lemma presents an elementary property of the iteratively com-
plete measure λ̄∞.

Lemma 5.12 Suppose that D ⊆ T × T is a T̄ 2 measurable set satisfying
λ̄2(D) = 1. Let D∗ consist of all sequences t∞ ∈ T∞ such that (ti, tj) ∈ D
whenever (i, j) ∈ N with i 6= j. Then D∗ ∈ T̄ ∞ and λ̄∞(D∗) = 1.

Proof: Let Gn denote the set of all pairs (i, j) with i, j ∈ {1, 2, . . . , n} satis-
fying i 6= j. For each n ∈ N and each pair (i, j) ∈ Gn, define Dn

ij ⊂ Tn as the
set of all tn = (ti)ni=1 such that (ti, tj) ∈ D. Note that λ̄n(Dn

ij) = λ̄2(D) = 1.
DefineDn := ∩(i,j)∈GnDn

ij , so Tn\Dn = ∪(i,j)∈Gn(Tn\Dn
ij), and then λ̄n(Tn\

Dn) ≤
∑

(i,j)∈Gn λ̄n(Tn \Dn
ij) = 0. It follows that λ̄n(Dn) = 1 = λ̄∞(Dn ×∏∞

k=n+1 Tk) for each n ∈ N. But D∗ = ∩n∈N[Dn×
∏∞
k=n+1 Tk], which implies

that D∗ ∈ T̄ ∞. Moreover T∞ \D∗ = ∪n∈N
[
(Tn \Dn)×

∏∞
k=n+1 Tk

]
and so

λ̄∞(T∞ \D∗) ≤
∑∞

n=1 λ̄
n(Tn \Dn) = 0. Hence λ̄∞(D∗) = 1.

The following lemma, which will be used to derive various versions of
Monte Carlo convergence, generalizes Lemma 10 in [9].

Lemma 5.13 Suppose that g is a regular conditionally independent process
given C, with P (g−1

t |C) = µtω for λ-a.e. t ∈ T . Let f : T ×X → R be any
T ⊗ B-measurable function with

∫
T

[∫
Ω f

2
t (gt(ω)) dP

]
dλ < ∞. Then, for

λ̄∞-a.e. sequence t∞ ∈ T∞, one has

1
n

n∑
i=1

f(ti, g(ti, ω)) −−→
P−a.s.

∫
T

[∫
X
f(t, x) dµtω

]
dλ =

∫
T×X

f(t, x) dγµω , (16)

which also implies that γµω is the Monte Carlo limit γω of g.

Proof: Given the specified function f , we follow the proof of Lemma 10 in
[9] and define, for each t ∈ T and ω ∈ Ω, the functions

ψt(ω) := ft(gt(ω)); ϕ(t, ω) :=
∫
X
ft(x)dµtω(x); ht(ω) := ψt(ω)− ϕt(ω).

By hypothesis, ψt is square-integrable (and so P -integrable) on (Ω,A, P ) for
λ-a.e. t ∈ T . Because P (g−1

t |C) = µtω, the proof of Lemma 10 in [9] shows
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that for λ-a.e. t ∈ T , one has E(ψt|C)ω =
∫
X ft(x)dµtω = ϕ(t, ω) for P -a.e.

ω ∈ Ω, and also that ϕ is square integrable w.r.t. λ× P .
Because g is assumed to be a regular conditionally independent pro-

cess, we know that P ((gt, gt′)−1|C)(ω) = µtω × µt′ω for λ̄2-a.e. (t, t′) ∈ T 2.
Applying Theorem 1 of [3, p. 223] to the random variable ψtψt′ , we obtain

E(ψtψt′ |C)ω =
∫
X×X

ft(x)ft′(y) d(µtω(x)× µt′ω(y))

=
∫
X
ft dµtω

∫
X
ft′ dµt′ω

for λ̄2-a.e. (t, t′) ∈ T 2, which implies that

E(htht′ |C) = E(ψtψt′ |C)− E(ψt|C)E(ψt′ |C) = 0.

So there exists a T̄ 2-measurable set D such that λ̄2(D) = 1 and E(htht′) = 0
for all (t, t′) ∈ D. Now define D∗ as the set of all sequences t∞ = (ti)∞i=1 ∈
T∞ such that (ti, tj) ∈ D for all i, j ∈ N with i 6= j. By Lemma 5.12,
λ̄∞(D∗) = 1. Hence, for all t∞ ∈ D∗, the random variables (hti)

∞
i=1 are

mutually orthogonal. Arguing as in the last two paragraphs of the proof of
Lemma 10 in [9, pp. 761–2] shows that, for λ̄∞-a.e. t∞ ∈ T∞, one has

1
n

n∑
i=1

hti(ω) −−→
P−a.s.

0 and
1
n

n∑
i=1

ϕti(ω) −−→
P−a.s.

∫
T
ϕω(t)dλ(t). (17)

But (17) obviously implies that for λ̄∞-a.e. t∞ ∈ T∞,

1
n

n∑
i=1

ψti(ω) =
1
n

n∑
i=1

hti(ω) +
1
n

n∑
i=1

ϕti(ω) −−→
P−a.s.

∫
T
ϕω(t)dλ(t). (18)

Because
∫
T ϕω(t)dλ(t) =

∫
T [
∫
X ft(x)dµtω(x)]dλ =

∫
T×X f(t, x) dγµω , the re-

sult follows from (18).

5.4 Proof of Proposition 3.2 and Theorem 1

We shall prove the equivalence of all the conditions in both Proposition 3.2
and Theorem 1 together. Let P(1), P(2), P(3) and P(4) indicate parts (1),
(2), (3) and (4) of Proposition 3.2, respectively. Similarly, let T(1), T(2)
and T(3) indicate the respective parts of Theorem 1. Note that P(1) and
T(2) are identical.

P(1) =⇒ P(2): This is trivial.
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P(2) =⇒ P(3): This is also trivial.
P(3) =⇒ T(3): For each B ∈ B, let ϕB be the random variable defined

so that for λ̄∞-a.e. t∞ ∈ T∞, one has

1
n

n∑
i=1

1B(g(ti, ω)) −−→
P−a.s.

ϕB(ω). (19)

Obviously ϕB must be essentially bounded in [0, 1] and so integrable. In-
tegrating (19) over any measurable set A ∈ A yields the result that, for
λ̄∞-a.e. t∞ ∈ T∞, one has

1
n

n∑
i=1

∫
A

1B(g(ti, ω)) dP =
1
n

n∑
i=1

P (A ∩ g−1
ti

(B))→
∫
A
ϕB dP. (20)

By Lemma 5.2, it follows that t 7→ P (A ∩ g−1
t (B)) is T -measurable.

T(3) =⇒ T(1): By Lemma 5.10, there is a T ⊗ A-measurable mapping
(t, ω) 7→ µtω from T × Ω to M(X,B) such that for all A ∈ A and B ∈ B,
one has P (A ∩ g−1

t (B)) =
∫
A µtω(B)dP for λ-a.e. t ∈ T . Next, part (1) of

Lemma 5.8 implies that for any B ∈ B, the mapping (t, ω) 7→ µtω(B) is
Sµ⊗Cµ-measurable, and thus T ⊗Cµ-measurable. Lemma 5.11 implies that
g admits an essentially regular conditional distribution process given the
countably generated σ-algebra Cµ, and is essentially pairwise conditionally
independent given Cµ.

T(1) =⇒ P(1): If T(1) holds, we can apply Lemma 5.13 to each indicator
function 1J with J ∈ T ⊗ B.

T(1) =⇒ P(4): We apply Theorem 6.6 in [19, p. 47]. Because X is a
Polish space, so homeomorphic to a complete separable metric space, this
theorem implies that there exist a topologically equivalent metric on X and
a sequence of bounded and uniformly continuous functions ϕm : X → R
(m = 1, 2, . . .) with the property that, for each t∞ ∈ T∞ and each ω ∈
Ω, the distribution νnt∞,ω converges weakly to τω if and only if the mean∫
X ϕm(x) dνnt∞,ω converges to

∫
X ϕm(x) dτω as n → ∞ for all m = 1, 2, . . .

simultaneously.
For any Borel set B in X, define τω(B) =

∫
T µtω(B) dλ. For each fixed

m = 1, 2, . . ., because ϕm is measurable and bounded, the definition of νnt∞,ω
and Lemma 5.13 together imply that for λ̄∞-a.e. sequence t∞ ∈ T∞,∫

X
ϕm(x) dνnt∞,ω =

1
n

n∑
i=1

ϕm(g(ti, ω))

−−→
P−a.s.

∫
T

∫
X
ϕm(x) dµtωdλ =

∫
X
ϕmdτω. (21)
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After excluding countably many λ̄∞-null sets, there exists a subset T∞1 of
T∞ with λ̄∞(T∞1 ) = 1 such that for each sequence t∞ ∈ T∞1 , Equation
(21) holds for all m simultaneously. Consider any fixed sequence t∞ ∈ T∞1 .
Again, after excluding countably many P -null sets, for P -almost all ω ∈ Ω
one has

∫
X ϕm(x) dνnt∞,ω →

∫
X ϕm(x) dτω for all m simultaneously. This

implies that for each sequence t∞ ∈ T∞1 , the sufficient condition for νnt∞,ω to
converge weakly to τω is satisfied for P -almost all ω ∈ Ω.

P(4) =⇒ T(3): Fix any A ∈ A with P (A) > 0 and any bounded con-
tinuous function ϕ on X. By P(4), for λ̄∞-a.e. sequence t∞ ∈ T∞ one
has ∫

X
ϕ(x) dνnt∞,ω =

1
n

n∑
i=1

ϕ(g(ti, ω)) −−→
P−a.s.

∫
X
ϕ(x) dτω.

This obviously implies that

1
n

n∑
i=1

∫
A
ϕ(g(ti, ω))dP →

∫
A

[∫
X
ϕ(x) dτω

]
dP (22)

and so, by Lemma 5.2, that t 7→
∫
A ϕ(gt(ω))dP is T -measurable. Let AA =

{C ∈ A : C ⊆ A}, let PA be the (conditional) probability measure defined
on (A,AA) by PA(E) := P (A ∩E)/P (A), and let gA denote the restriction
of g to T × A. Then

∫
A ϕ(gt(ω))dP =

∫
X ϕ(x) d

(
PA(gAt )−1

)
for each t, so

the mapping t 7→
∫
X ϕ(x)dPA(gAt )−1 is T -measurable. Note that a mapping

t 7→ ψt from T to M(X,B) is T -measurable w.r.t. the Borel σ-algebra on
M(X,B) generated by the topology of weak convergence of measures if and
only if

∫
X ϕdψt is T -measurable for every bounded continuous function ϕ

on X. This implies that t 7→ PA(gAt )−1 defines a T -measurable mapping
from T to M(X,B). By Lemma 1 in [9], therefore, given any fixed B ∈ B,
the mapping t 7→ P (A ∩ g−1

t (B)) = λ(A) · PA(gAt )−1(B) is T -measurable.

The above paragraphs have shown that P(1) =⇒ P(2), P(2) =⇒ P(3),
P(3) =⇒ T(3), T(3) =⇒ T(1), T(1) =⇒ P(1), T(1) =⇒ P(4), and finally
that P(4) =⇒ T(3). Given that P(1) and T(2) are identical, it follows that
all the conditions in both Proposition 3.2 and Theorem 1 are equivalent. To
finish the proof requires showing that when g satisfies one (and thus all) of
these conditions, then given any countably generated sub-σ-algebra C of A,
the process g also has a stochastic macro structure given C if and only if the
Monte Carlo σ-algebra satisfies Cg ⊆ C.

First, if g has a stochastic macro structure given C, then by Definition
3.3 there is an essentially regular conditional distribution process µ : T ×
Ω → M(X,B) that is T ⊗ C-measurable. Now apply Lemma 5.13 with
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f(t, x) = 1S(t)·1B(x) to show that the Monte Carlo limit function γ(S,B, ω)
in Definition 3.1 is given by

∫
S µtω(B)dλ, which must be C-measurable as a

function of ω. Since Cg is defined as the sub-σ-algebra of A generated by the
family of functions ω 7→ γ(S,B, ω) (S ∈ T , B ∈ B), we must have Cg ⊆ C.

Conversely, suppose that T(3) is true and that C contains Cg. Following
the proof that T(3) =⇒ T(1), there is a T ⊗A-measurable mapping (t, ω) 7→
µtω from T × Ω to M(X,B) such that, for all A ∈ A and B ∈ B, one has
P (A∩g−1

t (B)) =
∫
A µtω(B)dP for λ-a.e. t ∈ T ; moreover, that mapping must

be T ⊗ Cµ-measurable. Then Lemma 5.11 implies that g has a stochastic
macro structure given Cµ. Lemma 5.13 and the argument in the above
paragraph imply that γ(S,B, ω) =

∫
S µtω(B) dλ for S ∈ T and B ∈ B. It

follows from part (2) of Lemma 5.8 and from Definition 5.7 that Cµ ⊆ Cg,
so Cµ ⊆ C by hypothesis. Hence, µ is also T ⊗ C-measurable. Then Lemma
5.11 implies that g has a stochastic macro structure given C. Also, since
g has a stochastic macro structure given Cµ, the previous paragraph shows
that Cµ contains Cg, so Cµ = Cg. By Lemma 5.9, for each J ∈ T ⊗ B the
mapping ω 7→ γω(J) is Cg-measurable. Hence, Lemma 5.13 implies that Cg
is also the smallest sub-σ-algebra of A with respect to which the mapping
ω 7→ γω(J) is measurable for every J ∈ T ⊗ B.

5.5 Proof of Proposition 3.4

For each (t, ω) ∈ T × Ω, let µ′tω be the Dirac measure δg(t,ω) at g(t, ω).
Because of the hypothesis that g is T ⊗ A-measurable, so is µ′. For any
A ∈ A and B ∈ B, it is clear that µ′tω(B) = 1g−1

t (B)(ω), so

P (A ∩ g−1
t (B)) =

∫
A
µ′tω(B)dP for λ-almost all t ∈ T . (23)

By Theorem 1, the process g has event-wise measurable conditional
probabilities. Thus the uniqueness property in Lemma 5.10 implies that
µ′tω = µtω for (λ × P )-almost all (t, ω) ∈ T × Ω. Fix any B ∈ B. The last
part of the proof of Theorem 1 implies that µtω(B) (and so µ′tω(B)) is T ⊗Cg-
measurable as a function of (t, ω). So the set g−1(B) is T ⊗ Cg-measurable.
This is true for any B ∈ B, so g is T ⊗ Cg-measurable. The Fubini property
then implies that gt is Cg-measurable for λ-almost all t ∈ T .
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5.6 Proof of the results in Section 4

Proof of Proposition 4.1:
(1) =⇒ (3): The condition of Lemma 5.13 is obviously satisfied with C =

{Ω, ∅} and µtω = µt. So the Monte Carlo limit measure γ on (T ×X, T ⊗B)
is defined by γ(J) :=

∫
T µt(Jt) dλ for each J ∈ T ⊗ B.

(3) =⇒ (2): This is obvious.13

(2) =⇒ (1): By Proposition 3.2 and Theorem 1, the mapping t 7→ P (A∩
g−1
t (B)) is T -measurable. For each S ∈ T and B ∈ B, and for λ̄∞-a.e.

sequence t∞ ∈ T∞, one has

1
n

n∑
i=1

1S(ti) 1B(g(ti, ω)) −−→
P−a.s.

∫
S
µt(B)dλ.

Integrating (5) over any measurable set A ∈ A yields the result that, for
λ̄∞-a.e. t∞ ∈ T∞, one has

1
n

n∑
i=1

1S(ti)
∫
A

1B(g(ti, ω)) dP =
1
n

n∑
i=1

1S(ti)P (A ∩ g−1
ti

(B))

→ P (A)
∫
S
µt(B) dλ. (24)

By the classical law of large numbers, 1
n

∑n
i=1 1S(ti)P (A ∩ g−1

ti
(B)) →∫

S P (A ∩ g−1
t (B)) dλ for λ∞-a.e. t∞ ∈ T∞. For any S ∈ T , A ∈ A and

B ∈ B, therefore,∫
S
P (A ∩ g−1

t (B)) dλ = P (A)
∫
S
µt(B) dλ =

∫
S

∫
A
µt(B) dP dλ. (25)

By the essential uniqueness of the Radon–Nikodym derivative, Equation (25)
implies that P (A ∩ g−1

t (B)) =
∫
A µt(B) dP for λ-a.e. t ∈ T . So by Lemma

5.10, µtω = µt, which is T ⊗ {Ω, ∅}-measurable. Part (1) then follows from
Lemma 5.11.

Proof of Proposition 4.2:
(1) =⇒ (2): This follows from Lemma 5.11.
(2) =⇒ (4): This follows from Lemma 5.13.
(4) =⇒ (3): This follows directly from the definitions.
(3) =⇒ (1): For any S ∈ T , A ∈ A and B ∈ B, we repeat the pro-

cedure used to prove (2) =⇒ (1) in Proposition 4.1. The only difference
13Note that (1) =⇒ (2) was already shown after the statement of Proposition 4.1. Here

we prove (1) =⇒ (3) instead, while (3) =⇒ (2) is trivial.
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is that the limit in Equation (24) becomes λ(S)
∫
A µω(B) dP instead of

P (A)
∫
S µt(B) dλ. Thus, we obtain∫

S
P (A ∩ g−1

t (B)) dλ =
∫
S

∫
A
µω(B)dP dλ. (26)

Essential uniqueness of the Radon–Nikodym derivative then implies (1).

Proof of Proposition 4.4:
(1) =⇒ (2): This follows from Lemma 5 in [9]. Note that equations

(5) and (6) in the proof of Lemma 5 in [9] follow from essential pairwise
exchangeability (as defined in part (1) of Definition 4.3 of this paper) and
from the Fubini property for the measure λ̄2.

(2) =⇒ (3): This is a special case of Lemma 5.10, which is also shown
in Lemma 4 of [9] under the special assumption of pairwise measurable
probabilities.

(3) =⇒ (4): This follows trivially from Proposition 4.2.
(4) =⇒ (1): The proof of Lemma 7 in [9] can be repeated, but with λ×λ

replaced by λ̄2.
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[14] M. O. Jackson and I. Kremer, Envy-freeness and implementation in
large economies, Review of Economic Design, forthcoming.

[15] K. Judd, The law of large numbers with a continuum of IID random
variables. Journal of Economic Theory 35 (1985), 19–25.

[16] O. Kallenberg, Foundations of Modern Probability, (2nd. edn.),
Springer, New York, 2002.

[17] R. McLean and A. Postlewaite, Informational size and incentive com-
patibility, Econometrica 70 (2002), 2421–2453.

[18] T. Palfrey and S. Srivastava, Private information in large economies,
Journal of Economic Theory 39 (1986), 34–58.

[19] K. R. Parthasarathy, Probability Measures on Metric Spaces, New York,
Academic Press, 1967.

[20] Y. N. Sun, A theory of hyperfinite processes: The complete removal
of individual uncertainty via exact LLN, Journal of Mathematical Eco-
nomics 29 (1998), 419–503.

[21] Y. N. Sun, The almost equivalence of pairwise and mutual independence
and the duality with exchangeability, Probability Theory and Related
Fields 112 (1998), 425–456.

26



[22] Y. N. Sun, The exact law of large numbers via Fubini extension and
characterization of insurable risks, Journal of Economic Theory 126
(2006), 31–69.

[23] Y. N. Sun and N. C. Yannelis, Perfect competition in asymmetric infor-
mation economies: Compatibility of efficiency and incentives, Journal
of Economic Theory 134 (2007), 175–194.

27




