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History: Sunk Cost, or Widespread Externality?∗
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Department of Economics, University of Warwick
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Abstract

In an intertemporal Arrow–Debreu economy with a continuum of agents, suppose
that the auctioneer sets prices while the government institutes optimal lump-sum
transfers period by period. An earlier paper showed how subgame imperfections arise
because agents understand how their current decisions such as those determining
investment will influence future lump-sum transfers. This observation undermines
the second efficiency theorem of welfare economics and makes “history” a widespread
externality. A two-period model is used to investigate the constrained efficiency
properties of different kinds of equilibrium. Possibilities for remedial policy are also
discussed.
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The experience of the old Poor Law has made people very much afraid that
any expectation of assistance from public funds will tempt the poor into
idleness and thriftlessness. . . . In reality different types of transference act
in different ways . . . . The main lines of division are between transferences
which differentiate against idleness and thriftlessness, transferences which
are neutral, and transferences which differentiate in favour of idleness and
thriftlessness.

A.C. Pigou (1932, p. 720)

1 Introduction: Intertemporal Pareto Efficiency

1.1 The Efficiency Theorems of Intertemporal Welfare Economics

The two fundamental efficiency theorems of welfare economics form the basis of most
economists’ theoretical presumption that market forces should generally be encouraged
wherever possible. The first of these theorems says that perfectly competitive and com-
plete markets produce Pareto efficient allocations. This is true without any additional
assumptions, provided that one uses a weak definition of Pareto efficiency — namely,
that not all individuals in the economy can be made better off simultaneously by mov-
ing to some new feasible allocation. For the more usual definition of Pareto efficiency
— namely, that no set of individuals in the economy can be made better off without
making some others worse off — the theorem relies on the rather mild assumption that
all individuals have locally non-satiated preferences.

By itself, this first efficiency theorem is not at all satisfying from an ethical point
of view. It says only that “perfect” markets produce Pareto efficient outcomes, without
any mention at all of distributive justice. Indeed, dictatorships and extreme inequality
— even slavery (Bergstrom, 1971) or starvation (Coles and Hammond, 1991) — can all
be Pareto efficient.

For this reason the second efficiency theorem is ethically much more satisfying, since
it characterizes (virtually) all Pareto efficient allocations, both just and unjust. The only
exceptions, typically, are those which violate a boundary assumption and so may give
rise to Arrow’s (1951) famous “exceptional case.” One therefore expects that a truly
optimal allocation, fully reflecting ethical views regarding distributive justice, should
be among those allocations which are characterized by this second efficiency theorem.
Indeed, the theorem tells us that virtually every Pareto efficient allocation could result
from perfectly competitive and complete markets in general equilibrium, provided that
purchasing power is redistributed by means of suitable “lump-sum” or “distortion free”
taxes and transfers before markets are opened to trade. In addition, various well known
convexity and continuity assumptions do have to be satisfied.

These two efficiency theorems were stated and proved, with increasing degrees of
generality and mathematical rigour, by a series of writers — including Pareto (1906,
1909), Barone (1908), Lange (1942), Allais (1943), Lerner (1947), and Samuelson (1947)
— before Arrow (1951) gave the first complete and definitive treatment. Koopmans
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(1957) and Debreu (1959) also provide very elegant presentations of these two theorems.1

Earlier Debreu (1954) had extended them significantly to the case of a commodity space
which may not be finite dimensional.

Most of this work, however, considered only static or one period economies. Yet
Fisher (1907, 1930) and Hicks (1939) were able to describe intertemporal allocations
of resources by means of bundles of dated commodities. By using this framework, and
extending it to allow uncertainty through the apparatus of state contingent commodi-
ties, Allais (1947, 1953), Arrow (1953), Malinvaud (1953), and Debreu (1959) were able
simply to reinterpret the efficiency theorems in order to treat intertemporally Pareto
efficient allocations and the efficiency properties of those allocations which are achieved
by complete and perfectly competitive markets for dated (and state contingent) com-
modities.

1.2 Time Consistency and Subgame Perfection

As this work on static and then intertemporal efficiency theorems was being completed,
however, Strotz (1956) started to investigate serious dynamic inconsistency issues which
arise in intertemporal consumer theory. Strotz noticed how, after starting off down any
optimal path, the relevant continuation of that path might become suboptimal later
on, unless individual preferences met a specific consistency condition which he called
“harmonious preferences.” Later, this work was taken up most directly by Pollak (1968).

Strotz’s paper was concerned with particular single person decision problems. More
generally, in any n-person game, a solution or equilibrium path is said to be “time
consistent” or “dynamically consistent” if the continuation of that solution within any
subgame is actually a solution to the subgame. This property will be satisfied by any
Nash equilibrium, provided that the players in the game all have dynamically consistent
preferences.

Somewhat later, Schelling (1960), Farquharson (1969), Friedman (1971), Hammond
(1975), and especially Selten (1965, 1973, 1975) noticed how related but slightly different
problems could arise in game theory, even for Nash equilibrium in games whose players
all have dynamically consistent preferences. Indeed, even if one has a time consistent
Nash equilibrium, deviations from the equilibrium path could still benefit some players
if the reactions by the other players have to be best responses in any subgame which is
reached even off the equilibrium path. “Subgame perfect” equilibria are those in which
no such deviations are worthwhile. Time consistency, on the other hand, merely requires
the players’ equilibrium strategies to be best responses within those subgames which are
reached on the equilibrium path. This still allows Nash equilibrium strategies not to be
best responses to deviations from the equilibrium path.

Considerations of this kind led Phelps and Pollak (1968) and Phelps (1975), followed
eventually by Kydland and Prescott (1977), to begin considering subgame perfection
issues in connection with first macroeconomic and later microeconomic policy. Just a
few writings in a large and expanding field include Fischer (1980), Kotlikoff, Persson

1For an attempt to synthesize and extend these results, see Hammond (2007).
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and Svensson (1987), Staiger and Tabellini (1987), Chari (1988), Maskin and Newbery
(1990), Karp and Newbery (1993). In addition, Rogers (1986, 1987, 1991) and Judd
(1985, 1987) have some especially clear discussions of how, although ex ante it is optimal
to tax only wage income (in their models with inelastic labour supply), ex post it is
optimal to impose redistributive taxation on capital as well. More recently, Bliss (1991)
discusses how such concerns arise in practical policy issues connected with compensating
workers who have been adversely affected by the abolition of obstacles to free trade
within the European Community. Finally, Willmann (2004) shows how, in a two-period
general equilibrium model with heterogeneous agents, Pareto gains from trade may be
unachievable if the government uses lump-sum redistribution after trade liberalization
without being able to commit to a particular redistributive policy beforehand. The
reason is that agents anticipate the intervention and, by underinvesting strategically,
remove all the gains from trade.

As is clear even from the title of some of these papers, it has been all too common for
economists to write of the weak concept of “time consistency” when they really mean
the stronger concept which game theorists call “subgame perfection.” I shall use the
latter term throughout the rest of this paper.

Almost all existing work on this subgame perfection problem has typically considered
one or more forms of distortionary taxation or other departures from standard first best
optimal government policy. Tesfatsion (1986), however, was able to show how exactly
the same kind of subgame imperfection could also arise even in standard microeconomic
models of intertemporal general equilibrium with first best optimal lump-sum redistri-
bution. Unfortunately, however, her paper lacks a simple example, and this was partly
remedied in Hammond (1999). In fact, imperfections of this kind appear seriously to
undermine the relevance of the usual efficiency theorems (especially the second, which
is in any case really the only ethically interesting one) if the government is unable to
commit itself irrevocably to some “benevolent” policy of welfare maximizing income
redistribution.

1.3 Outline

This paper will therefore analyse some important features of the widespread externalities
that private decisions can create in a sequence economy. In order to do so, Section 2
presents the simplest possible general model of a sequence economy with a continuum of
agents and an arbitrary finite set of commodities. One reason to work with a continuum
of agents is that aggregate preference sets and demand correspondences acquire suitable
convexity properties. But more important is the fact that, as discussed in Hammond
(1999), no one agent in a continuum economy has the power to influence equilibrium
prices even in the future. Otherwise even the usual Walrasian model of perfect compe-
tition violates subgame perfection.

For simplicity, this paper considers an economy lasting only two periods. There
is also complete certainty, as well as perfect and complete information. Each agent is
assumed to have a feasible set of net trades which is separable into two history dependent
feasible sets, one for each period. And to have preferences which can be represented by
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the sum of two separate history dependent single period utility functions, each defined
on the relevant set of feasible net trades. Moreover, a Bergson social welfare function in
the form of an integral over all agents’ utilities is postulated.

Next, Section 3 briefly reviews work which shows how, under fairly standard assump-
tions, any intertemporal optimum can be decentralized through intertemporal competi-
tive markets for dated commodities. Equivalently, it can be decentralized through com-
petitive spot markets in each period together with a market for a single Arrow security in
the form of a riskless bond. It also considers corresponding properties for all allocations
satisfying the stronger “f -optimality” condition, requiring there to be no reallocation
among a finite set of agents which increases their total utility.

Within this model, Section 4 finally brings to the fore the subgame perfection is-
sues discussed by Tesfatsion (1986) and Hammond (1999). Of course, an intertemporal
optimum prescribes an allocation for both periods together. Moreover, the standard
decentralization through complete markets discussed in Section 2 involves lump-sum
transfers in the first period only. Nevertheless, subgame perfection implies that lump-
sum transfers transfers cannot be prevented from occurring in the second period as well,
if individuals choose to depart from the choice of history prescribed by the intertemporal
optimum. Indeed, a subgame perfect f -optimal policy in the second period will make
the current allocation to each agent depend on that agent’s personal history, as well
as on the entire distribution of all agents’ personal histories. Subgame perfect optimal
lump-sum transfers in the second period exhibit exactly the same dependence. Section
4 shows how to describe the relevant history in formal terms. It also shows how policy
feeds back from history created in the first period to optimal redistribution in the second
period. This is precisely what makes history become a widespread externality in the first
period.

Next, Section 5 introduces the notion of a history constraint. It also gives appropriate
“history constrained” versions of the usual concepts involved in stating the fundamen-
tal efficiency theorems of welfare economics. These include, of course, feasible allocation
rules, Pareto efficiency, systems of lump-sum transfers, and both Walrasian and compen-
sated equilibrium relative to such transfer systems. In fact history constrained Pareto
efficiency is very similar to the notion of externality constrained Pareto efficiency that
was investigated in Hammond (1995). Thereafter, the concluding part of Section 5
presents history constrained versions of the efficiency theorems that apply to the model
introduced in Section 2.

The notion of history that is used in Sections 4–5 is extremely broad, because it
changes if any non-null set of agents alter their choices of personal history. The corre-
sponding history constraints are therefore very severe. In fact, the choice of an appro-
priate history in these models is really a public good problem, which has to be made
centrally in virtually any realistic economic environment. So it might be highly desirable
to have more features of history determined through decentralized markets, if possible.
For this reason, Section 6 considers the implications of assuming that history can be de-
scribed adequately by a finite collection of real-valued sufficient statistics, each of which
is the population mean of a suitably defined personal historical variable. An obvious
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example is when the only historical variables that matter arise from individual agents’
decisions to accumulate a finite collection of different physical capital goods, and specif-
ically, it is only aggregate stocks per head which affect what level of social welfare is
possible in the second period. It is then shown that Pigovian taxes or subsidies on each
separate historical variable allow the constrained efficiency theorems of Section 5 to be
derived once more, subject to the obvious weaker history constraints.

Once the optimal choice of history is known, the form of remedial policy is easy to
determine, as explained in Section 7. The widespread externality comes about because
each agent’s transfer is a predictable function of the choice of personal history in the
first period, as well as of the distribution of personal histories. This is easily remedied by
requiring all agents in the first period to pay the respective present values of any extra
transfer which will be due to them individually in the second period because of their
choices of personal history in the first period. Obviously, this internalizes all external
effects. Putting such a scheme into effect, however, does require knowledge of what the
second period transfer system will be, and how to convert the transfers into present
values. Also, even in the special framework of Section 6, in general remedial policy
cannot be based on linear Pigouvian prices.

Section 8 contains a few brief concluding remarks.

2 A Sequence Economy with a Continuum of Agents

2.1 A Continuum of Agents

Let (A,B, α) be a measure space of economic agents, where A is a compact metric space,
B is the Borel σ-field, and α is a non-atomic Borel measure with α(A) = 1.

2.2 A Two-Period Commodity Space

The commodity space is assumed to be the finite-dimensional Euclidean product space
X × Y , where X := RG1 and Y := RG2 . Each member (x, y) ∈ X × Y represents a pair
of net trade vectors, with x as the net trade vector for period one, and y as the net trade
vector for period two.

2.3 Personal Histories and Individually Feasible Net Trades

It is assumed that there is a set H of possible personal histories at the end of period
one. For most of the paper H can be an entirely abstract metric space equipped with
its Borel σ-field; only in Section 8 will it need a vector space structure.

Each agent a ∈ A is assumed to have a set Fa of feasible net trades which can be
decomposed into the form

Fa = { (x, y) ∈ X × Y | ∃h ∈ H : (x, h) ∈ Xa, y ∈ Ya(h) }.

Thus, the set Xa represents the feasible choices of combinations (x, h) of a net trade
vector with a personal history in period one. Also, for each h ∈ H, the set Ya(h)
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represents the feasible choices of net trade vector in period two, conditional on the
choice of h as a personal history in period one. The implicit assumption is that personal
history is always richly enough described so that it completely determines what is feasible
for the agent in period two.

For the usual technical reasons, it will be assumed that the feasible set correspon-
dences defined by a 7→→Xa and by (a, h) 7→→Ya(h) both have measurable graphs.

Finally, to avoid some unimportant technical difficulties, I will assume free disposal
of traded goods at the individual level. Hence, in the first period, if (x, h) ∈ Xa and
x′ = x, then (x′, h) ∈ Xa. Similarly, in the second period, if y ∈ Ya(h) and y′ = y, then
y′ ∈ Ya(h).

2.4 Individually Feasible Allocations

An individually feasible allocation (x,h) in the first period economy will be a measurable
mapping a 7→ (xa, ha) with the property that (xa, ha) ∈ Xa (α-a.e. in A).

In the second period, even the definition of an individually feasible allocation will
depend on the distribution of personal histories at the end of the first period. Given the
space A×H equipped with its product topology, this distribution will be described by a
member ν of the space ∆α(A×H) of Borel measures over A×H satisfying the restriction
that ν(A′ × H) = α(A′) for all Borel sets A′ ⊂ A — in other words, the marginal
distribution on A induced by the joint distribution ν on A × H must equal α. Then,
an individually feasible allocation y in the second period economy will be a measurable
mapping (a, h) 7→ ya(h) with the property that ya(h) ∈ Ya(h) for ν-a.e. in A×H.

2.5 The Attainable Set

Free disposal at the aggregate level will not be assumed. It seems better to postulate
instead that disposal is only possible if some individual agent can undertake it. It is
also assumed that there is no production except by individual agents. Accordingly,
an attainable allocation in the first (resp. second) period economy will be one that is
individually feasible and also satisfies the first (resp. second) period aggregate feasibility
constraint

∫
A xadα = 0 (resp.

∫
A×H ya(h)dν = 0).

2.6 Additive Social Welfare

As has been usual in models with a continuum of agents, it is assumed that the Bergson
social welfare function at the start of the first period takes the integral form

Ω1(x,h,y) ≡
∫
A×H

Ua(xa, h, ya(h))dν

for some suitable family of continuous cardinal utility functions Ua defined on agents’
feasible sets Fa. In fact, for obvious technical reasons, it is also assumed that the mapping
(a, x, h, y) 7→ Ua(x, h, y) is jointly measurable in all four variables.
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In the sequence economy, subgame perfection forces us to consider optimal policies
in each possible second period subeconomy, starting with a given history described by a
distribution ν ∈ ∆α(A×H). It will be assumed that this history is sufficient to determine
the second period social welfare function, and that this takes the integral form

Ω2,ν(y) ≡
∫
A×H

va(ya(h);h)dν

for some suitable family of continuous cardinal utility functions va(·;h) defined on agents’
conditionally feasible sets Ya(h). The notation is deliberately chosen to suggest that
personal history h should be regarded as a parameter of the history-dependent utility
function for the second period, rather than as an argument of that utility function.

2.7 Additive Utility

In order that both these additive separability assumptions be satisfied simultaneously,
the most reasonable assumption is that in fact

Ω1(x,h,y) ≡
∫
A

[ua(xa, ha) + va(ya;ha)]dα

for a suitable family of continuous single period utility functions (ua, va)a∈A with the
indicated arguments. Note that ha is regarded as an argument of ua(xa, ha), because
this “myopic” utility function is intended to represent a’s preferences for combinations
of net trades and personal histories, while disregarding the effect of personal history on
future utility. The obvious implication of this assumption is that, for almost all agents
a ∈ A, the preferences of agent a can be represented by the additively separable utility
function Ua(x, h, y) ≡ ua(x, h)+va(y;h). In fact, I shall assume that this is true for every
agent a ∈ A, not just almost every agent. Moreover, for the usual technical reasons, it is
now assumed that the mappings (a, x, h) 7→ ua(x, h) and (a, h, y) 7→ va(y;h) are jointly
measurable with respect to their respective sets of three variables.

2.8 Sequential Monotonicity

Local non-satiation, or a stronger sufficient condition for local non-satiation such as
monotone preferences, plays a significant role in the usual fundamental efficiency the-
orems of welfare economics. The corresponding assumption here is sequential mono-
tonicity requiring that, for each agent a ∈ A, both single period utility functions are
monotone in that period’s net trade vector — i.e., for all h ∈ H, the function ua(x, h) is
monotone in x, whereas va(y;h) is monotone as a function of y. In symbols, this means
that in the first period, whenever (x, h) ∈ Xa with x′ = x, then ua(x′, h) ≥ ua(x, h)
with strict inequality if x′ � x. Similarly, in the second period, whenever y ∈ Ya(h) and
y′ = y, then va(y′;h) ≥ va(y;h) with strict inequality if y′ � y.
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2.9 Example

A simple example of such a two-period economy is the following, whose properties will
be discussed further in several of the later sections. Each agent a ∈ A = [0, 1] has
fixed endowments ea, fa ∈ RG

++ of all commodities in the set G within each of the two
periods. Obviously, it is assumed that the two functions e, f : A → RG

++ are both
integrable. Then the mean endowment vectors ē :=

∫
A ea dα and f̄ :=

∫
A fa dα for both

periods are well defined. For reasons to be explained in Section 3.1, it will be assumed
that ē� f̄ .

A personal history ha ∈ RG
+ will be a non-negative commodity vector representing

what agent a stores at the end of the first period. Its effect is that the agent begins period
two with the new endowment vector fa + ha ∈ RG

++. If agent a has the two-period net
trade vector (xa, ya) and the personal history ha, the resulting two-period consumption
stream is

(ca, da) := (xa + ea − ha, ya + fa + ha).

It is then assumed that individual feasibility requires (ca, da) = (0, 0) to be satisfied.
This implies that the individual feasible sets take the form:

Xa = { (xa, ha) ∈ RG × RG
+ | xa − ha = −ea }; Ya(ha) = { ya ∈ RG | ya = −fa − ha }.

Finally, it is assumed that each agent in each period has the same single-period
utility function u(c) of consumption c, where u is twice continuously differentiable with
gradient vector u′(c) � 0 and with its Hessian matrix u′′(c) negative definite for all
c = 0.

3 Intertemporal Optimality and Market Decentralization

3.1 Intertemporal Optimality

The usual concept of an intertemporal welfare optimum is evidently an attainable allo-
cation (x̂, ĥ, ŷ) of net trade vectors in each period, and of personal histories at the end
of the first period, which together maximize the welfare integral

∫
A×H Ua(xa, ha, ya)dα

subject to individual and aggregate feasibility constraints. Any such welfare optimum
is evidently intertemporally Pareto efficient in the sense that any alternative attainable
allocation (x,h,y) for which

Ua(xa, ha, ya) ≥ Ua(x̂a, ĥa, ŷa) (α-a.e. in A)

must in fact have

Ua(xa, ha, ya) = Ua(x̂a, ĥa, ŷa) (α-a.e. in A).

In fact, however, this paper will use a stronger concept of optimality, which pays
attention even to null sets of agents. An f -optimum2 is an intertemporal welfare opti-

2A term evoking the “f -core” of Kaneko and Wooders (1986, 1989) and of Hammond, Kaneko and
Wooders (1989) has deliberately been chosen, since the f -core is also sensitive to the fates of finite sets
of agents in a continuum economy.
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mum with the additional property that, for all finite sets of agents C ⊂ A, the allocation
(x̂a, ĥa, ŷa) (a ∈ C) to the members of C maximizes the utility sum

∑
a∈C Ua(xa, ha, ya)

subject to the individual feasibility constraints (xa, ha, ya) ∈ Fa (a ∈ C), as well as
the aggregate feasibility constraints

∑
a∈C xa =

∑
a∈C x̂a and

∑
a∈C ya =

∑
a∈C ŷa.

That is, the resources that are made available to any finite set of agents C must also be
distributed optimally among the members of C.

For the special example described in Section 2.9, the intertemporal f -welfare opti-
mum not only exists, but is also unique and easy to describe. It is simply the consump-
tion allocation satisfying ca = da = 1

2(ē + f̄) for all a ∈ A, and not just for almost all
a ∈ A. The reason for assuming that ē� f̄ was precisely to allow the f -optimum to be
characterized this simply. Because each agent in the first period consumes less than the
existing mean endowment of each commodity, there is no need to consider any possible
corner solution.

This example also illustrates how, when marginal utilities of income are well defined,
an f -optimum involves choosing income levels which equate those marginal utilities for
all individuals, not just almost all individuals. Usually there is no problem in doing this.

3.2 Compensated Equilibrium

In order to show that an f -optimum can be decentralized in the usual way as a Walrasian
equilibrium relative to a system of lump-sum transfers, the following constructions are
useful. First, define the new feasible set

F ∗a := projX×Y Fa := { (x, y) ∈ X × Y | ∃h ∈ H : (x, h, y) ∈ Fa }

of possible net trade vectors, and the new utility function

u∗a(x, y) := max
h∈H
{ua(x, h) + va(y;h) | (x, h, y) ∈ Fa }

on this domain. It is assumed, of course, that the relevant maximum is always achieved;
a sufficient condition for this is that the set

H(x, y) := projH Fa := {h ∈ H | (x, h, y) ∈ Fa }

of histories that are compatible with (x, y) is compact. By Berge’s maximum theorem,
the function u∗a(x, y) must be continuous. Denote the corresponding weak preference
relation on F ∗a by %a, and the corresponding strict preference relation by �a. Let

Ra(x, y) := { (x′, y′) ∈ F ∗a | (x′, y′) %a (x, y) }
Pa(x, y) := { (x′, y′) ∈ F ∗a | (x′, y′) �a (x, y) }

denote the corresponding upper contour and strict preference sets, respectively.
Now, arguing as in Hildenbrand (1974), given the optimal allocation (x̂, ŷ) of net

trade vectors, which must also be Pareto efficient, the set P :=
∫
A Pa(x̂a, ŷa)dα cannot

contain the origin of the product space X × Y . Moreover, because the measure α is
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non-atomic, the set P is convex. By local non-satiation, however, the origin must be
a boundary point of P . Hence there exists a hyperplane p x + q y = 0 through the
origin of X × Y which has the set P all on one side. That is, there exists a price vector
(p, q) 6= (0, 0) such that (x, y) ∈ P =⇒ p x + q y ≥ 0. Using local non-satiation
once again, it follows that for almost all a ∈ A one has (xa, ya) ∈ Pa(x̂a, ŷa) implies
p xa + q ya ≥ p x̂a + q ŷa. But then, because each agent’s utility function is continuous,
it also follows that for almost all a ∈ A one has

(xa, ya) ∈ Ra(x̂a, ŷa) =⇒ p xa + q ya ≥ p x̂a + q ŷa.

In this sense, the optimal allocation (x̂, ŷ) of net trade vectors is a compensated equilib-
rium at prices (p, q) relative to the wealth distribution given by wa(p, q) := p x̂a + q ŷa
for all a ∈ A. Moreover, it is a compensated equilibrium in which individuals are free to
choose their own personal histories.

3.3 Uncompensated Equilibrium

Under additional assumptions such as those discussed in Hammond (2004), one can show
that (x̂, ŷ) is an uncompensated or Walrasian equilibrium at prices (p, q) relative to the
wealth distribution wa(p, q), in the sense that, for almost all a ∈ A, one has

(xa, ya) ∈ Pa(x̂a, ŷa) =⇒ p xa + q ya > p x̂a + q ŷa =: wa(p, q).

Note in particular that, because of sequential monotonicity, a Walrasian equilibrium
price vector satisfies both p > 0 and q > 0.

3.4 Full Walrasian Equilibrium

One question that naturally arises is whether an f -optimum (x̂, ŷ) might also be a full
Walrasian equilibrium in the sense that, for all a ∈ A without exception, one has

(xa, ya) ∈ Pa(x̂a, ŷa) =⇒ p xa + q ya > p x̂a + q ŷa = wa(p, q).

In fact, it is rather evident that this need not be true in general economies without
smooth preferences, especially if there may be individual non-convexities. Nevertheless, if
there is some (null) set of agents C who are not in Walrasian equilibrium at the optimum
(x̂, ŷ), it is obviously possible to find a new allocation (x∗,y∗) which coincides with (x̂, ŷ)
for all a ∈ A \ C, and which is a Walrasian equilibrium for all agents because, even for
a ∈ C, it is true that (x∗a, y

∗
a) together maximize u∗a(xa, ya) subject to (xa, ya) ∈ F ∗a and

p xa + q ya ≤ p x̂a + q ŷa = wa(p, q). Since the allocation (x̂, ŷ) has been changed for
only a null set of agents, (x∗a, y

∗
a) is obviously feasible, so it is a Walrasian f -equilibrium

at prices (p, q) given the transfer system wa(p, q). Moreover, the welfare integral cannot
have been changed. Therefore, (x∗a, y

∗
a) is also a welfare optimum. Furthermore, since it

is a Walrasian f -equilibrium, a standard proof of the first efficiency theorem of welfare
economics shows that it must be an f -optimum.

Hence, when an optimal allocation is a Walrasian equilibrium, as discussed in Section
3.3, then there is no loss of generality in considering f -optimal allocations that are full
Walrasian equilibria relative to appropriate rules for lump-sum wealth redistribution.
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3.5 Sequential Decentralization with an Arrow Security Market

The fundamental idea of Arrow (1953, 1964) is easy to apply to this intertemporal
welfare optimum. Since there is no uncertainty, and only two periods, complete markets
for Arrow securities in fact require only a market for a single riskless Arrow security
that pays one unit of the numéraire for sure in period two. With such a security, the
Walrasian equilibrium (x̂, ŷ, p, q) relative to the wealth distribution wa(p, q) corresponds
to an equilibrium (x̂, ŷ, b̂, p, q, ρ) in spot markets each period, as well as in the market
for the single Arrow security whose price in the first period is ρ, which must be positive
because q 6= 0. Also, ba denotes agent a’s net purchase of this security. However, each
agent’s single budget constraint

p xa + q ya ≤ wa(p, q)

must be replaced by an equivalent pair of budget constraints, one for each separate
period, of the particular form

p xa + ρ ba ≤ wa(p, q); (q/ρ) ya ≤ ba.

Note that the equilibrium value of ρ is actually completely indeterminate; if ρ is multi-
plied by any positive scalar λ, there is still essentially the same Walrasian equilibrium
after each agent’s bondholding ba has been divided by λ. For this reason, it is harmless
to normalize and take ρ = 1.

3.6 Example

In the example that was discussed in Sections 2.9 and 3.1, the intertemporal f -welfare
optimum involves the consumption allocation with ca = da = 1

2(ē + f̄) for all a ∈ A.
Given any storage allocation described by an integrable mapping a 7→ ha ∈ RG

+ satisfying∫
A hadα = 1

2(ē− f̄), there is an associated net trade allocation given by

xa =
1
2

(ē+ f̄)− ea + ha and ya =
1
2

(ē+ f̄)− fa − ha for all a ∈ A.

In the special case when ha = 1
2(ē− f̄) for all a ∈ A, the net trade allocation simplifies

to xa = ē− ea and ya = f̄ − fa for all a ∈ A.
No matter what the storage allocation a 7→ ha ∈ RG

+ satisfying
∫
A hadα = 1

2(ē − f̄)
may be, the f -optimal allocation can be decentralized by the single budget constraint

p xa + p ya ≤ p (ē+ f̄ − ea − fa),

where p ∈ RG
++ is any vector proportional to the gradient vector u′(1

2(ē + f̄)). Alter-
natively, if a market for Arrow securities is introduced, the f -welfare optimum can be
decentralized by the pair of budget constraints

p xa + ba ≤ p (ē+ f̄ − ea − fa) and p ya ≤ ba.

11



4 Subgame Imperfection

4.1 Second Period f-Optimality

Suppose that the first period of the economy is already over and that the different agents’
allocations of (xa, ha) (all a ∈ A) have given rise to the joint distribution ν ∈ ∆α(A×H)
of agents’ labels and personal histories. Then there is a well-defined second period
objective given by the welfare integral

∫
A va(ya;ha)dα. This should be maximized subject

to the remaining individual feasibility constraints ya ∈ Ya(ha) (all a ∈ A) and the
aggregate feasibility constraint

∫
A yadα = 0.

In the particular case when the first period allocations are all equal to those for the
intertemporal welfare optimum (x̂, ĥ, ŷ), namely (x̂a, ĥa) (all a ∈ A), the resulting his-
tory ν̂ is optimal, and a welfare maximizing continuation is indeed to proceed with y, as
originally planned. There is no subgame imperfection here, of course. Moreover, exactly
the same policy appears at first to remain optimal even if a null set of agents deviate
from their optimal allocations, so that (xa, ha) = (x̂a, ĥa) only for almost all a ∈ A, and
not for all a ∈ A. After all, such a deviation makes no difference to the distribution ν̂,
nor to the maximized value

∫
A[ua(x̂a; ĥa) + va(ŷa; ĥa)]dα of the welfare integral that re-

sults from continuing with the second-period plan y. Indeed, since the overall allocation
is effectively the same even if a null set of agents have different allocations, one could
well argue that such deviations should be ignored. If they are, the intertemporal welfare
optimum (x̂, ĥ, ŷ) is subgame perfect, and there is nothing more to write about.

Neglecting null sets of agents in this way, however, poses fundamental difficulties. For
one thing, there can be no corresponding limit result for large finite economies; in any
finite economy, no matter how large, if any one agent were to have a different history at
the start of period two, the second period welfare optimal allocation to that agent would
be affected. Furthermore, if individual feasibility constraints are to be taken seriously,
what are we to do about the (null) set of agents for whom ŷa 6∈ Ya(ha) after a deviation
from ĥa to ha? Such agents, for instance, played an important role in creating a need
for additional incentive constraints in the two-period economy considered by Hammond
(1992). And the blocking powers of finite sets of agents in a continuum economy were
used to prove an f -core equivalence theorem in Hammond, Kaneko and Wooders (1989).

Accordingly, as with the f -optimum considered in Section 3.1, I am going to require
that the second-period allocation be an f -optimum in each subeconomy. That is, not
only should it maximize

∫
A va(ya;ha)dα subject to ya ∈ Ya(ha) (almost all a ∈ A) and∫

A yadα = 0. In addition, for any finite set of agents C ⊂ A, it should also maximize the
sum

∑
a∈C va(ya;ha) subject to ya ∈ Ya(ha) (all a ∈ C) for the given level of total net

demands
∑

a∈C ya made available to the members of C. It is important to notice that,
as with the intertemporal f -optimum considered in Section 3.1, such an optimum does
generally exist.
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4.2 Example

For the example discussed in Sections 2.9, 3.1 and 3.6, history is represented by the mean
consumption vector c̄ — or equivalently, by the mean storage vector h̄ = ē− c̄. So f̄ + h̄
is the mean endowment vector available for distribution in the second period. Given this
history, the obvious f -optimum in the second-period subeconomy satisfies da = h̄+ f̄ for
all a ∈ A. The associated net trade vectors then satisfy ya = da−ha−fa = h̄+f̄−ha−fa
for all a ∈ A.

Let q := u′(h̄+f̄) be the gradient vector of the common utility function at this second-
period optimal allocation. Then the appropriate second-period budget constraint for
each agent a ∈ A becomes q ya ≤ q (h̄+f̄−ha−fa), which is equivalent to q da ≤ q (h̄+f̄).
Thus, no agent gains anything extra to spend in the second period as a reward for
undertaking private storage in the first period.

4.3 Distortion

With this extra requirement on the second-period optimum, subgame perfection becomes
a serious issue once again, and in fact the intertemporal f -optimum is generally subgame
imperfect. Indeed, notice that each agent a’s second-period f -optimal allocation ya is
no longer a function only of the distribution ν ∈ ∆α(A×H), but also of the agent’s own
history ha. Let ηa(ν, ha) denote this function. It must solve the problem of maximizing∫
A va(ya;ha)dα subject to ya ∈ Ya(ha) (for all a ∈ A) and

∫
A yadα = 0. And, for any

finite set of agents C ⊂ A, it should also maximize the sum
∑

a∈C va(ya;ha) subject to
ya ∈ Ya(ha) (all a ∈ C) and

∑
a∈C ya =

∑
a∈C ηa(ν, ha).

In view of the second efficiency theorem, we assume that for each fixed ν ∈ ∆α(A×H),
a ∈ A and h ∈ H, the net trade vector y = ηa(ν, h) maximizes va(y;h) subject to
y ∈ Ya(h) and q(ν)y ≤ na(ν, h) := q(ν)ηa(ν, h).

As will now be shown, the fact that ηa(ν, ha) depends directly on ha induces inefficient
distortions in the first-period equilibrium allocation.

4.4 The First-Period Subeconomy

Given both the second-period allocation rule ηa(ν, h) and the specific statistical history
ν, define each agent a’s anticipated utility function in the first-period subeconomy by

U∗a (x, h; ν) := ua(x, h) + va(ηa(ν, h);h).

The dependence of anticipated utility on the distribution ν of all personal histories is
evidence of a widespread externality. It arises becaue each agent’s welfare can be directly
affected by the statistical distribution of personal histories among all agents.

There would be no problem here if in the first period some central planner could
simply choose (x,h) and the associated distribution ν in order to maximize the social
welfare integral

∫
A U

∗
a (xa, ha; ν)dα subject to (xa, ha) ∈ Xa (all a ∈ A) and

∫
A xadα =

0. The usual principle of optimality ensures that the first-period part (x̂, ĥ) of an
intertemporal welfare optimum will be chosen, which will then be extended to the entire
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path of such an optimum. The trouble comes from trying to decentralize this optimum
through competitive markets in the first-period economy.

Indeed, suppose that each agent is faced with the first of the two budget constraints in
the previous decentralization through spot markets with a market for an Arrow security.
That is, each agent a ∈ A faces the constraint p xa+ρ ba ≤ wa(p, q), where ρ > 0. Then,
by choosing ba = [wa(p, q)− p xa]/ρ, agent a can fund any desired xa; since monotonicty
of preferences in xa evidently implies global non-satiation, there cannot be any utility
maximum. A fortiori, there can be no equilibrium. The same argument works for any
other price vector, provided that there is a market for Arrow securities.

Closing down the market for Arrow securities by imposing the constraint ba ≥ 0
on each agent will generally overcome the non-existence problem. Yet it still does not
decentralize the intertemporal optimum, in general, or produce any very satisfactory
first period allocation. For suppose an attempt is made to decentralize the first-period
part (x̂, ĥ) of an intertemporal optimum by confronting each agent a ∈ A with the
budget constraint p xa ≤ p x̂a. Then a will maximize U∗a (xa, ha; ν) = ua(xa, ha) +
va(ηa(ν, ha);ha) subject to the individual feasibility constraint (xa, ha) ∈ Xa and this
budget constraint. Whereas agent a should be maximizing ua(xa, ha)+va(ŷa;ha) instead.
The dependence of the future net trade vector ya on ha through the policy feedback
function ηa(ν, ha) is liable to distort the agent’s choice of personal history ha.

4.5 Example, Continued

In the specific example discussed in Sections 2.9, 3.1, 3.6 and 4.2, each agent a ∈ A has
anticipated utility given by

U∗a (xa, ha; h̄) = u(xa + ea − ha) + u(h̄+ f̄).

This depends directly on h̄, but second-period utility u(h̄+ f̄) is independent of ha. This
implies that each agent a ∈ A will choose ha = 0 in any first-period equilibrium, unless
restrictions are imposed to prevent this. Instead of the intertemporal optimum with an
equal distribution ca = da = 1

2(ē + f̄) of the total endowment over both periods, the
best that is possible is the constrained optimal allocation with ca = ē � da = f̄ for all
a ∈ A.

This example illustrates how it is rather easy for the optimal feedback function
ηa(ν, ha) to make the second-period utility va(ηa(ν, ha);ha) of each agent a ∈ A entirely
independent of ha. Then each agent will make an entirely myopic choice of ha, so that
(xa, ha) together maximize ua(xa, ha) subject to p xa ≤ p x̂a and (xa, ha) ∈ Xa. In
this case nobody will give any thought to the future in choosing their personal history,
because all incentives to do so have been completely destroyed. Only first-period utility
remains under the agent’s personal control.
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5 Characterizing History Constrained Efficiency

5.1 History Constrained Allocations

Let ν̂ ∈ ∆α(A × H) denote any fixed “statistical history”. Given this ν̂, a history-
constrained allocation rule in the first period is a pair of measurable functions x : A→ X
and h : A → H satisfying the restrictions that (xa, ha) ∈ Xa (α-a.e. in A), while∫
A xadα = 0 and α({ a ∈ A | (a, ha) ∈ B }) = ν̂(B) for each Borel set B ⊂ A×H. That

is, ν̂ is the distribution on A × H that results when h is the function describing each
agent’s choice of personal history.

5.2 History Constrained Efficiency

Given any fixed ν̂, a history-constrained allocation (x̂, ĥ) in the first period is said
to be history-constrained Pareto efficient if, given any alternative (feasible) history-
constrained allocation (x,h), one has U∗a (xa, ha; ν̂) ≥ U∗a (x̂a, ĥa; ν̂) for all a ∈ A only if
U∗a (xa, ha; ν̂) = U∗a (x̂a, ĥa; ν̂) for α-a.e. a ∈ A.

The same allocation is said to be history-constrained f -Pareto efficient if in addition,
given any finite C ⊂ A and any alternative (feasible) allocation (x,h) with

∑
a∈C xa =∑

a∈C x̂a, one has U∗a (xa, ha; ν̂) ≥ U∗a (x̂a, ĥa; ν̂) for all a ∈ C only if U∗a (xa, ha; ν̂) =
U∗a (x̂a, ĥa; ν̂) for all a ∈ C.

5.3 History Constrained Equilibrium

A first-period transfer system is a function (a, p) 7→ ma(p) with the property that for
every fixed price vector p > 0 the mapping a 7→ ma(p) is integrable, and

∫
Ama(p)dα = 0.

Given ν̂, a history-constrained Walrasian equilibrium relative to a transfer system
ma(p) is a history-constrained first-period allocation (x̂, ĥ) and a price vector p > 0
such that:

(i) for all a ∈ A one has p x̂a ≤ ma(p);

(ii) for α-a.e. a ∈ A one has p x > ma(p) whenever (x, ha) ∈ Xa with U∗a (xa, ha; ν̂) >
U∗a (x̂a, ĥa; ν̂).

The same pair (x̂, p) is described as a full equilibrium if (ii) holds for all a ∈ A without
exception.

By contrast, a history-constrained compensated equilibrium relative to a transfer sys-
tem ma(p) is defined with weak inequalities in (ii) above. That is, it consists of a
history-constrained allocation (x̂, ĥ) and a price vector p > 0 such that (i) is satisfied,
and also:

(ii′) for α-a.e. a ∈ A one has p x ≥ ma(p) whenever (x, ha) ∈ Xa with U∗a (xa, ha; ν̂) ≥
U∗a (x̂a, ĥa; ν̂).
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5.4 Nash–Walrasian (full) equilibrium

A Nash–Walrasian equilibrium relative to a transfer system ma(p) is any first-period
allocation (x̂, ĥ) and a price vector p > 0 such that:

(i) for all a ∈ A one has p x̂a ≤ ma(p);

(ii) for α-a.e. a ∈ A one has p x > ma(p) whenever (x, ĥa) ∈ Xa with U∗a (xa, ha; ν̂) ≥
U∗a (x̂a, ĥa; ν̂), where ν̂ is the equilibrium measure on A×H induced by the mapping
a 7→ ĥa.

The same pair (x̂, p) is described as a full equilibrium if (ii) holds for all a ∈ A
without exception.

5.5 History Constrained Efficiency Theorems

Here are history constrained versions of the efficiency theorems that apply to the first-
period allocations in the model introduced in Section 2.

Theorem 1 (First Constrained Efficiency Theorem) Assuming preferences in the
first period are monotone, any history-constrained Walrasian equilibrium relative to a
transfer system must be history-constrained Pareto efficient. And any history-constrained
full Walrasian equilibrium must be history-constrained f -Pareto efficient. Moreover, any
Nash–Walrasian (full) equilibrium has the same (respective) properties.

Theorem 2 (Second Constrained Efficiency Theorem) Assuming preferences in
the first period are monotone, given any history-constrained Pareto efficient allocation,
there must exist a price vector at which the allocation forms a history-constrained com-
pensated equilibrium relative to a suitable transfer system.

Neither of the two main results requires a proof here. They are direct applications
of the usual efficiency theorems for a continuum economy — see Hildenbrand (1974)
or Hammond (2004) — to the history constrained first-period economy in which the
distribution ν̂ is fixed. Then the additional fact that a history-constrained full Walrasian
equilibrium must be history-constrained f -Pareto efficient is proved in the same way as
the usual first efficiency theorem for any finite set of agents. Finally, the definitions
immediately imply that any Nash–Walrasian (full) equilibrium is a history-constrained
(full) Walrasian equilibrium, given the statistical history described by the equilibrium
measure.

6 Historical Aggregates

6.1 Pigou–Walrasian Equilibrium

In this section, suppose that the set H of personal histories can be taken as a subset of
some finite-dimensional Euclidean space, and that the population mean h̄ :=

∫
A h dα is a

16



sufficient statistic for the distribution ν ∈ ∆α(A×H) in determining the second-period
f -optimum. Assume, moreover, that the feasible set Fa of each agent a ∈ A is a convex
subset of X ×H × Y .

Under these assumptions, given the mean ˆ̄h, let (x̂, ĥ) be a history-constrained Pareto
efficient allocation. For all a ∈ A, define the set

Pa := { (x, h) ∈ X ×H | U∗a (x, h; ν̂) > U∗a (x̂a, ĥa; ν̂) }

of first-period net trade vectors x and personal histories h that are jointly preferred to
(x̂a, ĥa). Define P :=

∫
A Padα − {(0,

ˆ̄h)}. Note that 0 6∈ P because (x̂, ĥ) is history-
constrained Pareto efficient. Moreover, P is a convex set because α is a non-atomic
measure. So there exists a first-period price vector (p, t) 6= (0, 0) and a corresponding
hyperplane p x + t z = 0 through the origin such that (x, z) ∈ P implies p x + t z ≥ 0.
Because of sequential local non-satiation, (x̂a, ĥa) is a boundary point of Pa for all
a ∈ A. Because

∫
A(x̂a, ĥa) dα = (0, ˆ̄h), it follows that (xa, ha) ∈ Pa implies p xa + t ha ≥

p x̂a + t ĥa (α-a.e. in A).
This proves that the decentralization p xa ≤ ma(p) := p x̂a derived in Sections 5.3

and 5.4 can now be replaced with p xa + t ha ≤ ma(p, t) := p x̂a + t ĥa for a suitable
vector t of net Pigou taxes. Thus, there is a decentralization by means of a Pigou–
Walrasian equilibrium (or compensated equilibrium) in the sense of Hammond (1995).
For a suitable value of t, it should even be possible to decentralize an intertemporal
f -optimal allocation.

6.2 Example

In the example that has been discussed in Sections 2.9, 3.1, 3.6, 4.2 and 4.5, the mean
storage vector h̄ ∈ RG is a historical aggregate. The budget constraint p xa + t ha ≤
ma(p, t) is equivalent to

p (ca − ea) + (p+ t)ha ≤ ma(p, t).

Equilibrium exists only if p+ t = 0, otherwise if pg + tg < 0 for any good g, agents could
profit indefinitely by offering to store arbitrarily large quantities of that good. But if
pg+ tg > 0 for any good g, then agents will obviously not want to store any of that good.
Hence, the obvious price vector to choose in order to subsidize storage is t = −p.

Recall that any intertemporal f -optimum takes the form ca = da = 1
2(ē + f̄) for all

a ∈ A, with a 7→ ha any integrable mapping from A to RG
+ that satisfies

∫
A hadα = ē− f̄ .

Such an allocation can obviously be decentralized by taking p = −t = u′(1
2(ē + f̄)) as

well as ma(p, t) = p (1
2(ē+ f̄)− ea) for all a ∈ A.

7 Remedial Policy

7.1 Nonlinear Pricing of History

Let (x̂, ĥ, ŷ) be any intertemporal f -welfare optimum, as considered in Section 3.1. As
explained in Sections 3.2–3.4, it can be decentralized α-a.e. in A by budget constraints
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of the form
p xa + q ya ≤ wa(p, q) := p x̂a + q ŷa

— at least as a full compensated equilibria, if not always as a full Walrasian equilibrium.
Let ν̂ ∈ ∆α(A×H) denote the history distribution that results when each agent a ∈ A
is assigned personal history ĥa.

So far, there is no inducement for agents to choose ha = ĥa α-a.e. in A, as required
by the history constraint. Remedying this serious defect requires modifying the kind of
first-period budget constraint p xa ≤ ma(p) := p x̂a described in Sections 5.3 and 5.4 so
that ma(p) also depends on the choice of personal history. In fact, given the f -optimal
allocation rule specified by a function ηa(ν, h) of a, ν, and the personal history h ∈ H,
the new budget constraint to be considered takes the form p xa ≤ ma(p, q, h) where

ma(p, q, h) := p x̂a + q ŷa − q ηa(ν̂, h) = wa(p, q)− q ηa(ν̂, h).

Note that this depends also on q, the second-period price vector. The effect of the change
is to make each agent a ∈ A pay a net tax q ηa(ν̂, h)− q ŷa for choosing personal history
h ∈ H. This net tax is the present discounted value of the increased net subsidy that
agent a will receive in period 2 as a result of choosing h instead of ĥa in period 1.

Formally, this modified first-period decentralization works because ηa(ν̂, ĥ) = ŷa and
so ma(p, q, ĥa) = p x̂a, while for any pair (xa, ha) ∈ Xa with U∗a (xa, ha; ν̂) ≥ U∗a (x̂a, ĥa; ν̂)
it must be true that p xa + q ŷa(ha) ≥ wa(p, q) = p x̂a + q ŷa and so p xa ≥ ma(p, q, ha).
Thus, if (x̂, ĥ, ŷ, p, q) is an intertemporal compensated equilibrium relative to the transfer
system specified by wa(p, q) (a ∈ A), then (x̂, ĥ, p) is a first-period compensated equilib-
rium relative to the transfer system specified by ma(p, q, h) (a ∈ A, h ∈ H). Similarly, if
(x̂, ĥ, ŷ, p, q) is an intertemporal Walrasian equilibrium relative to wa(p, q) (a ∈ A), then
(x̂, ĥ, p) is a first-period Walrasian equilibrium relative to ma(p, q, h) (a ∈ A, h ∈ H).

Informally, the decentralization works because it forces each agent to internalize en-
tirely the effect that the choice of personal history has on the widespread externality
caused by the transfer system. This is only possible, however, if each agent’s choice
of personal history h ∈ H can be observed in time to enforce the appropriate budget
constraint p xa ≤ ma(p, q, h); otherwise, the economy may be restricted to some second-
best allocation of the kind that arises when there are binding moral hazard constraints.
Indeed, if no observations are possible in time to enforce this first period budget con-
straint, then ma must remain independent of personal history. In this case there can be
no escape from the inferior allocation discussed at the end of Section 4.5, or even from
the kind of disastrous allocation that arose in Section 5.2 of Hammond (1999).

Note that even in the special framework of Section 6, there seems little use for linear
Pigouvian prices in decentralizing the optimum. Instead, the price system presented in
this section uses what are in effect non-linear prices for personal history.
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7.2 Example

In the example that has been discussed in Sections 2.9, 3.1, 3.6, 4.2, 4.5 and 6.2, the
appropriate transfer system is given by

ma(p, q, h) = p x̂a + q ŷa − q ηa(ν̂, h)
= p (ĉa − ea + ĥa) + q (d̂a − fa − ĥa)− q (d̂a − fa − h).

But ĉa = d̂a = 1
2(ē+ f̄) and p = q = u′(1

2(ē+ f̄)), so this reduces to

ma(p, q, h) = p (
1
2

(ē+ f̄)− ea + h).

8 Concluding Remarks

The introduction offered a reminder of how markets would be very unlikely to produce
optimal allocations in the real world economy, even if every agent, including those in
the governments of the world, were planning everything perfectly in advance. This
paper has largely been concerned with additional reasons for doubting the efficacy of
markets when it is recognized that prices and fiscal systems adjust period by period.
The subgame imperfections which can arise in intertemporal economies make the usual
textbook defence of perfectly competitive markets, based on the second fundamental
efficiency theorem of welfare economics, even more suspect than in static economies. In
fact these subgame imperfections make statistical history into a widespread externality,
characterized by constrained efficiency properties like those in Hammond (1999).

For simplicity this paper has concentrated on the two-period case with no uncertainty.
Extensions to allow more periods and uncertain states of the world are conceptually fairly
straightforward, even if the technical details and notation become significantly more of
a challenge for the reader.
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as Traité d’Economie Pure (Paris: Ateliers Industria; and Imprimerie Nationale).

M. Allais (1947) Economie et Intérêt (Paris: Imprimerie Nationale).
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