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Abstract

This paper aims to contribute to the study of auction design within the domain
of agent-based computational economics. In particular, we investigate the effi-
ciency of different auction mechanisms in a bounded-rationality setting where
heterogeneous artificial agents learn to compete for the supply of a homoge-
neous good. Two different auction mechanisms are compared: the uniform and
the discriminatory pricing rules. Demand is considered constant and inelastic
to price. Four learning algorithms representing different models of bounded ra-
tionality, are considered for modeling agents’ learning capabilities. Results are
analyzed according to two game-theoretic solution concepts, i.e., Nash equilib-
ria and Pareto optima, and three performance metrics. Different computational
experiments have been performed in different game settings, i.e., self-play and
mixed-play competition with two, three and four market participants. This
methodological approach permits to highlight properties which are invariant to
the different market settings considered. The main economic result is that, ir-
respective of the learning model considered, the discriminatory pricing rule is
a more efficient market mechanism than the uniform one in the two and three
players games, whereas identical outcomes are obtained in four players compe-
titions. Important insights are also given for the use of multi-agent learning as
a framework for market design.

Key words: multi-agent learning; auction markets; design economics;
agent-based computational economics

1. Introduction

Auctions are becoming a popular method for transacting business and the
range of items sold by auctions has greatly increased in recent years due to
e-commerce. In the last decade, auctions have also been considered to set up
new markets, e.g., utilities and pollution permits markets. Accordingly, several
theoretical studies about auction design have appeared in the economic litera-
ture during recent years, see Klemperer (2000); Milgrom (2004) for two recent
monographs. In particular, economists have focused the attention to the design
of efficient auction mechanisms for particular kinds of commodities, like electro-
magnetic spectrum (Cramton, 1998; Milgrom, 1998), carbon dioxide emission

Preprint submitted to Elsevier December 6, 2009

ha
ls

hs
-0

04
49

53
6,

 v
er

si
on

 1
 - 

22
 J

an
 2

01
0



rights (Cramton and Kerr, 2002), and electricity (von der Fehr and Harbord,
1993; Fabra, 2006).
This paper aims to contribute to the study of auction design from the perspec-
tive of Agent-based Computational Economics (ACE). In particular, we model
trading activity by means of heterogeneous artificial agents characterized by
different levels of learning capability and investigate the efficiency of two differ-
ent double-auction mechanisms. The study of how agents can learn to compete
or to coordinate in a market economy is a central issue in the ACE research
agenda (Tesfatsion and Judd, 2006). In particular, the market design domain
(Roth, 2002) is benefiting from ACE research (Marks, 2006). Indeed, the ACE
approach can provide important insights about how agent behaviors and market
settings influence one each other and determine the learning dynamics towards
equilibria.
Many studies about auction design have recently appeared in the ACE literature,
especially focusing on the design of electricity auction mechanisms (Nicolaisen
et al., 2001; Bunn and Oliveira, 2001; Guerci et al., 2007; Yu et al., 2007; Sun
and Tesfatsion, 2007; Guerci et al., in press). In particular, Nicolaisen et al.
(2001) study market power and efficiency in a computational wholesale electric-
ity market with discriminatory midpoint pricing, characterized by buyers and
sellers which decide their orders according to a modified version of a well-known
reinforcement learning algorithm (Erev and Roth, 1998). The authors show
that, irrespective of the learning model’s parameters, market efficiency depends
on the market microstructure. Yu et al. (2007) analyze the day-ahead electric-
ity market with locational marginal price; they compare a scenario where power
suppliers are endowed with the Q-learning algorithm (Watkins and Dayan, 1992)
with a scenario where suppliers have no learning capabilities and report their
true marginal costs; the authors show that Q-learning suppliers are capable to
make more profits in the long term. Guerci et al. (in press) analyze convergence
properties of two reinforcement learning algorithms, i.e., the adaptive evolution-
ary algorithm proposed by Marimon and McGrattan (1995) and the Q-learning,
in a duopoly and a tripoly economic scenario. The authors show that Q-learning
agents are able to converge in the equilibrium of the infinitely repeated game.
The present paper stems from this previous strand of research and proposes an
approach to auction design which aims to better encompass theoretical contribu-
tions and computational techniques originated within the theory of multi-agent
learning (MAL). In order to appropriately to simulate market environments
characterized by scarce information, we choose to endow agents with different
degree of imperfect information about opponents’ strategies. Both the Artificial
Intelligence (AI) and economics communities have spent a lot of efforts in defin-
ing the problem of learning in a multi-agent context also with respect to the
information available to the individual decision maker; accordingly, they have
proposed taxonomies for defining appropriate classes of learning algorithms (Ma-
rimon and McGrattan, 1995; Chang and Kaelbling, 2001; Shoham et al., 2007).
Coherently with the economic environment under study, we choose to employ a
number of algorithms which belong to two standard classes of learning models,
i.e., model-free and belief-based approaches. In particular, we use the Q-learning
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(QL) (Watkins and Dayan, 1992) and the GIGA-WoLF (GW) (Bowling, 2005)
developed within the AI domain, and the Marimon and McGrattan (MM) (Ma-
rimon and McGrattan, 1995) and the EWA-learning (EWA) (Camerer and Ho,
1999), which have been devised by economists. The above mentioned algo-
rithms differ for what concerns the use of the agent’s private information in
the decision making process. MM, QL and GW belong to the model-free class,
while EWA is an implicit belief-based model. Moreover, the fictitious play (FP)
(Brown, 1951) algorithm, which is a pure belief-based model, has been also con-
sidered as a common opponent in order to select appropriate parameters for the
previous four algorithms. Generally speaking, most of the theoretical and com-
putational studies evaluate these algorithms in two-actions two-players games.
In this respect, our contribution is the application and the evaluation of MAL
in auction games with an increased number of players, which are characterized
by a wider strategy space. Furthermore, we have devoted a great attention to
properly evaluate both the convergence properties of the learning dynamic and
the attainment of market efficiency. For this purpose, we draw the attention on
convergence towards game-theoretic solution concepts, such as one-stage Nash
equilibria and Pareto Optima, and performance metrics, such as profits and re-
grets. Indeed, we do not seek the best-performing algorithm, but, following the
normative viewpoint of the game-theoretical approach, we investigate how dif-
ferent models of bounded rationality affect the attainment of market equilibria.
This paper is organized as follows. Section 2 presents the economic environ-
ment under study. Section 3 introduces the issue of multi-agent learning and
describes main features of the learning algorithms employed. The methodologi-
cal approach to the design of computational experiments and the computational
setting are described in Section 4. Section 5 presents and discusses results. Our
concluding remarks are pointed out in Section 6.

2. Economic setting

Agents’ strategy space
This paper studies an economic scenario characterized by the competition for

the supply of a homogeneous good among a given number of producers. In the
following, we use the terms agent, player, seller and producer interchangeably.
We consider sellers deciding both price and quantity of their offer. Each ith

agent submits a sell limit order which is characterized by a limit price pi (ask
price) and a corresponding quantity qi. A finite two-dimensional strategy space
Ai := {(pi, qi)|1 ≤ qi ≤ Qi and 0 ≤ pi ≤ P ∗} has been considered for
each agent. P ∗ is an upper bound for the price grid and Qi is the maximum
productive capacity for each agent. In order to increase results’ intelligibility,
the demand Qd is assumed constant and inelastic to price.

Auction markets
Two different double-auction mechanisms have been considered: the uniform

or system marginal price auction (UA) and the discriminatory or pay-as-bid

3

ha
ls

hs
-0

04
49

53
6,

 v
er

si
on

 1
 - 

22
 J

an
 2

01
0



auction (DA). Their differ in the rule adopted to determine the clearing price
between asks and bids.
In an uniform auction, the auctioneer builds the supply and demand curves and
determines an unique market clearing price at curves’ intersection. The supply
curve is a discrete stepped curve defined by a price merit criterion, i.e.,

Q(p) =
∑

i|pi≤p

qi .

Demand is constant and inelastic to price and thus can be represented by a ver-
tical curve in the (q, p) plane. Ask orders are accepted if their prices are equal
or lower than the clearing price. Accepted offers need to be rationed if their ag-
gregate supply exceeds demand. Being focused on the decision-making process
of sellers facing an inelastic demand, quantity rationing is significant only to the
supply side of the market. In this respect, we adopt the standard approach of
rationing the quantity only for offers with a price equal to the market clearing
price. In particular, a quantity assignment problem arises when more than one
seller, let‘s say n sellers, offer at the clearing price and

∑n
i=1 qi > Q̂d, where Q̂d

is the residual demand given by Q̂d = Qd − ∑m
j=1 qj , being m the number of

offers price below the clearing price. The rationing rule consists in subdividing
the n sellers into two sets; A and B. The set A is composed by the nA agents
whose quantity offers qi exceed the value Q̂d/n, whereas the set B collects the
remaining sellers. This equal rationing rule applies only for sellers in set A.
The quantity traded by each seller in the set A, q̂i for i ∈ A, is then given by
q̂i = (Q̂d −∑

i∈B qi)/nA.

In the discriminatory auction, the matching procedure clears bids and asks
progressively starting from the matching between the highest ask-price and the
lowest bid-price. A transaction occurs at a price equal to the midpoint between
ask and bid prices and at a quantity equal to the minimum between ask and
bid quantities. The remaining ask or bid quantity is then matched with the
second highest bid price or lowest ask price, respectively. This procedure is
then iterated until there are ask prices equal or lower than bid prices; remaining
offers are discarded. In the present study, because of the assumption of inelastic
demand, i.e., undetermined bid-prices, the choice has been to set the transac-
tion price at the accepted ask price. An indeterminacy arises in the matching
procedure if two or more sellers offer at the same price and demand results lower
than aggregate supply at that price. This situation is solved according to the
equal rationing scheme adopted for the uniform auction mechanism.

Agents’ profits (rewards)
We consider an economic scenario where production takes place only after

sale, as in the electricity markets. Production costs thus depend only on the
quantities q̂i which have been effectively traded. Stated constant and identical
marginal costs cm for each ith producer, profits (rewards, R) are then given as
follows:

Ri =
(
pi − cm

)
q̂i (DA), (1)
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Ri =
(
P − cm

)
q̂i (UA), (2)

where, in the uniform auction case, P corresponds to the auction marginal price.

3. Multi Agent Learning theory

The first attempt to introduce and study learning in multi-agent systems
was performed by game-theorists and dates back to the pioneer work of Brown
(1951), which aimed to propose an algorithm for finding Nash equilibria. Since
then, for many years on, a normative paradigm inspired this strand of research,
where game-theorists were looking for bounded rationality models of players’
behavior able to justify equilibrium concepts or to refine them (Fudenberg and
Levine, 1999). In recent years, a descriptive approach has also been pursued
by economists, motivated and justified by the widely-recognized experimental
economics paradigm. They have been investigating behavioral justifications
for an equilibrium theory, by explicitly estimating parametric models of learn-
ing on experimental data (Erev and Roth, 1998; Camerer, 2003). Curiously
only in the last decade and quite independently, the topic of MAL has re-
ceived increasing attention also from the Artificial Intelligence (AI) community.
Specific application of robotic, distributed control problems and also entertain-
ment/edutainment software motivated computer scientists to increase their re-
search efforts in this direction. A computational and prescriptive goal is leading
them in an attempt to define algorithms for “optimally” solving specific multi-
agent systems tasks. In this respect, it is worth mentioning that, recently, a
special issue about “Foundations of multi-agent learning” (Vohra and Wellman,
2007) has been published by the journal Artificial Intelligence. The special issue
has been devoted to open a debate on the MAL agenda by bringing joint contri-
butions of both the “machine learners” and economists’ communities in order to
highlight different viewpoints and experiences in the field. The starting point of
the discussion is the paper by Shoham et al. (2007), where they attempt to pin-
point the goal of the research on MAL and the properties of the online learning
problem. Five major lines of research are defined which encompass historical
strand of research as well as new challenging ones. Normative, descriptive, com-
putational and prescriptive categories are highlighted. In particular, according
to the authoritative contributions by Fudenberg and Levine (2007) underlines,
the theory of mechanism design can well benefit from development of computa-
tional techniques.

These important theoretical and computational considerations to the study
of multi-agent systems can greatly inspire and justify the agent-based com-
putational economics paradigm. They may provide ACE researchers with well-
justified computational tools for investigating market economies. However, one
might argue that for studying market rules, the learning approach could result
an indirect method of computing equilibria and thus an inefficient solution. In
recent years, there has been remarkable progress on developing direct techniques
for equilibrium finding in normal form game (McKelvey et al., 2007; Sandholm
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and A. Gilpin, 2005). These direct algorithms are more efficient in finding Nash
equilibria and can certainly provide valuable tools for ACE researchers in market
design. In this respect, it is worth remarking that in this paper we adopt both
approaches. However, we believe that learning models are an approach which
cannot be disregarded for addressing correctly the market design issue. Fuden-
berg and Levine (2007) stated that there is some reason to think that learning
rules that are good rules from a prescriptive point of view may in fact be good
from a descriptive point of view. Their viewpoint supports our approach to
market design.

In this paper, we investigate different models of bounded rationality in the
same market context in order to highlight market outcomes or invariance prop-
erties with respect of the learning models considered. In particular, we study
five different types of learning agents and we test systematically them in two-
players tournament and self-play competitions. Self-play competitions regard
games where all players are endowed with the same learning algorithm. The
two-players tournament encompasses both two-players self-play games and two-
players mixed-play games, i.e., competitions occurring among different learning
algorithms. The standard assumption is that each agent has no prior knowledge
about the game structure or other player. Two classes of learning models have
been considered. The first class refers to the so-called model-free approaches
(Shoham et al., 2007) or reinforcement models of learning (Camerer and Ho,
1999), where agents learn a strategy that does well against the opponents with-
out learning the opponents’ strategies. The second complementary class regards
model-based learning algorithms or belief-based learning models where players
try to model opponents’ strategies in order to play a best-response to them.
The fictitious play algorithm, or even the Cournot best-response dynamics, can
be seen as the ancestors of such class.
The different learning models studied in this paper have been selected in order
to propose distinct models of learning representing both classes. This com-
putational study includes the Marimon and McGrattan adaptive evolutionary
algorithm (henceforth MM, see par. 3.4), the Q-learning algorithm (henceforth
QL, see par. 3.3) and the GIGA-WoLF algorithm (henceforth GW, see par.
3.2) which belong to the first class and the EWA learning algorithm (henceforth
EWA, see par. 3.1) and the classical fictitious play algorithm (henceforth FP,
see par. 3.5) which belong to the second class. In particular, the MM and QL al-
gorithms assume that individual agents are endowed with minimal information
about the evolution of the game, i.e., they record only their own past history
of plays and their associate instantaneous rewards. In this framework, agents
do not know opponents’ actions nor rewards, thus not having beliefs about al-
ternative private paths of play, they reinforce only the last selected action. The
MM and QL differ in the way the reinforcement process takes place. Indeed,
the QL algorithm has been developed within the AI literature, like the GW,
while the MM was conceived within the economics community. In particular,
QL presents a temporal-difference mechanism (Sutton and Barto, 1998) which
derives from considering the intertemporal discounted sum of expected rewards,
originally conceived to solve model-free dynamic programming problems. The
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GW learning model proposes a quite different learning approach, being based
on a gradient-ascent technique which considers as target function the expected
rewards. As far as concerns the second class, both EWA an fictitious play learn-
ing algorithm were developed by game-theorists. The FP is the oldest and is a
pure example of belief-based learning model. The EWA is endowed with two im-
portant features. It is able to make hypothetical reasoning about alternatives
plans of actions and rewards and is characterized by an implicit belief-based
component.
A common probabilistic choice model has been adopted for the EWA and QL.
The logit (exponential) quantal response function has been chosen in order to
map the attractions/Q-values to a probability distribution function over actions.
An important feature of the logit response function is that negative rewards can
be taken into account. In particular, in this computational setting, we have
assumed an increasing logit precision parameter λt = αtβ which increases with
the simulation time step t. α and β are two positive and constant parameters,
which have been appropriately tuned with respect to the different time-lengths
of the computational experiments. Thereby, as the learning phase proceeds,
the response functions become more responsive to propensities/attractions/Q-
values differences, so agents are more and more likely to select better than worse
choices. Accordingly, the very high value reached by the λ parameter at the final
simulations’ stages leads to a peaked probability distribution function on the
strategy with the highest attraction/Q-value/propensity, i.e., the best strategy.
This mechanism is intended to force the learning dynamics to converge to pure-
strategies Nash equilibria. A similar probabilistic choice model has been imple-
mented for the MM. New probabilities are determined exponentially weighting
old probabilities with respect to updated propensities. The GW algorithm is
the only algorithm which does not implement any probabilistic choice model
because it computes strategies directly.
In the following, we introduce all algorithms, ordered according to the amount
of information they deal with. However, we suggest to refer to the original pa-
per for a detailed explanation and, if available, theoretical proof of convergence
under restricted conditions such as self-play environment and characteristics of
the game, e.g., zero-sum games, team games.

3.1. EWA-Learning (EWA)
The Experience-Weighted Attraction learning algorithm (Camerer and Ho,

1999) is a learning model which encompasses both reinforcement and belief-
based learning models. Indeed, these are seen as two special cases of the more
general EWA formulation. The key element of the EWA algorithm are attrac-
tions Ai : Ai → R. Attractions are then monotonically related with the prob-
ability of choosing an action by considering an appropriate quantal response
function which maps attractions Ai to strategies Πi. The rule for updating
attractions is the following:

Ai
t(a

i
j) =

φNt−1A
i
t−1(a

i
j) + [δ + (1− δ)I(ai

j , a
i
t)]Ri(aj

i , a
j
−i)

Nt
, (3)
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where ai
t is the last played action, I(·, ·) is the indicator function and Nt stands

for number of “observations equivalents” of past experience which are updated
according to:

Nt = φ(1− κ)Nt−1 + 1, t ≤ 1, Nt ≤ 1
1− φ(1− κ)

. (4)

For a detailed explanation of the three parameters δ, φ, κ, we suggest to refer
to the original paper by Camerer and Ho (1999). However, we point out that
the δ parameter may be considered as a tradeoff between the two classes of
learning models considered. In particular, if δ = 0 and κ = 1, the learning
models coincides with a pure reinforcement learning model of learning, whereas
if δ = 1 and κ = 0, it coincides with a weighted fictitious play algorithm.
In this paper, we adopt the exponential (logit) rule for deriving probabilities
from attractions:

πi
t(a

i) =
eλtA

i
t(a

i)

∑
ai eλtAi

t(a
i))

. (5)

3.2. GIGA-WoLF (GW)
The GIGA-WoLF is an extension of the Infinitesimal Gradient Ascent learn-

ing algorithm (IGA) proposed by Singh et al. (2000). The idea of gradient-ascent
techniques is to update mixed strategy in the direction of the current gradient
of expected reward. The GW learning algorithm introduces two modifications
to the simpler IGA version. The former (GIGA) refers to the generalization of
the IGA algorithm which consists in considering two gradient-updated mixed
strategies, πi(t) and zi(t) according to different steps size. This improvement
allows to introduce a kind of “Win or Learn Fast” (WoLF) mechanism, that
is, it learns faster if and only if its strategy πi is losing to strategy zi. The
mathematical formulation follows:

π̂i
t+1 = P (πi

t + ηtrt) (6)

zi
t+1 = P (zi

t + ηt
rt

3
) (7)

δi
t+1 = min(1,

‖zi
t+1 − zi

t‖2
‖zi

t+1 − π̂i
t‖

) (8)

πi
t+1 = π̂i

t+1 + δi
t+1(z

i
t+1 − π̂i

t), (9)

where P (x) is an operator which projects the unconstrained vector x into the
simplex of legal probability distributions:

P (x) = arg min
x̂∈PD(Ai)

‖x− x̂‖. (10)

‖ · ‖ is the standard L2 norm.
In this paper, we have adopted a variable learning rate ηt = αt−β where α
and β have been considered as the two positive and constant parameters of the
learning model. Finally, One important and exclusive feature of this algorithm
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is that it is a zero-regret algorithm that provably achieves convergence to a Nash
equilibrium in self-play for games with two player and two actions per player.
Please refers to the original paper of Bowling (2005) for further details.

3.3. Q-learning (QL)
QL algorithm is a popular algorithm for the single-agent framework, as

Watkins and Dayan (1992) demonstrated the convergence to the optimal policy
in the context of MDP. Nevertheless, the single-agent QL algorithm has already
been adopted also for multi-agent learning problems (Littman, 2001; Hu and
Wellman, 1998; Yu et al., 2007).
The ith agent takes an action ai

t at time t and obtains a reward Ri
t(a

i
t, a

−i
t ),

depending also on the action played by the opponent a−i
t . Then, it performs an

update of the Q-function1 Qi
t(a

i) according to the following recursive formula:

Qi
t+1(a

i) =





(1− αt)Qi
t(a

i) + αt[Ri
t + γ maxa′ Q

i
t(a

′)]
if ai = ai

t,
Qi

t(a
i) otherwise;

where γ is the discount factor and αt = Ci
t−1(a

i)−δ is the variable learning
rate. Ci

t(ai) is a counter function, i.e. a vector counting the number of times
that an action ai ∈ Ai has been played at time t since the beginning of the
learning procedure. Then, the next action ai

t+1, is randomly drawn from the
probabilities determined by the exponential (logit) decision rule which states
that:

πi
t(a

i) =
eλtQ

i
t(a

i)

∑
ai eλtQi

t(a
i))

.

The convergence of Qi
t(a

i) to the optimal Qi,∗(ai) is guaranteed, only in the
single-agent context, if αt is appropriately decreased in time and each action is
played an infinity of times. The Q-function thus corresponds to the expected
total discounted reward for every action. Thus, the “optimal” policy is deter-
ministic and results: πi,∗ = arg maxai Qi,∗(ai). Thereby, Q-learning is capable
of converging only to a pure strategy.

3.4. Marimon and McGrattan (MM)
Marimon and McGrattan (1995) propose an adaptive evolutionary learning

algorithm where agents have minimal information about the evolution of the
game. The mathematical formulation of the algorithm is the following: each
seller i assigns a strength value Si

t(a
i) to every action ai and updates it only for

the played action ai
t according to the realized profits, Ri

t, i.e.,

Si
t+1(a

i) =





Si
t(a

i)− 1
Ci

t(a
i)
· [(Si

t(a
i)−Ri

t(a
i))]

if ai = ai
t,

Si
t(a

i) otherwise;

1According to the infinitely repeated game framework, we model the multi-agent system
with only one state thus determining a single state Q-function.
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where Ci
t(a

i) is the number of times that strategy ai was played within the
period of inertia (last revision of i ’s mixed strategy πi

t(a
i)) of the ith player,

whose updating value is:

Ci
t+1(a

i) =
{

Ci
t(a

i) + 1 if ai = ai
t,

Ci
t(a

i) otherwise.

The inertia at auction round t is determined according to the parameter ρ, which
establishes the probability of the ith player to update its strategy πi

t+1(a
i) at

auction round t + 1. The updating formula is:

π̄i
t+1(a

i) =





πi
t(a

i) · exp(Si
t+1(a

i))∑
ai πi

t(a
i) exp(Si

t+1(a
i))

with probability ρ,
πi

t(a
i) with probability 1− ρ.

A peculiar feature of this algorithm is to have always a positive probability for
every strategy. This mechanism is called experimentation and is described by:

πi
t+1(a

i) =

{
ε if π̄i

t+1(a
i) ≤ ε,

π̄i
t+1(a

i)∑
ai π̄i

t+1(a
i)

(1− ε̄) otherwise;

where ε̄ = ε · card[πi
t+1(a

i) ≤ ε], ε ∈ (0, 1). ε corresponds to the minimum
probability value that can be assigned to any pure strategy.

3.5. Fictitious Play (FP)
Fictitious play is one of the first learning algorithm ever studied by game

theorists. This non parametric learning rule is characterized by the fact that
each agent presumes that its opponents are playing stationary mixed strategies
and, recursively updating an estimate of their strategies’ profile, it plays a best-
response to them. The Cournot dynamics can be seen as a special case of
this algorithm, when the estimation of opponents’ strategies is done considering
only the last play, in such a way disregarding all past information. Each ith

agent iteratively updates a vector of beliefs (probabilities) Ci
t(a

−i) defined over
the opponents’ strategies space A−i by cumulating their history of plays. In
particular, every agent defines its beliefs normalizing the vector ci

t(a−i) counting
the number of times the opponents played any own action till that time.

ci
t(a

−i) =
{

ci
t−1(a

−i) + 1 if a−i = â−i
t ,

ci
t−1(a

−i) otherwise;

Ci
t(a

−i) =
ci
t(a−i)∑

a−i ci
t(a−i)

. (11)

Then, for next play, it chooses an action ai which is a best response to those
beliefs, i.e.,

πi
t+1 = BRi(Ci

t) = arg max
ai

E[Ri
t(a

i, Ci
t)].
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4. Computational Experiment Design

4.1. Methodological issues
Results provided in this paper are obtained by means of computational ex-

periments. A common criticism toward the computational approach with re-
spect to the analytical one is that it provides results with lack of generality.
Indeed, simulation experiments often are the only feasible approach to deal with
complex systems. Multi-agent systems are a typical example of complex sys-
tems where complexity is further increased by the adaptive behavior of learning
agents. Multi-agent learning is characterized by the features of non-stationarity
and heterogeneity, which make the study of convergence behavior very difficult
to tackle analytically and leave the computational approach as a promising al-
ternative.
This paper studies a multi-agent economic system by exploring how its proper-
ties vary with respect to different settings and agents’ behavioral models, with
the aim to increase the generality of our computational insights. This approach
requires to perform a high number of computational experiments. In particu-
lar, we want to study the outcomes of two common auction mechanisms, with
respect to different degrees of learning capabilities and information available to
agents. We consider a limited number of agents, i.e., two, three or four, on
the supply-side, each endowed with individual models of learning. We address
the heterogeneity of agents behavior by considering the interaction among four
different learning behaviors in a two-players tournament (2T) and three and
four self-play competitions (3S and 4S). This is a distinctive methodological
approach with respect to studies in the ACE literature, where only one algo-
rithm is employed, see e.g. Yu et al. (2007) and with respect to the AI domain
where different learning algorithms are tested with the major purpose of mea-
suring their relative performance, see e.g. (Lipson and Leyton-Brown, 2005).
Indeed, our methodology is to consider different learning behaviors, both in
the self-play and in the mixed-play settings, in order to verify the existence of
properties of the economic system under study which are invariant with respect
to the behavior of agents. It is worth noting that we consider an environment
where a fixed and limited number of heterogeneous agents play repeatedly each
other, instead of addressing a large-population model, such as the anonymous
random matching model (Fudenberg and Levine, 1999), which has been also
adopted in the learning in games literature. The rationale for this choice is
two-fold. First, our setting refers to relevant market scenarios (e.g. the elec-
tricity market) which adopt double-auction mechanisms and are characterized
by the repeated interactions of the same market actors. Second, our analysis
aims to consider a solution concept, that is the equilibrium in repeated games,
which is not applicable in some environments with a large population of agents
(Fudenberg and Levine, 2007).
The four learning algorithms considered in this paper are parameters dependent;
the appropriate selection of parameters is a critical point and may be related
to the particular setting where the learning algorithm is employed. Indeed, in
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our framework the algorithms face many different settings which vary with re-
spect to the game type, the kind of the algorithm used by the opponents and
the number of players. The heterogeneity of our market environment poses a
serious problem on the definition of a suitable parameters’ selection procedure.
Our approach has been to define a common environment for the selection proce-
dure and aims to provide a common past experience to all learning agents. The
selection procedure has been performed in two-player games with a common
learning algorithm as opponent, both in the UA and the DA auction settings.
The common opponent is the classical fictitious play algorithm, which has the
advantage of being parameter-free. Parameters have been selected among a grid
of possible values according to the criterium of the best convergence properties
towards Nash equilibria in pure strategies. Parameters values, determined in
the two-players competition with the FP, have been also employed in the 3S and
4S games. This choice is in accordance with the stated methodological approach
to endow each agent with a common experience to be exploited in different mar-
ket settings both with respect of the number of opponents and their learning
capabilities. This approach can shed lights on robustness of the learning model.

Computational setting
We performed different computational experiments consisting in a two-agents

tournament (2T) and self-play competitions with three (3S) and four (4S)
agents. Self-play competitions are characterized by agents endowed with the
same learning algorithm, whereas the tournament considers both mixed- and
self-play two-players games.
Each agent is characterized by a two-dimensional strategy space (see Section 2)
where the price grid upper bound P ∗ is set to 3 and maximum productive capac-
ity Qi is equal to 4. Both prices and quantities are measured in discrete units,
thus determining a strategy space composed by 16 pure strategies ai for each
seller. Demand is equal to Qd = 4 in all computational experiments. Marginal
costs are equal to cm = 1 for each producer. The units are arbitrary.
As far as concerns two-players games, the joint strategy space consists in a set
of 256 vectors of strategies. The joint strategy space results in a set of 4,096 and
65,536 vectors of strategies for the three- and four-players games, respectively.
Five different metrics have been employed to investigate the long-run behavior of
learning experiments. In particular, we have considered three performance mea-
sures, i.e., profits (rewards), average regrets and average incentives to deviate,
and two game-theoretic solution concepts, i.e., one-stage game Nash equilibria
in pure strategies and one-stage game Pareto optima. See Appendix A for de-
tails about each proposed metric.
Profits are worth to be considered being included in the objective function of
each learning algorithm; profits have also a high economic meaning with respect
to market efficiency considerations. Average regrets and average incentives to
deviate are taken into account because they give meaningful information about
algorithm behavior out of equilibrium.
Convergence behavior has been studied considering pure-strategies. Pareto op-
tima are considered for two reasons. First, it is an equilibrium solution concept
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Agents
in game Auction Nash Pareto Nash-Pareto

2
DA 14 (5.5) 13 (5.1) 9
UA 17 (6.6) 67 (26.2) 16

3
DA 90 (2.20) 63 (1.54) 0
UA 471 (11.50) 783 (19.12) 240

4
DA 2118 (3.23) 1152 (1.76) 0
UA 8077 (12.33) 5584 (8.52) 1472

Table 1: Occurrences and relative percentages (·) of one-stage game Nash equilibria in pure
strategies, one-stage game Pareto optima and joint Nash equilibria and Pareto optima.

Auction
EWA GW QL MM

φ δ κ α β δ γ ρ ε
DA 0.9 0.4 0.9 0.96 -3 0.6 0.98 0.07 0
UA 0.9 0.4 0.9 0.54 -3 0.65 0.95 0.13 0

Table 2: Parameters values for the four learning algorithms considered in each auction mech-
anism. Parameters have been assumed constant in the 2T, 3S and 4S computational experi-
ments.

in infinitely repeated games; second, Pareto-dominance among the set of Nash
equilibria is an important refinement (Gordon, 2007).
Table 1 shows the number of one-stage game Nash equilibria in pure strate-
gies and one-stage game Pareto optima for the two auctions considered and for
different numbers of game players. The Table shows that every game has mul-
tiple Nash equilibria in pure strategies. Furthermore, the Table highlights an
important difference between the two auction games. In the DA mechanism,
an increase of the number of players to 3 and 4 leads to the absence of joint
Nash equilibria and Pareto optima. Conversely, in the UA mechanism, joints
solutions still exist in the case of 3 and 4 players. Table 2 reports the param-
eters values for each algorithm considered. The listed parameters have been
selected according to the procedure described previously in this section. Values
have been assumed constant in the 2T, 3S and 4S computational experiments.
Initial probability distribution among actions has been assumed uniform for all
algorithms. In the EWA, QL, MM algorithms, this assumption has been re-
alized by setting the initial value of attractions/Q-values/propensities equal to
zero.

5. Computational Results

Computational experiments results are reported in Tables 3-7. Each Table
refers to a particular metric and reports results for both the UA and DA mech-
anisms; values within square brackets [·] refers to UA while normal brackets (·)
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regards DA. The first five columns of results regards 2T experiments. In partic-
ular, the first four columns report performance values of row algorithms against
column opponent; the fifth column reports the average of 2T performances com-
puted considering row values of previous four columns for both two-players self-
and mixed-play games. FP column presents results obtained in the parameters’
selection procedure, for which the convergence towards Nash equilibria was used
as optimality criterion. Furthermore, the last three columns show results for the
row algorithm in two-, three- and four-players self-play games. As far as con-
cerns Tables 3, 6 and 7, the reported metrics values are averaged over the two-,
three- and four-agents. Finally, results obtained by the FP algorithm are re-
ported at the bottom of each table for the sake of completeness.
For every experiments, performance values and game theoretic solutions’ fre-
quencies have been estimated in the final part of the simulation as ensemble
averages over sets of 100 independent simulation run. Values are reported with
two-digit precision because of standard errors below 0.01. Each set of 100 simu-
lation runs refers to a particular auction design. Simulation runs consist of 3,000
rounds for two-players simulations; the number of rounds is increased to 50,000
and 700,000 rounds for three-players and four-players games, respectively. The
rationale for this choice is to increase proportionally the number of rounds ac-
cording to the dimension of the joint strategies space.

Our major economic result is that the DA is generally a more efficient auc-
tion mechanism than the UA, irrespective of the learning paradigm considered.
This finding emerges from Table 3 which shows that profits over two- and three-
players games exhibit higher values for the UA mechanism. In this respect, it
is worth noting that the demand of the representative buyer is always satisfied.
This property is independent of the learning algorithm considered and thus on
the degree of information made available to players. The difference between the
two auction mechanisms diminishes with the increase of competitors’ number;
in particular the DA and UA present identical profits for all algorithms in the
four players’ case. This interesting economic finding can be better understood
according to the following equilibrium analysis, which considers game-theoretic
solution concepts such as one-stage Nash equilibria in pure strategies and one-
stage Pareto optima.
Computational results show that the best convergence properties towards Nash
equilibria are obtained by the EWA algorithm. This finding is clearly evident
in the DA case on both 2T averages and self-play games. Besides, very good
convergent properties are also present in the UA mechanism, where the Nash
frequency value of EWA is below the GW only in the 2T average. Generally
speaking, it is worth noting that the frequency of Nash equilibria is affected by
the increase of the number of players; in particular, 3S and 4S games are char-
acterized by more competitive market outcomes, with lower difference among
algorithms and higher frequency values for Nash equilibria.
Worst convergence properties towards Nash equilibria are exhibited in the DA
mechanism by the GW algorithm, except for the 3S and 4S cases. An analysis
of average incentives to deviate provides a way to interpret this outcome. In

14

ha
ls

hs
-0

04
49

53
6,

 v
er

si
on

 1
 - 

22
 J

an
 2

01
0



particular, a near zero incentive to deviate for the GW and a non-zero value
for its opponents indicate that the GW is able to play a best response to oppo-
nent strategy, but not viceversa. It is worth remembering that the EWA, QL,
and MM algorithms are characterized by a model of probability updating which
leads in the long-run to the selection of a stationary action corresponding to
the maximum expected payoff. Besides, an accurate analysis of computational
results shows that the GW adapts to the convergent behavior of its opponent by
estimating a final mixed strategy which establishes positive probabilities only
to all best-response actions with respect to the stationary opponent’s action.
Therefore, even if GW always plays a best-response, the final stationary strat-
egy of the opponent is the best-response only to one of pure-strategies selected
by the GW agent. This fact leads to the low frequency values in two-players
mixed-play games of Nash in pure-strategies. Similarly, relatively low frequency
values occur also in the GW two-players self-play games, but in this case, the
outcome is due to GW convergent behavior in self-play to select Nash equilib-
ria in mixed-strategies which are not taken into account in Table 1. However,
the GW is characterized by near-zero values of the incentive to deviate in all
market settings and results to be the best performing algorithm also with re-
spect to the average regret metrics. This latter feature is in accordance with
the theoretical proof of learning with zero regret for the GW in the two-players
self-play case, and extends its validity from a computational point of view for
both two-players mixed-play games, and three- and four-players self-play games.

As far as concerns the Pareto solution concept, an interesting issue regards
the ability of the learning algorithms to converge to refined Nash equilibria ac-
cording to Pareto dominance. Table 1 shows that all market settings, except for
the three- and four-players DA games, are characterized by a number of Nash
equilibria which are also Pareto optima. Generally speaking, a learning algo-
rithm with a 100 percent convergence to Nash equilibria is able to refine Nash
equilibria according to Pareto-dominance if it contemporary exhibits Pareto op-
tima frequency value close to one. Indeed, Table 5 reports frequency values
significatively lower than one in different market settings. As far as concerns
the two-players DA game, low frequency values of Pareto optima are generally
observed in spite of a frequency of Nash equilibria close to one. According to
Table 1, which reports 9 joint Nash and Pareto solutions out of a total of 14
Nash equilibria, a random selection of Pareto optima among Nash equilibria
would give a frequency around 60 percent for Pareto optima. EWA, QL and
MM exhibit values not far from this percentage value, while GW shows far lower
values, highlighting an unexpected tendency to select Nash equilibria which are
not Pareto. Conversely, in the two-players UA game, the algorithms’ refinement
capabilities can not be settled, because in this case almost all Nash equilibria
are also Pareto optima, as reported in Table 1.
A striking no-refinement outcome results considering the three- and four-players
self-play UA games, where a common behavior can be observed among all al-
gorithms, i.e., the selection of Nash which are not Pareto. In particular, GW
algorithm shows a pronounced tendency of no-refinement ability. However, it is
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worth noting the outcome of the EWA learning algorithm in the three-players
UA self-play game; in that case, Table 5 presents a frequency value of Pareto
optima higher than the random selection value around 50%, see Table 1, and,
accordingly, Table 3 reports profits far higher than other algorithms. Partial
refinement ability can thus be attributed to the EWA learning algorithm only
in the three players case.
These findings point out an important consideration: irrespective of the model-
free or belief-based learning models considered, similar coordination failures
arise. The learning agents are unable to coordinate in the log-run their strategies
in order to achieve a strictly Pareto-dominant equilibria. The rationale for this
finding might be related to the specific parameters’ selection procedure adopted.
However, even the FP algorithm, which does not require any parameters’ se-
lection procedure, shows identical convergent results. This result highlights a
relevant invariant properties of the two classes of bounded-rationality models
adopted, see 3. The higher degree of information available to players which
characterize the belief-based algorithms seems unable to make Pareto-dominant
outcomes feasible.

According to Table 1, no joint Nash equilibria and Pareto optima exist in the
3S and 4S DA games. Thereby, the refinement according to Pareto-dominance
is not feasible in these market settings. However, it may be interesting to look
for solutions which are are equilibria in the repeated game framework. In this
respect, one-stage Pareto optima can be considered. Indeed, Table 5 shows that
no algorithm is capable to learn this “tacit collusive” outcome. In particular,
even the QL algorithm, which might have been the best candidate due to its
intertemporal optimization behavior in the single-agent framework, is unable
to learn tacit collusion. Therefore, competition does prevail for all algorithms
in all market settings, also with a discount factor (γ) equal to 0.98 for the QL
algorithm.

A final remark concerns the robustness of the learning models with respect
to different game settings. Parameters have been determined in a two-players
game with respect to a common opponent, for every algorithm and separately
for each auction mechanism. However, a number of invariant properties char-
acterizing each algorithm can be observed. In particular, the EWA algorithm
exhibits the best convergent properties irrespective to the number of players
and the auction mechanisms considered; indeed, it is the only algorithm charac-
terized by the same set of parameters selected for both auction mechanisms, see
Table 2. This property holds in particular in self-play games and also in mixed-
play games, where performances, even if lower than the self-play setting, are
greater than the ones reported by other algorithms in the same setting. Indeed,
a common finding is that the heterogeneity of learning models in mixed-play
competitions affects significatively coordination for convergence to an equilib-
rium. As far as concerns GW algorithm, a robust and invariant property is the
general very good performance of both average regret and incentives to deviate,
see Tables 6 and 7. An interesting remark is that this good result is obtained
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by an algorithm which does not form any beliefs about opponents’ strategies.
Conversely, with respect to these latter metrics, QL and MM algorithms exhibit
the general worst performance. A possible explanation relies on the simpler
structure of their learning model. However, the convergent behavior of such
learning rules improves when the number of players increases and in particular
coincides with the best performing EWA and GW in the four players games.

6. Conclusions

The computational study of multi-agent systems offers a new interesting
framework to market design. In a bounded rationality and incomplete infor-
mation perspective, market outcomes may depend on behavioral models of eco-
nomic agents. Multi-agent learning theory aims to provide a conceptual frame-
work for modeling and analyzing bounded-rationality behavioral models in a
heterogenous and interacting agents setting. The complexity of the problem un-
der study usually induces the researcher to look at the computational approach
as promising. Indeed, around ten years ago, the distinguished economists Fu-
denberg and Levine stated that in the learning in games domain “Laboratory
experiments may not be perfect tests of theories but they are much better than
no tests at all”. We think that nowadays this sentence could be rephrased men-
tioning computational experiments besides laboratory ones.
This paper aims to contribute to establish a computational approach to mar-
ket design consisting in studying the properties of particular market settings
according to different behavioral assumptions about market participants. In
particular, four different learning paradigms about agents’ behavior have been
used for studying the efficiency outcomes of two auction mechanisms, which are
commonly employed, e.g. in the design of new deregulated electricity markets.
Our methodological approach consists in performing several computational ex-
periments characterized by mixed- and self-play competitions with an increasing
number of game participants. Particular attention has been also devoted to pa-
rameters selection of learning algorithms. This approach is aimed to strengthen
the reliability of computational results by highlighting the invariant properties
of the market setting under study with respect to an increasing number of mar-
ket participants, each endowed with different learning capabilities.
Our major economic result is that, irrespective of the learning algorithm con-
sidered, the DA is a more efficient auction mechanism than UA in the two- and
three-players game setting. Indeed, another relevant property, which is invariant
with respect of the bounded-rationality model considered, comes out from our
computational experiments. The difference between the two auctions diminishes
when the number of players increases. In particular, in the four-players game
setting, the long-run convergence behavior of the learning dynamics is identical
among the four algorithms considered. This results is particularly relevant for
the UA mechanism where the selected equilibrium is not refined according to
Pareto dominance. In this case, a coordination failure arises for both model-free
and belief-based learning models. It is worth noting that this finding occurs also
for a pure belief-based parameter-free model such as the fictitious play. These

17

ha
ls

hs
-0

04
49

53
6,

 v
er

si
on

 1
 - 

22
 J

an
 2

01
0



results point out relevant indications for the design of new markets with respect
to the information available to market participants.
In this paper, interesting insights are also obtained concerning the multi-agent
learning domain and its usage as a framework for market design. The different
degrees of information which characterize the four learning algorithms consid-
ered has an important influence on their performance and on the convergence
to market equilibrium. In particular, the EWA learning algorithm emerges as
the best algorithm to study market equilibrium outcomes in pure strategy, be-
cause it exhibits the best convergence properties according to Nash equilibria
and Pareto optima. The EWA algorithm shows robust results with respect
to different game settings and presents a good coordination ability with the
opponent both in self-play and mixed-play competitions. Indeed, among the
algorithms considered, the EWA is the most sophisticated, being the only one
to implicitly form beliefs about the strategies of the opponents. The GW algo-
rithm also exhibits very goods results in terms of average regrets and incentives
to deviate, in accordance to its formulation as a no-regret learning algorithm.
However, its convergence properties are not as satisfying as for the EWA both in
self- and mixed-play. Indeed, the GW has been conceived to converge to Nash
equilibria in mixed strategy, which are not considered here; besides, the very
low values of average regrets and incentives to deviate are an indication of its
ability to always play a best response with respect to the long-run stationary
strategy of the opponent. GW exhibit the lowest refinement ability with respect
to Pareto dominance; this latter fact lead to the worst average profits among
the algorithms considered. Finally, the QL and MM algorithms are the least ro-
bust learning models with respect to the different game settings considered. In
particular, the QL algorithm, even if endowed with intertemporal optimization
capabilities, seems unable to learn Pareto solutions which are equilibria in the
infinitely repeated game framework.

Three major interesting future lines of research are opened by this study. The
first regards the adoption of more sophisticated learning algorithms, e.g. models
which explicitly form beliefs about opponents behavior. The second concerns
with the possibility to take into account convergence to equilibria in mixed
strategies. In this respect, the development of more powerful equilibrium-solver
techniques would help the interpretation of results. The last line of research
refers to the study of more realistic market scenarios, e.g. characterized by
a higher number of learning agents in both market sides. As a final remark,
an interesting methodological approach would regard the exploitation of syner-
gies between computational and laboratory experiments in order to support the
validity of results in both frameworks.
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EWA GW QL MM avg FP 2 pl. 3 pl. 4 pl.

EWA
[4.00] [4.92] [1.99] [5.43] [4.08] [4.88] [4.00] [2.25] [1.00]
(3.21) (2.32) (3.22) (3.58) (3.08) (3.24) (3.21) (1.33) (1.00)

GW
[3.08] [3.99] [2.00] [3.52] [3.15] [5.36] [3.99] [1.33] [1.00]
(2.33) (2.62) (1.99) (2.14) (2.27) (2.04) (2.62) (1.33) (1.00)

QL
[5.97] [5.60] [3.00] [5.58] [5.04] [6.00] [3.00] [1.47] [1.00]

(3.20) (2.09) (2.90) (3.51) (2.92) (3.56) (2.90) (1.33) (1.00)

MM
[2.49] [4.48] [2.02] [3.94] [3.23] [5.46] [3.94] [1.67] [1.00]
(3.54) (2.14) (3.17) (3.28) (3.03) (2.04) (3.28) (1.39) (1.00)

FP
[3.12] [2.64] [2.00] [2.51] [2.57] [4.00] [4.00] [1.38] [1.00]
(3.24) (2.04) (3.56) (2.04) (2.72) (2.00) (2.00) (1.33) (1.00)

Table 3: Profits. Bold values correspond to the highest profits in the column with respect to
each auction. Values within square brackets [·] refers to UA, while normal brackets (·) regards
DA.

EWA GW QL MM avg FP 2 pl. 3 pl. 4 pl.

EWA
[1.00] [0.97] [0.71] [0.72] [0.85] [1.00] [1.00] [1.00] [1.00]
(1.00) (0.89) (0.98) (0.97) (0.96) (1.00) (1.00) (1.00) (1.00)

GW
[0.97] [0.91] [0.80] [0.87] [0.89] [0.80] [0.91] [0.97] [1.00]
(0.89) (0.94) (0.76) (0.94) (0.88) (0.83) (0.94) (1.00) (1.00)

QL
[0.71] [0.80] [0.56] [0.62] [0.67] [1.00] [0.56] [0.78] [1.00]

(0.98) (0.76) (1.00) (0.86) (0.90) (1.00) (1.00) (1.00) (0.95)

MM
[0.72] [0.87] [0.62] [0.59] [0.70] [1.00] [0.59] [0.57] [1.00]
(0.97) (0.94) (0.86) (0.92) (0.92) (0.99) (0.92) (0.90) (1.00)

FP
[1.00] [0.80] [1.00] [1.00] [0.83] [0.99] [0.99] [0.74] [1.00]
(1.00) (0.83) (1.00) (1.00) (0.96) (1.00) (1.00) (1.00) (0.95)

Table 4: Frequencies of one-stage Nash equilibria in pure strategies. Bold values correspond
to the highest frequency values in the column with respect to each auction. Values within
square brackets [·] refers to UA, while normal brackets (·) regards DA.
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EWA GW QL MM avg FP 2 pl. 3 pl. 4 pl.

EWA
[1.00] [1.00] [0.99] [0.98] [0.99] [1.00] [1.00] [0.69] [0.00]
(0.64) (0.16) (0.61) (0.77) (0.54) (0.62) (0.64) (0.00) (0.00)

GW
[1.00] [1.00] [0.93] [1.00] [0.98] [1.00] [1.00] [0.00] [0.00]
(0.16) (0.31) (0.01) (0.07) (0.14) (0.02) (0.31) (0.00) (0.00)

QL
[0.99] [0.93] [0.61] [0.91] [0.86] [1.00] [0.61] [0.16] [0.00]

(0.60) (0.01) (0.45) (0.67) (0.43) (0.78) (0.45) (0.00) (0.00)

MM
[0.98] [1.00] [0.91] [0.97] [0.96] [0.99] [0.97] [0.25] [0.00]
(0.77) (0.07) (0.67) (0.63) (0.54) (0.02) (0.63) (0.04) (0.00)

FP
[1.00] [1.00] [1.00] [0.99] [1.00] [1.00] [1.00] [0.00] [0.00]
(0.62) (0.02) (0.78) (0.02) (0.36) (0.00) (0.00) (0.00) (0.00)

Table 5: Frequencies of one-stage strong Pareto optima. Bold values correspond to the highest
frequency values in the column with respect to each auction. Values within square brackets
[·] refers to UA, while normal brackets (·) regards DA.

EWA GW QL MM avg FP 2 pl. 3 pl. 4 pl.

EWA
[0.00] [0.00] [0.04] [0.02] [0.02] [0.00] [0.00] [0.00] [0.00]
(0.00) (0.26) (0.04) (0.01) (0.08) (0.00) (0.00) (0.08) (0.00)

GW
[0.00] [-0.01] [0.00] [0.00] [0.00] [0.00] [-0.01] [0.00] [0.00]
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

QL
[0.23] [0.38] [0.78] [0.00] [0.35] [0.00] [0.78] [0.11] [0.00]

(0.35) (0.08) (0.04) (0.00) (0.12) (0.00) (0.04) (0.58) (0.00)

MM
[0.38] [0.02] [0.34] [0.20] [0.24] [0.00] [0.20] [0.17] [0.00]
(0.08) (0.01) (0.28) (0.05) (0.11) (0.00) (0.05) (0.07) (0.00)

FP
[0.00] [0.00] [0.00] [0.00] [0.12] [0.00] [0.00] [0.23] [0.00]
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00 (0.00) (0.00) (0.00)

Table 6: Average regrets. Bold values correspond to the smallest values in the column with
respect to each auction. Values within square brackets [·] refers to UA, while normal brackets
(·) regards DA.
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EWA GW QL MM avg FP 2 pl. 3 pl. 4 pl.

EWA
[0.00] [0.01] [0.06] [0.01] [0.02] [0.00] [0.00] [0.00] [0.00]
(0.00) (0.04) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

GW
[0.00] [0.01] [0.03] [0.00] [0.01] [0.00] [0.01] [0.00] [0.00]
(0.00) (0.01) (0.04) (0.00) (0.01) (0.00) (0.01) (0.00) 0.00

QL
[0.00] [0.02] [0.10] [0.01] [0.03] [0.00] [0.10] [0.18] [0.00]

(0.00) (0.06) (0.00) (0.02) (0.02) (0.00) (0.00) (1.25) (0.01)

MM
[0.07] [0.04] [0.08] [0.08] [0.07] [0.00] [0.08] [0.22] [0.00]
(0.01) (0.03) (0.02) (0.01) (0.02) (0.00) (0.01) (0.07) (0.00)

FP
[0.00] [0.04] [0.00] [0.00] [0.03] [0.00] [0.00] [0.33] [0.00]
(0.00) (0.07) (0.00) (0.00) (0.02) (0.00) (0.00) (0.00) (0.02)

Table 7: Average incentives to deviate. Bold values correspond to the smallest values in the
column with respect to each auction. Values within square brackets [·] refers to UA, while
normal brackets (·) regards DA.
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A. Performance Metrics

The average regret metric measures the maximum average payoff loss of
agent ith for playing the sequence of actions ai

t instead of playing a fixed action
si for every round t given that the opponents played the sequence a−i

t . The
average regret ri

t is then defined as:

ri
t = max

si

1
t

t∑

k=1

(Ri(si, a−i
k )−Ri(ai

k, a−i
k )) (12)

Negative average regret means the ith agent’s sequence of strategies outper-
formed every attainable fixed strategy si.
The average incentive to deviate (henceforth ID) di

t of an agent i gives the aver-
age payoff loss at round t for playing the actions ai

t instead of playing the best
response bi

t given that the opponents played actions a−i
t , i.e.,

di
t =

1
t

t∑

k=1

Ri(bi
k, a−i

k )−Ri(ai
k, a−i

k ) (13)

It is worth noting that average regret and incentives to deviate measure different
properties. Average regret measures the level of dissatisfaction of not having
played a fixed action, i.e., a pure strategy, throughout all rounds by a learning
agent. Whereas, the ID estimates the level of dissatisfaction of not having played
a arbitrary non-stationary mixed strategy at every round.
A specific vector of strategies a∗ = (ai

∗, a
−i
∗ ) is a Nash equilibrium if the following

conditions are satisfied:

Ri(ai
∗, a

−i
∗ ) ≥ Ri(ai, a−i

∗ ), for any i

In other terms, the previous formula states that a∗ is a Nash equilibrium if no
player has incentive to unilaterally change its action.
A Pareto optimum is a vector of actions a∗ = (ai

∗, a
−i
∗ ) for which there is not

any other feasible vector of actions, say a, such that the solution a is strictly
preferred by at least one player, and weakly preferred by everyone else. Formally,
a specific vector of actions a∗ is not a Pareto optimum if there exists another
joint strategy a that satisfies the following conditions:

{
Ri(a) ≥ Ri(a∗), for any i,
Ri(a) > Ri(a∗), at least for one i
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