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Abstract:

This article is devoted to the study of the Pareto-e¢ ciency of the compet-
itive equilibrium for a simple overlapping generations economy with endoge-
nous fertility. For CES utility and production functions, it is proved that the
economic properties of the economy are closely related to the two elasticities
of substitution. First, the competitive equilibrium exists and is unique if the
sum of the two elasticities is not smaller than one. Secondly, a set of para-
meters is provided such that the equilibrium is both in under-accumulation
and ine¢ cient. Thirdly, a su¢ cient condition is proved that ensures that an
equilibrium converging in under-accumulation is Pareto-e¢ cient: the sum of
the two elasticities must not be greater than two.
Keywords: endogenous fertility, Pareto-e¢ ciency.
JEL Classi�cation: D9, J13, and D61.
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1 Introduction

This work is devoted to the study of the Pareto-e¢ ciency of the competitive
equilibrium for a simple overlapping generations economy with endogenous
fertility.
Fertility is endogenous in our framework, and results from a choice made

by each household. We assume that the number of children is an argument of
the utility function of the parents and that each child entails a constant child-
rearing cost for his parents. Fertility behavior results from a rational choice,
as consumption and saving choices. This framework is close to models used
by Becker (1960), Willis (1973), Razin and Ben-Zion (1975) and Eckstein
and Wolpin (1985). It leads to economic properties, which are relevant when
compared to empirical facts, as is shown in of Birdsall�s survey (1988).
We consider a simple framework where all individuals of the same gener-

ation are identical. We will refer to the well-being of one generation to desig-
nate the utility of each member of this generation. A competitive equilibrium
is said to be Pareto-e¢ cient if it is not possible to increase the well-being of
one generation without decreasing the well-being of another.
The question of the Pareto-e¢ ciency of the competitive equilibrium is

well-known when fertility is exogenous. Considering the standard overlapping
generations model à la Diamond (1965), a su¢ cient condition ensuring the
Pareto-e¢ ciency of the competitive equilibrium is that it converges towards
a steady state such that the interest rate is greater than the growth rate.
When there is no technical progress, the growth rate is equal to the growth
rate of the population. When this su¢ cient condition holds, the competitive
equilibrium is said to converge in under-accumulation. On the other hand,
an equilibrium converging in over-accumulation (with a growth rate higher
than the interest rate) is ine¢ cient. It is possible to increase the utility of
one or many generations without a fall in the utility of other generations (De
la Croix and Michel (2002)).
These results have important consequences for economic policy. For ex-

ample, in an economy converging in over-accumulation, it is possible to im-
prove the welfare of all generations by inter-generational transfers from young
to old people (a pay-as-you-go social security system, or the issuing of public
debt, for instance).

What happens to these properties when fertility is endogenous? Before
answering this question, the notion of Pareto-e¢ ciency needs a new de�ni-
tion able to deal with the endogenous fertility framework. Indeed, the basic
notion is de�ned for a given set of agents, while endogenous fertility requires
comparing allocations associated with di¤erent sets of agents. We use a
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simple criterion based on particular assumptions. First, we consider the fer-
tility level as a continuous number. Secondly, we only focus on symmetric
allocations for all agents belonging to the same generation, and we call the
symmetric allocations satisfying the resource constraint of the economy RC-
allocations (for �Representative-Consumer�allocations). In this context, it
is possible to refer to the utility of a generation as the utility level reached
by each agent belonging to this generation. Thirdly, we introduce a concept
called �Representative-Consumer�e¢ ciency (or RC-e¢ ciency), which refers
to an RC-allocation, for which no other allocation exists that would lead to
a higher level of utility for all generations with a strict improvement for at
least one generation.
This article adds several results to a �rst one on the subject (Michel and

Wigniolle (2006)). In this former article, we showed that over-accumulation
remains ine¢ cient with endogenous fertility. We have also proved two main
results. First, we exhibited an example in which an equilibrium in under-
accumulation is not Pareto-e¢ cient. Under-accumulation is no longer a suf-
�cient condition ensuring e¢ ciency. Secondly, we gave a general condition
ensuring Pareto-e¢ ciency: the limit value of the wage does not make it pos-
sible to �nance a fertility level higher than the limit value of the interest
factor.
In this article, we focus on a particular case: an economy with CES

production and utility functions. In this framework, we are able to obtain
additional results. We �rst give a condition that ensures the existence and
uniqueness of the intertemporal equilibrium. This condition is that the sum
of the two elasticities of substitution must not be smaller than one. Secondly,
we provide a set of parameters such that the stationary state of the economy
is both in under-accumulation and ine¢ cient. This result generalizes the
example given in Michel and Wigniolle (2006), and provides a better under-
standing of the causes of ine¢ ciency. Thirdly, we prove a su¢ cient condition
for the Pareto-e¢ ciency of an equilibrium converging in under-accumulation:
the sum of the two elasticities of substitution must not be greater than two.
This result shows that a trade-o¤ between the two substitution elasticities in
production and utility exists, in order to ensure the e¢ ciency of a competitive
equilibrium converging in under-accumulation.
The intuition behind this last result is that an allocation can Pareto-

improve a competitive equilibrium converging in under-accumulation, if it
leads, in the long run, to a fertility level higher than the interest factor. Our
result gives two arguments capable of precluding this increase in the fertil-
ity level. The �rst argument is the complementarity of production factors.
Indeed, the increase in fertility is linked to a fall in capital accumulation.
If capital and labor are substitutable, this change is not too detrimental to
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production; if capital and labor are complementary, however, it can lead to
a signi�cant drop in resources. The second argument is the complementar-
ity of consumption and fertility in the utility function. If consumption and
fertility levels are highly substitutable, an increase in fertility allows for a
substantial reduction in consumption, which is compatible with a constant
level of utility. When they are complementary, however, the admissible fall
in consumption is low.

Our results can be compared with existing literature.
Two recent studies are concerned with the de�nition of Pareto-e¢ ciency

criteria in an endogenous fertility framework. Conde-Ruiz, Giménez and
Perez-Nievas (2004) use a slightly more general framework, where technical
progress can a¤ect both the production technology and the children cost
function. They use the same criterion of e¢ ciency which they call "Millian
e¢ ciency". They undertake a detailed analysis of e¢ ciency criteria and pro-
vide several conditions for Millian-e¢ ciency. With respect to their work, this
article focuses on a less general framework, which allows us to provide a suf-
�cient condition for the e¢ ciency of an equilibrium in under-accumulation
that directly involves the parameters of the production and utility functions.
Golosov, Jones and Tertilt (2004) provide a general analysis of Pareto-

e¢ ciency criteria in a framework in which fertility level is a discrete variable
and in the presence of intragenerational heterogeneity. This article appears
as the more general and thorough on the question of Pareto-e¢ ciency. But
its results cannot be applied to a large range of simple macroeconomic mod-
els with endogenous fertility, particularly to models in which fertility is a
continuous variable.
Section Two presents the model. Section Three studies the intertemporal

equilibrium. Section Four introduces the main de�nitions concerning Pareto-
e¢ ciency. Section Five gives a su¢ cient condition ensuring the Pareto-
e¢ ciency of a competitive equilibrium converging in under-accumulation.
Section Six concludes.

2 The model

2.1 Consumers

We make use of an overlapping generations model. Each individual lives for
two periods. He or she inelastically supplies one unit of labor during his/her
youth and retires in old age. During their �rst period of life, agents work,
consume, save and choose their number of children. Children entail a cost
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for their parents. In their second period of life, agents consume the proceeds
of theirs savings.
At each date t; the new generation is populated with a number Nt of

identical agents. Each agent is endowed with an intertemporal CES utility
function

Ut =

�
c
��1
�

t + �d
��1
�

t+1 + m
��1
�

t

� �
��1

; (1)

where �; the elasticity of substitution, is such that � > 0 and � 6= 1: ct and
dt+1 are respectively the consumptions of good during youth and old age,
and mt is the number of children1. For the limit case � = 1; we consider the
log-linear function

Ut = 1 ln ct + 2 ln dt+1 + 3 lnmt; (2)

with
3P
i=1

i = 1:

The number of agents of generation t+ 1 is equal to

Nt+1 = mtNt: (3)

The �rst period budget constraint faced by a generation t agent is

ct + �mt + st = wt; (4)

where wt is the wage earned during this period and st the savings. Each child
entails a constant educational cost �.
Savings are invested in capital and yield a gross return in t+ 1; equal to

Rt+1. The second period budget constraint is

dt+1 = Rt+1st: (5)

From (4) and (5), the lifetime budget constraint can be stated as

ct +
dt+1
Rt+1

+ �mt = wt: (6)

Maximizing the utility functions (1 or 2) under the constraint (6) leads
to the following demand functions

ct = wt1(Rt+1); (7)

�mt = wt3(Rt+1); (8)

st = dt=Rt+1 = wt2(Rt+1): (9)

1As usual, we consider mt as a continuous variable. This assumption is consistent with
a model which assumes one representative agent per generation.
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When the utility function is given by: (1), the functions i(R) are

1(R) =
1

1 + ��R��1 + ��1��
; (10)

2(R) =
��R��1

1 + ��R��1 + ��1��
; (11)

3(R) =
��1��

1 + ��R��1 + ��1��
: (12)

When the utility function is given by: (2), the functions i(R) are constant
and equal to i:
At date t = 0; the N�1 old agents consume the proceeds of their savings:

d0 = R0s�1: N�1; s�1 and N0 come from past choices and are given.

2.2 Firms

We assume that at each period t one competitive �rm exists, which produces
Yt quantity of good, according to a CES production function with two inputs
(capital: Kt; labor: Lt)

F (K;L) = A
�
K

��1
� + bL

��1
�

� �
��1
; (13)

with � > 0 and � 6= 1: When the elasticity of substitution � is equal to 1;
the production function is Cobb-Douglas

F (K;L) = AK�L1��: (14)

The capital fully depreciates within the production period.
The pro�t maximization of the �rm gives

wt = F 0L(Kt; Lt) � w(Kt=Lt); (15)

Rt = F 0K(Kt; Lt) � R(Kt=Lt): (16)

When the production function is given by (13), w and R have the following
expression

w(x) = Ab
�
x
��1
� + b

� 1
��1
; (17)

R(x) = A
�
1 + bx

�(��1)
�

� 1
��1
: (18)

When it is given by (14), we obtain

w(x) = A(1� �)x�; (19)

R(x) = A�x��1: (20)
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3 The intertemporal equilibrium

3.1 Equilibrium characterization

The initial conditions are the following. At period t = 0; N�1 old agents and
N0 young agents are living. The old agents hold equal shares of the capital
stock K0: This stock comes from their past savings behavior: K0 = N�1s�1.
The consumption of the old agents is

d0 = R0K0=N�1: (21)

Along an intertemporal equilibrium, all markets are balanced.
The labor market is balanced at each period: Lt = Nt; with Nt following

the relation Nt+1 = mtNt:
Prices result from the �rms�behavior at equilibrium

Rt = R(kt) and wt = w(kt); with: kt � Kt=Nt: (22)

The commodity market is balanced, or

F (Kt; Nt) = Ntct +Nt�1dt +Kt+1 +Nt�mt: (23)

Taking consumers�budget constraints into account, this last relation is
equivalent to

Kt+1 = Ntst , mtkt+1 = st: (24)

Finally, using optimal behaviors and equilibrium conditions, it is possible to
give the general de�nition of the intertemporal equilibrium:

De�nition 1 Starting from the positive initial conditions N�1; N0; K0 and
d0 = R0K0=N�1; an intertemporal equilibrium is a sequence (Kt; Nt; ct; dt;mt)t�0 ;
which satis�es

ct +
dt+1
Rt+1

+ �mt = wt; (25)

Uct = Rt+1Udt+1 =
Umt

�
; (26)

Nt+1 = mtNt; (27)

F (Kt; Nt) = Ntct +Nt�1dt +Kt+1 +Nt�mt; (28)

with Rt = R(kt) and wt = w(kt); where: kt = Kt=Nt: (29)

This general de�nition allows us to encompass the di¤erent choices of
utility and production functions. When it is possible, it will generally be
more simple to reason with general functions.
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3.2 Existence and convergence of intertemporal equi-
libria

In this part, we study the existence of the intertemporal equilibrium and its
convergence toward a steady state.
Using equations (8), (9), (22) and (24), an intertemporal equilibrium is

characterized by a sequence (kt)t�0 starting from a given initial value k0 =
K0=N0; and following the equation

kt+1 =
st
mt

=
�2 [R(kt+1)]

3 [R(kt+1)]
: (30)

This equation only depends on kt+1 and not on kt: This property is obtained
as the utility function is homothetic. As st and mt are proportional to wt;
kt+1 no longer depends on wt: The two adjustments in savings and fertility
lead to a constant ratio Kt+1=Nt+1 in one period.
There is existence and uniqueness of the intertemporal equilibrium if this

equation has a unique solution kt+1 = k: In this case, the economy reaches
its stationary state k in one period. k is de�ned by

k3
�
R(k)

�
= �2

�
R(k)

�
: (31)

If 8t � 1; kt = k; we obtain that the variables Rt = R(kt); wt = w(kt);
ct; dt and mt are also equal to constant values R; w; c; d; and m. As in
Diamond�s model with exogenous fertility, we say that the steady state is in
under-accumulation if R > m; and in over-accumulation if R < m:

It remains to study the conditions ensuring a unique solution for equation
(31). We successively consider the case of a log-linear utility and the case of
a CES utility.
When the utility is log-linear (given by (2)), the economy converges to

the steady state in one period

k =
�2
3
: (32)

When a CES utility function is assumed (given by (1)), the intertemporal
equilibrium exists and is unique if the expression kR(k)1�� increases from 0
to +1 when k goes from 0 to +1. Indeed, k is such that

k��1�� = ���R(k)��1; (33)

or
kR(k)1�� = ������: (34)
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For the CES production function (13), k exists and is unique when �+� �
1: Indeed, it is the unique solution of the equation

k
�
1 + bk�

��1
�

�� ��1
��1

= A��1������: (35)

For the Cobb-Douglas production function (14), there is no condition on
� for the existence and uniqueness of the intertemporal equilibrium and k is
equal to

k =
�
(�A)��1������

� 1
1+(1��)(��1) : (36)

Finally, we can summarize these results by the following proposition:

Proposition 1 If � + � � 0; the intertemporal equilibrium exists and is
unique. The economy reaches its stationary state in one period.

4 E¢ cient allocations and endogenous fertil-
ity

In the Diamond [1965] model with exogenous fertility, the Pareto-optimality
properties of the competitive equilibrium are well-known. An intertemporal
equilibrium converging to a stationary state in under-accumulation is Pareto-
optimal. On the other hand, an intertemporal equilibrium converging to a
stationary state in over-accumulation is not Pareto-optimal. De la Croix and
Michel (2002) provide a careful presentation of these results.
In this section, we show that the concept of Pareto-optimality needs a

new de�nition in a framework of endogenous fertility. We �rst introduce the
basic notion of feasible allocations. This allows us to introduce e¢ ciency.

4.1 Feasible allocations with representative consumers

We de�ne the notion of a feasible allocation with representative consumers
as an intertemporal allocation that satis�es the resource constraints of the
economy.

De�nition 2 (RC-allocation) 2A feasible allocation with representative con-
sumers (or RC-allocation) is a sequence (Kt; Nt; ct; dt; mt)t�0 of positive
variables that satisfy 8t � 0

F (Kt; Nt) = Kt+1 +Ntct +Nt�1dt +Nt+1�;
Nt+1 = mtNt:

(37)

2An RC-allocation means a feasible allocation for Representative Consumers.
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For a competitive equilibrium, the initial conditionsN�1; N0; K0 and d0 =
R0K0=N�1 are given. Following de�nition 2, an intertemporal equilibrium is
a particular case of feasible allocation, which moreover satis�es equations (7),
(8) and (9), with (22). From assumption 1, if K0; N0 and N�1 are positive,
all the variables (Kt; Nt; ct; dt; mt)t�0 will be positive.

Remark 1 To simplify the presentation, we will always consider the four
initial quantities (N�1; N0; K0; d0) as given. It will be hereafter implicit that
all feasible allocations or competitive equilibria considered will start from
these same initial conditions, even if they are not mentioned.

A new characterization of feasible RC-allocations will be useful in what
follows. In equation (37), ct andmt are chosen by generation t agents when dt
is determined by generation t�1 agents. By a simple change in variables, we
can introduce a new de�nition of feasible allocations, in which all variables
are decided by the same generation.

Lemma 1 (Characterizations of feasible RC-allocations) 1. Any fea-
sible RC-allocation can be characterized as a sequence (yt; Nt; ct; dt;
mt)t�0 of positive variables starting from the initial condition y0 =
F (K0=N0; 1)�N�1d0=N0; and satisfying 8t � 0;

mtyt+1 = F (yt � ct � �mt;mt)� dt+1;
Nt+1 = mtNt;
yt > ct + �mt:

(38)

Proof: This result is immediately obtained by a simple change in variables
in the resource constraint of the economy

yt = Kt+1=Nt + ct + �mt: (39)

Remark 2 Let
�
Kt; N t; ct; dt;mt

�
t�0 be an intertemporal equilibrium. Along

such a trajectory, the new variable yt is equal to the wage

yt = wt = F
0
L

�
Kt; N t

�
: (40)
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4.2 E¢ ciency of RC-allocations

Pareto-e¢ ciency is usually de�ned for a given set of agents. The model with
endogenous fertility introduces a new di¢ culty, because the set of agents is
the result of individual behaviors. We only consider the case of identical
agents within each generation. In order to compare RC-feasible allocations,
we use the main de�nition introduced in Michel and Wigniolle (2006).

De�nition 3 (RC-dominance) 3 Let (Ki
t ; N

i
t ; c

i
t; d

i
t; m

i
t)t�0 for i = 1; 2

be two feasible RC-allocations. Allocation 1 is said to RC-dominate alloca-
tion 2 if it leads to a higher level of utility for all generations, with a strict
improvement for (at least) one generation. Formally,

8t � 0; U(c1t ; d
1
t+1;m

1
t ) � U(c2t ; d2t+1;m2

t ); (41)

9t0 � 0; such that: U(c1t0 ; d
1
t0+1

;m1
t0
) > U(c2t0 ; d

2
t0+1

;m2
t0
): (42)

From the notion of RC-dominance, a de�nition of e¢ ciency follows:

De�nition 4 An RC-allocation is said to be RC-e¢ cient, if there does not
exist another RC-allocation that RC-dominates it.

Conde-Ruiz, Giménez and Perez-Nievas (2004) use the same concept of
e¢ ciency which they call "Millian e¢ ciency", and they provide a general
discussion of its relevance.
Michel and Wigniolle (2006) discuss another notion, which is obtained in

adding to the de�nition of RC-dominance the constraints

8t � 0; m1
t � m2

t : (43)

For this last notion, an allocation can dominate another one only if it includes
at least an equal number of children in each period. On the other hand, RC-
dominance allows to improve the utility level of one (or many) generation(s)
to the detriment of the size of one (or many) generation(s). In the current
article, we will neglect this second notion, as it does not allow us to obtain
more results. Indeed, it will appear that these two notions lead to the same
classi�cation of competitive equilibria. The reason behind this result is that
non-RC-e¢ cient equilibria are dominated by allocations that include a higher
level of fertility.

3RC-dominance means dominance for Representative Consumers.
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5 E¢ ciency of the intertemporal equilibrium

In this section, we focus on the question of the Pareto-e¢ ciency of the com-
petitive equilibrium with endogenous fertility, using our framework with CES
utility and production functions. First, we provide a set of parameters such
that the competitive equilibrium is both in under-accumulation and ine¢ -
cient. This result enlarges the simple example given in Michel and Wigniolle
(2006). Secondly, we give a su¢ cient condition ensuring that a competitive
equilibrium converging in under-accumulation is Pareto-e¢ cient. This con-
dition only involves the two elasticities of substitution of the production and
utility functions.

5.1 Under-accumulation does not imply e¢ ciency

The following proposition gives a set of parameters such that the stationary
state of our CES economy is both in under-accumulation and ine¢ cient. The
following notations will be useful

~� � ln(A�)

ln
�
�A�


� ; (44)

A1 �
4���A��1

�
1 + ��1�� + ��A��1

��
��1�� + ��A��1

�2 ; (45)

A2 � 1 + ��1�� + ��A��1

����
: (46)

Proposition 2 Let us assume that one of these 3 conditions holds



�
< A� < 1; (47)

or


�
< 1 < A� and � > ~�; (48)

or A� < 1 <


�
and � < ~�; (49)

then we have A1 < A2; and, for each value of b such that

A1 < b < A2; (50)

the competitive stationary equilibrium is both in under-accumulation and in-
e¢ cient for su¢ ciently high � .
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Proof: see Appendix 1.
As shown in Appendix 1, the proof is obtained by building a RC-allocation

that gives the same consumption levels, and a higher fertility level, with
respect to the competitive equilibrium. The fertility level rises in such a way
that it becomes higher than the interest factor. The result is obtained taking
the limit case � ! +1: At the limit, the interest factor becomes constant
and independent of the capital-labor ratio k: In this case, it is possible to
devote more resources to children and fewer resources to capital accumulation
in such a way that the fertility level becomes higher than the interest factor.
To obtain this result, the initial stationary equilibrium must be such that

the share of the wage devoted to savings 2
�
R(k)

�
is higher than the share

devoted to children 3
�
R(k)

�
: This property can be obtained under various

values of the di¤erent parameters. At the limit when � ! +1; this property
occurs if one among the three conditions (47), (48) or (49) holds. If (47) is
satis�ed, no condition on the elasticity of substitution of the utility function
� is needed. Condition (48) requires a su¢ ciently high value of � and (49) a
su¢ ciently low value of �.

5.2 A su¢ cient condition for the e¢ ciency of an in-
tertemporal equilibrium

In standard microeconomics, for a �nite number of agents endowed with a
utility function, a su¢ cient condition for an allocation to be Pareto-optimal
is that this allocation maximizes a weighted sum (with positive weights) of
each agent�s utilities. In our model, in which we have considered an in�nite
number of agents of di¤erent generations, this property always holds, as
illustrated in the following lemma.

Lemma 2 Let (yt; N t; ct; dt; mt)t�0 be a feasible RC-allocation. Let (�t)
be a sequence, such that 8t; �t > 0: For this sequence and for some feasible
allocation (yt; Nt; ct; dt; mt)t�0 with the same initial conditions, we de�ne
the objective function

lim inf
T!+1

TX
t=0

�t
�
U(ct; dt+1;mt)� U(ct; dt+1;mt)

�
: (51)

If the maximum of the objective function on the set of RC-feasible allocations
is reached in (yt; N t; ct; dt; mt)t�0; this allocation is RC-e¢ cient.
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Remark 3 The assumption of the preceding lemma simply means that (yt;
N t; ct; dt; mt)t�0 is weakly maximal in the sense of Brock (1970). Indeed,
if (yt; N t; ct; dt; mt)t�0 maximizes (51), it cannot be overtaken by another
feasible allocation.

Proof: Reductio ad absurdum. First, we can note that the objective
function (51) is equal to zero for the allocation (yt; N t; ct; dt; mt)t�0: Let us
assume that (yt; N t; ct; dt; mt)t�0 is a feasible RC-allocation that maximizes
(51) in the set of feasible RC-allocations, and that this allocation is not RC-
e¢ cient. In that case, it is RC-dominated by a feasible RC-allocation (yt;
Nt; ct; dt; mt)t�0, such that

8t � 0; U(ct; dt+1;mt) � U(ct; dt+1;mt); (52)

9t0 � 0; such that U(ct0 ; dt0+1;mt0) > U(ct0 ; dt0+1;mt0): (53)

The consequence is that for each T � t0
TX
t=0

�t
�
U(ct; dt+1;mt)� U(ct; dt+1;mt)

�
(54)

� �t0
�
U(ct0 ; dt0+1;mt0)� U(ct0 ; dt0+1;mt0)

�
> 0: (55)

The allocation (yt; N t; ct; dt; mt)t�0 does not maximize the objective function
(51).�
The preceding lemma provides a method for proving that a competitive

equilibrium that converges in under-accumulation is RC-e¢ cient: it is suf-
�cient to prove that this allocation maximizes the objective function (51)
in the set of feasible RC-allocations with an appropriate choice of weights
(�t). This maximization problem is not relevant in the general case, how-
ever, because it is not concave. The lack of concavity is due to the presence
of the term mtyt+1 in the resource constraint (38). Consequently, we only
consider particular cases with CES utility and production functions, where
the properties of (51) can be explicitly studied.
The optimization problem de�ned by lemma 2 can be solved in two stages:

a static optimization problem that is concave in the general case; a dynamic
optimization problem that is generally not concave. We begin by studying
the static problem. This optimization problem is(

max
(ct;dt+1;mt)

U (ct; dt+1;mt)

s. t. mtyt+1 = F (yt � ct � �mt;mt)� dt+1
(56)

Our method consists of studying this problem in the particular case of CES
utility and production functions before considering the dynamic problem.
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Even with these particular functions, however, we cannot �nd an explicit
solution to this static problem. Below we introduce another optimization
problem, which will be useful.
We de�ne the following functions:

v(yt; yt+1) =

(
max

(ct;dt+1;mt)
U (ct; dt+1;mt)

s. t. mtyt+1 = F (yt � ct � �mt;mt)� dt+1
(57)

z(yt; yt+1) =

(
max

(ct;dt+1;mt;xt)
U (ct; dt+1;mt)

s. t. xtyt+1 = F (yt � ct � �mt; xt)� dt+1
(58)

By de�nition, we have v(yt; yt+1) � z(yt; yt+1): Indeed, the �rst program
looks like the second program with an additional constraint: xt = mt:
Recalling that yt = wt along an intertemporal equilibrium, the objective

function de�ned by (51) can now be set as

lim inf
T!+1

TX
t=0

�t [v(yt; yt+1)� v(wt; wt+1)] ; (59)

and it is also possible to de�ne a second objective as

lim inf
T!+1

TX
t=0

�t [z(yt; yt+1)� z(wt; wt+1)] : (60)

The following lemma establishes two properties that are satis�ed by v
and z. First, these two functions coincide when (yt; yt+1) is taken along a
competitive trajectory: (yt; yt+1) = (wt; wt+1): Secondly, for an appropriate
choice of the sequence (�t), the competitive equilibrium satis�es the �rst-
order conditions of the two dynamic optimization problems de�ned by (59)
and (60).

Lemma 3 Let
�
yt; N t; ct; dt;mt

�
t�0 be a competitive equilibrium with wt =

yt as the competitive wage and Rt+1 = F
0
K (yt � ct � �mt;mt) as the compet-

itive interest factor. We have:

1. v(wt; wt+1) = z(wt; wt+1) = U(ct; dt+1;mt):

2. Let (�t) be the sequence de�ned by: �0 = 1 and

8t � 0; �t+1
�t

=
U 0c
�
ct; dt+1;mt

�
mt

U 0c
�
ct+1; dt+2;mt+1

�
Rt+1

; (61)
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we have 8t � 0

�tv
0
2(wt; wt+1) + �t+1v

0
1(wt+1; wt+2) = 0; (62)

�tz
0
2(wt; wt+1) + �t+1z

0
1(wt+1; wt+2) = 0: (63)

Proof: see Appendix 2.�
The �rst result is obtained by showing that the �rst order conditions of

the two static optimization programs coincide when (yt; yt+1) = (wt; wt+1) :
The second result proves that the marginal conditions of the two dynamic
optimization programs (59) and (60) are satis�ed by yt = wt 8t; when �t is
de�ned by (61).

We can now consider the trajectory of the competitive equilibrium (�yt; �Nt;
�ct; �dt; �mt)t�0 obtained using the CES production technology given by (13),
or by (14) in the limited case of an elasticity of substitution equal to one,
and a CES utility function given by (1). We know that the steady state �k is
reached from period 1; and that it is unique under the assumption � +� � 1:
Denoting the stationary values of the interest factor and the fertility level by
�R = R(k) and m; respectively, we obtain the following result:

Proposition 3 Assume that � +� � 1 (the competitive equilibrium is deter-
mined), that � � 1 (production factors are complements in production) and
that the competitive economy converges in under-accumulation (R > m).
Then, if � + � � 2; the competitive equilibrium is RC-e¢ cient.

Proof: see Appendix 3.�
The result is obtained by explicitly calculating the function z(yt; yt+1)

and proving that the objective function

lim inf
T!+1

TX
t=0

�t [z(yt; yt+1)� z(wt; wt+1)] (64)

reaches a global maximum in yt = wt: As v(yt; yt+1) � z(yt; yt+1) with
v(wt; wt+1) = z(wt; wt+1); the objective function

lim inf
T!+1

TX
t=0

�t [v(yt; yt+1)� v(wt; wt+1)] (65)

reaches a global maximum in yt = wt:
The intuition behind Proposition 3 is that an allocation can Pareto-

improve a competitive equilibrium converging in under-accumulation, if it
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leads, in the long run, to a fertility level higher than the interest factor. Our
result gives two arguments capable of precluding this increase in the fertil-
ity level. The �rst argument is the complementarity of production factors.
Indeed, the increase in fertility is linked to a fall in capital accumulation.
If capital and labor are substitutable, this change is not too detrimental to
production; if capital and labor are complementary, however, it can lead to
a signi�cant drop in resources. The second argument is the complementar-
ity of consumption and fertility in the utility function. If c; d and m are
highly substitutable, the increase in m allows for a substantial reduction in
c and d; which is compatible with a constant level of utility. When they are
complementary, however, the admissible fall of c and d is low.
Proposition 3 shows that a trade-o¤ between the two substitution elastic-

ities in production and utility exists, such that the competitive equilibrium
(converging in under-accumulation) is RC-e¢ cient. This condition is the
same as the one found in Michel and Pestieau (1993), who are interested
in the optimal fertility rate in a framework of exogenous fertility. In their
model, the condition guarantees that the serendipity theorem holds.
Michel and Wigniolle (2006) provide a general condition which ensures

Pareto-e¢ ciency for the competitive equilibrium of an economy endowed with
general utility and production functions: an intertemporal equilibrium con-
verging toward a stationary state such that �R > w is RC-e¢ cient. This
condition is stronger than under-accumulation. Indeed, at the steady state
of the competitive economy, we have: �m � w < �R) m < R:
With respect to this general condition, our results in Proposition 3 are

more precise for an economy endowed with a CES utility and production
functions. We have proved that if �+� � 1; � � 1 and �+� � 2 hold, under-
accumulation is su¢ cient for RC-e¢ ciency of the competitive equilibrium.
The condition �R > w is stronger and not relevant in this case.
Proposition 3 gives su¢ cient conditions for RC-e¢ ciency of a competitive

equilibrium in under-accumulation. But it is unlikely that these conditions
are necessary. Proposition 2 allows us to conclude on the ine¢ ciency only
for high values of � : There exists a large range of the parameters (� ; �) for
which no conclusion is reached. Indeed, even if � and � do not satisfy the
conditions given in Proposition 3, building a RC-allocation that dominates
the competitive equilibrium needs extra assumptions on other parameters.
For instance, in Proposition 2, we also need some constraints on the para-
meters A and b of the production technology, on the child cost �; and on the
coe¢ cients � and  of the utility function.
Our results give some insights on the role of the two parameters � and

�; but the understanding is not complete and some further results could
be achieved. More precisely, the proofs of Propositions 2 and 3 give some
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intuitions that we were not able to prove. In Proposition 2, the assumption
that � is su¢ ciently high plays a crucial role. A value of � greater than one
implies that the marginal productivity of capital tends to a �nite value when
the capital stock tends toward 0. It is also well known that this case allows
the existence of unbounded realizable trajectories for the variable kt: These
properties allow us to build an allocation that RC-dominates the competitive
equilibrium in under-accumulation. Now, assuming � � 1 and high enough �,
such that the assumption �+ � � 2 in Proposition 3 is violated, or even such
that � ! +1, is it possible to construct such an allocation dominating the
competitive equilibrium? We have not succeeded in answering this question.
Conversely, it could be true that the condition � � 1 alone, without the extra
condition � + � � 2; is su¢ cient to ensure RC-e¢ ciency, but we have not
succeeded in proving this property.

6 Conclusion

This article has studied the e¢ ciency of the competitive equilibrium for an
overlapping generations economy with endogenous fertility. Utility and pro-
duction functions were assumed to be CES. We have given a su¢ cient con-
dition, which ensures the existence and uniqueness of a competitive equilib-
rium: the sum of the two elasticities must not be smaller than one. Then,
we have exhibited a set of parameters such that a competitive equilibrium in
under-accumulation is not e¢ cient. Finally, we have proved that a compet-
itive equilibrium converging in under-accumulation is Pareto-e¢ cient if the
sum of the two elasticities of substitution is not greater than two.
It would be interesting to study whether these results remain true in con-

sidering more general environments. Notably, a generalization could emerge
concerning the cost of children. In our simple framework, this cost is con-
stant for each child. Conde-Ruiz, Giménez and Perez-Nievas (2004) consider
a more general formulation where the cost is a convex function of the number
of children. Another interesting generalization could be to introduce a cost in
time. Under this assumption, children have an opportunity cost that depends
on the wage. According to Greenwood, Seshadri and Vandenbroucke (2005),
the rise of this opportunity cost has played a crucial role in the historical
decline in fertility observed in America over the last 200 years.
Using policy-oriented models with endogenous fertility and applying e¢ -

ciency criteria to these models could be an important topic. Indeed, e¢ ciency
criteria should in�uence the design of economic policies such as PAYG pen-
sion systems or child bene�ts, as appears from Conde-Ruiz, Giménez and
Perez-Nievas�results (2004).
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Appendix 1: proof of Proposition 2.
We introduce the following notation in what follows

i
�
R(k)

�
= i: (66)

We assume that the competitive equilibrium is in under-accumulation. This
property is expressed by the condition

R > m =
3w

�
; (67)

or

3 <
�R

w
: (68)

We can then build a feasible RC-allocation starting from the stationary
state k0 = k and m�1 = m; such that: 8t � 0; ct = c; dt = d; mt = m; and
kt satis�es the resource constraint

mkt+1 = f(kt)� c�
d

mt�1
� �m: (69)

In t = 0; as m�1 is given and equal to m; this condition is

mk1 = f(k)� c�
d

m
� �m: (70)

As d = Rs = Rmk; the term f(k) � d=m is equal to f(k) � Rk = w: The
preceding condition becomes

mk1 = w � 1w � �m: (71)

For t � 1; (69) becomes

mkt+1 = f(kt)� c�
d

m
� �m: (72)

We set �2 � d=� = 2Rw=�: We can write

mkt+1 = f(kt)� 1w � �
�
�2

m
+m

�
: (73)

We choose m = �; which is the value that minimizes the last term of the
equation. At each date t; the condition kt > 0 must hold. As

f(k) > w(k) = Ab
�
k
��1
� + b

� 1
��1

> Ab
�

��1 ; (74)
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we obtain su¢ cient conditions that respectively ensure that k1 > 0 and
kt+1 > 0 8t � 1;

Ab
�

��1 � 1w � �� > 0; (75)

Ab
�

��1 � 1w � 2�� > 0: (76)

The only condition that must hold is

Ab
�

��1 > 1w + 2��: (77)

Finally, we impose the inequality � > m; which leads to

�R=w > 23=2: (78)

Condition (78) implies U(c; d; �) > U(c; d;m) as � > m: All utilities are
higher along the feasible trajectory with mt = �:
The three conditions (68), (77) and (78) remain to be studied at the limit

when � ! +1: When � ! +1; limR = A and limw = Ab:
Conditions (68) and (78) are equivalent to

�=b > max
�
2(A); 

2
3(A)=2(A)

�
: (79)

Condition (77) can be written as

2�� < Ab [1� 1(A)] = Ab [2(A) + 3(A)] : (80)

Taking the square of the preceding inequality, we obtain

4�2�2 = 4�2(A)A
2b < A2b2 [2(A) + 3(A)]

2 ; (81)

or

�=b <
[2(A) + 3(A)]

2

42(A)
: (82)

By (79) and (82), we must have

23(A)

2(A)
<
[2(A) + 3(A)]

2

42(A)
; (83)

which implies
2(A) > 3(A): (84)

And, if 2(A) > 3(A); then max [2(A); 
2
3(A)=2(A)] = 2(A):
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Finally, we have proved that the conditions that are to be satis�ed are

3(A) < 2(A); (85)

3(A) < �=b <
[2(A) + 3(A)]

2

42(A)
; (86)

where the inequality 3(A) <
[2(A)+3(A)]

2

42(A)
is a consequence of 3(A) < 2(A).

Using (11) and (12), (85) gives

��1�����A1�� < 1; (87)

that can be written

�

�
ln

�


�

�
� ln (A�)

�
+ ln (A�) < 0: (88)

As � > 0; it is straightforward to prove that if one condition among (47) (48)
or (49) is satis�ed, then 2(A) > 3(A): Moreover, we know that in this case
3(A) <

[2(A)+3(A)]
2

42(A)
:

Considering now (86), it can be interpreted as a condition on b that can
be written

42(A)�

[2(A) + 3(A)]
2 < b <

�

3(A)
: (89)

Using (11) and (12), this last condition becomes (50).
Finally, when conditions given in Proposition 2 hold, conditions (68), (77)

and (78) are satis�ed in the limit case when � ! +1: By continuity, they
are satis�ed when � is large enough.
As a last comment, we see that the inequality 3(A) < 2(A) implies

3(A) <
[2(A)+3(A)]

2

42(A)
< 2(A): When (85) and (86) hold, we have

�=b < 2(A); (90)

which is equivalent to the inequality

� > �R; (91)

when � ! +1: Consequently, the allocation (c; d; �) that has been built is
associated with over-accumulation.

Appendix 2: proof of lemma 3.
The �rst part of the lemma is obtained by considering the two static

optimization programs, which are both concave.
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The �rst order conditions for the �rst program are

U 0ct = U
0
dt+1

= U 0mt

F 0Kt+1

�F 0Kt+1
� F 0Lt+1 + yt+1

: (92)

For (yt; yt+1) = (wt; wt+1) and (ct; dt+1;mt) =
�
ct; dt+1;mt

�
; these conditions

are satis�ed, as they correspond to the conditions of the consumer maximiza-
tion program along the competitive equilibrium. The resource constraint is
identical to the budget constraint of the consumer.
The �rst order conditions for the second program are

U 0ct = U 0dt+1 =
U 0mt

�
; (93)

F 0Lt+1 = yt+1: (94)

All these conditions are satis�ed when (yt; yt+1) = (wt; wt+1) and (ct; dt+1;mt) =�
ct; dt+1;mt

�
:

These two optimization programs also make it possible to �nd the follow-
ing properties

v01 (yt; yt+1) = U 0ct and v
0
2 (yt; yt+1) = �U 0ct

mt

F 0Kt+1

; (95)

z01 (yt; yt+1) = U 0ct and z
0
2 (yt; yt+1) = �U 0ct

xt
F 0Kt+1

: (96)

The second result is obtained by using the following properties

v01 (wt+1; wt+2) = U
0
ct+1

�
ct+1; dt+2;mt+1

�
and v02 (wt; wt+1) = �

U 0ct(ct;dt+1;mt)mt

F 0K(Kt+1;Nt+1)
;

z01 (wt+1; wt+2) = U
0
ct+1

�
ct+1; dt+2;mt+1

�
and z02 (wt; wt+1) = �

U 0ct(ct;dt+1;mt)mt

F 0K(Kt+1;Nt+1)
:

(97)
From the de�nition of the sequence �t; the result is proved.�
Appendix 3: proof of Proposition 3.
We separately consider the two cases: � < 1 and � = 1:

First case: � < 1:
For CES production and utility functions, we can calculate the explicit

form of the function z: We can consider the utility function

ln

�
c
��1
�

t + �d
��1
�

t+1 + m
��1
�

t

� �
��1

: (98)

z is de�ned by
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max
(ct;dt+1;mt;xt)

ln

�
c
��1
�

t + �d
��1
�

t+1 + m
��1
�

t

� �
��1

s. t. xtyt+1 = A
h
(yt � ct � �mt)

��1
� + b (xt)

��1
�

i �
��1 � dt+1

(99)

First, we independently consider the maximization with respect to xt (as xt
only appears in the constraint and not in the objective)

max
xt
dt+1 = A

h
(yt � ct � �mt)

��1
� + b (xt)

��1
�

i �
��1 � xtyt+1 (100)

Before solving this program, we note that, as � < 1;

A
h
(yt � ct � �mt)

��1
� + b (xt)

��1
�

i �
��1

< Ab
�

��1xt: (101)

We obtain:
dt+1 <

�
Ab

�
��1 � yt+1

�
xt: (102)

As dt+1 must be positive, however, the condition yt+1 < Ab
�

��1 must be
satis�ed along any feasible trajectory.
When yt+1 < Ab

�
��1 ; the program (100) has an interior solution. We �nd

b (xt)
��1
� =

(yt � ct � �mt)
��1
��

yt+1

Ab
�

��1

���1
� 1

: (103)

Replacing b(xt)
��1
� in the constraint, we obtain

dt+1 = A (yt � ct � �mt)

"
1�

�
yt+1

Ab
�

��1

�1��# 1
1��

; (104)

so that we can also write

ct + �mt + h(yt+1)dt+1 = yt; (105)

with

h(yt+1) = b
�

��1

��
Ab

�
��1

�1��
� (yt+1)1��

� 1
��1

: (106)

It will be useful to keep in mind the following property of the function h

h0(yt+1)yt+1
h(yt+1)

=
(yt+1)

1���
Ab

�
��1

�1��
� (yt+1)1��

: (107)
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It is straightforward to check that the function 1=h(y) is the factor price
frontier that gives the interest factor R with respect to the wage y when
�rms�behavior is competitive.
Secondly, we must consider the program

max
(ct;dt+1;mt)

ln

�
c
��1
�

t + �d
��1
�

t+1 + m
��1
�

t

� �
��1

s. t. ct + �mt + h(yt+1)dt+1 = yt

(108)

The indirect utility associated with this program is by de�nition the func-
tion z

z(yt; yt+1) = ln yt +
1

�� 1 ln
�
1 + ��1�� + ��h(yt+1)

1��� ; (109)

which is additively separable as the sum of a function of yt and a function of
yt+1.
Let us now consider the objective

lim inf
T!+1

TX
t=0

�t [z(yt; yt+1)� v(wt; wt+1)] ; (110)

with the sequence (�t) de�ned by (61). For a CES utility function, we know
from Section 3.3 that wt is constant: 8t � 1; wt = w: As the function z
is additively separable, it is possible to match together the two terms that
depend on yt (8 t � 1)

Z (yt) �
�t�1
�� 1 ln

�
1 + ��1�� + ��h(yt)

1���+ �t ln yt: (111)

We study this function on
�
0; Ab

�
��1

�
:

From the lemma 3, we know that the derivative of this function cancels
out when yt = wt = w for t � 1: This derivative is calculated in using (107)

Z 0 (yt) =
�t�1
yt

8>>>><>>>>:
�t
�t�1

�
��h(yt)

1��

"
(yt)1���

Ab
�

��1
�1��

�(yt)1��

#
1 + ��1�� + ��h(yt)1��

9>>>>=>>>>; : (112)

First, we prove that the function Z has a global maximum on
�
0; Ab

�
��1

�
when yt = wt = w:
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We establish this property in introducing the function

Y (yt) =

h(yt)
1��

"
(yt)1���

Ab
�

��1
�1��

�(yt)1��

#
1 + ��1�� + ��h(yt)1��

; (113)

which is such that

Z 0 (yt) =
�t�1
yt

�
�t
�t�1

� ��Y (yt)
�
: (114)

If the function Y (yt) is strictly increasing, as �t=�t�1 � ��Y (yt) cancels
out when yt = wt = w; we can deduce that Z 0 (yt) < 0 for yt < w and that

Z 0 (yt) > 0 for yt > w: yt = w is the global maximum of Z on
�
0; Ab

�
��1

�
:

To prove that Y (yt) is strictly increasing, we calculate

Y 0(y)

Y (y)
= (1��)h

0(y)

h(y)
+
(1� �)
y

+(1��) y���
Ab

�
��1

�1��
� y1��

� (1� �)��h0(y)h(y)��

1 + ��1�� + ��h(y)1��
:

(115)
Using (107), we have

Y 0(y)

Y (y)
=

�
1 + ��1��

� �
(1� �)y1�� + (1� �)

�
Ab

�
��1

�1���
+ ��h(y)1��(1� �)

�
Ab

�
��1

�1��
y

��
Ab

�
��1

�1��
� y1��

� �
1 + ��1�� + ��h(y)1��

� :

(116)

By assumption, as � < 1; the term ��h(y)1��(1� �)
�
Ab

�
��1

�1��
is positive.

If � < 1; as � < 1 the other term is positive and Y 0(y) > 0:
If � > 1; as y < Ab

�
��1 and � > 1; we obtain

(1� �)y1�� + (1� �)
�
Ab

�
��1

�1��
>
�
Ab

�
��1

�1��
(1� �+ 1� �) : (117)

A su¢ cient condition for obtaining Y 0(y)=Y (y) > 0 is 2� �� � � 0: Finally,
we have proved that if

�+ � � 2; (118)

the function Z has a global maximum on
�
0; Ab

�
��1

�
when yt = wt = w:

Next, we must prove that the objective function is maximum at this point.
This result is achieved by writing
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DT �
TX
t=0

�t [z(yt; yt+1)� v(wt; wt+1)] = (119)

TX
t=0

�t [Z(yt)� Z(w)] +

�T
�� 1

�
ln
�
1 + ��1�� + ��h(yT+1)

1���� ln �1 + ��1�� + ��h(w)1���	 :
As Z(y) reaches a global maximum for y = w; the �rst term is negative

TX
t=0

�t [Z(yt)� Z(w)] � 0: (120)

As h(y) is an increasing function, the second term is a decreasing function
of yT+1: This term is smaller than:

�T
�� 1

�
ln
�
1 + ��1�� + ��h(0)1��

�
� ln

�
1 + ��1�� + ��h(w)1��

�	
� ET :
(121)

Finally, we obtain
DT � ET ; (122)

with
lim

T!+1
ET = 0; (123)

since lim
T!+1

�T = 0:

We can conclude that
lim

T!+1
DT � 0: (124)

Second case: � = 1:
In this case, the production function is a Cobb-Douglas given by (14).

We use the same method as for � < 1: It is easy to check that equation (109)
remains true with a function h(y) de�ned by

h(y) =
y
1��
�

�A
1

1�� (1� �) 1���
: (125)

Equation (114) remains identical, with a function Y (y) de�ned by

Y (y) =
1��
�
h(y)1��

1 + ��1�� + ��h(y)1��
=

1��
��

1 + ��1��
�
h(y)��1 + ��

: (126)
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If � < 1; as h(y) is a (strictly) increasing function, Y (y) is (strictly)
increasing, and the property is proved.
When � = 1; Y (y) is constant. As we know that Z 0(w) = 0; we ob-

tain that Z 0(y) = 0 8y and �nally that Z(y) is constant. Using the same

reasoning as for � < 1; lim inf
T!+1

TP
t=0

�t [z(yt; yt+1)� v(wt; wt+1)] = 0. For yt =

wt; lim inf
T!+1

TP
t=0

�t [v(yt; yt+1)� v(wt; wt+1)] reaches its maximum value and the

property is proved.�
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