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Irreversible Games with Incomplete Information:

The Asymptotic Value

Rida LARAKI ∗

April 1, 2010†

Abstract

Irreversible games are stochastic games in which once the play leaves a state it never
revisits that state. This class includes absorbing games [4]. This paper proves the existence
and a characterization of the asymptotic value for any finite irreversible game with incomplete
information on both sides. This result extends Mertens and Zamir [10] for repeated games
with incomplete information on both sides, and Rosenberg [13] for absorbing games with
incomplete information on one side.

AMS classification: 91A15, 91A20, 93C41, 49J40, 58E35, 45B40, 35B51.

JEL classification: C73, D82.

Keywords: stochastic games, repeated games, incomplete information, asymptotic value,
comparison principle, variational inequalities.

1 Introduction

A stochastic game [14] is a repeated game where the current state is observed by the players and
the state changes from stage to stage according to a transition probability distribution depending
on the current state and on the moves of the players. We consider two player zero sum games
played by players I (the maximizer) and J (the minimizer). The evolution of the game is specified
by a state space Ω, move sets I and J , and a transition probability function Q from I×J×Ω to Ω.
The stage payoff function g is defined from I × J ×K ×L×Ω to R. All sets under consideration
are finite.

The stochastic game is absorbing if only one state ω0 ∈ Ω is non-absorbing, that is Q(i, j, ω)(ω) =
1 for all states ω 6= ω0 and all i and j. More generally, a stochastic game is irreversible if
once the play leaves a state, it never re-visits it in the future. Formally, for every sequence
(it, jt, ωt)t=1,...,T−1, if ω1 6= ω0 and ωT = ω0 then

∏T−1
t=0 q(it, jt, ωt)(ωt+1) = 0.

A stochastic game with incomplete information is played in discrete time as follows. At stage
0, nature chooses k ∈ K according to some probability1 distribution p ∈ ∆(K) and chooses l ∈ L

according to some probability distribution q ∈ ∆(L). Player I privately learns his type k, player
J learns l. An initial state ω1 is given and known to the players. Inductively, at stage t = 1, 2, ...,
knowing the past history of moves and states ht = (ω1, i1, j1, ...., it−1, jt−1, ωt), simultaneously,
player I chooses it ∈ I and player J chooses jt ∈ J . The new state ωt+1 ∈ Ω is drawn according

∗CNRS, Economics Department, Ecole Polytechnique, France. rida.laraki@polytechnique.edu. Part time as-
sociated with Équipe Combinatoire et Optimisation CNRS FRE 3232, Université Pierre et Marie-Curie (Paris
6).

†I thank Guillaume Vigeral, Eilon Solan and Sylvain Sorin their useful comments.
1For a finite set F , ∆(F ) is the set of probability distribution on F .

1

ha
l-0

04
70

32
6,

 v
er

si
on

 1
 - 

6 
Ap

r 2
01

0



to the probability distribution Q(it, jt, ωt)(·). The triplet (it, jt, ωt+1) is publicly announced and
the situation is repeated at stage t + 1. The stage payoff r(t) = g(it, jt, k, l, ωt) is not known to
the players before the end of the game. This description is public knowledge.

Let Ht = Ω × (I × J × Ω)t−1 be the set of public histories up to stage t and H = ∪tHt. A
behavioral strategy σ for player I is a mapping from K ×H to ∆(I) and a behavioral strategy τ

for player J is a mapping from L × H to ∆(J).
We study the discounted game Γλ(p, q, ω1) where the payoff is

∑∞
t=1 λ(1−λ)t−1r(t). It is well

known [17] that this game has a value vλ(p, q, ω1). The objective of this paper is to study the prob-
lems of existence and characterization of the asymptotic value v(p, q, ω1) = limλ→0 vλ(p, q, ω1).

In the deterministic case (Ω is a singleton), the game is reduced to a repeated game with
incomplete information à la Aumann-Maschler [1]. When information is incomplete on one side
(L is a singleton), Aumann and Maschler proved the existence of the asymptotic value and
provided an explicit characterization, the famous v(p) = Cav∆(K)(u)(p) formula2. Mertens and
Zamir [10] extended this result to repeated games with incomplete information on both sides and
provided an elegant system of functional equations that characterizes the asymptotic value, the
famous v(p, q) = Cav∆(K) min(u, v)(p, q) = V ex∆(L) max(u, v)(p, q) system3.

In the complete information case (K and L are singletons), the game is reduced to a stochastic
game à la Shapley. Bewley and Kohlberg [3] proved the existence of the asymptotic value using
semi-algebraic tools.

Few results are known when the repeated game is a stochastic game with incomplete infor-
mation. Sorin [15] and [16] was the first to prove the existence of the asymptotic value v for big
match games with incomplete information on one side, and provided an explicit characterization
for the limit (see the next section for some examples). An operator approach allows Rosenberg
[13] to prove the existence of asymptotic value v for absorbing games with incomplete infor-
mation on one side (without characterization). Rosenberg and Vieille [12] proved the existence
of asymptotic value v for recursive games4 with incomplete information on one side5 (without
characterization).

In the present paper, we follow the variational approach developed in Laraki [6], [7] and [9],
and show that the asymptotic value v exists for any irreversible game with incomplete information
on both sides and is uniquely characterized as the solution of a system of variational inequalities
that extends Mertens-Zamir’s [10] system. In fact, the variational inequalities are necessarily
satisfied by any accumulation point of vλ in any stochastic game with incomplete information.

The sketch of the proof in the variational approach as well as in the operator approach
developed in [11] and [13] is similar to the one used in differential games with fixed duration
to prove the existence and the characterization of the value [2]. One starts by establishing a
dynamic programming principle for some discretization wn of the differential game, shows that
the {wn}n∈N are equi-continuous, and proves that any accumulation point w of wn satisfies two
variational inequalities (i.e. w is an upper and a lower viscosity uniformly continuous solution of
some Hamilton-Jacobi-Belman equation with boundary). A maximum principle then shows that
there is at most one uniformly continuous viscosity solution of the HJB equation.

The main difficulty in this paper is the identification of the “right” variational inequalities in
the class of absorbing games with incomplete information. Once the result is established for this
class, it is easily extended, by induction, to all irreversible games with incomplete information.

2Where u(p) is the value of the non revealing game and Cav∆(K)(u)(·) is the smallest concave function g(·) on
∆(K) greater than u(·).

3Where u(p, q) is the value of the non revealing game and, for each p, V ex∆(L)(u)(·, q) is the greatest convex
function f on ∆(L) smaller than u(·, p) (with respect to the q variable, for each fixed p).

4A stochastic game is recursive if the stage payoff is 0 in all non-absorbing states.
5Sorin [15] and [16] and Rosenberg-Vieille [12] proved more. They show the existence of the uniform maxmin

and minmax and prove that they may differ. Rosenberg and Vieille observed, in their conclusion, that their proof
extends to recursive games with incomplete information on both sides.
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2 Examples

In the following examples, the game is of incomplete information on one side with two possible
types for player I (the row player, the maximizer) and two actions for each player.

The first is a classical example of a repeated game taken from Aumann and Maschler [1]
(chapter 1, section 2).

L R
T 1 0
B 0 0

p

and

L R
T 0 0
B 0 1

p̂

Each matrix represents a type of player I (the row player). Nature selects the left matrix with
probability p and the right matrix with probability p̂ = 1 − p. Player I (but not player J) is
informed. The players then play repeatedly the matrix game that has been selected. The non-
revealing game (in which the players do not use their information or equivalently do not observe
their types) is the matrix game:

L R
T p 0
B 0 p̂

Its value is u(p) = pp̂. Aumann and Maschler’s general result implies that v(p) = Cav(u)(p) = pp̂.
Since in general u is an algebraic function, so is the asymptotic value v = Cav(u).

Sorin [16] slightly changes this game to obtain the following absorbing game with incomplete
information on one side:

L R
T 1∗ 0
B 0∗ 0

p

and

L R
T 0∗ 0
B 0∗ 1

p̂

Here, entries/payoffs with a ∗ are absorbing: they lead to an absorbing state where the payoff
is the one that appears in the entry, regardless of the moves of the players in subsequent stages.
Hence if the payoff is given by the left matrix and at some stage player J plays L and player
I plays T, the game stops and the stage payoffs from that stage on are 1 for player I and −1
for player J. Such an absorbing game, in which one player controls the transition, is called a big

match game. If the informed player controls the transition, the game is called a big match game
of type 1, whereas if the uninformed player controls the transition, it is called a big match game
of type 2. The non-revealing game (in which the informed player does not use his information)
is the following absorbing game with complete information:

L R
T p∗ 0
B 0∗ p̂

It can be shown that its asymptotic value is again u(p) = pp̂ (the proof is not so trivial but not
difficult either). Sorin proved that for every big match of type 2, v(p) = Cav(u)(p) = pp̂.

This result is surprising when compared with the last example of Sorin [15]. Change now the
structure of absorptions to obtain a big match of type 1:

L R
T 1∗ 0∗

B 0 0
p

and

L R
T 0∗ 0∗

B 0 1
p̂

3
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The asymptotic value of the non-revealing game is again u(p) = pp̂ but the asymptotic value
v(p) = p̂(1 − exp(−p

p̂
)) which is not an algebraic function of p.

Sorin provides an explicit characterization of v(p) in all big match games of type 1 as the value
of an auxiliary game in continuous time. However, it is not clear how to extend his characteriza-
tion to all absorbing games (or to all irreversible games), it is not known how this characterization
is related to the Mertens-Zamir system or how the asymptotic value v(·) may be deduced directly
from the value of the non-revealing game u(·). This paper answers the last questions for irre-
versible games with incomplete information on both sides.

3 The Shapley operator

Let F denote the set of real valued functions f on ∆(K)×∆(L)×Ω bounded by C = maxi,j,k,l,ω |g(i, j, k, l, ω)|,
concave in p, convex in q, and Lipschitz on (p, q) with constant 2C for the L1 norm. That is, for
every (p1, q1, p2, q2, ω) :

|f(p1, q1, ω) − f(p1, q2, ω)| ≤ 2C‖p1 − p2‖1 + 2C‖q1 − q2‖1,

where ‖p1 − p2‖1 =
∑

k∈K |pk
1 − pk

2| and ‖q1 − q2‖1 =
∑

l∈L |ql
1 − ql

2|.
The Shapley operator [17] T (λ, ·) associates to a function f in F the function:

T (λ, f)(p, q, ω) = max
x∈∆(I)K

min
y∈∆(J)L

[
λg(x, y, p, q, ω)

+(1 − λ)
∑

i,j,ω̃ x(i)y(j)Q(i, j, ω)(ω̃)f(p(i), q(j), ω̃)

]

= min
y∈∆(J)L

max
x∈∆(I)K

[
λg(x, y, p, q, ω)

+(1 − λ)
∑

i,j,ω̃ x(i)y(j)Q(i, j, ω)(ω̃)f(p(i), q(j), ω̃)

]
,

where g(x, y, p, q, ω) =
∑

i,j,k,l p
kqlxk(i)yl(j)g(k, l, i, j, ω) is the expected stage payoff, x(i) =∑

k∈K pkxk(i) is the total probability that I plays i, y(j) =
∑

l∈L qlyl(j) is the total probability

that J plays j, pk(i) = pkxk(i)
x(i) is the conditional probability that the type of player I is k given

the move i and ql(j) = qlyl(j)
y(j) is the conditional probability that the type of player J is l given

the move j.

Lemma 1 The Shapley operator T (λ, ·) is defined from F to itself. Its unique fixed point is vλ.

Proof. It is well known that T (λ, f) is concave in p and convex in l, bounded by C and that
vλ is its unique fixed point (see [17] and [13]).

The fact that the image of a 2C-Lipschitz function is also 2C-Lipschitz was an open question
in Rosenberg [13]. To prove it, recall that the famous splitting procedure (see for example [17]
proposition 2.3) says that for each α ∈ ∆(I) and each (π(i))i∈I ∈ ∆(K)I if

∑
i∈I α(i)π(i) =

p ∈ ∆(K) then there exists x ∈ ∆(I)K such that α(i) = x(i) =
∑

k∈K pkxk(i) and πk(i) =

pk(i) = pkxk(i)
x(i) . The inverse is, of course, always true. Similarly, for each β ∈ ∆(J) and each

(ρ(j))j∈J ∈ ∆(L)J if
∑

j∈J β(j)ρ(j) = q ∈ ∆(L) then there exists y ∈ ∆(J)L such that β(j) =

y(j) =
∑

l∈L qlyl(j) and ρl(j) = ql(j) = qlyl(j)
y(j) .

Consequently, if Γ(p) = {(α, π) ∈ ∆(I) × ∆(K)I :
∑

i∈I α(i)π(i) = p} and Λ(q) = {(β, ρ) ∈
∆(J) × ∆(L)J :

∑
j∈J β(j)ρ(j) = q} then

T (λ, f)(p, q, ω) = max
(α,π)∈Γ(p)

min
(β,ρ)∈Λ(q)

(
λ
∑

i,j α(i)β(j)g(i, j, π(i), ρ(j), ω)

+(1 − λ)
∑

i,j,ω̃ α(i)β(j)Q(i, j, ω)(ω̃)f(π(i), ρ(j), ω̃)

)

= min
(β,ρ)∈Λ(q)

max
(α,π)∈Γ(p)

(
λ
∑

i,j α(i)β(j)g(i, j, π(i), ρ(j), ω)

+(1 − λ)
∑

i,j,ω̃ α(i)β(j)Q(i, j, ω)(ω̃)f(π(i), ρ(j), ω̃)

)

4
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Let (α1, π1) ∈ Γ(p1) be optimal for the maximizer above at (p1, q1, ω) and let (β2, q2) ∈ Λ(q2)
be optimal for the minimizer at (p2, q2, ω). From the optimal splitting of probabilities lemma 8.4
in Laraki [8], there exists π2 ∈ ∆(K)I such that (α1, π2) ∈ Γ(p2) and

∑

i∈I

α1(i)‖π2(i) − π1(i)‖1 = ‖p2 − p1‖1.

Similarly there is ρ1 ∈ ∆(L)J such that (β2, ρ1) ∈ Λ(q1) and

∑

j∈J

β2(j)‖ρ2(j) − ρ1(j)‖1 = ‖q2 − q1‖1.

Consequently:

T (λ, f)(p1, q1, ω) = min
(β,ρ)∈Λ(q1)

(
λ
∑

i,j α1(i)β(j)g(i, j, π1(i), ρ(j), ω)

+(1 − λ)
∑

i,j,ω̃ α1(i)β(j)Q(i, j, ω)(ω̃)f(π1(i), ρ(j), ω̃)

)

≤
λ
∑

i,j α1(i)β2(j)g(i, j, π1(i), ρ1(j), ω)

+(1 − λ)
∑

i,j,ω̃ α1(i)β2(j)Q(i, j, ω)(ω̃)f(π1(i), ρ1(j), ω̃)

and

T (λ, f)(p2, q2, ω) = max
(α,π)∈Γ(p2)

(
λ
∑

i,j α(i)β2(j)g(i, j, π(i), ρ2(j), ω)

+(1 − λ)
∑

i,j,ω̃ α(i)β2(j)Q(i, j, ω)(ω̃)f(π(i), ρ2(j), ω̃)

)

≥
λ
∑

i,j α1(i)β2(j)g(i, j, π2(i), ρ2(j), ω)

+(1 − λ)
∑

i,j,ω̃ α1(i)β2(j)Q(i, j, ω)(ω̃)f(π2(i), ρ2(j), ω̃)

Consequently:

T (λ, f)(p1, q1, ω) − T (λ, f)(p2, q2, ω)

≤
λ
∑

i,j α1(i)β2(j) (g(i, j, π1(i), ρ1(j), ω) − g(i, j, π2(i), ρ2(j), ω))

+(1 − λ)
∑

i,j,ω̃ α1(i)β2(j)Q(i, j, ω)(ω̃) (f(π1(i), ρ1(j), ω̃) − f(π2(i), ρ2(j), ω̃))

≤
λ2C

∑
i,j α1(i)β2(j) (‖π2(i) − π1(i)‖1 + ‖ρ2(j) − ρ1(j)‖1)

+(1 − λ)2C
∑

i,j,ω̃ α1(i)β2(j)Q(i, j, ω)(ω̃) (‖π2(i) − π1(i)‖1 + ‖ρ2(j) − ρ1(j)‖1)

≤ 2C‖p1 − p2‖1 + 2C‖q1 − q2‖1.

4 The auxiliary absorbing game

From know on (unless specified), the stochastic game with incomplete information is supposed to
be irreversible. We will prove, by induction on the cardinality of Ω that vλ converges uniformly
as λ goes to zero.

An irreversible game is of cardinality M at an initial state ω if the number of stages (including
ω) that may be visited with a positive probability during a play is at most M . When the
cardinality of Ω is 1, the result6 follows from Mertens and Zamir [10].

6Laraki [7] gives a short proof and a new characterization of the Mertens-Zamir’s result [10]. The link between
the two characterizations is established in section 7. The proof in sections 5 and 6 establishes the uniform converges
of the discounted values in all absorbing games with incomplete information, in which the payoff after absorption
is fixed forever. Consequently, our paper does not really need to assume the Mertens-Zamir’s result as given. This
assumption is made only to simplify the induction argument.

5
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Suppose that uniform convergence of the asymptotic values holds for all irreversible games of
cardinality smaller than M and prove it for some fixed irreversible game with cardinality M + 1.
Let ω0 denotes the initial state and that Ω = {ω0, ..., ωM}. Because the game is irreversible, all
states ωm, m = 1, ...,M are of cardinality at most M . By the induction hypothesis, vλ(·, ·, ωm)
converges uniformly to some function v(·, ·, ωm) for all m = 1, ...,M . So, we are reduced to prove
the uniform convergence of vλ(·, ·, ω0).

The family (vλ(·, ·, ω0))0<λ<1 being equi-continuous (by lemma 1), Ascoli’s theorem implies
the existence of λn → 0 such that vλn

(·, ·, ω0) uniformly converges to some function w(·, ·, ω0) ∈ F .
The rest of the paper establishes two variational inequalities that w should satisfy. Then a

maximum principle allows to deduce that at most one function w ∈ F satisfies the two properties.
Consequently, vλ(·, ·, ω0) has exactly one possible accumulation point as λ → 0, and so it converges
uniformly.

Towards this aim, introduce an auxiliary finite zero-sum absorbing game with complete in-
formation (that depends on g, Q and v(·, ·, ωm), m = 1, ...,M). The auxiliary game is played in
discrete time and starts at state ω0. At stage t = 1, 2, ..., simultaneously, player I chooses it ∈ I

and player J chooses jt ∈ J :

• the payoff at stage t is g (it, jt, p, q, ω0);

• with probability Q∗(it, jt, ω0) = 1−Q (it, jt, ω0) (ω0) =
∑M

m=1 Q (it, jt, ω0) (ωm) the game is
absorbed and the payoff in all future stages s > t is

f(it, jt, p, q, ω0) :=
1

Q∗(it, jt, ω0)

M∑

m=1

Q (it, jt, ω0) (ωm)v(p, q, ωm);

• with probability Q (it, jt, ω0) = Q (it, jt, ω0) (ω0) the situation is repeated at step t + 1.

From [4], this absorbing game admits an asymptotic value, denoted u(p, q, ω0). The function u

will play in our characterization a role as the value of the non-revealing game in Aumann-Maschler
[1], Mertens-Zamir [10] and Sorin [15], [16].

Using a variational approach, Laraki [9] proved the existence of the asymptotic value for any
absorbing game and provided an explicit formula for it, which we present now.

Denote by M+(I) = {α = (αi)i∈I : αi ≥ 0} the set of non-negative measures on I. Observe
that ∆(I) ⊂ M+(I). For any i ∈ I and j ∈ J , let g∗(i, j, p, q, ω0) = Q∗(i, j, ω0)f(i, j, p, q, ω0).
This is the absorbing payoff, not conditioned on absorption. For any (α, j) ∈ M+(I) × J and
ϕ : I × J → [−C,C] , ϕ is extended linearly as follows ϕ(α, j) =

∑
i∈I αiϕ(i, j).

Lemma 2 The asymptotic value of the auxiliary absorbing game satisfies:

u(p, q, ω0) = sup
x∈∆(I),α∈M+(I)

min
j∈J

(
g∗(x,j,p,q,ω0)
Q∗(x,j,ω0)

1{Q∗(x,j,ω0)>0}

+ g(x,j,p,q,ω0)+g∗(α,j,p,q,ω0)
Q(x,j,ω0)+Q∗(α,j,ω0)

1{Q∗(x,j,ω0)=0}

)

,

and it is a 2C-Lipschitz function.

Proof. In the formula as stated in theorem 3 in Laraki [9], it is required in the supx∈∆(I),α∈M+(I)

above that for every i ∈ I, xi > 0 ⇒ αi = 0. As Guillaume Vigeral noted7, this is not necessary
since the αi is active in the formula above only when xi = 0.

That u is 2C-Lipschitz could easily be proved directly from the formula or by noting that u

is the uniform limit of the 2C-Lipschitz functions uλ , where uλ is the value of the λ-discounted

7A personal communication.
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auxiliary absorbing game. That uλ is 2C-Lipschitz can be proved as in the lemma 1 (but it is
not needed to use the lemma of optimal splitting of probabilities).

Implicitly, the auxiliary game defines an operator U that associates to each stochastic game
with incomplete information and state space Ω = {ω0, ..., ωM}, each family of 2C-Lipschitz func-
tions v(p, q, ωm), m = 0, ...,M on ∆(K) × ∆(L), and each state ωm ∈ Ω a 2C-Lipschitz function
u(p, q, ωm) = U [w(·, ·, ωk)k 6=m] (p, q, ωm) on ∆(K)×∆(L). This operator will be used to extend the
variational inequalities in the next section to any stochastic game with incomplete information.

5 The variational characterization

Since vλn
(·, ·, ω0), converges uniformly to w(·, ·, ω0) and since by the induction hypothesis vλ(·, ·, ωm)

converges uniformly to v(·, ·, ωm) for all m = 1, ...,M , taking λ converging to zero in the functional
equation vλ = T (λ, vλ) implies the following.

Lemma 3 For any accumulation point w (·, ·, ω0) of vλ(·, ·, ω0) and all p, q:

w(p, q, ω0) = max
x∈∆(I)K

min
y∈∆(J)L

∑

i,j

x(i)y(j)

[
Q(i, j, ω0)(ω0)w(p(i), q(j), ω0)

+
∑M

m=1 Q(i, j, ω0)(ωm)v(p(i), q(j), ωm)

]

= min
y∈∆(J)L

max
x∈∆(I)K

∑

i,j

x(i)y(j)

[
Q(i, j, ω0)(ω0)w(p(i), q(j), ω0)

+
∑M

m=1 Q(i, j, ω0)(ωm)v(p(i), q(j), ωm)

]
.

This defines an operator Φ from F to itself called the reduced Shapley operator.
Let X(0, p, q, ω0, w) ⊆ ∆(I)K be the set of strategies for player I that achieves the maximum

in the first equation and let Y (0, p, q, ω0, w) ⊆ ∆(J)L be the set of strategies for player J that
achieves the minimum in the second equation (in short, the set of optimal strategies in the reduced
zero-sum Shapley game, which has a value since the maxmin and minmax commute).

A strategy x ∈ ∆(I)K of player I is called non-revealing if p(i) = p for all i ∈ I or, equivalently,
if xk does not depend on k. Similarly, a strategy y ∈ ∆(J)L for player J is non-revealing if q(j) = q

for all j ∈ J or, equivalently, if yl does not depend on l. A subset of strategies is non-revealing if
all its elements are non-revealing.

Lemma 4 For any accumulation point w of vλ(·, ·, ω0) and all p, q:

• P1: If X(0, p, q, ω0, w) is non-revealing then w(p, q, ω0) ≤ u(p, q, ω0).

• P2: If Y (0, p, q, ω0, w) is non-revealing then w(p, q, ω0) ≥ u(p, q, ω0).

The idea of the proof is as follows. If all elements of X(0, p, q, ω0, w) are non-revealing then
asymptotically, player I should not use his information as long as the state is ω0. Since player
J has always the option to ignore his information, the asymptotic payoff of player I should not
exceed the asymptotic payoff of the “non-revealing game”.

The next section shows there is at most one fixed point of the reduced Shapley operator
that satisfies the necessary optimality conditions (implying uniqueness). When Ω is reduced to a
singleton (the game is deterministic), the conditions are shown to be equivalent to the Mertens-
Zamir [10] system of functional equations.

Proof. Let p and q be such that all elements of X(0, p, q, ω0, w) are non-revealing.
Let xn be optimal in T (λn, vλn

)(p, q, ω0) for player I (the maximizer) and let j be any non-
revealing pure action of player J . Thus:

vλn
(p, q, ω0) ≤ λng(xn, j, p, q, ω0)

+ (1 − λn)
∑

i∈I

xn(i)

[
Q(i, j, ω0)(ω0)vλn

(pn(i), q, ω0)

+
∑M

m=1 Q(i, j, ω0)(ωm)vλn
(pn(i), q, ωm)

]
.
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Since ∆(I)K is compact, without loss of generality one can assume that xn converges to some
x. Since all elements of X(0, p, q, ω0, w) are non-revealing, x should be non-revealing: actually by
the Berge maximum theorem, the set of optimal strategies is upper-semi-continuous as λ → 0.
Consequently, pn(i) → p for all i ∈ I.

Case 1: Q∗(x, j, ω0) > 0.
Recall that Q∗(x, j, ω0) = 1 − Q(x, j, ω0)(ω0) =

∑M
m=1 Q(x, j, ω0)(ωm) > 0. Thus, letting

λn → 0 in the formula above implies:

w(p, q, ω0) ≤

∑M
m=1 Q(x, j, ω0)(ωm)v(p, q, ωm)

1 − Q(x, j, ω0)(ω0)

=
g∗(x, j, p, q, ω0)

Q∗(x, j, ω0)
.

Case 2: Q∗(x, j, ω0) = 0.
Jensen’s inequality implies that

∑
i∈I xn(i)vλn

(pn(i), q, ω0) ≤ vλn
(p, q, ω0). Since Q(i, j, ω0)(ω0) =

1 −
∑M

m=1 Q(i, j, ω0)(ωm), one deduces that:

λnvλn
(p, q, ω0) + (1 − λn)

∑

i

xn(i)
M∑

m=1

Q(i, j, ωm)(ωm)vλn
(pn(i), q, ω0)

≤ λng(xn, j, p, q, ω0) + (1 − λn)
∑

i∈I

xn(i)

M∑

m=1

Q(i, j, ω0)(ωm)vλn
(pn(i), q, ωm).

Let αn =
(

(1−λn)xn(i)
λn

)

i∈I
∈ M+(I). Consequently:

vλn
(p, q, ω0) +

∑

i

αn(i)

M∑

m=1

Q(i, j, ωm)(ωm)vλn
(pn(i), q, ω0)

≤ g(xn, j, p, q, ω0) +
∑

i∈I

αn(i)

M∑

m=1

Q(i, j, ω0)(ωm)vλn
(pn(i), q, ωm).

thus, after normalizing one gets:

vλn
(p, q, ω0) +

∑
i αn(i)

∑M
m=1 Q(i, j, ωm)(ωm)vλn

(pn(i), q, ω0)

1 +
∑

i αn(i)
∑M

m=1 Q(i, j, ωm)(ωm)

≤
g(xn, j, p, q, ω0) +

∑
i∈I αn(i)

∑M
m=1 Q(i, j, ω0)(ωm)vλn

(pn(i), q, ωm)

1 +
∑

i αn(i)
∑M

m=1 Q(i, j, ωm)(ωm)
.

Take a subsequence such that for all j ∈ J such that Q∗(x, j, ω0) = 0, the left and right
hand terms converge (both are bounded since normalized). The left hand term is a convex
combination of values that converge to w(p, q, ω0). Since g(xn, j, p, q) converges to g(x, j, p, q)
and vλn

(pn(i), q, ωm) to v(p, q, ωm), one deduces that for each ǫ > 0, there is α such that for all
j such that Q∗(x, j, ω0) = 0 one has:

w(p, q, ω0) ≤
g(x, j, p, q, ω0) +

∑
i∈I α(i)

∑M
m=1 Q(i, j, ω0)(ωm)v(p, q, ωm)

1 +
∑

i α(i)
∑M

m=1 Q(i, j, ωm)(ωm)
+ ǫ,

since Q(x, j, ω0) = 1 − Q∗(x, j, ω0) = 1, one deduces:

w(p, q, ω0) ≤
g(x, j, p, q, ω0) + g∗(α, j, p, q, ω0)

Q(x, j, ω0) + Q∗(α, j, ω0)
+ ǫ.
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Consequently, w(p, q, ω0) ≤ u(p, q, ω0). By symmetry8, one deduces that if Y (0, p, q, ω0, w) is
non-revealing then w(p, q, ω0) ≥ u(p, q, ω0).

Observe that to each stochastic game with incomplete information and state space Ω =
{ω0, ..., ωM} and each family of 2C-Lipschitz functions w(·, ·, ωm), m = 0, ...,M on ∆(K)×∆(L)
and each state ωm ∈ Ω, a reduced Shapley operator Φ

[
w(·, ·, ωk)

k 6=m

]
could be defined as follows:

Φ
[
w(·, ·, ωk)

k 6=m

]
(f)(p, q)

= max
x∈∆(I)K

min
y∈∆(J)L

∑

i,j

x(i)y(j)



Q(i, j, ωm)(ωm)f(p(i), q(j)) +
∑

k 6=m

Q(i, j, ωm)(ωk)w(p(i), q(j), ωk)





in which the max and the min permute (the game has a value). This will be used to extend the
variational characterization to any stochastic game with incomplete information.

6 The maximum principle

The following lemma extends the one in Laraki [7], first established in a different form by Mertens
and Zamir [10].

Lemma 5 Let w1 and w2 be two fixed points of Φ in F and suppose that:

• If X(0, p, q, ω0, w1) is non-revealing then w1(p, q) ≤ u(p, q, ω0).

• If Y (0, p, q, ω0, w2) is non-revealing then w2(p, q) ≥ u(p, q, ω0).

Then w1 ≤ w2.

Proof. By contradiction, suppose maxp∈∆(K),q∈∆(L) w1(p, q) − w2(p, q) = δ > 0.
Let C = arg maxp∈∆(K),q∈∆(L) w1(p, q) − w2(p, q). This is a compact set. Let (p0, q0) be an

extreme point of co(C), the convex hull of C. By Caratheodory’s theorem, this is also an element
of C. Let x ∈ X(0, p0, q0, ω0, w1) and y ∈ Y (0, p0, q0, ω0, w2). Thus:

δ = w1(p0, q0) − w2(p0, q0)

≤
∑

i,j

x(i)y(j) [Q(i, j, ω0)(ω0)(w1(p(i), q(j)) − w2(p(i), q(j)))]

≤ δ
∑

i,j

x(i)y(j) [Q(i, j, ω0)(ω0)]

Consequently,
∑

i,j x(i)y(j)Q(i, j, ω0)(ω0) = 1 so that for all i and j such that x(i)y(j) > 0,
one should have Q(i, j, ω0)(ω0) = 1, that is, when the players play x and y respectively, then the
game stays in the state ω0 with probability 1. Hence,

δ ≤
∑

i,j

x(i)y(j)(w1(p(i), q(j)) − w2(p(i), q(j)))

≤
∑

i,j

x(i)y(j)δ

= δ

8Observe that in that case, one should use a different formula for u in which player J minimizes over y and β

and player I maximizes over i. Since there is a unique asymptotic value, both formulas for u must coincide (which
is not obvious from their definition).
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Consequently, for all i and j such that x(i)y(j) > 0, (p(i), q(j)) ∈ C. Since
∑

i,j x(i)y(j)(p(i), p(j)) =
(p0, q0) and since (p0, q0) be an extreme point of co(C), (p(i), p(j)) = (p0, q0) for all i, j so that
x and y must be non-revealing. Thus, w1(p0, q0) ≤ u(p0, q0, ω0) and w2(p0, q0) ≥ u(p0, q0, ω0),
implying that w1(p0, q0) − w2(p0, q0) ≤ 0, a contradiction.

Consequently:

Theorem 6 vλ(·, ·, ω0) converges uniformly to the unique fixed point v of Φ that satisfies the

variational inequalities P1 and P2.

To compute vλ for all ω, one should proceed recursively. Draw a tree from the initial state ω0.
The successors of ω0 are all the ωm ∈ Ω that may be reached with a positive probability from ω0

and so one. One then uses the characterization to compute the functions v(·, ·, ω) by backward
induction from ω at the end of the tree to the top.

Recall that when the game is of incomplete information on one side, the existence of the
asymptotic value is already known from Rosenberg [13] for absorbing games (and so, by induction,
for irreversible games).

7 The Mertens-Zamir system

The game is controllable by player I at ω0 if there is i ∈ I such that for every j ∈ J , the game
remains at ω0 with probability 1 (Q(i, j, ω0)(ω0) = 1). A similar definition holds for player J.

For a bounded real valued function f on ∆(K), Cav∆(K)(f) is the smallest concave function
greater than f. Similarly, for a bounded real valued function h on ∆(L), V ex∆(L)(h) is the greatest
convex function on ∆(L) smaller than h.

Theorem 7 If the game is controllable by J then v(p, q, ω0) = Cavp∈∆(K) [min(u, v)] (p, q, ω0)
and if it is controllable by player I then v(p, q, ω0) = V exq∈∆(L) [max(u, v)] (p, q, , ω0).

Consequently, if the game is controllable by both players (as in the deterministic case studied
in [10]), v is the solution of the Mertens-Zamir system with respect to u.

Proof. Suppose player J controls the game. Let us show that:

• P1’ : for all (p0, q0), if p0 is an extreme point of the epigraph of p → v(p, q0, ω0) then
v(p0, q0, ω0) ≤ u(p0, q0, ω0).

Since v satisfies P1, it is sufficient to show that X(0, p, q, ω0, v) contains only non-revealing
strategies. Let x ∈ X(0, p, q, ω0, v) let j ∈ J such that for all i, Q(i, j, ω0)(ω0) = 1. Then:

v(p0, q0, ω0)) = min
y∈∆(J)L

∑

i,j

x(i)y(j)

[

Q(i, j, ω0)(ω0)v(p(i), q(j), ω0) +

M∑

m=1

Q(i, j, ω0)(ωm)v(p(i), q(j), ωm)

]

≤ x(i)(ω0)v(p(i), q, ω0).

Since p0 is an extreme point of the epigraph of p → v(p, q0, ω0), one should have p(i) = p for
every i, that is x should be non-revealing. Consequently, v(p0, q0, ω0) ≤ u(p0, q0, ω0) and so v

satisfies P1’. From Laraki’s [7] characterization of the Mertens-Zamir system, a function v(·, ·, ω0)
satisfies P1’ if and only if v(p, q, ω0) = Cav∆(K) [min(u, v)] (p, q, ω0). This characterization has
also been established independently by Rosenberg and Sorin [11].

This extends a similar result in Sorin [16] when the game is a big match of type 2 (as in
example 2). Example 3 shows that the Cav formula does not always hold if player J does
not control the game. The variational characterization shows that big match games and more
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generally in absorbing games in which the game stops after absorption, the asymptotic value v

is a function of the value of the non-revealing game u in a subtle way where the reduced shapley
operator plays an important role. This is not obvious from Sorin’s characterization in big match
games of type 1.

8 Extensions

We are working to prove that the values of the finitely repeated games vn uniformly converges,
as the length of the game n goes to infinity, to the same limit. The proof needs the introduction
of other somehow complex technics.

An interesting open question is to establish the existence and the characterization of the
uniform maxmin and minmax. Both exist and may differ when the game is deterministic with
incomplete information on both sides [1], when information is one side incomplete in (1) big
match games (Sorin [15], [16]) and (2) recursive games (Rosenberg and Vieille [12]).

Conclude the paper by remarking that the variational characterization is a necessary condition
that any accumulations points of any stochastic game with (or without) incomplete information
must satisfy.

Corollary 8 In any stochastic game with incomplete information, if (w(·, ·, ωm))m=0,...,M is an

accumulation point of the equicontinuous family (vλ(·, ·, ωm))m=0,...,M then for each ωm ∈ Ω,

w(·, ·, ωm) is the unique function that satisfies P1 and P2 with with respect to u(p, q, ωm) =
U [w(·, ·, ωk)k 6=m] (p, q, ωm) and the reduced Shapley operator Φ

[
w(·, ·, ωk)

k 6=m

]
.

One can easily construct a one player stochastic game of complete information in which this
necessary condition is not sufficient to characterize the asymptotic value (consider one action at
each state and two states where the transition goes deterministically for one state to the other).
The condition may however be sufficient in many games (as irreversible games) and has the merit
to explain how information is optimally used. It also shows that absorbing games may play an
important role in general stochastic games with incomplete information (an idea already known
[5]). The characterization implies that if v exists in a stochastic game (which is conjectured in
all finite stochastic games with incomplete information) then, asymptotically, players must play
at sequence of stages where the state is fixed as if they were in an auxiliary absorbing game
with incomplete information. Moreover, if at some stage t they are at state ωt and if the set
X(0, pt, qt, v, ωt) is non-revealing then player I must not use asymptotically his information at all
and should play as if he was in the auxiliary absorbing game, until a new state is reached. This
intuition may perhaps be helpful in proving the conjecture.
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