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Abstract

This paper presents a 2-regime SETAR model with different long-
memory processes in both regimes. We briefly present the memory
properties of this model and propose an estimation method. Such a
process is applied to the absolute and squared returns of five stock in-
dices. A comparison with simple FARIMA models is made using some
forecastibility criteria. Our empirical results suggest that our model
offers an interesting alternative competing framework to describe the
persistent dynamics in modeling the returns.
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∗ERUDITE, Université Paris 12 and GREQAM, Centre de la Vieille Charité, 2 rue de
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1 Introduction

The changing persistence property in the volatility of financial time series
has recently emerged in the literature as a new agenda of research. Several
approaches have been proposed that include multiple factor models (Gallant,
Hsu and Tauchen (1999)), models with transitory and permanent components
(Andersen et al. (2003)) and Markov regime switching stochastic volatility
models (Hwang, Satchell and Valls (2004). In this paper, we propose a
model that extends the SETAR process proposed by Tong and Lim (1980) by
introducing a long-memory dynamics. More specifically, we consider a two-
regime SETAR model where both regimes are characterized by a fractional
white noise: (

(1−B)d1Xt = ε
(1)
t if Xt−1 ≤ c : regime 1

(1−B)d2Xt = ε
(2)
t if Xt−1 > c : regime 2,

(1)

where di ∈ (0, 1/2), i = 1, 2, are fractional difference parameters, c is a

threshold parameter, ε
(i)
t , i = 1, 2, are strong white noises with finite variances

and B is the backward shift operator. This model includes the following sub-
model as a particular case:(

Xt = ε
(1)
t if Xt−1 ≤ c : regime 1

(1−B)dXt = ε
(2)
t if Xt−1 > c : regime 2,

(2)

where the persistent dynamics characterizes one regime only. This sub-model
have been studied by Dufrénot, Guégan and Péguin-Feissolle (2005a, 2005b).
We extend this previous study by examining whether the mixed evidence of
asymmetry and long-memory still holds in a more general case. Models
such as (1) and (2) have several advantages over some other existing models
recently proposed in the empirical literature. Caporale and Gil-Alana (2004)
use the following model:

Xt = f(zt,Θ) + εt, (1−B)dεt = υt, (3)

where f is a nonlinear function (in the variables, not in the parameters),
zt is a vector of variables, Θ is a set of unknown parameters and υt is a
white noise process. In their paper, these authors consider a STAR model
as their function f . One caveat of their model comes from the fact that
nonlinearity and long-memory enter this equation additively. Therefore, one
avoids interactions between the parameters of the nonlinear function and the
fractional parameter. In our model, the time-varying dynamics of the long-
memory parameter is caused by changing regimes (therefore by the value
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of the parameter c). van Djik, Franses and Paap (2002) introduce a model
where the values of the nonlinear parameters and the fractional parameter
are determined jointly:

(1−B)dXt =

"
pX
i=1

α1i (1−B)dXt−i

#
F (zt−l,Θ) + (4)"

pX
i=1

α2i (1−B)dXt−i

#
[1− F (zt−l,Θ)] + εt,

where F is the logistic function, zt is a transition variable and εt is a white
noise process. This can be considered as a nonlinear transformation of a
long-memory process. If we assume that zt−l = Xt−1, p = 1 and

F (zt−l,Θ) =

½
1 if zt−l ≤ c
0 otherwise

,

then (4) is written:

Yt =

½
α11Yt−1 + εt if Xt−1 ≤ c
α21Yt−1 + εt if Xt−1 > c

, Yt = (1−B)dXt. (5)

This is a SETAR modelling of a fractional white noise. This model has
been successfully used to capture the persistent and asymmetric dynamics of
the unemployment rate, but it is not convenient for the study of the changing
degree of persistence in the volatility of financial time series: indeed, the
fractional parameter is assumed to be the same in both regimes. Our model
allows more flexibility by considering different values of d on different states.
We consider here the simple case of fractional white noises in each regime.
The paper is organized as follows. Section 2 presents some properties of

the model. In Section 3, we present results that successfully match the em-
pirical observations of five daily stock indices; we briefly give some economic
intuitions to our results. Finally, Section 4 concludes the paper.

2 Some properties of the model, estimation

and prediction

Our definition of long-memory follows Granger (1980): a long-memory be-
havior is detected whenever the autocorrelation function of a process shows
a slow decrease towards 0. More precisely, we say that a stationary process
(Xt)t, with an autocovariance function γX , is long-memory if, ∀t and ∀τ ,

γX(τ) ∼ C(d)τ 2d−1 as τ →∞, (6)
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where 0 < d < 1/2 and C(d) is a constant which depends only on d. Under

the assumption that ε
(i)
t , i = 1, 2, are strong white noises with finite variances,

model (1) is locally (in each regime) and globally stationary and invertible.
Its autocorrelation function, γX(τ), is written as:

γX(τ) = C(τ , d1)N1(c) + C(τ , d2)N2(c), (7)

where, for i = 1, 2,

C(τ , di) =
Γ(1− 2di)Γ(τ + di)

Γ(di)Γ(1− di)Γ(τ + 1− di)
. (8)

N1(c) and N2(c) are the percentages of observations, respectively in regime
1 and in regime 2, and Γ is the Gamma Function. They are not pre-defined,
but depends upon the threshold parameter c. The theoretical autocorrelation
function is thus a mixture of the autocorrelations of the long-memory models
in both regimes. It can be shown, using simulations, that γX(τ) exhibits a
variety of decay rates (fast to very slow) according to the values of c (see
Dufrénot, Guégan and Péguin-Feissolle (2003) for the case where one regime
is a short-memory).
Even in a simple formulation such as ours, the estimation of the parame-

ters d1, d2 and c is more difficult than in the standard case of ARFIMAmodels
or SETAR models. Ideally, one would like to apply here methods based on
maximum likelihood approach (the Whittle estimator), but this is not fea-
sible because, as in the standard SETAR model, the log-likelihood function
is not continuously differentiable with respect to the threshold parameters.
In the standard SETAR modeling, the estimation methods are generally se-
quential (see Tong (1990), Tsay (1989) or Hansen (1997 and 2000) among
others); nevertheless, some recent papers try to develop different methods in
order to make a joint estimation of the parameters (by using some factoriza-
tions as in Coakley, Fuertes and Pérez (2003), Bayesian method as in So and
Chen ( 2003) or genetic algorithm as in Wu and Chang (2002)). The trans-
position of these methods to our case is, however, not feasible because of the
presence of the fractional parameters in the regimes. We can neither apply
the estimation procedure proposed for nonlinear long-memory model such as
in van Dijk, Franses and Paap (2002)’s model because of the discontinuity
of the two regimes characterizing the model given by (1). The approach we
adopt here is very similar in spirit to the methodology suggested by Tsay
(1989). This amounts to a) determine a plausible value for the threshold
parameter1, and b) estimate the other parameters of the model conditionally

1In his paper, Tsay (1989) used a recursive-based regression, which was adapted to
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on this threshold value (see Dufrénot, Guégan and Péguin-Feissolle (2005a
and 2005b)).

Estimation of the long-memory SETAR model

The different steps used to estimate the model are thus the following:

• Estimate the value of the threshold parameter c (the procedure is de-
scribed below).

• Separate the observations in two sub-groups according to the estimated
value of c and deduce N1(c), N2(c).

• For each sub-group, estimate the fractional parameter. The estima-
tion of the fractional parameters is based on the GPH log-periodogram
approach, initially proposed by Geweke and Porter-Hudak (1983) and
refined by Robinson (1995). More precisely, in the general case of a
long-memory parameter d, we denote I(ωj) the sample periodogram at
the jth Fourier frequency, where ωj = 2πj/T , j = 1, 2, ..., [T/2]. The
fractional parameter is based on the following regression:

log [I(ωj)] = a+ b log(ωj) + εj, (9)

where j = 1, ...,m and bd = −bb/2. The t-ratios are computed using
both the estimated and the theoretical standard errors π(24m)−1/2 (we
choose m = T 0.8 and use all of the first Fourier frequencies.

Locating the threshold parameter

A crucial point concerns the step where the parameter c has to be es-
timated. We first construct the time series ( eXt)t of arranged observations
according to the decreasing values of Xt−1 and then proceed as follows:

1. One considers a set of s1 initial observations of ( eXt)t and estimate the
long-memory parameter and the corresponding t− ratio: ts1 .

2. The vector ( eXt)t is then incremented in such a way to contain s2, s3,
..., sn observations; new long-memory parameters and their t − ratios
are computed: ts2 , ts3 ,... , tsn (in the applications, we add one obser-
vation: sj = sj−1 + 1 for all j).

standard short-memory SETARmodels. Because of the presence of a long-memory regime,
the method used here to locate the threshold parameter is different and is explained in
the following paragraphs.
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3. Consider the set of estimated t-ratios {ts1, ts2 , ts3, ..., tsn}. One tests
for the presence of a structural break et in the sequence of t-ratios. A
simple way to do this is to use a standard Chow test. The series of
t-ratios is regressed on a linear time trend, using incremented dummy
variables: for t = 1, 2, . . . , n

tst = (α+ βDt) + (γ + δDt)t+ ut, (10)

where ut is a sequence of iid random variables and

Dt =

½
1 if t ≤ et
0 otherwise.

We test the null hypothesis H0 : β = δ = 0 against the alternative
β 6= 0 or γ 6= 0. The constant term is omitted if we only want to
test changes in the slope. The test is implemented by considering dif-
ferent values of et and finally one retains the value yielding the lowest
p-value. Instead of using the Chow test, one can also compute the
sum of squared residuals corresponding to the equation and select the
t-ratio (and thus the threshold value) yielding the lowest sum.

Forecasts for a SETAR model

To make forecast with a SETAR model stays until now an open problem.
Some works have been done in a Gaussian context. Here, we assume that
the observations are explained by a process such that (1). Say, we assume
that (Xt)t is a linear autoregression within a regime, but may move between
regimes depending on the values taken by a lag of Xt, say Xt−1. Then, in
each regime, (Xt)t can be rewritten as:

(I −B)diXt = εt (11)

or

Xt = diXt−1 +
di(1− di)

2
Xt−2 + ...+

di(1− di)...(k − di − 1)
k!

Xt−k + ...+ εt

with i = 1, 2. Then we write the model (11) as:

Xt =
∞X
k=1

πi,kXt−k + εt (12)
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with

πi,k =
Γ (k − di)

Γ (k + 1)Γ (−di)
.

Assume now that we observe (X1, · · · ,Xn) and denote In the σ−algebra
generated by (Xs, s ≤ n). We will denote respectively by I1,n and I2,n the
σ−algebra generated by the observations which belong to the regime one or
to the regime two. At time n, for an horizon k, the forecasts are respectively
equal to (using equation (12)):

bX1,n+k = E [Xn+k |I1,n ] = ∞X
j=1

π1,j bX1,n+k−j, (13)

for regime 1 and

bX2,n+k = E [Xn+k |I2,n ] = ∞X
j=1

π2,j bX2,n+k−j, (14)

for regime 2. Then, the forecast X̂n+k is given by:

X̂n+k = X̂1,n+k + X̂2,n+k, (15)

for k = 2, · · · . We remark in equations (13) and (14) that we need to use an
infinite sum, and in practice we will truncate this sum for a large N. Thus
we get an ”approximation” of the true forecast.

3 Application to absolute and squared returns

To see how the model matches the empirical data, we consider the absolute
and squared returns of five daily stocks indices over the period 01/04/1981 to
01/18/2002: DAX, FSTE 100, Hang Seng, Nikkei 225 and S&P 500. These
data were used by Bhardwaj and Swanson (2005), who applied ARFIMA
models to the series and found that the latter frequently outperform lin-
ear models in terms of prediction. In their paper, the authors suggested,
as an interesting extension to their work, to see whether nonlinear models
with regime-switching or thresholds would perform better than the ARFIMA
models. We consider the two-regime SETAR model as an alternative to the
ARFIMA model. Tables 1 and 2 report the estimates for respectively the ab-
solute and squared returns on the whole period. As observed, we successfully
detect different orders of fractional integration in each regime, for a majority
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of cases. In one case (Hang Seng in table 2), we retrieve the sub-model (2)
with a white noise dynamics in one regime. We also find evidence of a pos-
sible dynamics with a nonstationary long-memory dynamics in one regime
(absolute returns for the FTSE 100).
The finding of regimes of volatility with different orders of integration is

in line with several economic findings in the behavioural finance literature.
A first possible explanation lies in the interacting behaviour of a diversity
of agents in the financial markets. Multi-agent microeconomic models, with
interactions between noise traders and fundamentalists and showing a ”herd-
ing mechanism”, have been proposed in the literature, that are capable of
reproducing statistical properties in accordance with the empirical finding
of changing volatility and long-memory (see, Lux and Marchesi (2000), Kir-
man and Teyssìere (2002), Iori (2002), Alfarano and Lux (2002)). What
these models suggest is that changing strategy configurations (whether or
not the market is dominated by a given category of agents) generate changes
in both the burst of activity (thereby implying variations in the volatility)
and in the degree of friction of the markets (frictions explain the presence
of long-memory in volatility). A second justification to the evidence of a
joint switching and long-memory dynamics in the absolute and squared re-
turns may be the presence of multiple attractors in volatility clustering, with
occasional or recurrent switches between these attractors. In our case, the at-
tractors are characterized by different states with specific degree of volatility
and long-memory. Such a phenomenon is viewed as a sign of ”intermittency”
in volatility clustering (for an illustration, see Gaunersdorfer, Hommes and
Wagener (2001)).
We use the model to compute out-of-sample dynamic predictions on the

last three months (60 observations) and evaluate the prediction accuracy us-
ing the asymptotic test defined in Diebold and Mariano (1995). Therefore,
we estimate our SETAR long-memory model and an ARFIMA model on a
shorter period: the whole period excluding the last three months. We give in
tables 3 and 4 the new estimation results: they are not fundamentally differ-
ent from the results on the whole period, except in the case of the Nikkei 225
where the regimes are very different, showing an instability of the behavior
of the absolute and squared returns of this series. In table 5, we report the
p-values of the test of predictive accuracy of our model versus an ARFIMA
model. We give only the cases where there exists a significant difference of
the predictive accuracy for the different models; in the other cases, the mod-
els do not give significantly different prediction performance. Therefore, the
numbers in bold correspond to the cases where the predictions of the SETAR
long-memory model are better than those of a ARFIMA model: the number
n indicates the percentage of points for which the residuals of our model
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are inferior to those of the standard long memory model. As observed, the
two-regime SETAR model outperforms the ARFIMA model in 40% of the
cases (see the cases where n is higher than 50%).

4 Conclusion

This paper has proposed a threshold model that accounts for both the regime-
switching and long-memory dynamics of volatility. Our approach introduces
a fractional component in a two-regime SETAR model. The model matches
the empirical data and reveals the presence of two distinct long-memory
regimes in the volatility of five stock indices. The results are in line with
some economic intuitions provided by the literature on behavioural finance.
We envisage two extensions to the paper. Firstly, it would be interesting
to compare the performance of two types of regime-switching long-memory
models: a model where the changing dynamics is described by a Markov
switching process and another by a SETAR model. As one knows, a key
difference between these processes comes from the nature of the switching
process (stochastic in the case of Markov switching models and determin-
istic in the case of the threshold models). Whether or not the nature of
the switching dynamics affects the long-memory dynamics is an interesting
question. Secondly, the model can be applied directly to GARCH family
processes, for instance by estimating a two-regime FI-GARCH model with
different fractional parameters.
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Table 1. Estimation of parameters for |Rt|
on the whole period

DAX FTSE 100 Hang Seng Nikkei 225 S&P 500

N 5311 4581 5300 5577 5559bd 0.3134 0.3281 0.2552 0.2887 0.2508
t-ratio

(estimated)
(15.61) (14.72) (12.08) (14.16) (12.04)

t-ratio
(theoretical)

(15.10) (14.90) (12.28) (14.18) (12.31)bc 0.0239 0.0206 0.0400 0.0119 0.0126
N1 5019 4367 5100 4300 4688bd1 0.2499 0.2313 0.2215 0.2914 0.1979

t-ratio
(estimated)

(11.44) (9.16) (9.81) (12.38) (9.18)

t-ratio
(theoretical)

(11.77) (10.30) (10.50) (12.90) (9.07)

N2 292 214 200 1277 871bd2 0.1900 0.5167 0.1775 0.2010 0.2865
t-ratio

(estimated)
(2.88) (6.06) (1.93) (5.34) (7.07)

t-ratio
(theoretical)

(2.86) (6.89) (2.30) (5.47) (6.70)

model (1) (1) (1) (1) (1)

Note: The change point in the t-ratios was obtained using the method based on the

Chow test. All the estimations are made with GPH method. bd refers to the estimated
fractional parameter andN to the number of observations of the whole sample; bd1 and bd2
refer to the estimated fractional parameter and N1 and N2 the number of observations,
respectively in regime 1 and regime 2. The t-ratio must be compared 1.96 (corresponding

to the critical value at the 5% level of significance); a non-significant parameter indicates

that the volatility is driven by a white noise process (and is thus unpredictable). Con-

versely, a significant parameter means that the volatility exhibit a long-memory dynamics

therefore yielding to a high predictability. The row ”model” shows the corresponding

adequate model (1) or (2).
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Table 2. Estimation of parameters for R2t
on the whole period

DAX FTSE 100 Hang Seng Nikkei 225 S&P 500

N 5311 4581 5300 5577 5559bd 0.2576 0.2397 0.0634 0.1834 0.1582
t-ratio

(estimated)
(12.57) (10.88) (4.45) (9.55) (20.83)

t-ratio
(theoretical)

(12.41) (10.88) (3.05) (9.01) (7.76)bc 0.0006 0.0001 0.0015 0.0000 0.0001
N1 5058 3691 5082 2531 4621bd1 0.1819 0.1778 0.1372 0.2194 0.1817

t-ratio
(estimated)

(8.79) (8.41) (7.40) (7.61) (7.63)

t-ratio
(theoretical)

(8.59) (7.40) (6.49) (7.86) (8.28)

N2 253 890 218 3046 938bd2 0.1924 0.2594 0.0160 0.1642 0.1412
t-ratio

(estimated)
(2.45) (6.93) (0.53) (7.07) (12.54)

t-ratio
(theoretical)

(2.74) (6.11) (0.21) (6.33) (3.40)

model (1) (1) (2) (1) (1)

Note: see note of table 2.
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Table 3. Estimation of parameters for |Rt| on the whole
period excluding the last three months

DAX FTSE 100 Hang Seng Nikkei 225 S&P 500

N 5251 4521 5240 5517 5499bd 0.3116 0.3243 0.2601 0.2903 0.2594
t-ratio

(estimated)
(14.66) (13.61) (12.30) (13.59) (12.17)

t-ratio
(theoretical)

(14.95) (14.66) (12.47) (14.20) (12.68)bc 0.0241 0.0200 0.0430 0.0035 0.0114
N1 4975 4294 5085 1879 4473bd1 0.2727 0.2468 0.2306 0.2331 0.2093

t-ratio
(estimated)

(12.78) (10.90) (10.17) (7.54) (9.13)

t-ratio
(theoretical)

(12.80) (10.92) (10.92) (7.41) (9.42)

N2 276 227 155 3638 1026bd2 0.2547 0.4393 0.2155 0.3162 0.2590
t-ratio

(estimated)
(3.53) (5.53) (2.69) (13.33) (8.06)

t-ratio
(theoretical)

(3.76) (6.00) (2.52) (13.10) (6.46)

model (1) (1) (1) (1) (1)

Note: see note of table 2.
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Table 4. Estimation of parameters for R2t on the whole
period excluding the last three months

DAX FTSE 100 Hang Seng Nikkei 225 S&P 500

N 5251 4521 5240 5517 5499bd 0.2400 0.2436 0.0622 0.1895 0.1532
t-ratio

(estimated)
(11.15) (10.79) (4.67) (9.80) (20.41)

t-ratio
(theoretical)

(11.51) (11.01) (2.98) (9.27) (7.49)bc 0.0002 0.0001 0.0015 0.0001 0.0001
N1 4394 3628 5026 4199 4574bd1 0.1672 0.2018 0.1157 0.2050 0.1942

t-ratio
(estimated)

(7.67) (8.98) (5.72) (8.40) (8.61)

t-ratio
(theoretical)

(7.47) (8.35) (5.45) (8.99) (8.81)

N2 857 893 214 1318 925bd2 0.2410 0.2605 0.0106 0.1091 0.1402
t-ratio

(estimated)
(5.52) (6.83) (0.35) (3.48) (12.70)

t-ratio
(theoretical)

(5.60) (6.15) (0.14) (3.01) (3.36)

model (1) (1) (2) (1) (1)

Note: see note of table 2.
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Table 5. Test of predictive accuracy:
our model versus an ARFIMA model (p-values)

AS n

|Rt| DAX 0.00 35.00%
FTSE 100 0.01 51.67%
Hang Seng 0.00 58.33%
Nikkei 225 0.00 53.33%
S&P 500 0.00 38.33%

R2t DAX 0.05 48.33%
Hang Seng 0.00 40.00%
Nikkei 225 0.01 58.33%

Note: AS is the p-value of the asymptotic test of Diebold and Mariano (1995) and

n is the number of times in percent where the residuals coming from the SETAR model

with long memory regimes are smaller than the residuals coming from a standard long

memory model (when n>50%, it means that the SETAR model seems the best). The

null hypothesis is the hypothesis of equal accuracy of different predictive methods. The

loss function is quadratic. The test statistics follows asymptotically a N(0, 1) and the
truncation lag is 10.
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