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Our so-called “Information Society”, is gradually changing into a 

“Knowledge Society”. The Shannon’s Theory provided a formal and 

mathematical framework for information. It was very fruitful for 

avoiding ambiguity on the concept of information. This paper proposes a 

transposition of this theory for knowledge. From the three axes of a 

formal model designed for knowledge engineering (information, sense 

and context), three quantitative measures are proposed to get a measure 

of the quantity of knowledge of a system. This notion permits to 

consider applications as the cognitive measure of a web site, of a 

knowledge community (community of practice…). 

1.  Introduction 

There is now a tremendous focus and lot of energies spent around the 

notion of knowledge. Of course, meanings around this “buzz word” are 

extremely various, but it is meaningful of a fundamental change of our 

societies. We can distinguish several meanings around the concept of 

knowledge. 

o Knowledge Society 

This is a concept popularised by nations, international organisations… 

(Anonymous, 2000). [ICT] (Norris, 2004) (Department of Economic and 

Social Affairs [DESA], 2005). (Mansell & Wehn, 1998; Corniou, 2002; 

Anonymous, 2001). 
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o Knowledge Based Economy 

This is an new theory in economics developing the notion of the 

knowledge as an economic good; Precursors are Nelsons (1959), 

Kenneth Arrow (1962) Herbert Simon (1982), and especially F. Machlup 

(1984). The modern theory is exposed in the pioneer book of D. Foray 

(2004) and experienced in Organisation for Economic Co-operation and 

Development [OECD] publication (Anonymous, 2004). See also in 

France the Commissariat Général au Plan [CGP] (Anonymous, 2003). 

o Knowledge Management (KM) 

This is a now very increasing domain that becomes complex, see for 

instance (Bollinger, 2001). 

o Knowledge Engineering 

Knowledge Engineering is design methodology for knowledge based 

systems (Schreiber, 1999; Studer, 1998)(Dieng et al., 2000). 

o Information vs. Knowledge 

We may conclude that in the concepts of Knowledge Society, 

Knowledge Economy, Knowledge Management, Knowledge 

Engineering, ICT is always strongly present. But ICT is dedicated to 

information processing. 

For more than 50 years, information is a very well known and very 

definite object, notably by the theory of Shannon that gives an operative 

mathematical definition that solved the ambiguousness problem 

concerning its nature (Shannon, 1949). What about knowledge? How can 

one say that ICT processes knowledge? Can we solve the ambiguousness 

between information and knowledge, and bring a formal answer, even 

though necessarily partial? 

The Shannon’s theory of information is not only a very powerful 

technical tool, but also a very powerful metaphoric tool, (when used 

scarcely) (Moles, 1975; Bougnoux, 1993; Eco, 1972). An extension of 

the Shannon’s theory to knowledge would give a formal relationship 

between knowledge and information, while providing, in the same way, 

the fertile metaphors, if they are used with discernment. We propose a 

sketch of what could be a Shannon’s theory of knowledge. 

2.  Knowledge corpus 

ha
l-0

04
70

41
3,

 v
er

si
on

 1
 - 

6 
Ap

r 2
01

0



A Shannon’s Theory of Knowledge 3 

o A formal model of Knowledge Corpus in KM 

This model (called AIK model) is an attempt to provide sound basis for 

the definition of the knowledge capital of organised system. It is 

described in (Ermine, 2005). This is a mathematical formalism, based on 

set and morphism theory, general enough to include most of the basic 

well known concepts of Knowledge Management (Le Moigne, 1990; 

Morin, 1986; Nonaka & Takeuchi, 1995; Wenger, 1998; Drucker, 1959; 

etc.). The formal model is summarised in the diagram of Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: A formal model for KMS 

 

S is the Knowledge Management System composed of the systems of 

knowledge workers networks A, and the Information System I. K is the 

Knowledge Capital. w  is the Wenger’s operator of knowledge 

community aggregation, c  and s are the combination and 

socialisation Nonaka’s operators, there are also the externalisation and 

internalisation Nonaka’s functions. Competence and Cognition are the 

cognitive functions of the KMS, according to Edgar Morin’s theory of 

knowledge. Expression and appropriation are for knowledge workers, in 

their relationship with information system. 
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The value function is a real valuation function that permits to 

evaluate the added value brought by the KMS. 

In the AIK model the function value is essential. It may be expressed 

as the added value in term of “knowledge capital”; it is the hypothesis of 

knowledge economy (OECD, 2004). as a strategic assessment function, 

which gives a grade on a scale of “criticality” (or of risk assessment of 

the risk) for the knowledge capital (Aubertin, 2006). 

The proposed approach is quite different. It starts from the 

elementary idea, for example, that a data base is made to collect data, and 

that the value function grows if the quantity of information accumulated 

in this basis grows. However one knows, thanks to the theory of 

information, to give a meaningful measure (otherwise applicable) of the 

quantity of information, calculated in bytes for example. Can one have a 

similar measure for a knowledge capital? We try here to give some 

answers to this question. 

o A formal model for Knowledge Corpus in 

Knowledge Engineering 

The Knowledge Macroscope is a tool to structure the knowledge capital 

of an organised system. That is a kind of knowledge theory that involves 

a lot of different aspects that have been studied on knowledge and 

information through times. It has been fully described and justified in 

(Ermine, 1996, 2002, 2003). 

It is based on the “semiotic hypothesis”, considering that knowledge 

is perceived as a sign, which includes information (what is the form, 

encoded or perceived, of the sign sent to my perception?), sense (what 

semantic representation is generated by the information in my mind?), 

and context (what environment is influencing the sense generated from 

the information?). Knowledge is information that makes sense in a given 

context. If the notion of information is clear, referring to Shannon’s 

theory, the notion of sense (signification or semantic), and the notion of 

context are far less clear. Then we have to give “measures” for what is 

supposed to be sense or context. It is not a simple task. We will give 

some first propositions in that direction. 

2.3. Definitions and notations 
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According to semiotic theory, as quoted above, knowledge can be split 

into three parts, corresponding to the three points of views of 

information, sense and context:  

I is the Information space, Se the semantic (sense) space, and Co the 

space of context. We have: 

    K = I   Se   Co  

   k   K,    i   I, s   Se , c    Co    :  k = (i,s,c) 

Then, for k   K, we can define three real valued fucntions:   

  ValI  :  I                    R          

 

  ValS  :  Se                     R          

 

  ValC  :  Co                     R          

When valuating respectively the value of information, the semantic 

value, and the contextual value of knowledge, by composition we have 

the global value of knowledge by:  

   Val(k) = F(ValI (k), ValS (k), ValC (k)) 

We generalise that definition of knowledge value to a knowledge set, we 

will call “Knowledge Corpus”:  

 

Definition: A Knowledge Corpus H is an element of P (K) (subsets of K). 

And by extension, we define: 

ValX (H) = dmh
Hh

)ValX   

for a measure m such that t(he integral is convergent). 

 

Then we can develop a “limited expansion” of the Val function, Val = 

F(ValI , ValS , ValC ) that we will limit to first order (with an unknown 

operator  to be defined): 

              Val(H) = ValI(H)  ValS(H)  ValC(H) + o(H) 

 

We will simplify by vanishing the residual term, and we will suppose 

that: 

              Val(H) = ValI(H)  ValS(H)  ValC(H) 

Intuitively, this means to suppose that information, sense and context 

may vary independently: one can imagine a knowledge corpus that has a 
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lot of information and few sense (a telephonic directory, for example), a 

lot of sense and little information (a proverb, for example), a lot of sense 

but little context –to the sense context of usage, cf. Infra– (an intimate 

diary, or some blogs, for example), little sense and a lot of context (a 

tenacious and rife rumour, for example) etc.  

3. The measure of the quantity of information of a corpus  

The Shannon’s theory of information permits to define what a quantity of 

information is (Shannon, 1948; Shannon & Weaver, 1949). This theory 

is a probabilistic point of view on information produced by a system.  

During the communication process, the receptor is waiting of a 

certain message. Let's take the case of a traffic light. When a person 

looks at this light, he already has an idea of messages transmitted by this 

light. A priori, he is unaware of what message is precisely going to be 

transmitted. However, thanks to his experience, he expects to receive 

some messages with different probabilities.  

If we consider that all messages that can be transmitted potentially by 

the traffic light had the same probability, the probability of each of them 

would P = 1/8; the 8 possible cases being simultaneous switch on of 0 

lamp (1 case), 1 lamp (3 cases), 2 lamps (3 cases) or 3 lamps (1 case). As 

this value 8 also can be also written as 2
3
 and that it is a binary coding 

(lamps are either on or off), the quantity of information associated to a 

traffic light, without other precision, is 3. Intuitively it means that there 

are three pieces of information, every lamp being considered independent 

of the two others.  

In the real word, it is of course different. Only four cases occur (let’s 

take a virtual example in France, it is different in other countries): the red 

lamp on (45% of cases), the orange lamp on (9,5% of cases), of the green 

lamp on (45% of cases), or no lamp on (0,5% of cases). This example 

reflects the reality of information systems of for which the equally 

probable is a configuration... very unlikely! The quantity of Q 

information of a message m with a probability of occurrence P is given 

by the formula (called entropy formula):  

Q(m) = -P*log2(P)  

In that case, the calculation gives: Q(m) = 1,4  
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One sees on this example that there is a one to one relation between 

the uncertainty, in terms of probability, of a receptor, relatively to a 

determined message, and the quantity of information contained in this 

message. The notion of quantity of information is replaced then 

advantageously by the notion of entropy that is a mean information 

quantity in the sense of probabilities, calculated on the set of messages. 

So if pi is the probability of occurrence of the message mi, the entropy is 

by definition the mathematical variance:  

H = -p1log(p1)-p2log(p2) -...... 

This notion requires an important commentary. The more entropy is 

low, the more informative is the system. In fact the more a message is 

unlikely, the more it is informative (the message of the assassination of a 

president is more informative that the message of the fact that there is no 

snow in Paris in summer!). Then entropy takes the same signification 

than information, as the possibility of choice for information source, or 

mean of occurrence probabilities of a set of messages.  

In information theory, the introduction of the entropy function was a 

considerable innovation that was incredibly fruitful. In fact, Shannon 

introduced this function for simple reasons of regularity, as soon as we 

have a distribution of probabilities on a set of events (Shannon & 

Weaver, 1949).  

The usual Shannon’s entropy is the requested function for ValI(H) for 

a knowledge corpus H.  

4.  The measure of the quantity of sense of a corpus  

4.1. Definitions and notations 

With the “bit” (“binary” unit or “binary digit”), we have defined an 

elementary information unit. 

The elementary unit of sense, in linguistics, is called “seme”, it is 

often represented by one significant term, framed of signs /, in order to 

distinguishes it from the common word (for example /beautiful /, 

/feminine /, /white / etc…). The semantics of a knowledge corpus is 

represented therefore by the semes that it contains, but also by semantic 
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links that link these semes. It is that that one calls a semantic network. 

Works on semantic networks are plethoric, in cognitive sciences, in 

linguistics or in artificial intelligence. One can define an elementary unit 

of sense therefore like a set of two semes linked by semantic link. The 

sense of a corpus K is defined by combinations of elementary units of 

sense.  

The semes of K constitute a finite set of elements (elements or 

significant terms) S. 

Let Ind a function, called indexation function:  

Ind : P (K)                                      P (S) 

that associates to every knowledge corpus H, element of P (K), a set of 

semes, element of P (S). 

A semantic graph is a set (V,E) where V is a subset of elements in S, 

called nodes of the graph, and E a subset of elements of V   V, called 

vertices or links. 

A graph, (we consider only finite graph, with node numbered from 1 

to n) is defined by its incidence matrix P = [pi,j]: This is a square matrix 

(n,n), such that pi,j = 0 if there is no link between the node i and j, and 

pi,j = 1 otherwise. 

A path of length n in a graph is a sequence (s0, …, sn), such that 

(si,si+1) is a vertex of the graph for every i ; s0 is the origin of the path, sn 

is the end. 

A graph is called connected if any two nodes may be linked with a 

path. 

We denote pi,j(n) the number of path of length n that starts from the 

node i and ends at node j . This is also the coefficient at line i and column 

j of the matrix P
n
 : pi,j(n) = (P

n
)i,j.  

A function of semantic graph construction is a function:  
Γ : P (K)                                               S   S

2 

that associates to every knowledge corpus H a semantic graph Γ(H), such 

that Pr1(Γ(H)) = Ind(H). (This is a semantic graph where all the nodes 

constitute the set of semes indexing H, Ind(H)). 
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4.2. Quantitative characterisation of a semantic graph: Gurevich 

entropy  

The semantic graph of a knowledge corpus characterizes “the semantic 

path”, the “semantic random walks” that are possible in the corpus. 

Hence, the topology of the graph characterizes the semantic complexity 

of the corpus.  

Very similar to the information theory, there exists a very developed 

theory that characterises the random walks in the graph (hence the 

semantic random walks in the semantic graphs), this is the theory of 

graph entropy (Simonyi, 1995). 

We will give an approach developed by Gurevich (1969, as cited in 

Ruette, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 2 – Semantic graph of a phone book 

 

Let G a graph, P its incidence matrix. Let recall that pi,j(n) = (P
n
)i,j.  

 

Gurevich entropy is defined as:  

h(G) = limsup
n

1/n log(pi,j(n)) = limsup
n

1/n log((P
n
)i,j) 

 

For a finite connected graph, this number does not depend on i or j. It 

represents the exponential growth rate of the number of path with fixed 

extremities.  
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To better understand that notion of graph entropy, let’s take a very 

simple example: a phone book. The semantics of a phone book very 

simple, and given by the graph of figure 2. 

Its incidence matrix is: 

We can easily calculate for the incidence matrix P that P
n
 = (I+A)

n
 = I + 

nA, hence pi,j(n) = 0, 1 or n, then h(G) = 0, the entropy of that graph is 

null. Intuitively, it is true that the semantics of a phone book is very 

poor!  

If we try to add a few semantics more, by designing an inversed 

phone book, where you can find the name from the phone number, we 

obtain a new semantic graph . The graph is only augmented with a 

inverse link from the S3 node to the S1 node. The new calculation shows 

that P
n
 = = 2

n-1
 (A + A

2
) Hence pi,j(n) = 2

n-1
 or 0, and then: 

h(G) = lim
n

(n-1/n) log(2)  = log(2) = 1 

The semantics of the new phone book has increased of one bit of 

sense! 

The Gurevich entropy is the requested function for ValS(H) for a 

knowledge corpus H.  

5. Measure of the context of usage of a knowledge corpus 

The third part of our knowledge unit is about the measure of its use. We 

consider this measure of the context as the use that makes people 

concerned in a knowledge corpus, but also in relations that settle between 

these people. This idea considers that a pertinent knowledge will be 

shared between its holder and his knowledgeable neighbourhood or that 

conversely a weakly distributed knowledge corresponds to something 

obsolete, uninteresting or inappropriate. We are conscious to overlook, 

by this approach, all powerful knowledge that remains kept secret. On 

the other hand, our model may perfectly apply to knowledge that one 

tries to distribute, via publication media, paper or electronic, via the 

media for verbal communication, etc. and that won't have any echoes if 

they don’t cause a lot of interest in knowledgeable communities.  

The context of use of a knowledge corpus or its diffusion potential of 

diffusion is studied here through the existing acquaintance network 
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A Shannon’s Theory of Knowledge 11 

between elements, holders and users of knowledge, individuals, groups, 

or systems. This kind of network corresponds to the social networks 

studied in psycho-sociology and more lately in graph theory.  

o Social networks 

The social networks called “small worlds” were initiated by the 

American psycho-sociologist Stanley Milgram. (Milgram, 1967). He 

postulated then than every person is linked to any other individual while 

achieving an average of six jumps, materializing thus the theory of “six 

degrees of separation”, invented by the Hungarian writer Frigyes 

Karinthy in a novel of 1929 entitled “Chains”. These experiences have 

been refuted lately by J. Kleinfeld (2002). Nevertheless, with his very 

simple and attractive protocol, Milgram shows that it is possible to find 

an experimental measure of the distance between two random people, by 

counting the number of necessary mediators to establish a chain between 

them.  

This idea has been studied for specific populations, as for the one of 

mathematician researchers in mathematical or Hollywood actors. In this 

case the connectivity between two people corresponds to the realization 

of a common task: the writing of a scientific article or the apparition in a 

same movie. See for instance the web site of the Erdös Number Project 

is: http://www.oakland.edu/enp/. or: http://smallworld.columbia.edu/.  

o Hierarchical Small World networks  

The underlying model for all these social networks is a graph where each 

individual (the nodes) is considered regarding his connections (links). 

From this graph structure, it is possible to calculate some formal values 

(Hayes, 2000).  

According to a similar approach, they are recent studies on others 

kinds of networks: subway stations, phone connections, flight 

connections, but also neurons in simple organisms, diffusion of 

epidemics, Web pages or specific sites etc. In short, all observable 

network type, produced naturally or generated by a human activity, may 

be a subject for this kind of measures (Gaume, 2004). It is remarkable 

that all these studies assign to all these very various graphs the similar 

properties. One designed a specific class for these graphs: the 

Hierarchical Small-World Networks [HSWN] (Albert & Barabási, 2002). 

For example, Adamic and al. advanced in 1999 that the Web is of that 
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type (Adamic et al., 2000) and that average 10 clicks only separated any 

pair of pages, very weak values compared to billions of pages that 

compose the Web.  

To study HSWNs, Watts and Strogartz (1998) proposed to compare 

them on the one hand to the random graphs
1
 and on the other hand to 

regular graphs
2
. The two studied parameters are the distance between 

nodes of the network (global diameter of the graph) and the level of 

nodes clustering (local coefficient of clustering).  

Watts and Strogartz proved that small-world networks have the 

surprising property to be locally dense (as the regular graphs) and to have 

a relatively short path length (as the random graphs). A small-world 

graph is thus halfway between a random graph and a regular graph, thus 

combining properties of local regularity and global disorder.  

o The scale-free networks 

While working on the more general problem of the construction and the 

organization of networks, Barabási and Bonabeau (2003) added a third 

relative metrics to the hierarchical distribution of links on these 

networks. Indeed the growth observed on certain kind of small-world 

networks (as the Web) shows a property of preferential attachment that 

cannot be modelled by the simple mean of path lengths, and clustering of 

nodes. This new property considers the fact that a new node will stand 

preferentially connected to nodes that are already greatly connected. This 

model of accumulated advantage produces a network where most of 

nodes have few links and some nodes have a lot. The distribution of this 

nodal connectivity (the probability to have k neighbours) is described by 

a power law, whereas for the random graphs this probability is described 

by a Poisson’s law. According to Barabasi the coefficient of this power 

law is a strong characteristic of the network. For the small-world 

networks, this coefficient is always a number between 2 and 3.  

                                                 
1 An random graph is a graph with N nodes connected by n links, chosen randomly with 

probability p among the between uncertainly among the N(N - 1)/2 possible links. This 

graph has p.N(N - 1)/2 links randomly distributed 
2 the regular graphs have their nodes distributed regularly and each node is linked to its i 

nearest neighbours, “i” being here the degree (distributed regularly) of connection of 

every node 
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A Shannon’s Theory of Knowledge 13 

5.4.  Measure of the context of a knowledge corpus 

The scale-free networks seem to be a good candidate to model the social 

networks that use a given knowledge corpus. It is on the basis of this 

distribution of connection degrees within a network of users that we 

propose to construct the measure of the context of a knowledge corpus.  

We start from the graph formed by the users of a knowledge corpus, 

and take as connection between two users the representation of an 

existing link (an e-mail exchange for example). The obtained network is 

the network of the users of the considered knowledge corpus. According 

to the above theory, it is a scale-free network. It is then possible to 

characterize this graph with the distribution law of distribution of the 

connectivity degree of the different nodes. 

If p(k) is the probability for a node of having k neighbours, the usual 

Poisson’s law gives: 

p(k) ~ g exp(-k). 

 

For a scale-free network, that law is simplified. The power law gives: 

p(k) ~ g k
a
 . 

 

Then we can easily define and calculate entropy for the scale-free 

network with the formula: 

ValC(H) = ))(log()(
k

kpkp  

This entropy is a good characteristic of the network of the users of the 

knowledge corpus. We will take it as the measure of the context of this 

corpus. 

This entropy is the requested function for ValC(H) for a knowledge 

corpus H.  

6. Perspectives 

We now have a proposition for calculating the entropy of a knowledge 

corpus, by calculating respectively the information entropy (Shannon’s 

entropy), the semantic entropy (Gurevich entropy of the semantic graph 

of the corpus), and the context entropy (scale-free characteristic of the 
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user network of the corpus). The combination of those three entropies is 

not yet clear, and is currently under research, to define global knowledge 

entropy of the corpus. 

The definition of a measure of the quantity of knowledge of a corpus 

is not only a theoretical objective. Defining a quantity of knowledge of a 

corpus can bring to numerous innovations, as by example:  

- “Scoring” for information retrieval. Search engines, from a research 

using key words, classify corpora found according to their relevance. 

This relevance can be calculated on the content (occurrence of terms, for 

example), on the contextual value of the site (number of connections, for 

example). The finer quantification of the content in semantic term, or 

indicators on its context of usage, would permit to give a classification 

far more interesting.  

- Improving the content of a document. Information theory permits to 

find an optimal coding of an informational corpus. Analogically, if one 

has a measure of the quantity of knowledge of a corpus, of a document, 

for example, it may lead to rewrite the original document, so that it 

would be better understood regarding the signification of reference. 

- Supervising knowledge communities. The context of a knowledge 

corpus is essentially valued by its context of usage. Refined indicators 

users communities for a knowledge corpus permits to better know these 

communities and to facilitate their improvement.  

These some examples show all the potential that one may have with 

the notion of measure of the quantity of knowledge of a corpus.  
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