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Abstract

The core of a game v on N , which is the set of additive games φ dominating v such

that φ(N) = v(N), is a central notion in cooperative game theory, decision making

and in combinatorics, where it is related to submodular functions, matroids and

the greedy algorithm. In many cases however, the core is empty, and alternative

solutions have to be found. We define the k-additive core by replacing additive

games by k-additive games in the definition of the core, where k-additive games are

those games whose Möbius transform vanishes for subsets of more than k elements.

For a sufficiently high value of k, the k-additive core is nonempty, and is a convex

closed polyhedron. Our aim is to establish results similar to the classical results of

Shapley and Ichiishi on the core of convex games (corresponds to Edmonds’ theorem

for the greedy algorithm), which characterize the vertices of the core.
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1 Introduction1

Given a finite set N of n elements, and a set function v : 2N → R vanishing on2

the empty set (called hereafter a game), its core C(v) is the set of additive set3
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functions φ on N such that φ(S) ≥ v(S) for every S ⊆ N , and φ(N) = v(N).4

Whenever nonempty, the core is a convex closed bounded polyhedron.5

In many fields, the core is a central notion which has deserved a lot of studies.6

In cooperative game theory, it is the set of imputations for players so that no7

subcoalition has interest to form [18]. In decision making under uncertainty,8

where games are replaced by capacities (monotonic games), it is the set of9

probability measures which are coherent with the given representation of un-10

certainty [19]. More on a combinatorial point of view, cores of convex games11

are also known as base polytopes associated to supermodular functions [13,9],12

for which the greedy algorithm is known to be a fundamental optimization13

technique. Many studies have been done along this line, e.g., by Faigle and14

Kern for the matching games [8], and cost games [7]. In game theory, which15

will be our main framework here, related notions are the selectope [3], and the16

Shapley value with many of its variations on combinatorial structures (see,17

e.g., [1]).18

It is a well known fact that the core is nonempty if and only if the game19

is balanced [4]. In the case of emptiness, an alternative solution has to be20

found. One possibility is to search for games more general than additive ones,21

for example k-additive games and capacities proposed by Grabisch [10]. In22

short, k-additive games have their Möbius transform vanishing for subsets23

of more than k elements, so that 1-additive games are just usual additive24

games. Since any game is a k-additive game for some k (possibly k = n), the25

k-additive core, i.e., the set of dominating k-additive games, is never empty26

provided k is high enough. The authors have justified this definition in the27

framework of cooperative game theory [15]. Briefly speaking, an element of28

the k-additive core implicitely defines by its Möbius transform an imputation29

(possibly negative), which is now defined on groups of at most k players, and30

no more on individuals. By definition of the k-additive core, the total worth31

assigned to a coalition will be always greater or equal to the worth the coalition32
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can achieve by itself; however, the precise sharing among players has still to33

be decided (e.g., by some bargaining process) among each group of at most k34

players.35

In game theory, elements of the core are imputations for players, and thus36

it is natural that they fulfill monotonicity. We call monotonic core the core37

restricted to monotonic games (capacities). We will see in the sequel that the38

core is usually unbounded, while the monotonic core is not.39

The properties of the (classical) core are well known, most remarkable being40

the result characterizing the core of convex games, where the set of vertices is41

exactly the set of additive games induced by maximal chains (or equivalently42

by permutations on N) in the Boolean lattice (2N ,⊆). This has been shown43

by Shapley [17], and later Ichiishi proved the converse implication [12]. This44

result is also known in the field of matroids, since vertices of the base poytope45

can be found by a greedy algorithm.46

A natural question arises: is it possible to generalize the Shapley-Ichiishi the-47

orem for k-additive (monotonic) cores? More precisely, can we find the set of48

vertices for some special classes of games? Are they induced by some general-49

ization of maximal chains? The paper shows that the answer is more complex50

than expected. It is possible to define notions similar to permutations and51

maximal chains, so as to generate vertices of the k-additive core of (k + 1)-52

monotone games, a result which is a true generalization of the Shapley-Ichiishi53

theorem, but this does not permit to find all vertices of the core. A full ana-54

lytical description of vertices seems to be difficult to find, but we completely55

explicit the case k = n − 1.56

After a preliminary section introducing necessary concepts, Section 3 presents57

our basic ingredients, that is, orders on subsets of at most k elements, and58

achievable families, which play the role of maximal chains in the classical case.59

Then Section 4 presents the main result on the characterization of vertices for60

3
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(k + 1)-monotone games induced by achievable families.61

2 Preliminaries62

Throughout the paper, N := {1, . . . , n} denotes a set of n elements (players in63

a game, nodes of a graph, etc.). We use indifferently 2N or P(N) for denoting64

the set of subsets of N , and the set of subsets of N containing at most k65

elements is denoted by Pk(N), while Pk
∗ (N) := Pk(N)\{∅}. For convenience,66

subsets like {i}, {i, j}, {2}, {2, 3}, . . . are written in the compact form i, ij, 2, 2367

and so on.68

A game on N is a function v : 2N → R such that v(∅) = 0. The set of games69

on N is denoted by G(N). For any A ∈ 2N \{∅}, the unanimity game centered70

on A is defined by uA(B) := 1 iff B ⊇ A, and 0 otherwise.71

A game v on N is said to be:72

(i) additive if v(A ∪ B) = v(A) + v(B) whenever A ∩ B = ∅;73

(ii) convex if v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B), for all A, B ⊆ N ;74

(iii) monotone if v(A) ≤ v(B) whenever A ⊆ B;75

(iv) k-monotone for k ≥ 2 if for any family of k subsets A1, . . . Ak, it holds

v(
k
⋃

i=1

Ai) ≥
∑

K⊆{1,...,k}
K 6=∅

(−1)|K|+1v(
⋂

j∈K

Aj)

76

(v) infinitely monotone if it is k-monotone for all k ≥ 2.77

Convexity corresponds to 2-monotonicity. Note that k-monotonicity implies78

k′-monotonicity for all 2 ≤ k′ ≤ k. Also, (n − 2)-monotone games on N79

are infinitely monotone [2]. The set of monotone games on N is denoted by80

MG(N), while the set of infinitely monotone games is denoted by G∞(N).81

4
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Let v be a game on N . The Möbius transform of v [16] (also called dividends

of v, see Harsanyi [11]) is a function m : 2N → R defined by:

m(A) :=
∑

B⊆A

(−1)|A\B|v(B), ∀A ⊆ N.

The Möbius transform is invertible since one can recover v from m by:

v(A) =
∑

B⊆A

m(B), ∀A ⊆ N.

If v is an additive game, then m is non null only for singletons, and m({i}) =82

v({i}). The Möbius transform of uA is given by m(A) = 1 and m is 0 otherwise.83

A game v is said to be k-additive [10] for some integer k ∈ {1, . . . , n} if84

m(A) = 0 whenever |A| > k, and there exists some A such that |A| = k, and85

m(A) 6= 0.86

Clearly, 1-additive games are additive. The set of games on N being at most87

k-additive (resp. infinitely monotone games at most k-additive) is denoted by88

Gk(N) (resp. Gk
∞(N)). As above, replace G by MG if monotone games are89

considered instead.90

We recall the fundamental following result.91

Proposition 1 [5] Let v be a game on N . For any A, B ⊆ N , with A ⊆ B,92

we denote [A, B] := {L ⊆ N | A ⊆ L ⊆ B}.93

(i) Monotonicity is equivalent to

∑

L∈[i,B]

m(L) ≥ 0, ∀B ⊆ N, ∀i ∈ B.

94

(ii) For 2 ≤ k ≤ n, k-monotonicity is equivalent to

∑

L∈[A,B]

m(L) ≥ 0, ∀A, B ⊆ N, A ⊆ B, 2 ≤ |A| ≤ k.

95
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Clearly, a monotone and infinitely monotone game has a nonnegative Möbius96

transform.97

The core of a game v is defined by:

C(v) := {φ ∈ G1(N) | φ(A) ≥ v(A), ∀A ⊆ N, and φ(N) = v(N)}.

98

A maximal chain in 2N is a sequence of subsets A0 := ∅, A1, . . . , An−1, An := N99

such that Ai ⊂ Ai+1, i = 0, . . . , n − 1. The set of maximal chains of 2N is100

denoted by M(2N).101

To each maximal chain C := {∅, A1, . . . , An = N} in M(2N) corresponds

a unique permutation σ on N such that A1 = σ(1), A2 \ A1 = σ(2), . . . ,

An \ An−1 = σ(n). The set of all permutations over N is denoted by S(N).

Let v be a game. Each permutation σ (or maximal chain C) induces an additive

game φσ (or φC) on N defined by:

φσ(σ(i)) := v({σ(1), . . . , σ(i)}) − v({σ(1), . . . , σ(i − 1)})

or

φC(σ(i)) := v(Ai) − v(Ai−1), ∀i ∈ N.

with the above notation. The following is immediate.102

Proposition 2 Let v be a game on N , and C a maximal chain of 2N . Then

φC(A) = v(A), ∀A ∈ C.

103

Theorem 1 The following propositions are equivalent.104

(i) v is a convex game.105

(ii) All additive games φσ, σ ∈ S(N), belong to the core of v.106

(iii) C(v) = co({φσ}σ∈S(N)).107

(iv) ext(C(v)) = {φσ}σ∈S(N),108

6
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where co(·) and ext(·) denote respectively the convex hull of some set, and the109

extreme points of some convex set.110

(i) ⇒ (ii) and (i) ⇒ (iv) are due to Shapley [17], while (ii) ⇒ (i) was proved111

by Ichiishi [12].112

A natural extension of the definition of the core is the following. For some

integer 1 ≤ k ≤ n, the k-additive core of a game v is defined by:

Ck(v) := {φ ∈ Gk(N) | φ(A) ≥ v(A), ∀A ⊆ N, φ(N) = v(N)}.

In a context of game theory where elements of the core are imputations, it is

natural to consider that monotonicity must hold, i.e., the imputation allocated

to some coalition A ∈ Pk
∗ (N) is larger than for any subset of A. We call it the

monotone k-additive core:

MCk(v) := {φ ∈ MGk(N) | φ(A) ≥ v(A), ∀A ⊆ N, φ(N) = v(N)}.

We introduce also the core of k-additive infinitely monotone games :

Ck
∞(v) := {φ ∈ Gk

∞(N) | φ(A) ≥ v(A), ∀A ⊆ N, and φ(N) = v(N)}.

The latter is introduced just for mathematical convenience, and has no clear113

application. Note that C(v) = C1(v) = C1
∞(v).114

3 Orders on Pk
∗ (N) and achievable families115

As our aim is to give a generalization of the Shapley-Ichiishi results, we need116

counterparts of permutations and maximal chains. These are given in this sec-117

tion. Exact connections between our material and permutations and maximal118

chains will be explicited at the end of this section. First, we introduce total119

orders on subsets of at most k elements as a generalization of permutations.120

We denote by ≺ a total (strict) order on Pk
∗ (N), � denoting the corresponding121

weak order.122

7
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(i) ≺ is said to be compatible if for all A, B ∈ Pk
∗ (N), A ≺ B if and only123

if A ∪ C ≺ B ∪ C for all C ⊆ N such that A ∪ C, B ∪ C ∈ Pk
∗ (N),124

A ∩ C = B ∩ C = ∅.125

(ii) ≺ is said to be ⊆-compatible if A ⊂ B implies A ≺ B.126

(iii) ≺ is said to be strongly compatible if it is compatible and ⊆-compatible.127

We introduce the binary order ≺2 on 2N as follows. To any subset A ⊆ N

we associate an integer η(A), whose binary code is the indicator function of

A, i.e., the ith bit of η(A) is 1 if i ∈ A, and 0 otherwise. For example, with

n = 5, {1, 3} and {4} have binary codes 00101 and 01000 respectively, hence

η({1, 3}) = 5 and η({4}) = 8. Then A ≺2 B if η(A) < η(B). This gives

1 ≺2 2 ≺2 12 ≺2 3 ≺2 13 ≺2 23 ≺2 123 ≺2 4 ≺2 14 ≺2 24 ≺2

124 ≺2 34 ≺2 134 ≺2 234 ≺2 1234 ≺2 5 ≺2 . . . (1)

Note the recursive nature of ≺2. Obviously, ≺2 is a strongly compatible order,128

as well as all its restrictions to Pk
∗ (N), k = 1, . . . , n − 1.129

We introduce now a generalization of maximal chains associated to permuta-

tions. Let ≺ be a total order on Pk
∗ (N). For any B ∈ Pk

∗ (N), we define

A(B) := {A ⊆ N | [A ⊇ B] and [∀K ⊆ A s.t. K ∈ Pk
∗ (N), it holds K � B]}

the achievable family of B.130

Example 1: Consider n = 3, k = 2, and the following order: 1 ≺ 2 ≺ 12 ≺

13 ≺ 23 ≺ 3. Then

A(1) = {1}, A(2) = {2}, A(12) = {12}, A(13) = A(23) = ∅,

A(3) = {3, 13, 23, 123}.

131

Proposition 3 {A(B)}B∈Pk
∗
(N) is a partition of P(N) \ {∅}.132

8
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Proof: Let ∅ 6= C ∈ P(N). It suffices to show that there is a unique B ∈133

Pk
∗ (N) such that C ∈ A(B). Let K1, K2, . . . , Kp be the nonempty collection134

of subsets of C in Pk(N), assuming K1 ≺ K2 ≺ · · · ≺ Kp. Then C ∈ A(Kp)135

is the unique possibility, since any B outside the collection will fail to satisfy136

the condition B ⊆ C, and any B 6= Kp inside the collection will fail to satisfy137

the condition Kp � B. �138

139

Proposition 4 For any B ∈ Pk
∗ (N) such that A(B) 6= ∅, (A(B),⊆) is an140

inf-semilattice, with bottom element B.141

Proof: If A(B) 6= ∅, any C ∈ A(B) contains B, hence every K ⊆ B ⊆ C,142

K ∈ Pk
∗ (N), is such that K � B. Hence B ∈ A(B), and it is the smallest143

element.144

Let K, K ′ ∈ A(B), assuming A(B) contains at least 2 elements (otherwise,145

we are done). K ∈ A(B) is equivalent to K ⊇ B and any L ⊆ K, L ∈ Pk
∗ (N)146

is such that L � B. The same holds for K ′. Therefore, K ∩ K ′ ⊇ B, and if147

L ⊆ K ∩ K ′, L ∈ Pk
∗ (N), then L ⊆ K and L ⊆ K ′, which entails L � B.148

Hence K ∩ K ′ ∈ A(B). �149

150

From the above proposition we deduce:151

Corollary 1 Let B ∈ Pk
∗ (N) and ≺ be some total order on Pk

∗ (N). Then152

A(B) 6= ∅ if and only if for all C ∈ Pk
∗ (N), C ⊆ B implies C � B. Conse-153

quently, if |B| = 1 then A(B) 6= ∅.154

Corollary 2 A(B) 6= ∅ for all B ∈ Pk
∗ (N) if and only if ≺ is ⊆-compatible.155

It is easy to build examples where achievable families are not lattices.156

9
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Example 2: Consider n = 4, k = 2 and the following order: 2, 3, 24, 12,157

4, 13, 34, 1, 23, 14. Then A(23) = {23, 123, 234}, and 1234 6∈ A(23) since158

14 ≻ 23.159

Assuming A(B) is a lattice, we denote by B̌ its top element.160

Proposition 5 Let ≺ be a total order on Pk
∗ (N). Consider B ∈ Pk

∗ (N) such161

that A(B) is a lattice. Then it is a Boolean lattice isomorphic to (P(B̌\B),⊆).162

Proof: It suffices to show that A(B) = {B ∪ K | K ⊆ B̌ \ B}. Taking163

Ǩ := B̌ \ B, we have B ∪ Ǩ ∈ A(B). Hence, any L ⊆ B ∪ Ǩ, L ∈ Pk
∗ (N), is164

such that L � B. This is a fortiori true for L ⊆ B ∪K, L ∈ Pk
∗ (N), ∀K ⊆ Ǩ.165

Hence B ∪ K belongs to A(B), for all K ⊆ Ǩ. �166

167

Proposition 6 Assume ≺ is compatible. For any B ∈ Pk
∗ (N) such that168

A(B) 6= ∅, A(B) is the Boolean lattice [B, B̌].169

Proof: If A(B) is a lattice, we know by Prop. 5 that it is a Boolean lattice170

with bottom element B. Since we know that A(B) is an inf-semilattice by171

Prop. 4, it remains to show that K, K ′ ∈ A(B) implies K ∪ K ′ ∈ A(B).172

Assume K ∪K ′ 6∈ A(B). Then there exists L ⊆ K ∪K ′, L ∈ Pk
∗ (N) such that173

L ≻ B. Necessarily, L\K 6= ∅, otherwise L ⊆ K and K ∈ A(B) imply L ≺ B,174

a contradiction. Similarly, L \ K ′ 6= ∅. Moreover, L 6⊆ B since A(B) 6= ∅ (see175

Cor. 1).176

We consider D := L \ K, not empty by definition of L. Since L \ D ⊆ K and177

L \ D ∈ Pk
∗ (N), we have L \ D � B, with strict inequality since L \ D has178

elements outside K ∩ K ′, hence outside B (see Figure below).179

10
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K ′ K

B

D

L

180

Suppose first that |B| < k, and let D := {i, j, . . .}. We have B ∪ l ∈ Pk
∗ (N)181

and B ∪ l ⊆ K ′ for any l ∈ D, which implies B ∪ l ≺ B. Taking l = i, by182

compatibility, L \ D ≺ B implies (L \ D) ∪ i ≺ B ∪ i ≺ B. By compatibility183

again, (L \ D) ∪ i ≺ B implies (L \ D) ∪ i ∪ j ≺ B ∪ j ≺ B. Continuing the184

process till all elements of D have been taken, we finally end with L ≺ B, a185

contradiction.186

Secondly, assume that |B| = k. Take K ′′ ⊂ B such that K ′′ ⊇ L ∩ B and187

|K ′′ ∪ D| = k, which is always possible by assumption. Since K ′′ ⊂ B ⊆ K188

and K ′′ ∈ Pk
∗ (N), we have K ′′ ≺ B. Then189

(i) Either L\D ≺ K ′′ ≺ B. By compatibility, L\D ≺ K ′′ implies L ≺ K ′′∪D.190

Since K ′′ ∪ D ∈ Pk
∗ (N) and K ′′ ∪ D ⊆ K ′, we deduce that K ′′ ∪ D ≺ B,191

hence L ≺ B, a contradiction.192

(ii) Or K ′′ ≺ L \ D ≺ B. Since (L \ D) ∩ (B \ K ′′) = ∅, from compatibility193

K ′′ ≺ L\D implies B = K ′′∪ (B \K ′′) ≺ (L\D)∪ (B \K ′′). We have by194

assumption |(L \D) ∪ (B \K ′′)| = |L| ≤ k and (L \D) ∪ (B \K ′′) ⊆ K,195

from which we deduce (L \ D) ∪ (B \ K ′′) ≺ B. Hence we get B ≺ B, a196

contradiction.197

�198

199

The following example shows that compatibility is not a necessary condition.200

Example 3: Consider n = 4, k = 2, and the following order: 1, 3, 2, 12,

23, 13, 4, 14, 24, 34. This order is not compatible since 3 ≺ 2 and 12 ≺ 13.

11
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We obtain:

A(1) = 1, A(3) = 3, A(2) = 2, A(12) = 12, A(23) = 23, A(13) = {13, 123},

A(4) = 4, A(14) = 14, A(24) = {24, 124}, A(34) = {34, 134, 234, 1234}.

All families are lattices.201

In the above example, ≺ was ⊆-compatible. However, this is not enough to202

ensure that achievable families are lattices, as shown by the following example.203

Example 4: Let us consider the following ⊆-compatible order with n = 4

and k = 2:

3 ≺ 4 ≺ 34 ≺ 2 ≺ 24 ≺ 1 ≺ 13 ≺ 12 ≺ 23 ≺ 14.

Then A(23) = {23, 123, 234}.204

We give some fundamental properties of achievable families when they are205

lattices, in particular of their top elements.206

Proposition 7 Assume ≺ is compatible, and consider a nonempty achiev-207

able family A(B), with top element B̌. Then {A(Bi) | Bi ∈ Pk
∗ (N), Bi ⊆208

B̌,A(Bi) 6= ∅} is a partition of P(B̌) \ {∅}.209

Proof: We know by Prop. 3 that all A(Bi)’s are disjoint. It remains to show210

that (1) any K ⊆ B̌ is in some A(Bi), Bi ⊆ B̌, and (2) conversely that any211

K in such A(Bi) is a subset of B̌.212

(1) Assume K ∈ A(Bi), Bi 6⊆ B̌. Then Bi ⊆ K ⊆ B̌, a contradiction.213

(2) Assume K ∈ A(Bi), Bi ⊆ B̌, and K 6⊆ B̌. Then there exists l ∈ K such214

that l 6∈ B̌ (and hence not in Bi). Note that this implies Bi ∪ l ≺ Bi, provided215

|Bi| < k. First we show that l ≺ j for any j ∈ Bi. Since K ⊇ Bi ∪ {l}, we216

deduce that for any j ∈ Bi, {j, l} ≺ Bi and l ≺ Bi. If Bi = {j}, we can217

further deduce that l ≺ j. Otherwise, if Bi = {j, j′}, from {j, l} ≺ {j, j′} and218

12
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{j′, l} ≺ {j, j′}, by compatibility l ≺ j and l ≺ j′. Generalizing the above, we219

conclude that l ≺ j for all j ∈ Bi.220

Next, if l 6∈ B̌, it means that for some B′ ⊆ B̌ such that B′ ∪ l ∈ Pk
∗ (N), we221

have B′∪ l ≻ B (otherwise l should belong to B̌). We prove that B′ 6⊇ Bi. The222

case |Bi| = k is obvious, let us consider |Bi| < k. Suppose on the contrary that223

B′ = Bi ∪L, L ⊆ N \Bi. Then Bi ∪ l ≺ Bi implies that B′ ∪ l = Bi ∪ l ∪L ≺224

Bi ∪ L ≺ B, the last inequality coming from Bi ∪ L ⊆ B̌, Bi ∪ L ∈ Pk
∗ (N).225

But B′ ∪ l ≻ B, a contradiction.226

Choose any j ∈ Bi \B′. Since j ≻ l, we deduce B′ ∪ j ≻ B′ ∪ l ≻ B, but since227

B′ ∪ j ⊆ B̌ and B′ ∪ j ∈ Pk
∗ (N), it follows that B′ ∪ j ≺ B, a contradiction.228

�229

230

Proposition 8 Let ≺ be a compatible order on Pk
∗ (N). For any B ∈ Pk

∗ (N)231

such that A(B) is nonempty, putting B̌ := {i1, . . . , il} with i1 ≺ · · · ≺ il, then232

necessarily there exists j ∈ {1, . . . , l} such that B = {ij , . . . , il}.233

Proof: Assume B̌ 6= B, otherwise we have simply j = 1. Consider ij the234

element in B with the lowest index in the list {1, . . . , l}. Let us prove that all235

successors ij+1, . . . , il are also in B. Assume j < l (otherwise we are done),236

and suppose that ij′ 6∈ B for some j < j′ ≤ l. Then by compatibility, B =237

(B \ ij)∪ ij ≺ (B \ ij)∪ ij′. Since (B \ ij)∪ ij′ ⊆ B̌ and (B \ ij)∪ ij′ ∈ Pk
∗ (N),238

the converse inequality should hold. �239

240

Proposition 9 Assume that ≺ is strongly compatible. Then for all B ⊆ N ,241

|B| < k, B̌ = B.242
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Proof: By Prop. 6 and Cor. 2, we know that A(B) is a Boolean lattice with243

top element denoted by B̌. Suppose that B̌ 6= B. Then there exists i ∈ B̌ \B,244

and B ∪ i ∈ A(B). Remark that |B ∪ i| ≤ k and A(B ∪ i) ∋ B ∪ i by Prop. 6245

and Cor. 2 again. This contradicts the fact that the achievable families form246

a partition of Pk
∗ (N) (Prop. 3). �247

248

Proposition 10 Let ≺ be a strongly compatible order on Pk
∗ (N), and assume

w.l.o.g. that 1 ≺ 2 ≺ · · · ≺ n. Then the collection B̌ of B̌’s is given by:

B̌ =
{

{1, 2, . . . , l} ∪ {j1, . . . , jk−1} | l = 1, . . . , n − k + 1

and {j1, . . . , jk−1} ⊆ {l + 1, . . . , n}
}

⋃

{

A ⊆ N | |A| < k

}

.

If ≺ is compatible, then B̌ is a subcollection of the above, where some subsets249

of at most k − 1 elements may be absent.250

Proof: From Prop. 9, we know that B̌ contains all subsets having less than251

k elements. This proves the right part of “
⋃

” in B̌. By Prop. 9 again, the left252

part uniquely comes from those B’s of exactly k elements. Take such a B. From253

Prop. 8, we know that B̌ cannot contain elements ranked after the last one254

of B in the sequence 1, 2, . . . , n. In other words, letting B := {l, j1, . . . , jk−1},255

with l the lowest ranked element, we know that B̌ = B′ ∪ {l, j1, . . . , jk−1},256

with all elements of B′ ranked before l. It remains to show that necessarily257

B′ contains all elements from 1 to l excluded. Assume j 6∈ B′, 1 ≤ j < l.258

Then it should exist K ∈ Pk
∗ (N), j ∈ K ⊆ B̌ ∪ j, such that K ≻ B. Since259

|B| = k, it cannot be that K ⊇ B, so that say j′ ∈ B is not in K. Hence260

we have j ≺ j′, and by compatibility, K = (K \ j) ∪ j ≺ (K \ j) ∪ j′. Now,261

(K \ j) ∪ j′ ∈ Pk
∗ (N) and (K \ j) ∪ j′ ⊆ B̌, which entails (K \ j) ∪ j′ ≺ B, so262

that K ≺ B, a contradiction.263
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Finally, consider that ≺ is only compatible. Then by Cor. 2, there exists B ∈264

Pk
∗ (N) such that A(B) = ∅. This implies that there exist some proper subsets265

of B in Pk
∗ (N) ranked after B, let us call K the last ranked such subset. Then266

|K| < k, and A(K) 6= {K} since it contains at least B, because all subsets of267

B are ranked before K by definition of K. Hence K does not belong to B̌. �268

269

We finish this section by explaining why achievable families induced by orders

on Pk
∗ (N) are generalizations of maximal chains induced by permutations.

Taking k = 1, P1
∗ (N) = N , and total orders on singletons coincide with

permutations on N . Trivially, any order on N is strongly compatible, so that

all achievable families are nonempty lattices. Denoting by σ the permutation

corresponding to ≺, i.e., σ(1) ≺ σ(2) ≺ · · · ≺ σ(n), then

A({σ(j)}) = [{σ(j)}, {σ(1), . . . , σ(j)}],

i.e., the top element ˇ{σ(j)} is {σ(1), . . . , σ(j)}. Then the collection of all top270

elements ˇ{σ(j)} is exactly the maximal chain associated to σ.271

4 Vertices of Ck(v) induced by achievable families272

Let us consider a game v and its k-additive core Ck(v). We suppose hereafter273

that Ck(v) 6= ∅, which is always true for a sufficiently high k. Indeed, taking274
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at worst k = n, v ∈ Cn(v) always holds.275

4.1 General facts276

A k-additive game v∗ with Möbius transform m∗ belongs to Ck(v) if and only

if it satisfies the system

∑

K⊆A
|K|≤k

m∗(K) ≥
∑

K⊆A

m(K), A ∈ 2N \ {∅, N} (2)

∑

K⊆N
|K|≤k

m∗(K) = v(N). (3)

The number of variables is N(k) :=
(

n

1

)

+ · · · +
(

n

k

)

, but due to (3), this277

gives rise to a (N(k) − 1)-dim closed polyhedron. (2) is a system of 2n − 2278

inequalities. The polyhedron is convex since the convex combination of any279

two elements of the core is still in the core, but it is not bounded in general.280

To see this, consider the simple following example.281

Example 5: Consider n = 3, k = 2, and a game v defined by its Möbius

transform m with m(i) = 0.1, m(ij) = 0.2 for all i, j ∈ N , and m(N) = 0.1.

Then the system of inequalities defining the 2-additive core is:

m∗(1) ≥ 0.1

m∗(2) ≥ 0.1

m∗(3) ≥ 0.1

m∗(1) + m∗(2) + m∗(12) ≥ 0.4

m∗(1) + m∗(3) + m∗(13) ≥ 0.4

m∗(2) + m∗(3) + m∗(23) ≥ 0.4

m∗(1) + m∗(2) + m∗(3) + m∗(12) + m∗(13) + m∗(23) = 1.

Let us write for convenience m∗ := (m∗(1), m∗(2), m∗(3), m∗(12), m∗(13), m∗(23)).282

Clearly m∗
0 := (0.2, 0.1, 0.1, 0.2, 0.2, 0.2) is a solution, as well as283
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m∗
0 + t(1, 0, 0, −1, 0, 0) for any t ≥ 0. Hence (1, 0, 0, −1, 0, 0) is284

a ray, and the core is unbounded.285

For the monotone core, from Prop. 1 (i) there is an additional system of n2n−1

inequalities
∑

K∈[i,L]
|K|≤k

m∗(K) ≥ 0, ∀i ∈ N, ∀L ∋ i. (4)

For monotone games, Miranda and Grabisch [14] have proved that the Möbius

transform is bounded as follows:

−

(

|A| − 1

l′|A|

)

v(N) ≤ m(A) ≤

(

|A| − 1

l|A|

)

v(N), ∀A ⊆ N,

where l|A|, l
′
|A| are given by:286

(i) l|A| =
|A|

2
, and l′|A| =

|A|

2
− 1 if |A| ≡ 0(mod 4)

287

(ii) l|A| =
|A| − 1

2
, and l′|A| =

|A| − 3

2
or l′|A| =

|A| + 1

2
if |A| ≡ 1(mod 4)

288

(iii) l|A| =
|A|

2
− 1, and l′|A| =

|A|

2
if |A| ≡ 2(mod 4)

289

(iv) l|A| =
|A| − 3

2
or l|A| =

|A| + 1

2
, and l′|A| =

|A| − 1

2
if |A| ≡ 3(mod 4).

290

Since v(N) is fixed and bounded, the monotone k-additive core is always291

bounded.292

For Ck
∞(v), using Prop. 1 (ii) system (4) is replaced by a system of N(k) − n

inequalities:

m∗(K) ≥ 0, K ∈ Pk
∗ (N), |K| > 1. (5)

Since in addition we have m∗({i}) ≥ m({i}), i ∈ N coming from (2), m∗ is293

bounded from below. Then (3) forces m∗ to be bounded from above, so that294

Ck
∞(v) is bounded.295

In summary, we have the following.296

Proposition 11 For any game v, Ck(v), MCk(v) and Ck
∞(v) are closed convex297

(N(k)−1)-dimensional polyhedra. Only MCk(v) and Ck
∞(v) are always bounded.298
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The following result about rays of Ck(v) is worthwile to be noted.299

Proposition 12 The components of rays of Ck(v) do not depend on v, but300

only on k and n.301

Proof: For any polyhedron defined by a system of m inequalities and n302

variables (including slack variables) Ax = b, it is well known that its conical303

part is given by Ax = 0, and that rays (also called basic feasible directions)304

are particular solutions of the latter system with n−m non basic components305

all equal to zero but one (see, e.g., [6]). Hence, components of rays do not306

depend on b.307

Applied to our case, this means that components of rays do not depend on v,308

but only on k and n. �309

310

4.2 A Shapley-Ichiishi-like result311

We turn now to the characterization of vertices induced by achievable families.

Let v be a game on N , m its Möbius transform, and ≺ be a total order on

Pk
∗ (N). We define a k-additive game v≺ by its Möbius transform as follows:

m≺(B) :=















∑

A∈A(B) m(A), if A(B) 6= ∅

0, else

(6)

for all B ∈ Pk
∗ (N), and m≺(B) := 0 if B 6∈ Pk

∗ (N).312

Due to Prop. 3, m≺ satisfies
∑

B⊆N m≺(B) =
∑

B⊆N m(B) = v(N), hence313

v≺(N) = v(N).314

This definition is a generalization of the definition of φσ or φC (see Sec. 2).315

Indeed, denoting by σ the permutation on N corresponding to ≺, we get:316
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m≺({σ(i)})=
∑

A⊆{σ(1),...,σ(i−1)}

m(A ∪ σ(i))

=
∑

A⊆{σ(1),...,σ(i)}

m(A) −
∑

A⊆{σ(1),...,σ(i−1)}

m(A)

= v({σ(1), . . . , σ(i)}) − v({σ(1), . . . , σ(i − 1)}) = φσ({σ(i)}) = mσ({σ(i)}),

where mσ is the Möbius transform of φσ (see Sec. 2).317

Proposition 13 Assume that A(B) is a nonempty lattice. Then v≺(B̌) =318

v(B̌) if and only if {A(C) | C ∈ Pk
∗ (N), C ⊆ B̌,A(C) 6= ∅} is a partition of319

P(B̌) \ {∅}.320

Proof: We have by Eq. (6)

v≺(B̌) =
∑

C⊆B̌

C∈Pk
∗
(N)

A(C)6=∅

m≺(C) =
∑

C⊆B̌

C∈Pk
∗
(N)

A(C)6=∅

∑

K∈A(C)

m(K). (7)

On the other hand, v(B̌) =
∑

K⊆B̌ m(K). To ensure v≺(B̌) = v(B̌) for any321

v, every K ⊆ B̌ must appear exactly once in the last sum of (7), which is322

equivalent to the desired condition. �323

324

The following is immediate from Prop. 13 and 7.325

Corollary 3 Assume ≺ is compatible, and consider a nonempty achievable326

family A(B). Then v≺(B̌) = v(B̌).327

Proposition 14 Let us suppose that all nonempty achievable families are lat-328

tices. Then v k-monotone implies that v≺ is infinitely monotone.329

Proof: It remains to show that m≺(B) ≥ 0 for any B such that 1 < |B| ≤ k.

For all such B satisfying A(B) 6= ∅,

m≺(B) =
∑

A∈A(B)

m(A) =
∑

A∈[B,B̌]

m(A).
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Since 1 < |B| ≤ k, by Prop. 1, it follows from k-monotonicity that m≺(B) ≥ 0330

for all B ∈ Pk
∗ (N). �331

332

The next corollary follows from Prop. 6.333

Corollary 4 Let us suppose that ≺ is compatible. Then v k-monotone implies334

that v≺ is infinitely monotone.335

Theorem 2 v is (k + 1)-monotone if and only if for all compatible orders ≺,336

v≺(A) ≥ v(A), ∀A ⊆ N .337

Proof: For any compatible order ≺, and any A ⊆ N , A 6= ∅, by compatibility

and Prop. 6, we can write

v≺(A) =
∑

B⊆A

B∈Pk
∗
(N)

A(B)6=∅

∑

C∈[B,B̌]

m(C). (8)

Let C ⊆ A. Then by Prop. 3, C ∈ A(B) for some B ⊆ A. Indeed B ⊆ C ⊆ A.

Hence (8) writes

v≺(A) = v(A) +
∑

B⊆A

B∈Pk
∗
(N)

A(B)6=∅

∑

C∈[B,B̌]
C 6⊆A

m(C). (9)

338

(⇒) Let us take any compatible order ≺. By (9), it suffices to show that

∑

C∈[B,B̌]
C 6⊆A

m(C) ≥ 0, ∀B ⊆ A, B ∈ Pk
∗ (N),A(B) 6= ∅. (10)

For simplicity define C as the set of subsets C satisfying the condition in the339

summation in (10). If B̌ ⊆ A, then C = ∅, and so (10) holds for such B’s.340

Assume then that B̌ \ A 6= ∅. Let us take i ∈ B̌ \ A. Then C0 := B ∪ i is341

a minimal element of C, of cardinality 1 < |B| + 1 ≤ k + 1. Observe that342

20

ha
l-0

03
21

62
5,

 v
er

si
on

 1
 - 

15
 S

ep
 2

00
8



[C0, B̌] ⊆ C, and that it is a Boolean sublattice of [B, B̌]. Hence, (k + 1)-343

monotonicity implies that
∑

C∈[C0,B̌] m(C) ≥ 0 (see Prop. 1).344

Consider j ∈ B̌ \ A, j 6= i. If no such j exists, then [C0, B̌] = C, and we345

have shown (10) for such B’s. Otherwise, define C1 := B ∪ j and the interval346

[C1, B̌ \ i], which is disjoint from [C0, B̌]. Applying again (k +1)-monotonicity347

we deduce that
∑

D∈[C1,B̌] m(D) ≥ 0. Continuing this process until all elements348

of B̌ \ A have been taken, the set C has been partitioned into intervals [B ∪349

i, B̌], [B ∪ j, B̌ \ i], [B ∪ k, B̌ \ {i, j}], . . . , [B ∪ l, A∪ l] where the sum of m(C)350

over these intervals is non negative by (k + 1)-monotonicity. Hence (10) holds351

in any case and the sufficiency is proved.352

(⇐) Consider K, L ⊆ N such that 1 < |K| ≤ k + 1 and L ⊇ K. We have to353

prove that
∑

C∈[K,L] m(C) ≥ 0. Without loss of generality, let us assume for354

simplicity that K := {i, i+1, . . . , l} and L := {1, . . . , l}, with l−k ≤ i < l ≤ n.355

Define B := K \ i = {i+1, . . . , l} and A := L\ i. Take a total order on Pk
∗ (N)356

as follows:357

(i) put first all subsets in Pk
∗ (L), with increasing cardinality, except B which358

is put the last359

(ii) then put remaining subsets in Pk
∗ (N) such that they form a compatible360

order (for example: consider the above fixed sequence in Pk
∗ (L) augmented361

with the empty set as first element of the sequence, then take any subset362

D in N \L belonging to Pk
∗ (N), and add it to any subset of the sequence,363

discarding subsets not in Pk
∗ (N). Do this for any subset D of N \ L).364

(iii) subsets in Pk
∗ (L) with same cardinality are ordered according to the lex-365

icographic order, which means in particular 1 ≺ 2 ≺ · · · ≺ l.366

1 For example, with n = 5, l = 4, i = 3, k = 3:

1 ≺ 2 ≺ 3 ≺ 12 ≺ 13 ≺ 14 ≺ 23 ≺ 24 ≺ 34 ≺ 123 ≺ 124 ≺ 134 ≺ 234 ≺ 4 ≺ 5 ≺ 51 ≺ 52 · · ·
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One can check that such an order is compatible 1 . By construction, we have367

A(B) = [B, L]. Indeed, for any C ∈ A(B), any subset of C in Pk
∗ (N) is ranked368

before B. Moreover, [K, L] = [B ∪ i, L] = {C ∈ A(B) | C 6⊆ A}. Now, take369

any B′ 6= B in Pk
∗ (L) such that B′ ⊆ A. Let us prove that any C ∈ A(B′)370

is such that i 6∈ C, or equivalently C ⊆ A. Indeed, up to the fact that B is371

ranked last, the sequence Pk
∗ (L) forms a strongly compatible order. Adapting372

slightly Prop. 9, it is easy to see that if |B′| < k, then either B̌′ = B′ or373

A(B′) = ∅, the latter arising if B′ ⊃ B. Then trivially any C ∈ A(B′) satisfies374

C ⊆ A. Assume now |B′| = k. If B′ contains some j ≺ i, then B′ ∪ i cannot375

belong to A(B′) since by lexicographic ordering B′ ∪ i \ j is ranked after B′,376

which implies that for any C ∈ A(B′), i 6∈ C. Hence, the condition i ∈ C can377

be true for some C ∈ A(B′) only if all elements of B′ are ranked after i. But378

since B = {i + 1, . . . , l}, this implies that either B′ = B, a contradiction, or379

B′ does not exist (if |B| < k).380

Let us apply the dominance condition for v≺(A). Using (9), dominance is

equivalent to write:
∑

B⊆A

B∈Pk
∗
(N)

A(B)6=∅

∑

C∈[B,B̌]
C 6⊆A

m(C) ≥ 0.

Using the above, this sum reduces to
∑

C∈[K,L] m(C) ≥ 0. This finishes the381

proof. �382

383

The following is an interesting property of the system {(2), (3)}.384

Proposition 15 Let ≺ be a compatible order. Then the linear system of equal-385

ities v≺(B̌) = v(B̌), for all B̌’s induced by ≺, is triangular with no zero on386

the diagonal, and hence has a unique solution.387

Proof: We consider w.l.o.g. that 1 ≺ 2 ≺ · · · ≺ n and consider the binary388

order ≺2 for ordering variables m∗(B).389
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Delete all variables such that A(B) = ∅, and consider the list of subsets390

in Pk
∗ (N) corresponding to non deleted variables. Take all B’s in the list,391

and their corresponding B̌’s (always exist since by compatibility, A(B) is a392

lattice). They are all different by Prop. 3, so we get a linear system of the393

same number of equations (namely v≺(B̌) = v(B̌)) and variables. Take one394

particular equation corresponding to B. Then variables used in this equation395

are necessarily m∗(B) itself (because B̌ ⊇ B), and some variables ranked396

before B in the binary order. Indeed, if B̌ = B, then all variables used in the397

equation are ranked before B by ≺2. If B̌ 6= B, supersets B′ of B in Pk
∗ (N)398

are ranked after B by ≺2 (because ≺2 is ⊆-compatible), and ranked before399

B by ≺ (otherwise A(B) would not contain B̌), but since they contain B,400

necessarily A(B′) = ∅, so corresponding variables are deleted.401

Hence the system is triangular. �402

403

Note that the proof holds under the condition that all achievable families are404

lattices, so compatibility is even not necessary.405

Theorem 3 Let v be a (k + 1)-monotone game. Then406

(i) If ≺ is strongly compatible, then v≺ is a vertex of Ck(v).407

(ii) If ≺ is compatible, then v≺ is a vertex of Ck
∞(v).408

Proof: By standard results on polyhedra, it suffices to show that v≺ is an409

element of Ck(v) (resp. Ck
∞(v)) satisfying at least N(k)−1 linearly independent410

equalities among (2) (resp. among (2) and (5)). Assume ≺ is compatible. Then411

by Cor. 4, v≺ is infinitely monotone, and it dominates v by (k+1)-monotonicity412

(Th. 2). Moreover, for any B ∈ Pk
∗ (N), A(B) is either empty or a lattice, hence413

either m≺(B) = 0 or v≺(B̌) = v(B̌) by Cor. 3. Since if |B| = 1, A(B) 6= ∅,414

this gives N(k) equalities in the system defining Ck
∞(v), including (3), hence415
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we have the exact number of equalities required, which form a nonsingular416

system by Prop 15, and (ii) is proved. If the order is strongly compatible, then417

all achievable families are lattices, which proves the result for Ck(v), since418

again by Prop. 15, the system is nonsingular. �419

420

Remark 1: Vertices induced by (strongly) compatible orders are also ver-421

tices of the monotone k-additive core. They are induced only by dominance422

constraints, not by monotonicity constraints.423

Remark 2: Cor. 3 generalizes Prop. 2, while Theorems 2 and 3 generalize424

the Shapley-Ichiishi results summarized in Th. 1. Indeed, recall that con-425

vexity is 2-monotonicity. Then clearly Th. 2 is a generalization of (i) ⇒ (ii)426

of Th. 1, and Th. 3 (i) is a part of (iv) in Th. 1. But as it will become clear427

below, all vertices are not recovered by achievable families, mainly because428

they can induce only infinitely monotone games. In particular, MCk(v) con-429

tains many more vertices.430

Let us examine more precisely the number of vertices induced by strongly431

compatible orders. In fact, there are much fewer than expected, since many432

strongly compatible orders lead to the same v≺. The following is a consequence433

of Prop. 10.434

Corollary 5 The number of vertices of Ck(v) given by strongly compatible435

orders is at most n!
k!

.436

Proof: Given the order 1 ≺ 2 ≺ · · · ≺ n, a permutation over the last k437

singletons would not change the collection B̌. �438

439

Note that when k = 1, we recover the fact that vertices are induced by all440

permutations, and that with k = n, we find only one vertex (which is in fact441
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the only vertex of Cn(v)), which is v itself (use Prop. 10 and the definition of442

m≺).443

4.3 Other vertices444

In this last section we give some insights about other vertices. Even for the445

(non monotonic) k-additive core, in general for k 6= 1, n, not all vertices are446

induced by strongly compatible orders. However, for the case k = n − 1, it447

is possible to find all vertices of Ck(v). For 1 < k < n − 1 and also for the448

monotonic core, the problem becomes highly combinatorial.449

Theorem 4 Let v be any game in G(N), with Möbius transform m.450

(i) If m(N) > 0, Cn−1(v) contains exactly 2n−1 (if n is even) or 2n−1 − 1 (if

n is odd) vertices, among which n vertices come from strongly compatible

orders. They are given by their Möbius transform:

m∗
B0

(K) =















m(K), if K 6⊇ B0

m(K) + (−1)|K\B0|m(N), else

for all B0 ⊂ N such that |N \ B0| is odd.451

(ii) If m(N) = 0, then there is only one vertex, which is v itself.452

(iii) If m(N) < 0, Cn−1(v) contains exactly 2n−1 − 1 (if n is odd) or 2n−1 − 2

(if n is even) vertices, of which none comes from a strongly compatible

order. They are given by their Möbius transform:

m∗
B0

(K) =















m(K), if K 6⊇ B0

m(K) − (−1)|K\B0|m(N), else

for all B0 ⊂ N such that |N \ B0| is even.453

Proof: We assume m(N) ≥ 0 (the proof is much the same for the case

m(N) ≤ 0). We consider the system of 2n−1 inequalities {(2),(3)}, which has
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N(n − 1) = 2n − 2 variables. We have to fix 2n − 2 equalities, among which

(3), so we have to choose only one inequality in (2) to remain strict, say for

B0 ⊂ N , B0 6= ∅:

∑

K⊆B0

m∗(K) >
∑

K⊆B0

m(K). (11)

From the definition of the Möbius transform, we have

0 = m∗(N) =
∑

K⊆N

(−1)|N\K|v∗(K).

Note that for any ∅ 6= K ⊆ N , v∗(K) is the left member of some inequality454

or equality of the system. Hence, by turning all inequalities into equalities,455

we get, by doing the above summation on the system, 0 = m(N). Hence, if456

m(N) = 0, there is only one vertex, which is v itself, otherwise taking equality457

everywhere gives a system with no solution. Since strict inequality holds only458

for B0 ⊂ N , we get instead 0 > m(N) if |N \ B0| is even, and 0 < m(N) if459

|N \ B0| is odd. The first case is impossible by assumption on m(N), so only460

the case where |N \ B0| odd can produce a vertex. Note that if |B0| = n − 1,461

we recover all n vertices induced by strongly compatible orders. In total we462

get
(

n

n−1

)

+
(

n

n−3

)

+ · · ·+
(

n

1

)

= 2n−1 potential different vertices when n is even,463

and 2n−1 − 1 when n is odd. Clearly, there is no other possibility.464

It remains to show that the corresponding system of equalities is non singu-

lar, and eventually to solve it. Assume B0 ⊂ N in (11) is chosen. From the

linear system of equalities we easily deduce m∗(K) = m(K) for all K 6⊇ B0.

Substituting into all equations, the system reduces to

∑

K⊆B\B0

m∗(B0 ∪ K) =
∑

K⊆B\B0

m(B0 ∪ K), ∀B ⊃ B0, B 6= N

∑

K⊂N\B0

m∗(B0 ∪ K) =
∑

K⊂N\B0

m(B0 ∪ K) + m(N).

B0 being present everywhere, we may rename all variables after deleting B0,

i.e., we set N ′ = N \ B0, m′(A) := m(A ∪ B0) and m′∗(A) = m∗(A ∪ B0), for
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all A ⊆ N ′. The system becomes

∑

K⊆B

m′∗(K) =
∑

K⊆B

m′(K), ∀B ⊂ N ′

∑

K⊂N ′

m′∗(K) =
∑

K⊂N ′

m′(K) + m′(N ′).

Summing equations of the system as above, i.e., computing
∑

B⊆N ′(−1)|N
′\B|∑

K⊆B m′∗(K),465

we get m′∗(∅) = m′(∅) + m′(N ′), or equivalently m∗(B0) = m(B0) + m(N).466

Substituting in the above system, we get a system which is triangular (use, e.g.,467

Prop. 15 with k = n = n′). We get easily m∗(K) = m(K) + (−1)|K\B0|m(N),468

for all K ⊇ B0. �469

470
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