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Abstract

This paper examines a model of optimal growth where the aggrega-
tion of two separate well behaved and concave production technologies
exhibits a basic non-convexity. First, we consider the case of strictly
concave utility function: when the discount rate is either low enough or
high enough, there will be one steady state equilibrium toward which
the convergence of the optimal paths is monotone and asymptotic.
When the discount rate is in some intermediate range, we �nd su¢ -
cient conditions for having either one equilibrium or multiple equilibria
steady state. Depending to whether the initial capital per capita is lo-
cated with respect to a critical value, the optimal paths converge to
one single appropriate equilibrium steady state. This state might be a
poverty trap with low per capita capital, which acts as the extinction
state encountered in earlier studies focused on S-shapes production
functions. Second, we consider the case of linear utility and provide
su¢ cient conditions to have either unique or two steady states when
the discount rate is in some intermediate range . In the latter case, we
give conditions under which the above critical value might not exist,
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and the economy attains one steady state in �nite time, then stays at
the other steady state afterward.
JEL classi�cation: 022,111
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1 Introduction

Problems in the one-sector optimal economic growth model where the pro-
duction technology exhibits increasing return at �rst and decreasing return
to scale afterward have received earlier attention. Skiba (1978), examined
this convex-concave technology in continuous time and provided some re-
sults, which were further extended rigorously in Majumdar and Mitra (1982)
for a discrete time setting. Further, Majumdar and Nermuth (1982) con-
sidered irreversible investment and arbitrary increasing production function
which is twice continuous and di¤erentiable.

With a convex-concave technology giving rise to S-shaped production
functions, the time discount rate plays an important role: when the future
utility is heavily discounted, the optimal program converges monotonically
to the �low� steady state - the extinction corresponding to a degenerated
state characterized by vanishing long run capital stock- while in the opposite
case, it tends in the long run to the optimal steady state, usually referred
to as the Modi�ed Golden Rule (MGR). If the rate of interest falls into
an intermediate range of future discounting, the convergence now depends
upon the initial stock of capital (see e.g. Dechert and Nishimura (1983)).
Further, Majumdar and Mitra (1983) examined these questions in optimal
growth model with a linear utility function while Mitra and Ray (1984)
considered nonsmooth technologies and showed that any optimal path ap-
proaches asymptotically the set of steady states. Recently, Kamihigashi and
Roy (2006) generalized to production functions which are increasing and
upper semi-continuous. They obtained for the case of linear utility that
any optimal path, which is strictly monotone, either converges to zero or
reaches a positive steady state in �nite time and possibly jumps among dif-
ferent steady states. Furthermore, Kamihigashi and Roy (2007) gave general
conditions in a Nonsmooth, Nonconvex model of optimal growth to have a
steady state, to obtain that an optimal path converges either to zero or to
a well determined steady state, or to in�nity.

In the present paper, we put emphasis on the existence of many technology-
blueprint books, where each technology is well behaved and strictly concave,
but the aggregation of theses technologies gives rise to some local non-convex
range. To get in touch with a real problem akin to what we are studying,
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consider an economy with two technology possibilities. The �-technology re-
quires less infrastructure expenditure such as investment in roads and high-
ways and provides at the low range of capital labor ratio a higher production,
thus higher consumption possibility than the �-technology. Alternatively,
the �-technology requires heavy infrastructure investment, allows less pro-
duction at the low range of capital labor ratio but a much greater production
at high range of capital labor ratio. Intuitively, which technology would be
relevant depends upon how the economy is initially endowed with capital and
labor, and how their inhabitants evaluate the present consumption relative
to future consumption.

For the purpose of expositional simplicity, consider two Cobb-Douglas
technologies - mutually exclusive for reason of some setup technological cost
- depicted in the Figure below where output per capita is a function of the
capital-labor ratio. The intersection of the production graphs is located at
point C where k = 1:Therefore the �-technology is relatively more e¢ cient
than the �-technology when k � 1; but less e¢ cient when k � 1: The two
production graphs have a common tangent passing through A and B. Thus,
the aggregate production which combines both the �-technology and the
�-technology exhibits a non-convex range depicted by the contour ACB.
Clearly, the type of non-convexity in the aggregate technology we consider
is quite di¤erent from those studied in the literature. The extinction - a
degenerated state (0,0) - that we rule out by the Inada conditions imposed
on the technology does no longer play the role of an attractor as in earlier
studies mentioned above. Yet, there exist two MGR long run equilibria: bk�,
the �low�steady state - sometime referred to as the poverty trap- and bk�;
the �high�steady state. The �low�steady state is an attractor in this case,
and we must ask which of these two states will e¤ectively be the equilibrium,
and how the latter will be attained over time.

For the case of strictly concave utility as the objective function, we shall
show that when future discounting is high enough, the equilibrium is the op-
timal steady state bk� corresponding to the technology that is relatively more
e¢ cient at the low capital per head. Conversely, when future discounting
is low, the equilibrium is the optimal steady state bk� corresponding to the
technology that is relatively more e¢ cient at high capital per head. For any
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value of the initial capital stock in these cases, the convergence to the opti-
mal steady state equilibrium is assured. In contrast, when future discounting
is in some intermediate range, there might exist two optimal steady states
and the dynamic convergence now depends on the initial stock of capital k0.
We show that there exists a critical value kc such that every optimal path
from k0 < kc will converge to bk� , and every optimal path from k0 > kc will
converge to bk� : We also provides su¢ cient conditions to have two optimal
steady states or to have just one optimal steady state. The convergence to
the steady state is monotonic and asymptotic.

When the utility function is linear (that means that the social planner
is the �rm who maximizes the intertemporal pro�t), the optimal paths from
a positive initial capital labor ratio will reach in �nite time one of the two
positive optimal steady states. Necessary and su¢ cient condition either to
have uniqueness of steady state bk� or to have positive poverty trap bk�are
obtained. Furthermore, we also provide the condition for having a critical
value kc as in the case with strictly concave utility, and the condition under
which such critical value does not exist. In the latter case, the economy
attains one steady state in �nite time, then jumps to the other steady state
afterward.

The paper is organized as follows. In Section 2, we specify our model.
In Section 3, we provide a complete analysis of the optimal growth paths
with strictly concave utility. In Section 4, we consider the case of linear
utility as in Kamihigashi and Roy (2006), and in Section 5, we summarize
our �ndings and provide some concluding comments.

2 The Model

The economy produces a homogeneous good according two possible Cobb-
Douglas technologies, the ��technology f�(k) = Ak�; and the �-technology
f�(k) = Ak

� where k denotes the capital per head and 0 < � < � < 1: The
e¢ cient technology will be y = max

�
Ak�; Ak�

	
= f(k):

The convexi�ed economy is de�ned by cof(k) where co stands for convex-
hull. It is the smallest concave function minorized by f: Its epigraph, i.e.
the set f(k; �) 2 R+ �R+ : cof(k) � �g is the convex hull of the epigraph of
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f; f(k; �) 2 R+ �R+ : f(k) � �g (see �gure 1). One can check that cof =
f� for k 2 [0; x1] ; cof = f� for k 2 [x2;+1[; and a¢ ne between x1 and x2:
More explicitly, we have

�Ax��11 = �Ax��12 =
Ax�1 �Ax

�
2

x1 � x2
which implies

x1 =

�
�

�

� �
���

�
1� �
1� �

� 1��
���

and

x2 =

�
�

�

� �
���

�
1� �
1� �

� 1��
���

:

In our economy , the social utility is represented by
Pt=+1
t=0 tu(ct) where

 is the discount factor and ct the consumption. In period t; this consump-
tion is constrained by the net output f(kt)� kt+1; where kt denotes the per
head capital stock available at date t:

The optimal growth model can be written as

max

+1X
t=0

tu(ct)

under the constraints

8t � 0; ct � 0; kt � 0; ct � f(kt)� kt+1; and k0 > 0 is given.

We assume that the utility function u is strictly concave, increasing,
continuously di¤erentiable, u(0) = 0 and (Inada Condition) u0(0) = +1:
The discount factor  satis�es 0 <  < 1:

Let V denote the value-function, i.e.

V (k0) = max
+1X
t=0

tu(ct)

under the constraints

8t � 0; ct � 0; kt � 0; ct � f(kt)� kt+1; and k0 � 0 is given.

5
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Remark 1: Before proceeding the analysis, we wish to say that our tech-
nology speci�cation used for aggregation purpose in this paper is not restric-
tive. Indeed, consider the following production function f(k) = maxfAk�; Bk�g;
with A 6= B: De�ne ek = k

� ; ec = c
� ; v(c) = u(

c
�); where � satis�es A�

� = B��:

Let A0 = A�� = B�� : It is easy to check that the original optimal growth
model behind becomes

max

+1X
t=0

tv(ect)
under the constraints

8t � 0;ect � 0;ekt � 0;ect � ef(ekt)� ekt+1; and ek0 > 0 is given.;
where ef(x) = maxfA0x�; A0x�g:

3 Analysis of the optimal growth paths

The preliminary results are summarized in the following proposition.

Proposition 1 (i) For any k0 � 0; there exists an optimal growth path
(c�t ; k

�
t )t=0;:::;+1 which satis�es:

8t; 0 � k�t �M = max
h
k0;eki ; 0 � c�t � f(M);

where ek = f(ek):
(ii) If k0 > 0; then 8t; c�t > 0; k�t > 0; k�t 6= 1; and we have Euler equation

u0(c�t ) = u
0(c�t+1)f

0(k�t+1):

(iii) Let k00 > k0 and (k
0�
t ) be an optimal path associated with k

0
0: Then

we have: 8t; k0�t > k�t :
(iv) The optimal capital stocks path is monotonic and converges to an

optimal steady state. Here, this steady state will be either bk� = (A�)
1

1��

or bk� = (A�) 1
1�� :

Proof : (i) The proof of this statement is standard and may be found in
Le Van and Dana (2003), chapter 2. (ii) From Askri and Le Van (1998),
the value-function V is di¤erentiable at any k�t ; t � 1: Moreover, V 0(k�t ) =
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u0(f(k�t )�k�t+1)f 0(k�t ) and this excludes that k�t = 1 since 1 is the only point
where f is not di¤erentiable. From Inada Condition, we have c�t > 0; k

�
t >

0;8t: Hence, Euler Equation holds for every t.
(iii) It follows from Amir (1996) that k00 > k0 implies 8t; k0�t > k�t : From

Euler Equation we have

u0(f(k0)� k�1) = V 0(k�1)

and
u0(f(k00)� k�1) = V 0(k0�1 ):

If k�1 = k
0�
1 then k0 = k

0
0 : a contradiction. Hence, k

�
1 < k

0�
1 : By induction,

8t > 1; k0�t > k�t :
(iv) First assume k�1 > k0: Then the sequence (k

�
t )t�2 is optimal from k

�
1:

From (iii), we have k�2 > k
�
1: By induction, k

�
t+1 > k

�
t ;8t: If k�1 < k0; using

the same argument yields k�t+1 < k
�
t ;8t: Now if k�1 = k0; then the stationary

sequence (k0; k0; :::; k0; :::) is optimal.
We have proved that any optimal path (k�t ) is monotonic. Since, from (1),

it is bounded, it must converge to an optimal steady state ks: If this one is
di¤erent from zero, then the associated optimal steady state consumption cs

must be strictly positive from Inada Condition. Hence, from Euler Equation,
either ks = bka or ks = bkb since it could not equal 1:

It remains to prove that (k�t ) cannot converge to zero. On the contrary,
for t large enough, say greater than some T; we have u0(c�t ) > u

0(c�t+1) since
f 0(0) = +1: Hence, c�t+1 > c�t for every t � T: In particular, c�t+1 > c�T > 0;
8t > T: But k�t ! 0 implies c�t ! 0 : a contradiction.

We obtain the following corollary:

Corollary 1 If A� > 1; then any optimal path from k0 > 0 converges tobk�: If A� < 1; then any optimal path from k0 > 0 converges to bk�:
Proof : In Proposition 1, we have shown that any optimal path (k�t ) con-
verges either to bk� or to bk�: But when A� > 1; we have bk� > 1; f(bk�) =
A(bk�)� and f 0(bk�) = �A(bk�)��1 6= 1

 : Consequently,
bk� could not be an opti-

mal steady state. Therefore, (k�t ) cannot converge to bk�: From the statement
(iv) in Proposition 1, it converges to bk�:

7

ha
ls

hs
-0

02
67

10
0,

 v
er

si
on

 1
 - 

26
 M

ar
 2

00
8



Similarly, when A� < 1; any optimal path from k0 > 0 converges tobk�:
In our Figure, when bk� � 1; �� technology is clearly less e¢ cient than

��technology, thus bk� is not the optimal steady state. Similarly for bk� � 1.
In these cases, there will be an unique optimal steady state. But when the
discount factor is in an intermediate range de�ned by A� � 1 � A�;

there exists more than one such state. We now give an example where bk�
and bk� are both optimal. Since x1 and x2 are independent of A and ; we
can choose A and  such that

�Ax��11 = �Ax��12 =
1


; with 0 <  < 1:

It is easy to check that x1 and x2 are optimal steady states for the convexi�ed
technology and hence for our technology. Since x1 = bk�; x2 = bk� ; we have
found two positive optimal steady states. It will be shown in the following
proposition.

Proposition 2 Assume A� � 1 � A�: If A� is close to 1, then any
optimal path (k�t ) from k0 > 0 converges to bk�: If A� is close to 1, then
(k�t ) converges to bk�:
Proof : First, observe that when A� � 1 then f(bk�) = A�bk��� and when
1 � A�; f(bk�) = A

�bk��� : Now consider the case A� = 1 < A�: We

have bk� = 1 and A > 1:
It is well-known that given k0 > 0; there exists a unique optimal path

from k0 for the �-technology: Moreover, this optimal path converges to bk�:
Observe that the stationary sequence

�bk�;bk�; :::;bk�; :::� is feasible from bk�;
for the �-technology, since it satis�es 0 � bk� = 1 < A�bk��� = A: Hence, if�ekt� is an optimal path for �-technology starting from bk� and if (kt) is an
optimal path of our model starting also from bk�; we will have
1X
t=0

tu(f(bk�)�bk�) < 1X
t=0

tu(f(ekt)�ekt+1) � 1X
t=0

tu(f(kt)�kt+1) = V (bk�):
8
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This amounts to be certain that bk� can not be an optimal steady state.
Hence, any optimal path from k0 > 0 must converge to bk�:

Since bk� is continuous in ; V continuous and since
P1
t=0 

tu(f(bk�) �bk�) < V (bk�) when A� = 1; this inequality still holds when A� is close to
1 and less than 1. In other words, bk� is not an optimal steady state when
A� is close to 1 and less than 1. Consequently, any optimal path with
positive initial value will converge to bk�:

Similar argument applies when A� is near one but greater than one.

What then happens when the discount factor is within an intermediate
range? We now would like to show :

Proposition 3 Assume A� < 1 < A�: If both bk� and bk� are optimal
steady states then there exists a critical value kc such that every optimal
path from k0 < kc will converge to bk� , and every optimal path from k0 > kc

will converge to bk�:
Proof : Consider at �rst k0 < bk�. Since bk� is optimal steady state, we have
k�t < bk�; 8t > 0: Since the sequence (k�t ) is increasing, bounded from above
by bk�; it will converge to bk�: Similarly, when k0 > bk� ; any optimal path
converges to bk� :

Let k = sup
n
k0 : k0 � bk�o such that any optimal path from k0 converges

to bk�: Obviously, k � bk�; since bk� is optimal steady state.
Let k = inf

n
k0 : k0 � bk�o such that any optimal path from k0 converges

to bk�: Obviously, k � bk�; since bk� is optimal steady state.
We now claim that k = k:
It is obvious that k � k: Now, if k < k; then take k0; k00 which satisfy

k < k0 < k00 < k: From the de�nitions of k and k; there exist an optimal
path from k0; (k�t ); which converges to bk� and an optimal path from k00; (k0�t );
which converges to bk�: For t large enough, k0�t < k�t ; which is impossible since
k0 < k

0
0 (see Proposition 1, statement (iii)).

Posit kc = k = k and conclude.

Remark 2: Let now bk� and bk� , depicted in our Figure, be two potential
optimal steady states and ask the question which of them will be the long
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run equilibrium in the optimal growth model or both of them are the long
run equilibria. In the following proposition, we give su¢ cient conditions forbk� (respectively bk�) to be an optimal steady state or both bk�, bk� be optimal
steady states. Before stating this proposition, we mention two lemmas.
Their proofs may be found in Kamihigashi and Roy (2007, page 442).

Let F (x) = f(x)� x;8x � 0.

Lemma 1 Let (kt) be an optimal capital path which is nonstationary. Then
there exists t such that F (k0) < F (kt).

Lemma 2 Suppose there exists bk which satis�es F (bk) = supx�0 F (x). Thenbk is an optimal steady state.
We now set up the following conditions:

Condition 1: (A�)
�

1��

(A�)
�

1��
> 1��

1�� , F (bk�) > F (bk�)
Condition 2: (A�)

�
1��

(A�)
�

1��
< 1��

1�� , F (bk�) < F (bk�)
Condition 3: (A�)

�
1��

(A�)
�

1��
= 1��

1�� , F (bk�) = F (bk�)
Proposition 4 Assume A� � 1 � A�.

(i) Under condition 1, bk� is an optimal steady state. The stationary
sequence (bk�) is the unique optimal sequence from bk�.

(ii) If (A�)
�

1��

(A�)
�

1��
> 1����

1����
, f(bk�)� ��bk� > f(bk�)� ��bk�

where �� =
u0(f(bk�)�bk�)
u0(f(bk�)�bk�) < 1, then bk� is the unique optimal steady state. Any

optimal path from k0 > 0 will converge to bk�.
(iii)Under the condition 2, bk� is an optimal steady state. The stationary

sequence (bk�) is the unique optimal sequence from bk�.
(iv) If bk� < Abk��;

and if

(A�)
�

1��

(A�)
�

1��
<
1� ���
1� ���

, f(bk�)� ��bk� < f(bk�)� ��bk�
10
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where �� =
u0(f(bk�)�bk�)
u0(f(bk�)�bk�) < 1

� , then
bk� is the unique optimal steady state.

Any optimal path from k0 > 0 will converge to bk�
(v) Under condition 3, both bk� and bk� are optimal steady states. In this

case, we have a critical value kc stated in the preceding proposition.

Proof : Proof of (i): It is easy to check that bk� is the unique maximizer of
F between 0 and 1 while bk� is the unique maximizer for x � 1. Moreover,
F increases from 0 to bk� and decreases from bk� to 1. It then increases
from 1 to bk� and decreases after. Under the condition F (bk�) > F (bk�),
we have F (bk�) = maxx�0 F (x). From Lemma 2, bk� is an optimal steady
state. If there exists another optimal path (kt) from bk�, this one must be
nonstationary and satis�es F (kt) � F (bk�);8t. That contradicts Lemma 1.
There exists therefore a unique optimal path from bk�.

Proof of (ii): Observe that for any � 2 (0; 1), we have 1���1��� >
1��
1�� . Thus

under the condition f(bk�)� �bk� > f(bk�)� �bk� , bk� is an optimal steady
state. To prove that bk� is not an optimal steady, observe that the stationary
sequence (bk�) is feasible from bk�. Let

�T = u(f(bk�)� bk�) + TX
t=1

tu(f(bk�)� bk�)� TX
t=0

tu(f(bk�)� bk�):
One has:

�T � u0(f(bk�)� bk�)(bk� � bk�) + TX
t=1

tu0(f(bk�)� bk�)(f(bk�)� bk� � f(bk�) + bk�)
� u0(f(bk�)� bk�)f(bk�)� u0(f(bk�)� bk�)bk�
� [u0(f(bk�)� bk�)f(bk�)� u0(f(bk�)� bk�)bk�]
+ u0(f(bk�)� bk�)[F (bk�)� F (bk�)] + :::+ T�1u0(f(bk�)� bk�)[F (bk�)� F (bk�)]
+ Tu0(f(bk�)� bk�)(bk� � bk�):

Letting T converge to in�nity, one gets

lim
T!+1

�T � u0(f(bk�)� bk�) hf(bk�)� �bk� � (f(bk�)� �bk�)i > 0:
That proves that bk� is not an optimal steady state. Any optimal path from
k0 > 0 will converge to bk�.

11
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Proof of (iii): It is similar to the proof of (i).
Proof of (iv): It su¢ ces to prove that bk� is not an optimal steady state.

One can check that conditions in (iv) imply that bk� is feasible from bk�, and
F (bk�) > F (bk�). As in the proof of (ii), we �nd

u(f(bk�)� bk�) +X
t�1

tu(f(bk�)� bk�) >X
t�1

tu(f(bk�)� bk�):
Proof of (v): We have F (bk�) = F (bk�) = maxx�0 F (x). It follows from

Lemma 2 that both bk� and bk� are optimal steady states. Existence of critical
value follows from Proposition 3

Remark 3: The condition given in (v) is satis�ed by the points x1, x2
(see our Figure) in Remark 2.

Remark 4: The existence of critical value is recognized since the paper
by Dechert and Nishimura (1983). See also, for the continuous time setting,
Askenazy and Le Van (1999). But in these models, the technology is convex-
concave. The low steady state is unstable while the high is stable. An
optimal path converges either to zero (extinction) or to the high steady state.
In our model, with a technology which is concave-concave, any optimal path
converges either to the high steady state or to the low steady state which is
strictly positive. This latter acts as an attractor unless the discount rate is
very low.

Remark 5: In the proposition 4, (i) and (iii) own much to Kamihigashi
and Roy (2007). Uniqueness of the steady state in (ii) and (iv) , and
the critical value kc in (v) are peculiar to our model of concave-concave
technology.

4 The case of linear utility function

In this section, which is much inspired from Kamihigashi and Roy (2006),
we consider the case of linear utility function. Earlier consideration of this
case has been given in Majumdar and Mitra (1983) with a convex-concave
technology. Here, with the concave-concave technology, we provide neces-
sary and su¢ cient conditions either to have uniqueness of steady state or,

12

ha
ls

hs
-0

02
67

10
0,

 v
er

si
on

 1
 - 

26
 M

ar
 2

00
8



in case of two steady states bk� and bk�, to have the poverty trap bk�as an
equilibrium. We also show that the economy attains a steady state in �nite
time, then jumps to the other steady state and stays there forever.

Assume in this section that the rate of discount falls in the intermediate
range, i.e. A� < 1 < A�. There will be two potential optimal steady
states bk�, bk� , with bk� < bk�. We will use the following lemmas, the proofs
of which are given in Kamihigashi and Roy (2006, respectively p.335 and p.
333)

Lemma 3 If the utility function is linear and the production function f is
strictly increasing, upper semicontinuous, satis�es f(0) = 0 and 9�x;8x 2
(0; �x); f 0(x) > 1, then every optimal path (kt) from k0 > 0 satis�es kt � �x

for every t large enough.

Lemma 4 If the utility function is linear and the production function f is
strictly increasing, upper semicontinuous and satis�es f(0) = 0 then for any
optimal path (kt), one has two alternatives:

lim
t!+1

kt = 0

9T;8t � T; kt 2 S;

where S is the set of positive steady states.

We will apply these lemma to our model and get

Proposition 5 Assume the utility linear and A� < 1 < A�. Let (kt) be
an optimal path from k0 > 0. Then it will reach in �nite time either bk� orbk�.
Proof : Since f 0(0) = +1 in our model, from Lemma 3, an optimal path
from k0 > cannot converge to zero. The result follows from Lemma 4.

We also use the following lemma (Kamihigashi and Roy, 2006, p.330)

Lemma 5 Assume the utility function is linear and the production function
f is strictly increasing, upper semicontinuous and satis�es f(0) = 0. Let k1,
k2 be optimal steady states such that k1 is feasible from k2 and k2 is feasible
from k1. Then any capital path (kt) with kt 2 fk1; k2g is optimal from k1

and from k2.
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We now give su¢ cient and necessary conditions either for bk� (respec-
tively bk�) to be optimal steady state, or both of them be optimal steady
states.

Proposition 6 Assume A� < 1 < A�.
(i) Under condition 1, bk� is the unique optimal steady state. Any optimal

path from k0 > 0 will reach bk� in �nite time.
(ii) Under condition 2 and if bk� < Abk��;then bk� is the unique optimal

steady state. Any optimal path from k0 > 0 will reach bk� in �nite time.
(iii) Under condition 3 and if bk� � Abk��, then both bk� and bk� are optimal

steady states In this case there is no critical value kc.1Moreover, an optimal
path will reach either bk� or bk� at some date T .

(iv) Under condition 3 and if Assume bk� > Abk��, then both bk� and bk�
are optimal steady states. There will be in this case a critical value kc as in
proposition 3.

Proof : Proof of (i): It is obvious that bk� is optimal steady state since
it maximizes the function F . We now claim that it is the unique optimal
steady state. For that, let

�T = u(f(bk�)� bk�) + TX
t=1

tu(f(bk�)� bk�)� TX
t=0

tu(f(bk�)� bk�):
We have

�T =
T�1X
t=0

t
�
F (bk�)� F (bk�)�+ T (bk� � bk�);

and limT!+1 �T =
F (bk�)�F (bk�)

1� > 0. Our claim is true. From Proposition

5, any optimal path from k0 > 0 will reach bk� in �nite time.
Proof of (ii): Similarly

lim
T!+1

"
u(f(bk�)� bk�) + TX

t=1

tu(f(bk�)� bk�)� TX
t=0

tu(f(bk�)� bk�# > 0:
As just above, any optimal path from k0 > 0 will reach bk� in �nite time.

1This result is due to Takashi Kamihigashi
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Proof of (iii): We prove that there is no critical value kc. Let k0 > 0. From
Lemma 4, an optimal path will reach either bk� or bk� at some date T . If it
reaches bk�, the claim is true. If it reaches bk�, then from Lemma 5, de�ne
kt = bk� for t � T + 1.
Proof of (iv): Apply Proposition 3.

In the following proposition, we show that we may have an optimal
path which reaches bk� (respectively bk�) and stays at bk�(respectively bk�)
afterward.

We need the following lemma, the proof of which is given in Kamihigashi
and Roy (2006, p.333).

Lemma 6 Let (kt) be an optimal path from k0 > 0. If for any t � T , kt is
not a steady state, then (kt)t=0;::;T+1 is strictly monotone.

Proposition 7 Assume A� < 1 < A�. Under condition 3 and if bk� �
Abk��; then for any k0 > 0;we can �nd an optimal path (k�t ) which reaches bk�
( alternatively bk�) at some �nite time T, then jumps to bk� ( alternativelybk�) and stays there forever afterward .
Proof : We will prove that there exists an optimal path which reaches bk�
and stays at bk� forever afterward. The proof of the other alternative is
similar.
(a) If k0 � bk�, since bk� � Abk�� � Ak�0 , the path (k�t ) = (k0;bk� ;bk�;bk�; :::;bk�; :::)
is optimal. Indeed,

+1X
t=0

t(f(k�t )� k�t+1) = f(k0) +
+1X
t=0

tF (k�t+1)

= F (k0) + F (bk�) + +1X
t=1

tF (bk�)
= F (k0) +

+1X
t=0

tF (bk�)
� F (k0) +

+1X
t=0

tF (kt) =
+1X
t=0

t(f(kt)� kt+1)
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for any feasible sequence (kt) from k0.
(b) If k0 2 (bk�;bk�);since bk� � Abk��; we repeat the preceding arguments

to show that (k0;bk� ;bk�;bk�; :::;bk�; :::) is optimal from k0.
(b) If k0 2 (bk�;bk�);since bk� � Abk��; we repeat the preceding arguments

to show that (k0;bk� ;bk�;bk�; :::;bk�; :::) is optimal from k0.
(c). Let k0 2 (0;bk�). Any optimal path, before reaching bk� or bk� , since

it cannot converge to zero, will be strictly increasing (from Lemma 6). There
exists T 0 such that k�T 0 � bk�. The path (k0; k�1; :::; k�T 0 ;bk�;bk�; : : : ;bk� : : :) is
optimal.

Remark 6: In Proposition 6, the uniqueness of the steady state and the
possibility of a critical value kc are proper to our model and have hopefully
some theoretical value-added. The condition for uniqueness here is weaker
than that arising from the case of strictly concave utility function.

5 Concluding comments

In this paper, the type of technological non-convexity under consideration
assigns to the poverty trap - a non degenerated state - the role of an attrac-
tor exactly as the state of extinction in the case of S-shaped production
functions encountered in earlier studies on optimal growth. When future
discounting is high enough, precisely when A� < 1; it is shown that the
resulting long run equilibrium is in fact bk� > 0: For any value of the ini-
tial capital stock, the convergence to this equilibrium is monotonic. On
the other hand, when future discounting is relatively low, precisely when
A� > 1; the same result will be obtained but with the equilibrium opti-
mal steady state bk�: When future discounting is in some middle range, i.e.
when A� < 1 < A�; there might exist two optimal steady states and the
dynamic convergence will depend on the initial stock of capital. We show
that there is a critical value of per capita capital stock kc such that every
optimal paths from k0 < kc will converge to bk� , and every optimal paths
from k0 > kc will converge to bk� : Also, we provide su¢ cient conditions forbk� (respectively bk�) to be optimal steady states or both bk�, bk� be optimal
steady states.
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The case of linear utility is interesting to consider. When future dis-
counting is in some middle range, we give su¢ cient conditions either to
have uniqueness of steady state or, in case of several steady states, to have a
poverty trap de�ned as the �low� steady state. We also show in the latter
case that there is not necessarily a critical value kc, and the convergence
to the �low�steady state might be carried out in �nite time, with a jump
to the other �high�steady state afterward. But we may also have the con-
verse, that is the optimal paths reach at �rst the �high� steady state and
fall down to the �low�steady state afterward. We also provide the condition
under which such a critical value kc still plays its role in the convergence to
equilibria as in the case of strictly concave utility studied earlier.

Several useful remarks can be further made. First, it is conceivable that
the results obtained in this paper are una¤ected when either one or both
production technologies entails some �xed costs, i.e. positive output is made
possible only if the capital per capita exceeds a threshold level, but their ag-
gregation exhibits the kind of non-convexity depicted in our Figure. Second,
for the economist-statisticians, this paper hopefully highlights the impor-
tance of informations other than those contained in the technology-blueprint
book. Under either high or low future discounting, only one technology is
relevant in the sense that it is the chosen technology in long run equilibrium.
This certainly helps identifying the production function for data aggregation
task. If the future discount rate falls in a range de�ned by A� < 1 < A�;
then the computation of the critical capital stock kc is essential in view
of the determination of the relevant production technology at stake. Third,
when there are several production technologies, it is possible to proceed with
pair-wise aggregation in order to determine the relevant technology for long
run equilibrium. Assume that we have a third technology, say the "- tech-
nology, to take into account. Pair-wise aggregation of � and �-technology
allows us to eliminate the �- technology, say. Therefore, we now have to
perform the same analysis with � - technology and �-technology, and so on
so forth when several technologies are at stake. Pair-wise consideration in
this way would help determining the relevant technology corresponding to
the optimal steady state.
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