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1 Introduction

The initial conditions problem is well-recognised in the estimation of dynamic

non-linear panel data models. Its cause is the presence of both the past value

of the dependent variable and an unobserved heterogeneity term in the equa-

tion and the correlation between them. The strict exogeneity assumption for

regressors, routinely used in static models in order to marginalise the likeli-

hood function with respect to the unobserved heterogeneity, cannot be used

in a dynamic setting due to the presence of the lagged dependent variable.

The standard estimator for the probit model in this context is that sug-

gested by Heckman (1981a, 1981b), who was the first to explicitly address

this problem.1 His approach involves the specification of an approximation to

the reduced form equation for the initial observation and maximum likelihood

estimation using the full set of sample observations allowing cross-correlation

between the main and initial period equations. However, use of the estima-

tor has been limited by it requiring separate programming due to its absence

from standard packages. This has led to the proposal of alternative estimators

that have the advantage of requiring only standard software. The estimators

suggested by Orme (1997, 2001) and Wooldridge (2005), based on alterna-

tive approximations, are commonly used in place of the Heckman estimator

for this reason. The main merit claimed by both Orme and Wooldridge for

1Although Heckman discussed the issue in the context of the binary probit model,
his suggested solution (as well as other suggested solutions discussed below) can also be
applied to many other dynamic non-linear panel models, as we discuss later. This paper
concentrates on fully parametric approaches to the estimation of these models. See Honoré
(1993) and Honoré and Kyriazidou (2000) for semi-parametric estimators for this type of
model.
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their estimators relative to Heckman’s is that theirs can be straightforwardly

estimated using standard software.

These estimators have been widely used in many different applications.

Some examples are as follows: labour force participation (Hyslop, 1999);

unemployment spells (Arulampalam, et. al., 2000); unemployment and low-

pay dynamics (Stewart, 2007); self-employment (Henley, 2004); well-being

and income support receipts (Lee and Oguzoglu, 2007); social assistance

and welfare participation (Andrén, 2007, and Cappellari and Jenkins, 2008);

absence behaviour (Audas at al, 2004); self-reported health status (Con-

toyannis et al, 2004); health insurance (Propper, 2000); infant mortality

(Arulampalam and Bhalotra, 2006); smoking behaviour (Dorsett, 1999, and

Clark and Etilé, 2006); housing allowance and ownership (Chen and En-

trom Ost, 2005); ownership of stocks and mutual funds (Alessie et al, 2004);

firms’ export behaviour (Bernard and Jensen, 2004); firms’ dividend behav-

iour (Benito and Young, 2003, and Loudermilk, 2007); entry and exit of firms

from foreign markets (Requena-Silvente, 2005); and debt relief (Chauvin and

Kraay, 2007).

The majority of applications have been based on binary probit models,

but some also use the estimators in the context of ordered probit models (e.g.

Contoyannis et al, 2004, and Pudney, 2008) and Tobit models (e.g. Islam,

2007, and Loudermilk, 2007). Some applications have also used extensions

to bivariate models (e.g. Alessie et al, 2004, and Clark and Etilé, 2006).

This paper sets up the three estimators in a common framework and
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presents a convenient shortcut method for implementing the Heckman esti-

mator using standard software designed either for the estimation of static

models with heteroskedastic random effects (available in Stata) or for con-

strained random coefficient models (available in Limdep). The dynamic ran-

dom effects probit model is used as the example throughout the paper, since

it is the most commonly used such model.

The increased ease and availability of the Heckman estimator that these

shortcut methods provide removes some of the initial motivation for the sim-

pler alternatives. However since the Heckman estimator is itself based on an

approximation, this raises the question of the relative finite sample perfor-

mance of these three approximation-based estimators. This paper therefore

also provides an examination of the relative merits of the Heckman, Orme

and Wooldridge estimators in the absence of the software issue. It examines

differences between the three estimators first in the context of an empiri-

cal illustration using a model for the probability of unemployment and then

presents a Monte Carlo investigation of their finite sample performance.2

The Orme and Wooldridge estimators are found to perform as well as, and

in some aspects better than, the Heckman estimator. However, none of the

three estimators dominates the other two in all cases.
2The focus in this paper is on the comparison of the parameter estimates across the

three estimators. “Partial effects” can also be estimated after use of these estimators in
various ways. They can for example be evaluated for particular (real or hypothetical) in-
dividuals (in terms of unobservables as well as observables) or averaged across individuals.
Wooldridge (2005) for example discusses easy calculation of “average partial effects” in the
context of his approach. However, given the central focus of this paper, both the empir-
ical illustration and the Monte Carlo investigation focus on comparison of the parameter
estimates across the three estimators
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2 Econometric Model and Estimators

Denote the conditional distribution for the observed dependent variable yit by

D(yit|yit−1, xit, αi), where i indexes independent cross section units and t in-

dexes time periods, xit is a vector of conditioning variables at time t which are

assumed to be strictly exogenous, and αi is the unobserved time-invariant

heterogeneity.3 Denote the parametric density associated with this condi-

tional distribution by ft[yit|yit−1, xit, αi; δ1] for t = 1, . . . , T , where δ1 is the

associated vector of parameters. The density of (yi1, yi2, . . . , yiT |yi0, xit, αi) is

then given by
TY
t=1

ft[yit|yit−1, xit, αi; δ1] (1)

A parametric specification for the distribution of the unobservables α in

(1) would enable the researcher to integrate out the α from (1). However,

in the absence of the start of the sample coinciding with the start of the

stochastic process, y0 will not be independent of α in (1). This requires

some assumptions about the generation of the initial observation.4 The three

different estimators for estimating δ1 from (1) proposed in the literature

differ in terms of how the initial conditions problem in (1) is handled. These

methods are detailed below.

The standard uncorrelated random effects model assumes additionally

3For notational convenience, a balanced panel data structure is assumed. The estima-
tors and all the discussions of them below are easily generalisable to certain unbalanced
cases.

4The assumption that the process has been in equilibrium for some time may also
be used to solve the problem. However, this estimator is not easy to implement using
standard software, and in most of the empirical applications this assumption is difficult to
justify (Heckman, 1981b; Wooldridge, 2002; Hsiao, 2003).
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that αi is uncorrelated with xit. Alternatively, following Mundlak (1978),

correlation between αi and the observed characteristics can be captured by

including xi = (xi0, . . . , xiT ), or alternatively averages of the x-variables

over t, as additional regressors in the model. To simplify notation, this

specification will not be used explicitly here; rather it should be understood

that when the Mundlak correlated random effects (CRE) model is used, xit

in (1) implicitly subsumes a full set of period-specific versions of the (time-

varying) x-variables (or their means).

2.1 The Initial Conditions Problem and Heckman’s
Estimator

The Heckman approach starts from the joint density of (yT , yT−1, . . . , y0|x, α)

specified as

f(yT , yT−1, . . . , y0|x, α) = f(yT , yT−1, . . . , y1|y0, x, α)f0(y0|x, α) (2)

with the first term on the right hand side given by (1).5 The unobservable

α can be integrated out of the log likelihood by making a distributional

assumption about the conditional density of the first observation f0(y0|x, α)

and the density for α given x.

f(yT , yT−1, . . . , y0|x) =
Z

f(yT , . . . , y1|y0, x, α)f0(y0|x, α)g(α|x)dα (3)

Heckman suggested approximating the density f0(y0|x, α) using the same

parametric form as the conditional density for the rest of the observations.

5To simplify notation, parameters are not explicitly shown in the densities.
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Consider the latent variable form of the random effects probit model for

illustration. Let

yit = 1[y
∗
it > 0], (4)

where

y∗it = γyit−1 + x0itβ + θtαi + uit, t = 1, . . . , T (5)

with θT = 1 for identification, and the equation for the first period written

using the error components structure as

y∗i0 = z0iλ+ θ0αi + ui0, (6)

where zi is a vector of exogenous covariates which is expected to include

xi0 and additional variables that can be viewed as “instruments” such as

pre-sample variables. The uit are independent of the αi. The standard as-

sumptions regarding the distributions of the uit and αi — that they are both

normally distributed, the former with variance 1, the latter with variance

σ2α — are made. A test of θ0 = 0 provides a test of exogeneity of the initial

condition in this model.

The above specifications are written in the spirit of the original Heckman

(1981b) paper where his suggestion was to allow the error in the equation

for the initial conditions (θ0αi + ui0) to be freely correlated with the errors

in the equations for the other periods (θtαi + uit). In addition, the above

specification also relaxes the standard assumption of equi-correlated errors

in periods t = 1, . . . , T .6 Most of the existing applications of this technique

6In the standard equi-correlated model, Covar(αi+uit, αi+uis) = σ2α, for t, s = 1, . . . , T ,
t 6= s. The correlation between two periods is therefore given by ρ = σ2α/(σ

2
α + 1).
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have assumed fixed correlation between (θ0αi+ui0) and the error terms in the

equations for the other periods,7 as well as within these latter, by specifying

equation (5) as

y∗it = γyit−1 + x0itβ + αi + uit, t = 1, . . . , T (7)

and equation (6) as

y∗i0 = z0iλ+ θαi + ui0, (8)

Equations (5) and (6) together specify a complete model for (y0, y1, . . . , yT ).

The contribution to the likelihood function for individual i in this model is

given by

Li =

Z (
Φ[(z0iλ+ θ0αi)(2yi0 − 1)]

TiY
t=1

Φ[(x0itβ + γyit−1 + θtαi)(2yit − 1)]
)
g(αi)dαi

(9)

with θT = 1, g(α) is the probability density function of the unobservable

individual-specific heterogeneity and Φ is the standard normal cdf. In the

standard case considered here, α is taken to be normally distributed and the

integral in (9) can be evaluated using Gaussian-Hermite quadrature (Butler

and Moffitt, 1982).

The approximation that is used in equation (6) for the initial period can

also be derived as follows. Write the initial period latent equation as

y∗i0 = z0iλ
∗ + vi0 (10)

The initial condition problem is present because of correlation between vi0

and αi. Assuming bivariate normality, (vi0, αi) ∼ BVN(0, 0, σ2v, σ
2
α, r), gives

7For an exception, see Andrén (2007).

7



vi0|αi ∼ N [r(σv/σα), σ
2
v(1− r2)]. Using this, (10) can be written as

y∗i0 = z0iλ
∗ + r

σv
σα

αi + (σv
√
1− r2)ui0 (11)

where αi and ui0 are orthogonal by construction and ui0 ∼ N(0, 1). Rescaling

this equation by σv
√
1− r2 gives the equivalent of (6) with θ0 = r/(σα

√
1− r2)

and the latent variable y∗i0 also rescaled by σv
√
1− r2.

2.2 Shortcut Implementation of Heckman’s Estimator

The simplified implementation procedure proposed here involves the creation

of a set of T + 1 dummy variables: d
(τ)
it = 1 if t = τ , d(τ)it = 0 otherwise.

Equations (5) and (6) in the model with “freely correlated” vit can then be

combined to give (with θT = 1)

Pr[yit = 1|yit−1, xit, zi, αi]

= Φ[{(γyit−1+x0itβ)∗(1−d
(0)
it )+(θ1d

(1)
it + . . .+θTd

(T )
it )αi}+(z0iλ+θ0αi)∗d(0)it ]

= Φ[γ(1−d(0)it )yit−1+(1−d
(0)
it )x

0
itβ+d

(0)
it z

0
iλ+(d

(T )
it +θT−1d

(T−1)
it +. . .+θ0d

(0)
it )αi]

(12)

This is equivalent to a standard random effects specification, but with a

heteroskedastic factor loading for the random effects. Software that allows

this form of heteroskedasticity, such as the gllamm program in Stata, can be

used to estimate this model. The more standard “equi-correlated” special
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case gives

Pr[yit = 1|yit−1, xit, zi, αi] =

Φ[γ(1− d
(0)
it )yit−1 + (1− d

(0)
it )x

0
itβ + d

(0)
it z

0
iλ+ (1− d

(0)
it + θd

(0)
it )αi]

(13)

Alternatively the model can be viewed as a constrained random coeffi-

cients model. The model with “equi-correlated” vit can be rewritten as

Pr[yit = 1|yit−1, xit, zi, αi] =

Φ[αi + γ(1− d
(0)
it )yit−1 + (1− d

(0)
it )x

0
itβ + d

(0)
it z

0
iλ+ (θ − 1)αid

(0)
it ](14)

This contains a random intercept term, αi, and the coefficient on d is a second

random coefficient, with a unit correlation with the random intercept, but

a different variance. The specification can also be generalised to the “freely

correlated” form as above with a different variance for each period. Software

for estimating random coefficient models that allows this form of restriction,

such as Limdep, can therefore also be used.

2.3 Orme’s Two-step Estimator

Orme’s two-step estimator is in the spirit of Heckman’s two-step procedure

for addressing the issue of endogenous sample selection. Since the cause of the

initial conditions problem is the correlation between the regressor yit−1 and

the unobservable αi, Orme (1997, 2001) uses an approximation to substitute

αi with another unobservable component that is uncorrelated with the initial

observation. Using the same assumption as in the derivation of the Heckman
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estimator, that (vi0, αi) ∼ BVN(0, 0, σ2v, σ
2
α, r), and writing now

αi|vi0 ∼ N

∙
r
σα
σv

, σ2α(1− r2)

¸
means that we can write

αi = r
σα
σv

vi0 + σα
p
(1− r2)wi (15)

where wi is orthogonal to vi0 by construction and distributed as N(0, 1).

Substituting for αi in (5) gives

y∗it = γyit−1 + x0itβ + θt

∙
r
σα
σv

vi0 + σα
p
(1− r2)wi

¸
+ uit (16)

Equation (16) has two time-invariant unobserved components, vi0 and wi.

Since E(wi|yi0) = 0 by construction, the initial conditions problem can be

addressed by allowing for the correlation of vi0 with yi0 in (16). As Orme

notes, (10) and the assumption of bivariate normality for the joint distribu-

tion of (vi0, αi) implies that

ei ≡ E(vi0|yi0) = (2yi0 − 1)σvφ(λ∗0zi/σv)/Φ((2yi0 − 1)λ∗0zi/σv) (17)

where φ and Φ are the Normal density and distribution functions respectively.

This is the generalised error from a first period probit equation, analogous

to that used in Heckman’s sample selection model estimator. Hence we can

estimate (16) as a random effects probit model using standard software with

vi0 replaced with an estimate of ei after the estimation of (10) using a simple

probit.

Orme’s method can easily be generalised to allow vi0 to be freely corre-

lated with vit in the spirit of Heckman, by including a set of time dummies
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interacted with the ei as suggested by Orme. A potential problem is that the

time-invariant error component in the second stage will be heteroscedastic.

When vi0 is replaced by ei ≡ E(vi0|yi0), a factor involving [vi0−ei] gets incor-

porated into wi, which is now heteroskedastic because it depends on the two

conditional expectations involved in ei. The extent of this heteroscedasticity

declines as r does.

Although based on a local approximation for small r, Orme finds that

the approximation works reasonably well even when this correlation is fairly

different from zero. Since the Heckman and Orme estimators make the same

distributional assumptions for (vi0, αi), the simplified implementation of the

Heckman estimator in section 2.2 reduces the usefulness of the Orme estima-

tor. However the Orme estimator offers dramatic savings in computing time

relative to the Heckman estimator.

2.4 Wooldridge’s Conditional ML estimator

The Heckman estimator approximates the joint probability of the full ob-

served y sequence (y0, y1, . . . , yT ). Wooldridge (2005) on the other hand, has

proposed an alternative Conditional Maximum Likelihood (CML) estima-

tor that considers the distribution of y1, y2, . . . , yT conditional on the initial

period value y0 (and exogenous variables).

The joint density for the observed sequence (y1, y2, . . . , yT |y0) is written

as f(yT , yT−1, . . . , y1|y0, x, α). In order to integrate out the unobservable α,

Wooldridge specifies an approximation for the density of α conditional on the

initial observation y0. Thus a specification such as the following is assumed
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in the case of the random effects probit,

αi|yi0, zi ∼ N(ς0 + ς1yi0 + z0iς, σ
2
a) (18)

where

αi = ς0 + ς1yi0 + z0iς + ai (19)

in which zi includes variables that are correlated with the unobservable αi.

The appropriate z may differ from that in the Heckman specification. The

idea here is that the correlation between yi0 and α is handled by the use

of (19) giving another unobservable individual-specific heterogeneity term

a which is uncorrelated with the initial observation y0. Wooldridge in fact

specifies zi to be xi as in the Mundlak specification using information on

periods 1 to T , but alternative specifications of it would also be possible.

Substituting (19) into (7) gives

Pr(yit = 1|ai, yi0) = Φ[x0itβ+γyit−1+ς1yi0+ziς+ai] t = 1, . . . , T (20)

In this model, the contribution to the likelihood function for individual i is

given by

Li =

Z (
TY
t=1

Φ [(x0itβ + γyit−1 + ς1yi0 + z0iς + ai)(2yit − 1)]
)
g∗(ai)dai (21)

where g∗(a) is the normal probability density function of the new unobserv-

able individual-specific heterogeneity ai given in (19). Since this is the stan-

dard random effects probit model likelihood contribution, one can proceed

with the maximisation using standard software. Note that if xi is used for zi

this means that the Wooldridge estimator for the uncorrelated random effects
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specification and for the Mundlak correlated random effects specification are

the same, since xi is already included in the model to be estimated. As for

the other estimators, Wooldridge’s method can also be easily generalised to

allow the initial condition error to be freely correlated with the errors in the

other periods in the spirit of Heckman, by including a set of time dummies

interacted with the yi0.

One useful way of contrasting the approaches used by Heckman and

Wooldridge is in terms of the conditioning used and the implications that

this has for the distributional approximations required. Both approaches

share a common specification for f(y1, . . . , yT |y0, α). Heckman uses this to

specify the joint density of (y0, y1, . . . , yT ) as in (3). This requires an assump-

tion for the joint density of y0 and α, which equals f(y0|α)g(α). Wooldridge

in contrast uses it to specify the conditional density given y0

f(y1, . . . , yT |y0) =
Z

f(y1, . . . , yT |y0, α)h(α|y0)dα (22)

Thus while Heckman requires an approximation for the joint density of y0

and α, Wooldridge only requires an assumption for the conditional density

h(α|y0). In practice in the context of the dynamic probit model, Heckman

and Orme assume bivariate normality for (vi0, αi), while Wooldridge assumes

normality of the conditional distribution of αi given yi0.

Another way of contrasting the Wooldridge estimator with those of Heck-

man and Orme is in terms of the implied specification of E(αi|yi0). In the

Heckman and Orme setups, E(αi|yi0) = σαrei/σv, with ei given by (17). In

the Wooldridge setup it is taken to be linear in yi0 and zi.
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2.5 Applications to Other Non-linear Models

Although the random effects probit model has been used for illustration,

the basic principles of the three estimators are easily generalisable to other

random effects dynamic non-linear models such as Tobit, Poisson etc. (see

Wooldridge, 2005; Orme, 2001.) This generalisation also applies to the sim-

plified implementation of the Heckman estimator provided in section 2.2.

Example 1: Dynamic random effects Tobit model

Equations (4) and (5) would become

yit = max[0, y
∗
it] (23)

where

y∗it = γq(yit−1) + x0itβ + θtαi + uit t = 1, . . . , T (24)

with θT = 1 and the latent initial condition equation again given by (6).

The effect of the lagged observed response variable is specified in terms of

the function q(.). One can also allow separate effects according to whether

the previous period’s outcome was a corner solution or not. See Loudermilk

(2007) and Islam (2007) for recent applications of this model. The other steps

involved in the model estimation, using any of the three methods discussed

earlier, go through.
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Example 2: Dynamic random effects ordered Probit model

Equations (4), (5) and (6) would become

yit = k if and only if y∗it ∈ [Γk−1,Γk), k = 1, . . . ,K (25)

where

y∗it = γq(yit−1) + x0itβ + θtαi + uit t = 1, . . . , T (26)

with θT = 1 and the latent initial condition equation again given by (6).

Γ1, . . . ,ΓK−1 are threshold parameters with Γ0 = −∞ and ΓK = +∞. The

effect of the lagged observed response variable is specified in terms of the func-

tion q(.), containing for example binary indicators for K − 1 of the lagged

potential outcomes. One can also allow separate effects according to the

ordinal response in the previous period. Contoyannis et al. (2004) and Pud-

ney (2008) use models of this form. The other steps involved in the model

estimation, using any of the three methods discussed earlier, go through.

Example 3: Dynamic random effects Poisson model

Here the conditional mean of the yit process is assumed to take the following

form:

E(yit|yit−1, . . . , yi0, xit, αi) = αi exp[γq(yit−1) + x0itβ] (27)

The effect of the lagged observed response variable is specified in terms of the

function q(.). One can allow separate effects according to the specific response

in the previous period. The other steps involved in the model estimation,

using any of the three methods discussed earlier, go through.
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3 Empirical Illustration

The empirical illustration uses data from the first six waves of the British

Household Panel Survey (BHPS), covering the period 1991-1996, to examine

the unemployment dynamics of British men.8 The data used are a sub-

sample of those used in Stewart (2007). The sample is restricted to those

who were in the labour force (employed or unemployed) at each of the six

waves. The ILO/OECD definition of unemployment is used, under which a

man is unemployed if he does not have a job, but had looked for work in the

past four weeks and is available for work.

Results for different estimators for a model for the probability of un-

employment of the form of equation (7) above are given in Table 1. The

standard model that assumes equi-correlated errors over periods 1 to T is

estimated to keep the illustration simple. Column [1] gives the pooled probit

estimates. Additional education, more labour market experience and being

married reduce the probability of unemployment. Being in poor health or

living in a travel to work area with a high unemployment-vacancy ratio raise

the probability. Being unemployed at t−1 strongly increases the probability

of being unemployed at t.

Column [2] gives the equivalent standard random effects probit estimates,

treating lagged unemployment as exogenous. The coefficients on all the x-

variables are increased, while that on yt−1 is reduced relative to the pooled

8The BHPS contains a nationally representative sample of households whose mem-
bers are re-interviewed each year. The sample used here contains only Original Sample
Members, is restricted to those aged 18-64 and excludes full-time students.
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probit estimates. However the random effects probit and pooled probit mod-

els involve different normalizations. To compare coefficients those from the

random effects estimator need to be multiplied by an estimate of
√
1− ρ,

where ρ is the constant cross-period error correlation given by ρ = σ2α/(σ
2
α+1)

(see Arulampalam, 1999). The scaled coefficient estimate on unemployment

at t − 1 in column [2] is 1.35. Compared with the pooled probit estimator,

the estimate of γ is reduced by a quarter in the random effects model, but

remains strongly significant.

The corresponding results for the Heckman estimator are given in column

[3], with the initial period equation including two exogenous pre-labour mar-

ket instruments and the full set of period-specific versions of the time-varying

x-variables. (Only the married, poor health and local unemployment-vacancy

ratio variables are treated as time-varying. There are very few changes in the

years of education variable in the sample.) The estimate of θ is 0.88, signifi-

cantly greater than zero, rejecting the exogeneity of the initial conditions. (In

fact θ is insignificantly different from 1.) Compared to the random effects es-

timator treating the initial conditions as exogenous, the Heckman estimator

shows a fall in the estimate of γ of about a third and a near doubling in the

estimate of ρ. In terms of scaled coefficient estimates, γ(1− ρ)1/2, the stan-

dard random effects probit with the initial conditions treated as exogenous

gives 1.35, while the Heckman estimator gives 0.79.

The Orme two-step estimates for the same model are given in column

[4]. The estimator uses two exogenous pre-labour market instruments in
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conjunction with xit for all time periods in zi in the initial period equation

as in the Heckman estimator. Relative to the Heckman estimator, the Orme

estimator gives a slightly higher estimate of γ: 1.11 compared with 1.05 and

a slightly lower estimate of ρ: 0.35 compared with 0.43.

The corresponding Wooldridge CML estimates are given in column [5].

The equation estimated contains xit for all time periods. This gives an esti-

mate of γ of 1.06, between the other two estimates and close to the Heckman

estimate, and an estimate of ρ of 0.36, also between the other two estimates

and close to the Orme estimate. In terms of scaled coefficient estimates,

γ(1 − ρ)1/2, the Wooldridge estimator gives 0.85, about half way between

0.79 for the Heckman estimator and 0.89 for the Orme estimator. However

all three of these estimates are fairly close together. The Wooldridge esti-

mates of the elements of β corresponding to education, experience and the

local unemployment/vacancy ratio are fairly similar to those from the other

estimators. However this is not the case for the coefficients on married and

health limits. The latter is cut by about half, the former by about two-thirds.

Their standard errors are also appreciably higher than for the other estima-

tors and both are insignificantly different from zero with this estimator. The

likely reason for this is seen in the next paragraph.

Estimates for the corresponding correlated random effects model, using

the Mundlak specification, are given in Table 2. This results in the full set

of period-specific versions of the time-varying x-variables being added to the

main equation (in addition to already being in the initial period specifica-

18



tion). Recall that the Wooldridge estimator is the same in both cases. The

estimates of γ using the Heckman and Orme estimators both fall slightly

when this specification is used. The estimates of the coefficients on edu-

cation and experience are little changed, but those on the (time-varying)

married and health limits variables fall considerably and now match closely

those from using the Wooldridge estimator.

As indicated above, other specifications of both the z-vector and the

relationship between α and the x-variables have been proposed and can be

used as alternatives. However the contenders considered here have little

effect on the estimates in Tables 1 and 2. To illustrate, using only xi1 rather

than the whole of xi in the initial period equation (in addition to the two

exogenous pre-labour market instruments) reduces the Heckman estimate of

γ in Table 1 from 1.048 to 1.047 and increases the estimate of ρ from 0.430

to 0.433. Replacing the full xi by the time means changes the estimate of

γ to 1.049 and that of ρ to 0.431. Similar very small differences are found

for the elements of β, for the other estimators and for the correlated random

effects estimates in Table 2.

4 Simulation Illustration

In this section we present the results from a set of Monte Carlo simulation

experiments, to provide a comparison of these estimators in a set of situations

where the true values of the parameters are known.

For the baseline experiment we consider the data generation process used
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by Heckman (1981b) and Orme (2001), but then consider a fuller set of

variants of, and deviations from, this baseline experiment (as well as inves-

tigating all three estimators). The setup for the baseline experiment is as

follows. The latent variable is generated as

y∗it = γyi,t−1 + β0 + β1xit + αi + uit t = 1, . . . , T (28)

with yit = 1[y∗it > 0], where uit is generated as iid N(0, 1) and αi as iid

N(0, σ2α). (The inter-period error correlation is therefore given by ρ =

σ2α/(1 + σ2α).) The start of the process is assumed for the baseline exper-

iment to be at t=−25, i.e. there are 25 unobserved time periods before the

observed “initial condition” period at t=0. Only observations from periods

t = 0, . . . , T are used in the estimation.

The exogenous regressor is taken to be generated by a Nerlove process

of the form xit = 0.1t + 0.5xi,t−1 + U(−0.5, 0.5) with xi,−25 ∼ U(−3, 2).9

The N individual xit sequences are held fixed across replications. In the first

set of experiments y∗i,−25 is generated as a standard normal random variate.

For the baseline experiment samples with N = 200 and T = 3 are used to

match those in Heckman (1981b) and Orme (2001), but an extensive range

of alternative values for these were also examined in further experiments. In

the baseline experiment the parameter values were set at γ = 0.5, β1 = −1,

β0 = 4, σα = 1. Different experiments are then conducted for different

values of T , N , σα and γ. Each of the experiments is based on 1000 Monte

9Originally used by Nerlove (1971), this process is used to approximate trended vari-
ables commonly found in, for example, labour market micro data (see Heckman, 1981b).
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Carlo replications.10 The Heckman and Orme estimators used xi0 alone in

the specification for the initial condition.

Table 3 gives the average bias (in percentage terms relative to the true

value) and the root mean square error for the estimates of γ and β using

the Heckman, Wooldridge and Orme estimators in each of the first set of

experiments. In the baseline experiment, the Heckman estimator has the

largest relative bias in the estimator of γ, in excess of 12% of the true value,

while the Wooldridge estimator has the smallest relative bias at around 4%.

However in contrast the Wooldridge estimator of γ has a slightly larger root

mean square error than the other two estimators and the Heckman estimator

a slightly smaller one. In addition the Heckman estimator of β has the

smallest bias at around 2% and the Wooldridge estimator the largest at

around 6%. The standard errors of the estimated percentage relative biases

are about 1.7% for γ and 0.8% for β for all three estimators. Thus the

estimated biases for the baseline experiment are all significantly different

from zero.

Another worthwhile comparison is with the standard random effects pro-

bit estimator, i.e. treating the initial condition as exogenous. This gives an

average estimate of γ of 1.37 compared with the true value of 0.5 and hence a

percentage relative bias of 174%. Thus all three of the estimators examined

here do a good job of dramatically reducing this bias. Looking at the asymp-

totic t-statistics for the null hypothesis that γ equals its true value and using

10The Monte Carlo simulations were conducted using Stata V10 (StataCorp. 2008). The
Heckman estimator used the gllamm command (http://www.gllamm.org).
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a nominal 5% significance level, the three estimators (in the order used in

the table) give rejection rates of 5.6%, 5.3% and 5.4%. So all fairly close to

the nominal level. This contrasts with a 98% rejection rate for the standard

random effects probit estimator treating the initial condition as exogenous.11

The relative biases and the root mean square errors all decline when T is

increased to 5 in experiment 2 and mostly decline further when T is increased

to 8 in experiment 3. Figure 1 plots the percentage relative biases in the

estimates of γ for each value of T from 2 to 12. For T of 4 and above this

shows bias of about 3% or less, markedly lower than for T = 2 or 3. These

are however significantly different from zero at the 5% level for at least one

of the estimators for T = 4, 5 and 10. As for T=3, the rejection rates for

the tests of γ equal to its true value are fairly close to the nominal 5% for all

T ≥ 4. However for T=2, these rejection rates are far too high: 18%, 14%

and 18% for the three estimators.

The next two experiments reported in Table 3 are for higher values of N

than in the baseline experiment. The three estimators show slight improve-

ments in the bias in bγ when N is increased from 200 to 500 and considerable

improvement when it is increased to 1,000. The picture is less clear for bβ.
Figure 2 plots the percentage relative biases in the estimates of γ for values

of N between 200 and 1,000. The biases are small from about N=800 up-

wards. Experiments 4 and 5 and Figure 2 are all based on T=3. The biases

are smaller for T=5. This is shown further in Figure 3, which gives the cor-

11Details of results referred to in the text but not tabulated are available from the
authors on request.
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responding plot to Figure 2 but for T=5. In this case the biases are small

for slightly lower N too. Experiment 5 indicates that the biases are small

with N=1,000 even for T=3. Figure 4 plots the percentage relative biases

in the estimates of γ for N=1,000 and T between 2 and 12. The percentage

relative biases are reasonably small for all T except T=2.

The first five experiments were conducted in parallel with xi included in

the initial condition specification, with {xit} included, and with neither in-

cluded. The biases in bγ and bβ are similar across these three specifications for
all these experiments. In fact for each of the three estimators, the inclusion

of {xit} worsens the bias more often than it improves it.

Experiments 6 and 7 examine the impact of different values of σα, lower

than that in the baseline experiment in experiment 6 and higher in exper-

iment 7. A change in σα has more than one effect on the model and the

estimators. In experiment 6, σα is reduced from 1.0 to 0.5. This of course

reduces the variance of the combined error term and hence increases the “ex-

planatory power” of xt and yt−1 in the latent equation. Second, it reduces

the cross-period error correlation, given by ρ = σ2α/(σ
2
α+1), from 0.5 to 0.2.

Third, it reduces r, the correlation between vi0 and αi, from 0.59 to 0.35.

Fourth, it reduces y0, the mean of the outcome variable in the initial condi-

tion period, from 0.31 to 0.25 (and also the means in subsequent periods).

Despite the reduction in r, this worsens the bias in all three estimators of γ

and in two of the estimators of β.

In experiment 7, σα is increased from 1.0 to 1.5. This reduces the “ex-
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planatory power” of xt and yt−1 in the latent equation and increases ρ from

0.5 to 0.69, r from 0.59 to 0.70, and y0 from 0.31 to 0.36. Despite the increase

in r, this reduces the bias in two of the estimators of γ. However the bias in

the estimation of β is increased for all three estimators.

Experiments 8 and 9 examine the impact of different values of γ, lower

than that in the baseline experiment in experiment 8 and higher in experi-

ment 9. Again changing γ has knock-on effects. In experiment 8, γ is reduced

from 0.5 to 0.25. This reduces the “explanatory power” of the latent equa-

tion. However it also slightly reduces r, from 0.59 to 0.56, and y0 from 0.31

to 0.28. This worsens the bias in all three estimators of γ and for two of

the estimators of β. In experiment 9, γ is increased from 0.5 to 0.75. This

increases the “explanatory power” of the latent equation. However it also

slightly increases r, from 0.59 to 0.62, and y0 from 0.31 to 0.35. This re-

duces the bias in all three estimators of γ and for two of the estimators of β

(although only very slightly).

Experiments 10—13 repeat experiments 6—9 with T=5 and experiments

14—17 do so with T=8. For the three experiments with any biases in excess

of 10% (namely experiments 1, 6 and 8) the Wooldridge estimator has a

smaller bias in bγ than the other two and the Orme estimator slightly smaller
than the Heckman estimator. The Wooldridge estimator does not have a bias

of 10% in any of the experiments. However for each of these experiments,

the Wooldridge estimator of γ has the largest bias of the three estimators

when T is increased to 5 and there is nothing to choose between them when
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T is further increased to 8.

In summary, when T and/or N are reasonably large (e.g. T ≥ 6, N ≥

800), the relative bias in bγ is generally fairly small for all three estimators. For
smaller samples, the biases are larger, but none of the estimators dominates

the other two in all experiments.

More light can potentially be thrown on the differences in performance

of the estimators by the next group of experiments, which take the initial

condition period to coincide with the start of the process and can then vary

r directly without changing other parameters. (The data generation process

used in experiments 1-17 allowed the process to settle down prior to the

estimation period by discarding the first 25 periods prior to the estimation

sample.) The results for this group of experiments are given in Table 4.

(They all also use T=5.) In experiment 18, r is set to zero and hence the

initial condition is exogenous. The initial observation y∗i0 was drawn from

N(−0.45, 1.0) and β0 was set equal to −1.0. These intercepts were chosen

to give period-by-period sample means for the observed y similar to the

base experiment. The rest of the parameters are the same as in the base

experiment.

Relative to experiment 2, all three estimators of γ show an improvement

in the relative bias, which is almost zero for all three estimators. However,

despite this, the root mean square error worsens for all three estimators. In

contrast there is a slight increase in the relative bias in the estimators of β,

to about 4% for all three estimators, but a slight reduction in the root mean
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square error.

In the remaining experiments reported in Table 4 the initial condition

is treated as endogenous by allowing correlation between the error term in

the initial observation equation and that in the equation for the subsequent

time periods. This is achieved by generating the initial observation using

y∗i0 = −0.45 + rαi +
√
1− r2ui0 where ui0 ∼ N(0, 1). (The exogenous initial

condition case is given by r = 0.)12 For small values of r, there are no sig-

nificant differences between the three estimators. However, as r is increased,

while all three estimators of γ deteriorate, the Heckman estimator worsens

slightly more than the other two in terms of bias. The root mean square er-

rors for the three estimators though are virtually identical. For bβ the relative
bias and root mean square error change relatively little as r is increased and

the differences between the three estimators in both of these are narrow.

In summary, as the initial conditions problem becomes more serious (as

measured by the correlation between the equation errors in the initial period

and later periods), the Heckman estimator deteriorates somewhat more than

the other two in terms of the relative biases. However, the root mean square

errors for all three estimators are very similar.

Judged across the full set of experiments conducted, none of the three

estimators dominates the other two in all cases, or even in a majority of

cases.
12When x was included in the generation process for the initial observation, the results

were very similar to those given here.
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5 Conclusions

This paper presents a convenient shortcut method for implementing the Heck-

man estimator of the dynamic random effects probit model using standard

software. This removes the need for separate programming and puts this

estimator on a similar footing to the simpler estimators suggested by Orme

and Wooldridge based on alternative approximations. The choice between

these estimators can therefore be based on performance rather than avail-

ability or ease of use. An empirical illustration has been presented in section

3 and a set of simulation experiments in section 4. The former suggests that

it is advantageous to allow for correlated random effects using the approach

of Mundlak (1978), but that once this is done, the three estimators provide

similar results. The simulation experiments suggest that none of the three

estimators dominates the other two in all cases. In most cases all three

estimators display satisfactory performance, except when T is very small.
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Table 1
Unemployment probability model: Alternative estimators

[1] [2] [3] [4] [5]
Probit RE probit Heckman Orme Wooldridge

Unemp(t-1) 1.837 1.536 1.048 1.107 1.062
[0.074] [0.122] [0.130] [0.115] [0.115]

Education -0.043 -0.050 -0.058 -0.054 -0.055
[0.011] [0.014] [0.017] [0.016] [0.017]

Experience -0.048 -0.068 -0.072 -0.064 -0.066
[0.030] [0.037] [0.045] [0.043] [0.045]

Married -0.186 -0.236 -0.309 -0.280 -0.092
[0.066] [0.082] [0.100] [0.093] [0.227]

Health limits 0.429 0.503 0.585 0.569 0.289
[0.093] [0.114] [0.133] [0.126] [0.185]

Local u/v 0.654 0.849 0.941 0.919 0.880
[0.229] [0.268] [0.306] [0.292] [0.396]be 0.459

[0.076]
Unemp(0) 1.016

[0.161]
ρ 0.225 0.430 0.354 0.357

[0.065] [0.063] [0.044] [0.043]
θ 0.882

[0.189]

LogL -1052.00 -1044.81 -1341.14 -1024.24 -1014.01

Estimators:

1. Pooled Probit

2. Standard Random Effects Probit (initial condition taken to be exogenous)

3. Heckman estimator, with x in all periods and 2 exogenous instruments in initial period equation

4. Orme estimator, with x in all periods and 2 exogenous instruments in initial period equation

5. Wooldridge estimator, with x in all periods included in z

Notes:

1. Full sample size = 10,092. (N = 1,682, T = 5.)

2. LogL in [3] is for joint model for all periods 0 to T . Those in other columns are for periods 1 to
T only.
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Table 2
Unemployment probability model: Alternative estimators with
Mundlak correction for correlated individual effects

[1] [2] [3] [4] [5]
Probit RE probit Heckman Orme Wooldridge

Unemp(t-1) 1.811 1.500 1.009 1.074 1.062
[0.075] [0.124] [0.130] [0.115] [0.115]

Education -0.044 -0.052 -0.060 -0.056 -0.055
[0.012] [0.015] [0.018] [0.017] [0.017]

Experience -0.050 -0.072 -0.077 -0.070 -0.066
[0.031] [0.040] [0.048] [0.045] [0.045]

Married -0.041 -0.063 -0.095 -0.090 -0.092
[0.194] [0.212] [0.231] [0.226] [0.227]

Health limits 0.211 0.254 0.299 0.287 0.289
[0.158] [0.174] [0.189] [0.185] [0.185]

Local u/v 0.633 0.900 0.896 0.873 0.880
[0.338] [0.378] [0.406] [0.396] [0.396]be 0.469

[0.076]
Unemp(0) 1.016

[0.161]
ρ 0.232 0.439 0.357 0.357

[0.066] [0.063] [0.044] [0.043]
θ 0.885

[0.189]

LogL -1044.03 -1044.81 -1332.14 -1015.40 -1014.01

Notes:

1. Estimators as in Table 1 with x in all periods added to main equation.

2. Full sample size = 10,092. (N = 1,682, T = 5.)

3. LogL in [3] is for joint model for all periods 0 to T . Those in other columns are for periods 1 to
T only.
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Table 3: Simulation results

γ γ β β
Relative RMSE Relative RMSE

Experiment Estimator Bias (%) Bias (%)
1) Base Heckman -12.63 0.264 1.85 0.257

Wooldridge -3.96 0.280 -5.95 0.262
Orme -8.48 0.274 -2.42 0.257

2) T=5 Heckman -1.98 0.164 -1.57 0.170
Wooldridge -3.09 0.165 -3.55 0.172
Orme -0.65 0.164 -1.77 0.170

3) T=8 Heckman 0.34 0.154 -0.66 0.132
Wooldridge -0.46 0.155 -2.08 0.133
Orme 0.66 0.155 -0.86 0.132

4) N=500 Heckman 7.60 0.177 -0.46 0.169
Wooldridge 2.73 0.177 -6.92 0.181
Orme 8.23 0.179 -1.30 0.169

5) N=1000 Heckman 0.04 0.117 4.99 0.128
Wooldridge 0.07 0.122 -1.02 0.118
Orme 0.20 0.119 3.99 0.125

6) σα=0.5 Heckman -15.06 0.247 4.85 0.252
Wooldridge -6.18 0.248 -0.36 0.240
Orme -13.02 0.245 3.58 0.247

7) σα=1.5 Heckman -3.28 0.276 -2.93 0.283
Wooldridge -5.00 0.321 -7.67 0.303
Orme -6.36 0.321 -6.81 0.299

8) γ=0.25 Heckman -20.73 0.269 0.65 0.254
Wooldridge -6.31 0.283 -6.55 0.259
Orme -14.25 0.277 -3.21 0.253

9) γ=0.75 Heckman -8.21 0.270 2.56 0.265
Wooldridge -1.11 0.288 -5.78 0.268
Orme -4.58 0.282 -2.11 0.262
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Table 3 (continued): Simulation results

γ γ β β
Relative RMSE Relative RMSE

Experiment Estimator Bias (%) Bias (%)
10) σα=0.5, Heckman -1.53 0.170 -2.07 0.169

T = 5 Wooldridge -3.25 0.171 -3.27 0.170
Orme -1.17 0.170 -2.24 0.170

11) σα=1.5, Heckman -1.77 0.180 -1.44 0.178
T = 5 Wooldridge -2.45 0.182 -3.29 0.182

Orme -0.07 0.183 -1.42 0.180

12) γ=0.25, Heckman -5.01 0.172 -1.71 0.167
T = 5 Wooldridge -7.30 0.173 -3.64 0.168

Orme -3.18 0.173 -1.88 0.167

13) γ=0.75, Heckman -0.66 0.167 -1.25 0.171
T = 5 Wooldridge -1.54 0.167 -3.26 0.173

Orme 0.36 0.167 -1.49 0.171

14) σα=0.5, Heckman 0.72 0.167 -0.54 0.138
T = 8 Wooldridge -0.07 0.168 -1.67 0.138

Orme 1.10 0.168 -0.72 0.138

15) σα=1.5, Heckman 3.34 0.152 -3.71 0.136
T = 8 Wooldridge -2.21 0.157 -2.57 0.137

Orme -1.38 0.158 -1.48 0.137

16) γ=0.25, Heckman 0.88 0.157 -0.61 0.130
T = 8 Wooldridge -0.55 0.156 -2.04 0.131

Orme 1.27 0.157 -0.85 0.130

17) γ=0.75, Heckman -0.44 0.155 -0.50 0.135
T = 8 Wooldridge -1.15 0.155 -1.90 0.136

Orme -0.19 0.155 -0.66 0.136

Notes:

1. 1000 Monte Carlo replications used in each experiment.

2. In the baseline experiment the parameter values were set at γ=0.5, β1=-1, β0=4, σα=1. The
process starts at t=-25, the observed “initial condition” period is t=0, T=3 and N=200.
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Table 4
Simulation results for alternative data generation process

γ γ β β
Relative RMSE Relative RMSE

Experiment Estimator Bias (%) Bias (%)

18)r = 0.0 Heckman 0.04 0.185 3.79 0.146
Wooldridge -0.10 0.184 3.85 0.146
Orme -0.15 0.183 3.85 0.146

19) r = 0.2 Heckman -0.73 0.183 3.84 0.146
Wooldridge -0.71 0.184 3.88 0.147
Orme -0.79 0.184 3.86 0.146

20) r = 0.4 Heckman -1.57 0.184 4.00 0.149
Wooldridge -1.28 0.185 3.87 0.148
Orme -1.38 0.184 3.88 0.148

21) r = 0.6 Heckman -2.96 0.185 4.14 0.151
Wooldridge -2.14 0.186 3.78 0.149
Orme -2.27 0.186 3.81 0.149

22) r = 0.8 Heckman -4.37 0.193 4.26 0.153
Wooldridge -1.91 0.193 3.43 0.149
Orme -2.04 0.192 3.52 0.149

Notes:

1. 1000 Monte Carlo replications used in each experiment.

2. In experiments 18-22 there were no run-in periods, i.e. the process was started at t=0. The initial
observation y∗i0 was generated in the exogenous initial condition experiment (18) as N(−0.45, 1)
and in the endogenous initial conditions experiments (19-22) as y∗i0 = −0.45 + rαi +

√
1− r2ui0

where ui0 ∼ N(0, 1). β0 was set equal to −1.0. These values were chosen to gives averages for y
similar to the base experiment. T=5, N=200 for all experiments in this table.

35



 

-1
0

0
10

20
30

P
er

ce
nt

ag
e 

bi
as

2 4 6 8 10 12
Number of time periods (T)

Heckman Orme
Wooldridge

 
 

Figure 1: Percentage Bias in Estimates of γ by T for N=200 
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Figure 2: Percentage Bias in Estimates of γ by N for T=3 
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Figure 3: Percentage Bias in Estimates of γ by N for T=5 
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Figure 4: Percentage Bias in Estimates of γ by T for N=1000 
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