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SLEEPING PATENTS AND COMPULSORY L ICENSING:

AN OPTIONS ANALYSIS

1 Introduction

Is it ever rational for a potentially profitable invention to be left unexploited?  And why

should a firm ever wish to create a patent that it does not use?  In law, economics and

popular mythology it is generally presumed that any situation in which a firm wishes to

hold a sleeping patent is detrimental to society as a whole.  In the Xerox case, for

example, the company was alleged to have taken out patents over inferior technologies

in order to block entry and protect its dominant position.  Another possibility, perhaps

more significant in popular perception than in reality, is an invention that is ‘too

drastic’, threatening to wipe out an entire industry with its improved efficiency.1  In

consequence of this view, UK patent law (and similar provisions in a number of other

countries) provides for compulsory licensing of a new technology in cases where the

patent-holder itself refuses to exploit it, despite market potential.2

This issue is the concern of on-going policy debate.  In a recent issue of the

Antitrust Law Journal, a symposium of articles considers possible legal remedies to

address the problem of sleeping patents, essentially taking it for granted that the refusal

to license an unused patent is an abusive and anticompetitive practice (see, inter alia,

Crew (1998), Cohen and Burke (1998) and Chin (1998)).  In the United States neither

intellectual property law nor the antitrust laws permit any measures to be taken against

non-exploitation of a patent.  Following a number of unsuccessful antitrust cases

relating to this issue there is some pressure to introduce compulsory licensing

provisions into US law.

In this paper we analyze a two-stage investment project, with research undertaken

in the first stage and irreversible market entry in the second, and consider

circumstances under which the project will be suspended at the intermediate point

between the two stages.  We show that, in the presence of economic and technological

uncertainty, optimizing behavior may result in a firm suspending the project at the

intermediate point, leaving a potentially profitable technology unexploited for some

period of time.  This outcome arises in the absence of rivalry, either for the patent or in
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the product market, removing the anticompetitive motive for sleeping patents.

Although it would be incorrect to conclude from this analysis that a sleeping patent is

never held for anticompetitive purposes, the fact that sleeping patents may arise in

other circumstances means that the observation of an unused yet marketable

technology cannot, in itself, be taken as proof of anticompetitive behavior.  This

conclusion should be borne in mind when considering any proposed reform of the legal

treatment of sleeping patents.

We demonstrate that, if economic uncertainty is high or the expected rate of

innovation is low, it may be rational for a firm to carry out research at times when

market profitability is below the level that would induce exploitation of the new

technology.  Thus research is carried out prospectively with a strong possibility that,

once obtained, the patent will be left dormant for some time.  The intuition for this

result lies in a trade-off between two potential costs facing the firm.  By carrying out

research while conditions are not sufficiently favorable to induce market entry, the firm

incurs the costs of research to gain an investment option that may not be exercised for

an extended period of time.  During this period it bears an opportunity cost given by

the risk-free return on this investment.  If, on the other hand, the firm delays research

until conditions improve, it is likely that the discovery will not be achieved until some

time after market entry would have been desirable.  During this period the firm forgoes

the product market profits which it would have earned had it been in a position to

enter the market immediately.

The ability to suspend the project after the research phase, holding an exclusive

patent over the newly-acquired technology, is crucial to the decision to carry out

prospective research.  We consider the effects of policy measures to enforce the

immediate exploitation of a patent, such as compulsory licensing, and analyze their

impact on the firm’s incentives to engage in research.  We find that restrictions on the

firm’s ability to suspend the project by holding a sleeping patent are likely to suppress

research activity itself, an outcome that is particularly harmful in the presence of

positive spillovers from R&D.

A number of papers analyze two-stage investment projects with possible

suspension.  Dixit and Pindyck (1994; pages 327-328) consider a general two-stage

investment project with uncertain returns, where the first stage may be interpreted as

research.  When investment takes no time to complete, the firm waits until market
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entry is optimal and then sinks both the first- and second-stage investments at the same

time.  Thus, research will never be undertaken without the entire project being

completed and sleeping patents will never arise.  In their discussion Dixit and Pindyck

note that if the first stage investment takes time to complete, then suspension at the

intermediate stage is possible.  If the market price were to fall while the first stage is

being completed and reaches a level below the trigger point for the second stage

investment, the project would then be shelved until conditions improve.

A number of models explain initial investment in the early stages of a multi-stage

project through learning-by-doing.  When research activity itself contributes to the

resolution of uncertainty over, for example, total investment costs or final productivity,

exploratory research may be carried out even when the expected NPV of the project is

negative; see, for example, Roberts and Weitzman (1981).  Pindyck (1993) analyzes a

model in which the technical difficulty (in terms of time, materials and effort) of

completing the project is uncertain and this information is revealed only as the

investment is undertaken.  In this case investment has a shadow value above its

contribution to completion of the project, lowering the trigger point at which the

project will be commenced.

In a model closely related to our own, Bar-Ilan and Strange (1998) analyze a two-

stage investment model with time-to-build.  Using numerical solution techniques they

find that if the first stage investment lag is sufficiently long and output price

uncertainty is high, the first-stage trigger may fall below the second-stage trigger and

exploratory investment takes place.  Although the models and their results are similar,

uncertainty over the timing of discovery, rather than a fixed time to completion, is

arguably better suited to the context of research activity where the timing of any

breakthrough is highly unpredictable.  Furthermore, this formulation allows closed-

form solutions to be derived, avoiding the need to rely on numerical results.

The paper is organized as follows.  Section 2 describes the structure of the model

and the sources of uncertainty faced by the firm.  Optimal trigger points for the second

(capital investment) and first (research) stages respectively are derived in sections 3

and 4.  In section 5 it is proven that, under certain conditions, the second stage trigger

point exceeds the first stage trigger and sleeping patents are possible.  Section 6

considers the effects of measures to enforce the exploitation of a sleeping patent.

Section 7 concludes.
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2 The model

A single, risk-neutral firm faces the following sequence of investment opportunities.

First, it may carry out a research project which, if successful, leads to the creation of a

new product design.  When discovery takes place the design is patented immediately

so that protection is gained from any subsequent rival discoveries.  Second, the firm

may choose when to invest in productive capacity and enter the product market, with

costless suspension at this stage.  The second stage investment is completely

irreversible.  The sequence of the firm’s investment decisions is illustrated in figure 1.

The firm faces both technological and economic uncertainty.  While the firm invests

in research, discovery is a Poisson arrival.  The economic value of the patent obtained

by the successful inventor is also uncertain, with the price in the relevant product

market following a stochastic process.  The two-stage problem facing the firm can be

analyzed as a compound option: the payoff from exercising the option to engage in

research is the option to make a second investment which, if exercised, will generate a

direct monetary return.

The underlying state variable in the model is the product market price P,3 which

follows a geometric Brownian motion process described by

dP = µPdt + σPdz (1)

where µ is the drift parameter, measuring the expected growth rate of P;

σ > 0 is the instantaneous standard deviation or volatility parameter; and

dz is the increment of a standard Wiener process; dz ∼ N(0, dt).

The drift parameter, µ, must be strictly less than the risk-free interest rate, r, or

otherwise the option to invest will never be exercised.  For ease of exposition it is

assumed that µ = 0; since our focus is on the effects of uncertainty (i.e. the volatility

parameter, σ) rather than the expected growth rate this restriction is unimportant.

In the first stage the firm invests by establishing and operating a research unit.

When the firm engages in research activity, it makes the discovery according to a

Poisson distribution with parameter (or hazard rate) h > 0.  Thus the conditional

probability that the firm makes the breakthrough in a short time interval of length dt
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given that it has not done so before this time is hdt and the density function for the

duration of research is given by the exponential distribution hthe− .  With a constant

hazard rate the research technology is memoryless; there is no stock of accumulated

knowledge that is lost if research activity is ceased.

At any time before discovery occurs investment in research is fully reversible, with

no sunk (or fixed) costs.  A flow cost of C > 0 per unit time is incurred during any

period of research activity, but this ceases as soon as the project is abandoned.  There

is no actual or potential rivalry in the relevant research area, thus the firm is able to

determine the timing of its research activity free from strategic considerations.  The

trigger point at which the first stage investment is undertaken is denoted P1.
4  Since the

research process is frictionless, with a memoryless research technology and no sunk

costs, research is both commenced (as P rises) and subsequently abandoned (as P falls)

at this point.5

For ease of exposition the research program can be thought of as h independent

lines of research, each with a hazard rate of unity and an individual flow cost of c.6

Thus the cost parameter can be rewritten as C = ch.  This formulation allows the cost

and hazard rate parameters to be changed in numerical simulations without affecting

the expected value of the project, which would otherwise obscure the option value

effects.

When discovery takes place the firm obtains a patent of infinite duration giving it

exclusive rights over its new design and blocking all rival products.  Patenting is

assumed to be costless and thus will never be delayed; a patent is taken out as soon as

the breakthrough occurs.  For simplicity patent length is assumed to be infinite; this

assumption is irrelevant to the results and the model could be modified to incorporate a

finite patent length.

In order to manufacture and market the new product, physical capital must be

sunk.  This investment, along with market entry itself, is assumed to be totally

irreversible.  The initial investment cost is denoted I and production incurs a flow cost,

w.  Demand is completely inelastic at one unit, thus flow profits per unit time are given

by (P–w).  As in the McDonald and Siegel (1986) model of an irreversible investment

opportunity, investment may be delayed indefinitely, thus the situation is equivalent to
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a perpetual call option over the underlying project.  The trigger point for the second

stage investment is denoted P2.

If it is found that P1 < P2, this may be interpreted as a situation in which a sleeping

patent is likely to arise.  Since discovery occurs randomly, commencement of research

at a price level below P2 does not guarantee the creation of a sleeping patent, since it

is possible for P to move above P2 before discovery actually takes place.  For a

sleeping patent to arise discovery itself must take place while the market price is below

P2; it is not sufficient that the firm merely engages in research over this range.

However, sleeping patents become a possibility whenever the firm carries out research

at a price level below P2.

Although the patent will not immediately be developed if innovation occurs while

the market price is in the range (P1, P2), this does not mean that exploitation is

unprofitable.  Rather the firm prefers to hold its option over the second stage due to

the irreversible nature of this investment combined with uncertainty in the product

market.  However, since the patent is potentially profitable, other firms would be

willing to develop it.  If a rival firm obtains a compulsory license on the grounds that

the patent-holder has failed to exploit the technology, it cannot then itself leave the

patent dormant, thus the licensee does not have the option to delay.  The ability for

other firms to gain access to the technology in this way effectively introduces

competition for development of the patent, restricting the ability of the inventor to

delay the second stage investment.

In section 6 the threat of compulsory licensing, or another similar measure, is

assumed to compel the firm to sink the second stage investment as soon as discovery

takes place.  Suspension at the intermediate stage is prevented and the compound

option problem is reduced to the simple choice of whether or not to engage in research

at any particular level of P.  This is something of a simplification.  In practice,

compulsory licensing will not take place unless there is another firm that wishes to

exploit the patent at this time.  However, as explained above, assuming that there are

other firms with the technical ability to use the patent, it is profitable for them to obtain

a license to do so.  Moreover, the payment of royalties to the patent-holder does not

overcome the problem.  If the license fee is less than the profit the patent-holder would

gain by exploiting the patent itself, then it will develop the technology rather than

allow it to be licensed.  If, on the other hand, the same level of profit can be extracted
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from the licensee by means of royalty payments, the situation is analytically equivalent

to the case in which the patent-holder itself exploits the patent without delay.  Thus, on

the assumption that there is a potential licensee who would wish to develop the patent,

the assumption is a reasonable one.

The decision rule for an optimizing firm in the two-stage model with suspension is

derived as follows.  Due to the compound option structure of the model, the

optimization problem must be solved backwards.  First, the value of the second stage

investment option and the level of the trigger point P2 must be found.  Once these

solutions have been obtained expressions for firm value during the first stage can be

derived.  A different set of optimality conditions is derived for each possible ordering

of the trigger points P1 and P2, which must both be solved in order to determine

optimal investment behavior.

3  The second stage: Irreversible capital investment

Viewed from the second stage alone, the firm’s decision problem is similar to the

McDonald and Siegel (1986) model of an irreversible investment project with a

constant investment cost, I.  The optimal investment time is found by solving the

following optimal stopping problem

( ) 


 −−= ∫
∞ − 

 
max

T t
rt

T
IdtwPeEV (2)

where E denotes the expectation, T is the unknown future stopping time at which the

investment is made, Pt is the market price at t, which evolves according to the

stochastic differential equation (1), and w and I are the flow and sunk costs

respectively.

Prior to investment at T the firm holds the opportunity to invest.  It receives no

expected cashflows but may experience a capital gain or loss on the value of its option.

Hence, in the continuation region (values of P for which it is not yet optimal to invest)

the Bellman equation for the value of the investment opportunity ( )PV0  is given by
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       ( )00 dVEdtrV = . (3)

Expanding 0dV  using Itô’s lemma we can write

( ) ( )( )2
000 2

1
dPPVdPPVdV ′′+′= .

Substituting from (1), noting that µ = 0 and E(dz) = 0, we derive

( ) ( )dtPVPdVE 0
22

0 2

1 ′′= σ .

Hence the Bellman equation (3) becomes the following second-order differential

equation

( ) 0
2

1
00

22 =−′′ rVdtPVPσ . (4)

From (1) we can see that if P goes to zero it stays there forever.  Thus when P = 0

the option to invest has no value and ( )PV0  must satisfy the following boundary

condition

   ( ) 000 =V (5)

Solving the differential equation (4) subject to the boundary condition (5) we

obtain the following solution for the value of the option to invest in research

( ) 0
0

βBPPV = (6)

where B ≥ 0 is a constant whose value is yet to be determined,
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and 








++=
20

8
11

2

1

σ
β r

 > 1 is the positive root of the characteristic equation

0
2

2
2 =−−

σ
εε r

.

Next we consider the value of the firm in the stopping region (values of P for

which is it optimal to invest at once).  Since investment is irreversible, the value of the

firm in the stopping region ( )PV1  is given by the expected value of product market

profits, with no option value terms.  Thus, the expected value of investment when the

current market price is Pt is given by

( ) ( ) 


 −= ∫
∞ − ττ dwPeEPV
t t

r
t1 .

Since P has no expected trend (µ = 0) the expected value of immediate investment at t

is given by

       ( )
r

wP
PV t

t

−
=1 . (7)

The boundary between the continuation region and the stopping region is given by

a critical value of the stochastic process, or “trigger point”, P2 such that continuation is

optimal for values of P below P2 and stopping (i.e. immediate investment) is optimal

above P2.  The optimal stopping time T is then the first time that the stochastic process

P hits the interval [P2, ∞).

Two conditions must hold at the optimal investment point.  First, the value of the

option held by the firm prior to investment, 0V , must equal the value of the completed

project, 1V , minus the sunk investment cost I (the “value-matching condition”)

    I
r

wP
BP −

−
= 2

2
0β . (8)
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Optimality requires a second condition, known as “smooth-pasting,” to hold.  This

requires the value functions 0V  and 1V  to meet smoothly at P2 with equal first

derivatives7

       
r

BP
11

20
0 =−ββ . (9)

Using conditions (8) and (9), the following solutions for the second stage trigger

point P2 and constant of integration B can be derived

   ( )P w rI2
0

0 1
=

−
+

β
β

; (10)

and

     ( ) ( ) 1
0

1

0

0
0

1
−

−









+

−
= β

β
β

β

rrIwB . (11)

4  The first stage: Research activity

To determine P1, the value of P at which the firm will commence and abandon

research, the value of the firm in the idle and active states must be analyzed as before.

In this case, however, the value function in the active state may take one of two forms,

depending upon whether or not P is sufficiently high that the second stage investment

would be sunk immediately if the discovery were to be made.  The three cases are

considered in turn, deriving the appropriate value function in each case.

4.1 The inactive firm

At low values of P no research activity is undertaken and the firm simply holds the

option to invest.  The derivation of the value of the firm follows that for ( )PV0  and is

given by
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U P ZP0
0( ) = β (12)

where Z > 0 is an unknown constant and 0β  is as given above.

4.2 The active firm

If the firm undertakes research at a level of P for which it would choose to delay the

second stage investment (at any P < P2) the return to discovery is the value of the

option to invest.  Alternatively, if research is undertaken at a point where capital

investment would be undertaken immediately (at any P ≥ P2) the return to invention is

the expected NPV of the second stage investment project.  Thus, the value of the

active firm falls into the following two cases depending upon the current level of P.

(i) For P < P2

If the firm undertakes research at a level of P for which, if successful, it would not

wish to proceed with the irreversible capital investment at once (i.e. any P < P2), the

immediate payoff to discovery is the second stage option value V P BP0
0( ) = β .  The

value of a firm which carries out research over this range, derived in Appendix 1, is

given by

( )U P BP
ch

r h
XP YP1

0 1 1( ) = −
+

+ +−β α β (13)

where X and Y are unknown constants;

α
σ1 2

1

2
1

8
1= + + −











( )r h
 > 0; and

β
σ1 2

1

2
1 1

8= + + +









( )r h
 > 1.
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(ii) For P ≥ P2

If the firm carries out research at a level of P for which, if successful, it will undertake

the second stage investment and start production immediately (i.e. any P ≥ P2), the

return to discovery is the expected NPV, ( )PV1 .  The value of a firm which undertakes

research over this range, also derived in Appendix 1, is given by

( ) ( )( )U P
h

r r h
P w r I c WP2

1( ) =
+

− − − + −α (14)

where W is an unknown positive constant.

4.3 The first stage optimization problem

Since there are two possible orderings of the trigger points P1 and P2, two separate

sets of optimality conditions must be constructed and solved.  The two cases, with the

relevant value functions in each range, are illustrated in figure 2.  When P1 ≥ P2 any

level of P at which the firm undertakes research is also one at which it would be willing

to proceed with the second stage investment immediately.  Thus, sleeping patents can

never arise in this case.  When P1 < P2, by contrast, the firm carries out research over

the range (P1, P2) and sleeping patents become a possibility, arising if the discovery

itself happens to occur within this range.

When the research technology is frictionless such that switching between research

activity and inactivity is costless, the value-matching and smooth-pasting conditions

will hold at any arbitrary switching point.  Thus, these conditions alone are not

sufficient to determine the optimal location of the trigger point P1.  To ensure that the

chosen switching point maximizes firm value an additional, first-order condition is

needed, while the second derivative must be negative.



13

(i) For P1 ≥ P2

When P1 ≥ P2 the set of optimality conditions consists of three equations with three

unknowns (P1, W and Z).  At P1 the following value-matching and smooth-pasting

conditions must hold

( ) ( )U P U P0 1 2 1= ;

( ) ( )′ = ′U P U P0 1 2 1 .

The first-order condition determining the optimal location of P1 is given by

( ) ( )′ = ′ =U P Z P0 1 1 0.

Solving this system the following expression for the first stage trigger point P1 is

obtained (details are given in Appendix 2); this expression for P1 is valid when the

resulting value is greater than or equal to P2

      ( )( ) ( )[ ]P w r I c1
1 0

1 01 1
=

+ −
+ +

α β
α β

. (15)

(ii) For P1 < P2

When P1 < P2 there are five equations with five unknowns (P1, W, X, Y and Z).  The

following value-matching and smooth-pasting conditions hold at P1

( ) ( )U P U P0 1 1 1= ;

( ) ( )′ = ′U P U P0 1 1 1 .

At P2, value-matching and smooth-pasting conditions are given respectively by
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( ) ( )U P U P1 2 2 2= ;

( ) ( )′ = ′U P U P1 2 2 2 .

As before, the first-order condition determining the optimal location of P1 is given by

( ) ( )′ = ′ =U P Z P0 1 1 0.

The following expression for P1, which is valid when the resulting value is below P2,

can be derived (as in Appendix 2)

( )
( )( ) ( )

P P
ch

w rI1 2
1 0 0

1 0 1 0

1

1 1

=
−

− + +










α β β
β β α β

β

 >  0. (16)

Although optimality conditions and solutions for the two cases can be derived, this

does not yet prove that it is possible for P2 to exceed P1 so that sleeping patents may

arise.  The next section derives conditions under which research is carried out

prospectively and demonstrates that, for sufficiently high uncertainty or a slow speed

of discovery, sleeping patents become a realistic possibility.

5 Prospective research and sleeping patents

In this section conditions are derived under which research is carried out prospectively

and sleeping patents may arise. For sleeping patents to be a possibility the first stage

trigger point P1 must lie strictly below the second stage trigger P2.  Then if discovery

occurs while the market price is in the range (P1, P2) the patent will be left dormant

until P2 is reached.  The ratio of first- and second-stage trigger points is denoted by ρ

as follows

ρ =
P

P
1

2

. (17)
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Using this notation, sleeping patents are a possibility if and only if ρ falls below

unity.  When P1 ≥ P2, expression (15) for P1 can be used along with (10) for P2 to

derive an expression for ρ.  Thus we can derive

( )( )
( ) ( )ρ α

α
=

+ +
+ +

w r I c

w rI
1

1 1
. (18)

Although this expression is valid only when P1 ≥ P2 it can be used to demonstrate

results over the full range of parameter values.  If it can be shown that ρ as defined by

expression (18) falls below unity at some point, then it must be true that the alternative

case holds at this level and P1 < P2.  Although the true value of ρ will no longer be

given by expression (18), it must nonetheless take some value less than unity.

The two propositions given below set out conditions under which research will be

undertaken prospectively and sleeping patents are likely to arise.

Proposition 1: For any set of parameter values { h, c, w, I, r} , there exists a critical

value of the volatility parameter, σ*, above which the first stage trigger point P1 lies

strictly below the second stage trigger point P2 and sleeping patents may arise.

Proof: The proof can be sketched as follows (full details are given in appendix 3).  The

existence of at least one critical value σ* at which ρ equals unity is demonstrated using

the intermediate value theorem.  Applying this theorem to the function ρ(σ), the

existence of some σ* ∈ (0, ∞) at which ρ = 1 can be demonstrated by showing that

(i) ρ(σ) tends towards some value greater than unity as σ approaches zero,

(ii) ρ(σ) tends to zero as σ approaches infinity, and

(iii) the function ρ(σ) is continuous.

The uniqueness of the critical value σ* is proven by demonstrating that ρ(σ) is strictly

monotonic; i.e. that ′ρ σ( )  is strictly negative for all values of σ in the range (0, ∞).

Thus, once the critical value σ* is exceeded, ρ is always less than unity (i.e. P1 < P2)

and sleeping patents are a possibility.
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Proposition 2:  For any set of parameter values { σ, w, I, r}  and as long as the flow

research cost c is sufficiently small, there exists a critical value of the hazard rate, h*,

below which the first stage trigger point P1 falls below the second stage trigger point

P2 and sleeping patents may arise.

Proof: The structure of the proof is similar to that for proposition 1 above.  Details are

given in appendix 4.

An expression for the critical value σ* can be derived by setting ρ = 1 and

rearranging for σ to obtain

( )
( ) ( )( )σ* =

+
+ + +

rc
r h

w rI w r I c

2
. (19)

Similarly for h* we can derive

( ) ( )( )
( )

h
w rI w r I c

rc
r* =

+ + +
−

σ 2

2
2

. (20)

Note, however, that the resulting value of h* must be positive, which will be the case

for sufficiently small c or large σ.

The results are illustrated using numerical simulations.  In the simulations described

below the following central parameter values are used.  The volatility parameter in the

geometric Brownian motion governing P is given by σ = 0.2.  The risk-free interest

rate is 0.05.  The parameters of the research technology are h = 0.5 and c = 4.  The

sunk and flow costs in the second stage are I = 10 and w = 0 respectively.  With these

parameter values the first stage trigger point is P1 = 1.08 while the second stage trigger

is P2 = 0.93.  Thus sleeping patents are impossible in this example: any value of P at

which the firm undertakes research is also one at which it would exploit the patent

immediately.

According to propositions 1 and 2 there are two cases in which research will be

carried out prospectively: firstly, if the degree of uncertainty is sufficiently high, or
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secondly, if both the hazard rate and flow research costs are sufficiently low.  These

cases, and the combination of the two parameters which together may result in

sleeping patents, are illustrated in the following three graphs.

Figure 3 shows the effect of increasing the volatility parameter, σ, while holding all

other parameter values constant.  Both P1 and P2 rise as volatility increases, but the

effect on P2 is more pronounced: although product market conditions clearly affect

research decisions, the ability to suspend the project after discovery reduces their

impact.  As described in proposition 1, a critical value is reached at which P1 crosses

P2; in this example σ* is approximately 0.355.

Figure 4 shows the effect of changing the hazard rate, h.  Unsurprisingly, there is

no effect on the second-stage trigger point P2.  However, the first-stage trigger point

P1 rises with h, causing research activity to be more delayed.  For values of h below a

critical level, h* = 0.125, P1 lies below P2 and sleeping patents are possible.

Figure 5 shows the locus of (σ, h) combinations at which the first and second stage

trigger points coincide (P1 = P2).  Below this locus, with a higher value of σ (greater

economic uncertainty) or lower value of h (a low expected rate of discovery), P2

exceeds P1 and sleeping patents are possible.

6 The constrained firm

We now consider the case of a firm that is constrained (under threat of compulsory

licensing or some other measure) to use its patent as soon as it is created.  The

compound option is reduced to a simple one in which the only decision taken by the

firm is the timing of its research activity; in this case the timing of the second stage

investment is given by the discovery date itself.  The trigger point at which the

constrained firm commences and abandons research is denoted PC.

When the firm is constrained to use the patent immediately its optimization

problem follows the analysis of section 4.3(i), with the solution denoted PC (rather

than P1 as above).  However, this result now holds over the complete range of P,

regardless of whether the resulting value is greater or less than P2.  If parameter values

are such that the (unconstrained) trigger point P1 exceeds P2, the constraint is non-
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binding and the “constrained” trigger point PC coincides with P1 (the two have

identical derivations).  In cases where P1 lies below P2, however, the constraint is

binding and PC will take some intermediate value between the two points.  Since PC is,

in effect, the trigger point for the second as well as the first stage investment, the firm

faces a trade-off between delaying research beyond the optimal trigger point P1 and

potentially having to sink the second stage investment before reaching the critical value

P2.

Figure 6 shows a numerical simulation comparing the constrained trigger point PC

with the unconstrained values P1 and P2.  Levels of P1, P2 and PC are shown for values

of the volatility parameter σ over the range (0.2, 0.7); other parameters take the values

given in section 5.  For values of σ below σ* = 0.35, the unconstrained first stage

trigger P1 exceeds P2 and the constraint is non-binding, thus PC coincides with P1.  For

values above σ*, however, the constraint binds and PC takes an intermediate value

between P1 and P2.  Thus in the constrained case research activity is further delayed,

until product market conditions are more favorable, compared with the behavior of the

unconstrained firm.

This finding has the following implications.  Policy measures to enforce the

development of sleeping patents, such as compulsory licensing, may cause one or both

of the following detriments.  By forcing the firm to exploit its patent immediately,

investment costs may be sunk too soon and society loses the value of the option to

delay.  When firms are forward-looking their research behavior is also affected.  As a

substitute for the option to hold a sleeping patent, the firm may instead choose to delay

its research activity relative to the social optimum.  Although new designs will be

brought to market more rapidly, they will be produced more slowly.

The constraint imposed on the firm’s option to delay is socially damaging in itself,

even in the absence of externalities.  However, if there are external benefits from

research, such as spillovers of knowledge to other firms, the delay in research activity

will be even more harmful.  In cases where the right to invest is auctioned, as is often

the case for oil leases, another consideration is the amount of revenue raised.  Any

constraint on the holder’s ability to hold options by delaying investment will reduce the

amount of revenue raised in auctioning these rights.
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7 Conclusions

This paper has studied the effects of technological uncertainty combined with risky

market conditions on the incentive for firms to engage in research.  In particular, it has

been shown that a sleeping patent may arise as the foreseeable outcome of socially

optimal behavior by the firm.  Thus, although the circumstances of individual cases

must be examined in detail before this conclusion can be drawn, observation of a

dormant but potentially profitable technology does not necessarily prove an anti-

competitive motive or otherwise socially harmful behavior.

When discovery occurs randomly, a firm that delays research until market

conditions are favorable cannot be certain that discovery will occur as soon as desired.

When market uncertainty is high or the expected speed of discovery is low, it may be

rational for the firm to engage in research at a time when the prevailing conditions

would not justify immediate market entry were the technology already available.  In

other words, the firm may find it worthwhile to incur initial expenditures to gain the

option to invest even at a time when this option would not itself be exercised.

In the context of the real options literature, this finding shows that the ability to

gain options for the future may make it rational to exercise current ones sooner.  Thus,

the existence of more options does not necessarily increase delay.  In such situations

the sequence of options available to the firm must be considered in its entirety, as

serious errors could be made if the early options were to be valued on their own.

The analysis has a number of implications for policy towards R&D.  First, by

demonstrating that sleeping patents may arise as the result of socially optimal

investment behavior under uncertainty, it suggests that they are not necessarily anti-

competitive or socially undesirable.  There are a number of reasons why a patent may

be left dormant and each case must be examined carefully before any such verdict is

made.  Secondly, the analysis suggests caution in adopting measures such as

compulsory licensing to enforce the exploitation of sleeping patents.  Forward-looking

firms will foresee the implications of such measures and may instead choose to delay

research activity itself, an outcome which could cause considerable social as well as

private detriment.
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Appendix 1:  The compound (first stage) option value

While the firm is idle, the derivation of the (option) value of the firm follows that for

the second stage value function ( )PV0 .  When the firm is active, however, there are

now two separate value functions to be derived, according to whether the current

value of P is below or above P2.

(i) For P < P2

If the firm undertakes research at a value of P for which, if successful, it would not

develop the patent at once (P < P2), the prize for discovery is the option value )(0 PV .

Incorporating this payoff, the dynamic programming equation is given by

( ) ( )( )U P hBP ch dt r h dt U P P U P dt1 1
2 2

1
0 1

1

2
( ) ( ) ( )= − + − + + ′′





β σ  

which rearranges to give

          ( )r h U P hBP ch P U P+ = − + ′′1
2 2

1
0

1

2
( ) ( )β σ  . (A1.1)

Solving this differential equation, we obtain

U P
hBP

r h

ch

r h
XP YP1

0

1 1( ) =
+ −

−
+

+ +−
β

α β

τ
(A1.2)

where X, Y are unknown constants;

α
σ1 2

1

2
1

8
1= + + −









( )r h
 > 0;

β
σ1 2

1

2
1 1

8= + + +









( )r h
 > 1; and

τ = ½ ( ) r=−100
2 ββσ .
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The term τ is the expected growth rate of the second stage option ( )PV0 .

However, this simplifies to the interest rate r: since the option yields no cashflows, the

return on holding it is the capital growth alone which, in the absence of arbitrage

opportunities, must equal the risk-free interest rate r.  Thus, (A1.2) becomes

U P BP
ch

r h
XP YP1

0 1 1( ) = −
+

+ +−β α β . (A1.3)

Since this value function holds only over the range (P1, P2), there is no boundary

condition at zero or infinity that can be used to eliminate one of the constant terms.

(ii) For P ≥ P2

If the firm undertakes research at a level of P for which, if successful, it will sink the

capital investment and start production immediately (i.e. any P ≥ P2), the benefit from

discovery is the expected NPV of the second stage investment, ( )PV1 .  Incorporating

this payoff into the usual dynamic programming equation we obtain

( ) ( )( ) ( ) ( )U P h
P w

r
I ch dt r h dt U P P U P dt2 2

2 2
21

1

2
= − −



 −





+ − + + ′′



σ  

which rearranges to give

( )r h U P h
P w

r
I c P U P+ = − − −



 + ′′2

2 2
2

1

2
( ) ( )σ  . (A1.4)

Solving this equation subject to the boundary condition ( )PU 2  → ( )PV1  as P → ∞

(i.e. the option value approaches the expected NPV of the project), the following

solution is obtained (where W is an unknown constant)

( ) ( )( )U P
h

r r h
P w r I c WP2

1( ) =
+

− − + + −α . (A1.5)
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Appendix 2:  Finding the first stage trigger point P1

Solutions must be found for two separate cases, P1 ≥ P2 and P1 < P2, which have

different optimality conditions.  Since an assumption concerning the relative sizes of P1

and P2 is made, the solution obtained in each case is valid only if the relevant

assumption is not violated by the outcome.

(i) For P1 ≥ P2

Value-matching, smooth-pasting and first order conditions at P1 are given by

( ) ( )( )ZP
h

r r h
P w r I c WP1 1 1

0 1β α=
+

− − + + − ; (A2.1)

( )β αβ α
0 1

1
1 1

10 1ZP
h

r r h
WP− − −=

+
− ; (A2.2)

    ( )1PZ∂ / 1P∂  = 0. (A2.3)

Using (A2.1) and (A2.2) to eliminate W, we obtain

( ) ( ) ( ) ( ) ( )( )( )α β α α
β

1 0 1
1

1 1 1

0

1+ =
+

+ − + +
−

Z P
hP

r r h
P w r I c .

Differentiating with respect to P1 (the first order condition) we obtain

( ) ( )( ) ( )( )( )∂
∂

α β β α
βZ

P

hP

r r h
w r I c P

1

1
1

1 0 0 1 1

0

1 1 0=
+

+ + − − + =
− −

.

Therefore

( )( ) ( )[ ]P w r I c1
1 0

1 01 1
=

+ −
+ +

α β
α β

. (A2.4)

The second derivative of Z(P) is negative, ensuring that P1 is a maximum.
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(ii) For P1 < P2

At P2, the value-matching and smooth-pasting conditions are given by

( )
( ) ( )h P w rI

r r h
W X P BP YP2

2 2 2
1 0 1

− −
+

+ − = +−α β β ; (A2.5)

( ) ( )h

r r h
W X P BP YP

+
− − = +− − − −α β βα β β

1 2
1

0 2
1

1 2
11 0 1 . (A2.6)

Eliminating (W − X) and substituting the solutions for B and P2 we obtain

( ) ( )( )
( )( )

α β
α β

β
β

1 1 2
1 0

0

1

1
+ = −

+ +
− +

YP
w rI

r h
. (A2.7)

At P1, value-matching, smooth-pasting and first order conditions are given by

( )ZP BP
ch

XP YP
r h

1 1 1 1
0 0 1 1β β α β= − + +

+
− ; (A2.8)

β β α ββ β α β
0 1

1
0 1

1
1 1

1
1 1

10 0 1 1ZP BP XP YP− − − − −= − + ; (A2.9)

( )1PZ∂ / 1P∂  = 0. (A2.10)

Eliminating X and substituting for Y from (A2.7) we obtain

( ) ( )( )
( )

( )( )
Z P B

P ch

r h

P P w rI

r h1
1 1

1 0

1 2

0

0 1 0 1

1
= −

+ +
−

+
− +

− − −β β β βα
α β β

Setting the first order condition ( )′Z P1  to zero, the following solution for P1 can be

derived (which is valid as long as the resulting value is strictly less than P2)

( )
( )( ) ( )

P P
ch

w rI1 2
1 0 0

1 0 1 0

1

1 1

=
−

− + +










α β β
β β α β

β

. (A2.10)
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Appendix 3:  The possibility of sleeping patents when σ is large

The ratio of trigger points ρ(σ) is given by

 
( )( )

( )
( )

( )( )ρ
α σ

α σ
=

+ +
+ +

w r I c

w rI
1

1 1
. (A3.1)

To prove the existence and uniqueness of the critical point σ* at which ρ = 1, four

properties of the function ρ(σ) must be demonstrated.  First, that ρ(σ) approaches a

value greater than unity as σ → 0; second, that ρ(σ) → 0 as σ → ∞; third, that the

function is continuous; and fourth, that it is strictly monotonic for all values of σ in the

range (0, ∞).

(i) Limiting result as σσ → 0

As σ → 0, ( )α σ1  → ∞ and 
α

α
1

1 1
1

+
→ .

Thus

    
( )( )

( )ρ →
+ +

+
w r I c

w rI
 > 1 as σ → 0. (A3.2)

Since c > 0, the limit of ρ(σ) as σ → 0 is a value greater than one.

(ii) Limiting result as σσ → ∞

As σ → ∞, ( )α σ1  → 0 .

Thus

     ρ → 0 as σ → ∞. (A3.3)
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(iii) Continuity and m onotonicity

In expression (A3.1) for ρ(σ), α1 is a continuous function of σ and all other elements

are independent of σ, thus ρ(σ) is continuous over the range (0, ∞).  In combination

with the limiting results presented in (i) and (ii), this proves the existence of at least

one critical value σ* at which ρ = 1.

To prove monotonicity of ρ(σ) and hence the uniqueness of σ*, the sign of the

(partial) derivative ( )′ρ σ  must be determined.

     
( )( )

( )
∂ρ
∂σ

∂
∂σ

α
α

=
+ +

+ +








w r I c

w rI
1

1 1
. (A3.4)

Thus,

sgn sgn
∂ρ
∂σ

∂
∂σ

α
α

=
+







1

1 1
= sgn

∂α
∂σ

1 .

( ) ( )∂α
∂σ σ σ

1
3 2

1

22
2 1

8
= − + +

+





















−

r h
r h

  

  <  0. (A3.5)

The function ρ(σ) is strictly decreasing over the range (0, ∞).  Thus, the critical value

σ* at which ρ = 1 is unique.
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Appendix 4:  The possibility of sleeping patents when h is small

The ratio of trigger points ρ(h) is given by

( )( )
( )

( )
( )( )ρ

α
α

=
+ +

+ +

w r I c

w rI

h

h
1

1 1
. (A4.1)

(i) Limiting result as h → 0

When h = 0, α1 becomes

α α
σ1 0 2

1

2
1

8
1= = + −









r
 > 0.

Since 
α

α
1

1 1+
 < 1 and this ratio falls as σ rises, then, for sufficiently small c or large σ,

ρ will be less than unity.

(ii) Limiting result as h → ∞

As h → ∞, ( )α 1 h  → ∞ and ( )
α

α
1

1 1
1

+
→ .

Thus

     
( )( )

( )ρ →
+ +

+
w r I c

w rI
 > 1 as h → ∞. (A4.2)
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(iii) Continuity and m onotonicity

In expression (A4.1), α1 is a continuous function of h while all other elements are

independent of h, thus ρ(h) is continuous over the range [0, ∞).  In combination with

the limiting results presented in parts (i) and (ii), the existence of at least one critical

value h* at which ρ(h) = 1 can be demonstrated using the intermediate value theorem.

To prove strict monotonicity and hence the uniqueness of h*, the sign of the

(partial) derivative ( )′ρ h  must be determined.

   
( )( )

( ) ( )
∂ρ
∂

∂
∂

α
αh

w r I c

w rI h
=

+ +
+ +









1

1 1
. (A4.3)

But

( )
∂
∂

α
αh

1

1 1+










( )
=

+
1

11

2
1

α
∂α
∂h

.

Thus,

sgn
∂ρ
∂h

= sgn
∂α
∂

1

h
.

Taking the partial derivative of α1 with respect to h, we derive

( )∂α
∂ σ σ

1
2 2

1

22
1

8

h

r h
= +

+







−  

 > 0. (A4.4)

The function ρ(h) is strictly increasing over the range (0, ∞).  Thus, the critical value

h* at which ρ = 1 is unique.
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Figure 1: The compound option model

Figure 2: Trigger points in the no sunk costs case
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     Figure 3: The possibility of sleeping patents when σσ is large
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     Figure 4: The possibility of sleeping patents when h is small
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     Figure 5: (σσ, h) combinations giving rise to sleeping patents
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     Figure 6: Trigger points with and without ability to delay
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1 This concept is illustrated by the 1955 Ealing comedy, “The Man in the White Suit,” in which the

creator of a dirt-repellent and (seemingly) indestructible fiber is offered £¼ million (then a

considerable fortune) by the owners of the clothing industry to suppress the invention.
2 The 1977 Patents Act allows for compulsory licensing in three cases: (i) so that another patented

invention may be produced; (ii) so that the invention is “worked” (or the product manufactured) in

the UK or EC; and (iii) where the patentee refuses to exploit the new technology, yet it has market

potential and demand is not being met on reasonable terms.  For further details on UK and EC

patent law see Cornish (1996).
3 Note that, if the patent is for a new product, this price may not be directly observable.  However, the

potential demand and market price may be inferred from customer surveys or the prices of existing

products.
4 To be precise, the statement that a firm invests at a trigger point P* means that the firm invests at

the time when the stochastic process P first hits P*, approaching this level from below.
5 Although the flow costs of research cannot be recovered, these should be thought of in the following

way.  In a period dt during which research is undertaken, the firm incurs a cost chdt in return for

which it receives a random return with an expected value given by hdt multiplied by the value of the

patent at that time.  Thus, the flow research cost is equivalent to production costs in a product

market model (although the return is stochastic in this case) and should not be recovered if the

project is later abandoned.
6 Note that the number of research lines is not a choice variable for the firm.  Given that individual

lines are independent, the hazard rate of the entire project is given by h.1 = h.
7 If smooth-pasting were violated and instead a kink arose at P2, a deviation from the supposedly

optimal policy would raise the firm’s expected payoff.  By delaying for a small interval of time after

the stochastic process first reached P2, the next step dP could be observed.  If the kink were convex,

the firm would obtain a higher expected payoff by entering if and only if P has moved (strictly)

above P2, since an average of points on either side of the kink give it a higher expected value than

the kink itself.  If the kink were concave, on the other hand, second order conditions would be

violated.  Continuation along the initial value function would yield a higher payoff than switching to

the alternative function and switching at P2 could not be optimal.  More detailed explanation of this

condition can be found in appendix C of chapter four in Dixit and Pindyck (1994).


