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Abstract 

There is a considerable variation in estimates of the degree of risk aversion in the 
literature. This paper analyses the behaviour of contestants in one of the most popular TV 
gameshows ever to estimate a CRRA model of behaviour. This gameshow has a number 
of features that makes it well suited for our analysis: the format is extremely 
straightforward, it involves no strategic decision-making, we have a large number of 
observations, and the prizes are cash and paid immediately, and cover a large range – up 
to £1 million. Our data sources have the virtue that we are able to check the 
representativeness of the gameshow participants. While the game requires skill, which 
complicates our analysis, the structure of the game is very simple so that complex 
probability calculations are not required of participants. 

The CRRA model is complex despite its restrictiveness because of the sequential 
nature of this game – answering a question correctly opens the option to hear the next 
question and this has a value that depends on the stage of the game and the player’s view 
about the difficulty of subsequent questions.  

We use the data to estimate the degree of risk aversion and how it varies across 
individuals. We investigate a number of departures from this simple model including 
allowing the RRA parameter to vary by gender and age. Even though the model is 
extremely restrictive, in particular, it features a single RRA parameter we find that it fits 
the data across a wide range of wealth remarkably well and yields very plausible 
parameter values.  
* We are grateful to Celador PLC, the gameshow’s creators and the UK production company, for their help 
with gathering the data, and their permission to use it. We are particularly grateful to Ruth Settle who 
provided detailed advice that helped our understanding of the game. The research was supported by grant 
R000239740 from the Economic and Social Research Council. We are also indebted to seminar 
participants at the Institute for Fiscal Studies, Her Majesty’s Treasury, the Welsh Assembly, CAM 
Copenhagen, the Universities of Bristol, Melbourne and Durham, and the Cardiff Business School. 
However, the views expressed herein are those of the authors alone. 
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1.   Introduction 

The idea that utility is concave and increasing in wealth is both a fundamental 

presumption in economics and important for a range of applied economic issues. For 

example, the extent of concavity, measured, say, by the degree of relative risk 

aversion has implications for any decisions that concern uncertainty – most obviously 

decisions such as insurance and portfolio choice, but less obviously decisions over 

phenomena such as self-employment, R&D, education, crime, smoking, and 

substance abuse1.   

This paper provides estimates of the degree of risk aversion using gameshow 

data, and addresses the main weaknesses of the existing literature. In particular, we 

provide estimates obtained from circumstances where the wealth of the same 

individuals varies dramatically and where individuals face very simple gains and 

losses. Thus, our evidence is well suited to addressing the question of whether 

expected utility theory can be applied across a wide range of wealth and whether 

constant relative risk aversion can be used to characterise behaviour in these 

circumstances. 

The existing empirical literature that addresses the degree of risk aversion is 

distinguished by the breadth of its estimates and the literature is particularly sparse on 

attitudes towards large gambles. This is particularly troubling because an important 

deduction has been made by Rabin (2000) and Rabin and Thaler (1999) which could 

not be easily refuted with the available evidence. In particular they argue that 

expected utility maximising individuals are risk averse over small gambles and that 

any reasonable degree of risk aversion over small gambles would imply absurd 

choices over large gambles. Thus, they argue that it is not possible to characterise 

behaviour over a wide range of gambles using a CRRA Expected Utility function. 

Indeed, the authors use the argument to cast doubt on the very idea of expected utility 

maximisation.  

This paper analyses the information on contestants in one of the most popular 

TV gameshows ever to estimate a CRRA model of behaviour. This gameshow has a 

number of features that makes it well suited for our analysis: the format is extremely 

straightforward and it involves no strategic decision-making, we have a large number 
 
1 Moreover, the cardinalisation of utility is important for public policy relating to optimal redistributive 
taxation (see Atkinson (1977)). 
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of observations, and the prizes are in cash paid immediately and cover a large range – 

up to £1 million. We use the data to estimate the degree of risk aversion and show 

how it varies across individuals. In particular, we investigate the extent to which the 

RRA parameter varies by gender and age. We also test the extent to which RRA may 

not be constant across wealth. Even though the model is extremely restrictive, in 

particularly it features a constant RRA parameter across a wider range of wealth, we 

find that it fits the data remarkably well and yields very plausible parameter values.  

Our data comes from the world’s most popular TV gameshow of all time, Who 

wants to be a millionaire? (hereafter WWTBAM), which is played and broadcast 

under license in many countries but originated in the UK. Notwithstanding that 

gameshow data has a number of drawbacks for the purpose of estimating attitudes to 

risk, this particular game has a number of design features that make it particularly 

well-suited to our task. In this gameshow the player is faced with a sequence of 15 

multiple-choice questions. At each stage she can guess the answer to the current 

question and stands to double her current winnings but at the risk of losing a stage-

specific amount, or she can quit and leave the game with her winnings to date. The 

mechanism of the game is well known and very simple. Although there is no strategic 

element, contestants simply play against the house, it is a game where skill matters, 

which complicates our analysis, the structure of the game is very simple so that 

complex probability calculations are not required of participants. 

 At each stage of the game contestants are reminded that their winnings so far 

belong to them - to risk, or walk away with. The prizes start at a very modest level 

but, in many countries, reach very high levels. This wide spread of possible outcomes 

makes WWTBAM a considerable challenge for a simple expected utility CRRA 

model.  

The data was transcribed from the original videotapes of the population of 

contestants. We further established the representativeness of the data by surveying the 

population of potential contestants (individuals who were invited to appear on each 

show and from which actual contestants were selected) to obtain information about 

their characteristics, which we could compare with population surveys such as the 

Labour Force Surveys. 
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We focus on CRRA preferences, despite its restrictiveness, because the 

sequential nature of the game gives rise to an important complication – in all but the 

last stage of the game, answering a question correctly gives an option to hear the next 

question and this itself has a value, over an above the value of the addition to wealth 

associated with the question,. This option value depends on the stage of the game, the 

player’s view about the difficulty of subsequent questions, and the degree of risk 

aversion. This option value characteristic would complicate the econometric analysis 

considerably and the assumption of CRRA allows us to construct a model that can be 

estimated. 

The paper is structured as follows. In section 2 we outline the existing 

evidence, including other work that relies on gameshow data. Section 3 explains the 

operation of the game. In section 4 we provide a simple model of the game2 that 

captures its formal structure so we can show the mechanics of the game in a 

straightforward way. We go on, in Section 5, to generalise this to embrace all the 

practical details of the game. In section 6 we present the econometric details and the 

likelihood.. In section 7 we give some summary details of the UK data and explain 

how we estimate risk aversion using this data. In section 8 we present some results 

and consider possible shortcomings of the work. In section 9 we concludes and draw 

together some conclusions, and outline some extensions of the work for the future. 

2.  Existing evidence 

There are several distinct strands to the empirical literature. Firstly, because 

the coefficient of risk aversion enters into decisions that do not explicitly involve 

uncertainty but require cardinal utility, considerable attention has been given to the 

estimation of Euler equations derived from lifecycle models of consumption and 

savings (see Hall (1988) and Attanasio and Weber (1989)) where the coefficient on 

the interest rate in a log-linearised model is the elasticity of substitution. If utility is 

time separable and exhibits constant relative risk aversion (CRRA) then this interest 

rate coefficient is also the inverse of the degree of relative risk aversion, ρ. The typical 

result in such analyses, usually based on macro data, is that consumption and savings 

are relatively insensitive to interest rates so the elasticity of intertemporal substitution 

 
2 The game originates in the UK and the main difference across countries is in the units for the prizes 
and in their tax treatment. We hope to exploit the differences in prizes across countries, and across time 
within some countries, in future work.  
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is small. Thus, the macro-econometric literature largely suggests that the degree of 

risk aversion is large. Some of this literature3 considers two assets and backs out risk 

aversion from the excess returns on equities. Since individual portfolios are typically 

highly concentrated in relatively safe assets this work implies that the degree of risk 

aversion is implausibly large. Indeed, the survey of the “equity premium puzzle” by 

Kocherlakota (1996) suggest estimates of the degree of relative risk aversion that 

exceed 504.   

However, this method, that relies on portfolio allocations, has only ever been 

applied to microdata in a handful of studies. Attanasio, Banks and Tanner (2002) 

provides a very plausible estimate of the coefficient of relative risk aversion of just 

1.44 using a large UK sample survey (for the sub-sample at an interior solution (i.e. of 

shareholders)), and appears to be unique in failing to reject the overidentifying 

restrictions implied by economic theory. 

Jianakopolos and Bernasek (1998) use US survey data on household portfolios 

of risky assets to examine gender differences. They find that find that single women 

are more relatively risk aversion than single men - a ρ close to 9 compared to 6.  

Further differences by age, race, and number of children were also found.  

Palsson (1996) uses Swedish 1985 cross-section data on portfolios using tax 

registers for more than 7,000 households for. This study also recognizes the existence 

of real as well as financial assets and accounts the gains from diversification that 

arises when real assets and financial assets are both held. The estimated risk aversion 

was found to be even higher than Jianakopolos and Bernasek but, in this case, not 

systematically correlated with characteristics apart finding that risk aversion increases 

with age. 

If utility is intertemporally separable then the extent to which utility varies 

with income is related not just to consumption and savings, but also to labour supply. 

This idea has been exploited by Chetty (2003) who derives estimates of risk aversion 

from evidence on labour supply elasticities. He shows that the coefficient of CRRA, 

in the atemporally separable case, depends on the ratio of income and wage 

 
3 Notable contributions to this area are Epstein and Zin (1989, 1991). 
4 A number of ideas have been put forward to reconcile the equity premium with estimates of risk 
aversion obtained by other methods – most plausibly, that the premium is correlated with labour 
income risk. 
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elasticities and that the estimates in the labour supply literature implies a CRRA 

coefficient of about 1 and that a positive uncompensated wage elasticity is sufficient 

to bound CRRA to be below 1.25. 

A second, albeit small, strand of the empirical literature exploits data on the 

purchase of insurance cover. Szpiro (1986) is an early example which estimates ρ 

from time series data on insurance premia and the amount of domestic insurance 

cover purchased, and finds ρ to be close to 2. Cicchetti and Dubin (1994) consider a 

large microdataset on insurance for domestic phone wiring. This paper acknowledges 

that this insurance is expensive (a monthly premium of $0.45 on average) relative to  

the expected loss (just $0.26 on average) and yet they found that 57% of customers 

were enrolled in the insurance scheme. They estimate a hyperbolic absolute risk 

aversion model and estimate an average small degree of ARA. The implied estimate 

of ρ  is of the order of 0.6. 

A third, more substantial, strand to the literature takes an experimental 

approach where participants are offered either real or hypothetical gambles. The best 

example that uses hypothetical questions is Barsky et al (1997) where respondents to 

the US Health and Retirement Survey were asked if they would accept or reject huge 

gambles (a 50% chance of doubling lifetime income together with a 50% change of 

reducing it by one-fifth/one-third/one-half). Two further distinctive features of this 

work are that it suggests that there is considerable variation in relative risk aversion, 

around the mean of about 12, and that relative risk aversion is actually correlated with 

risky behaviour in the data such as smoking, insurance and home ownership.  

Donkers et al (2001) is a good example that uses data on preferences over  

hypothetical lotteries in a large household survey to estimate an index for risk 

aversion. Their econometric method is semi-parametric, it allows for generalisations 

of expected utility, and they make weak assumptions about the underlying decision 

process.  They go on to estimate a structural model based on Prospect Theory (see 

Kahneman and Tversky (1980)). They strongly reject the restrictions implied by 

expected utility theory and they find that both the value function and the probability 

weighting function vary significantly with age, income, and the wealth of the 

individual. 
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A further example of this strand of the literature is Hartog et al (2000) which 

uses questionnaire evidence on reservation prices for hypothetical lotteries to deduce 

individual risk aversion. They use three different datasets and find that the mean 

CRRA are extremely large (more than 20) in each which might suggest that the 

questionnaire method is contaminating true risk aversion with some response bias. 

However recent work by Holt and Laury (2002) compares estimates from 

hypothetical lotteries with the same lotteries where the prize is really paid. The 

authors check whether preferences differ across real and hypothetical lotteries and 

find that they are similar only for small gambles. The analysis features prizes that 

range up to several hundreds of dollars which they feel allows them to address the 

critique raised in Rabin and Thaler (2001) and Rabin (2000). However, there remains 

a worry that responses to hypothetical gambles are contaminated and do not reflect 

risk attitudes alone. 

The present paper belongs firmly to the final strand to the empirical literature -  

that relies on data generated by gameshow contestants. The earliest example, by 

Metrick (1993), uses the television gameshow Jeopardy! as a natural experiment to 

estimate a non-linear probit of play that depended on the expected value of the gamble 

from which he could deduce the degree of risk aversion. Given the rather small stakes 

involved, he found that the implied preferences5 were not significantly different from 

risk neutrality. 

Similarly, Hersch and McDougall (1997) use data from the Illinois Instant 

Riches television gameshow, a high stakes game based on the Illinois State Lottery, to 

regress the probability of accepting a bet on the bet’s expected value and (a proxy for) 

household  income. The estimated structural model is used to infer the coefficient of 

relative risk aversion, and the data again suggests that contestants are near risk 

neutral. Gertner (1993) analyses contestants in Card Sharks who enter a bonus round 

which involves a sequence of bets where the stakes are drawn from winnings in an 

earlier round that depends on the relative skill of contestants. He uses data on just the 

final bet in the bonus round and finds evidence of a high degree of risk aversion 

 
5 They also model the ability of players to choose strategic best-responses. The results suggest that 
failure to choose the best-response increases as the complexity of the bet increases. Consistent with 
much psychological experimental literature, he also finds that the choices that contestants make are 
affected by the “frame” of the problem. 



 7

(perhaps as high as 15), although he also found evidence of behaviour that contradicts 

expected utility theory.  

More recently Fullenkamp et al (2003) uses the Hoosier Millionaire television 

gameshow to analyze decision-making. Unlike earlier gameshows this involves 

relatively high stakes. They use a large sample of simple gambling decisions to 

estimate risk-aversion parameters. One difficulty with this game is that prizes are 

annuities and so their value to players will depend on time preference. They find, 

assuming a discount rate of 10%, that contestants display risk-aversion with the mean  

ρ range from 0.64 to 1.76.  

Finally, and closest to this study, Beetsma and Schotman (2001) use a Dutch 

game called Lingo. Like WWTBAM this is a game of skill. They use data from a 

television game show involving elementary lotteries as if it were a natural experiment 

so as to measure risk attitudes. Their dataset is large but the monetary stakes are, on 

average, relatively small. CRRA and CARA utility specifications are found to 

perform approximately equally well and they find robust evidence of a substantial 

degree of risk aversion with estimates of ρ in the range from 3 to 7. Extensions of the 

basic model, which allow for a separate utility flow purely from playing the game or 

for decisions based on decision weights instead of actual probabilities, raise the 

estimated degree of risk aversion. 

3.      The WWTBAM Gameshow 

WWTBAM has proved to be the most popular TV gameshow ever. The game 

has been licensed to more than one hundred countries and has been played in more 

than 60. In many of these countries the show was originally the most popular show on 

TV for some time. The game features a sequence of fifteen “multiple-choice” 

questions with associated prizes that, in the UK, start at £100 and (approximately) 

doubles each question so that the final question results in overall winnings of £1m. 

After being asked each question the contestant has the choice of quitting with her 

accumulated winnings or gambling by choosing between the four possible answers 

given. If the chosen answer is correct the players doubles her existing winnings and is 

asked another question. If the chosen answer is incorrect she gets some “fallback” 

level and leaves the game. The difficulty of questions rises across the sequence of 
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questions6 and the fallback level also rises (in two steps). Contestants are endowed 

with three “lifelines” which are use-once opportunities to improve their odds – so, 

when faced with a difficult question, players may use one or more lifelines to improve 

their odds. 

Contestants are not selected randomly onto the show. The details of how this 

is done varies across countries but in the UK aspiring contestants ring a premium rate 

phone number and get asked a medium difficulty question. If correct their names get 

entered into a draw to appear in the studio. Ten names are drawn for each show. 

Aspiring contestants can improve their odds of appearing by ringing many times so 

having many entries in the draw. Once at the recording studio, aspiring contestants 

compete with each other to provide the fastest correct answer to a single question and 

the winner is selected to enter the main game.  

During play the compère is careful to ensure that players are sure they want to 

commit themselves at every stage – contestants have to utter the trigger phrase “final 

answer” to indicate commitment. At each of the two fallback stages, the compère 

hands a cheque to the contestant for that level of winnings and ensures that the 

contestant understands that this money is now theirs and cannot be subsequently lost. 

4. A simple version of WWTBAM and a bound on risk aversion 

It is useful to begin by considering a very simple model where utility exhibits 

constant relative risk aversion, there is only one question (think of this, for the 

moment, as being the last question in the sequence of questions faced by a contestant) 

and no lifelines (imagine they have all been used on earlier questions), and where the 

fallback level of winnings is fixed at some value, b. The purpose of this simple model 

is to introduce the game, highlight the issues, and use it to provide a crude idea of 

what the degree of risk aversion might be, before we attempt to construct, and 

estimate formally, a model that captures all of the complexities of the actual game. 

This stylised game can be characterised by  

 
6 What “difficulty” means here is, of course, subjective. Many early questions are concerned with 
popular culture and sport. The details differ slightly from country to country but for the UK data used 
here the production staff divide questions into bins of what they regard as rising difficulty and 
contestants face a sequence of questions drawn randomly from successive bins. In early shows there 
were fewer than 15 bins because the production team did not have the experience to rank questions 
precisely. However, in recent shows there have been 15 such bins, one for each prize level.  
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where W is the level of winnings in previous questions and P is the subjective 

probability of choosing the correct answer. We assume that the questions (i.e. the 

question itself as well as all candidate answers) are drawn randomly from a pool, such 

that, for any question, individuals are able to assign to each answer some subjective 

probability of being the correct answer.  Hence P is a random variable with a 

distribution which is known to the individual. The decision problem of the contestant 

can be couched as a simple stopping rule:  choose to answer the question if the 

subjective probability of being correct, P exceeds some critical value p  given by  

1 1

1 1 12
W bp

W b

ρ ρ

ρ ρ ρ

− −

− − −

−
=

−
                ((22))  

and otherwise quit and take the accumulated winnings W. The comparative statics of 

this simplified model suggests that individuals are more likely to quit the higher is ρ,  

and the lower (higher) is b according to ρ>(<)1.  

In the UK game, b is zero for the first 5 questions, £1000 for the next 5, and 

£32000 for the last five. In practice there are very few instances of quits or failures 

below £1000. Two probabilities are of particular interest: the probability of failure 

when the last question asked is worth £2,000 and the probability of failure when the 

last question asked is £64,000. In both cases these questions should be attempted by 

all individuals reaching that stage of the game because there is no downside risk at 

those stages of the game. Thus, straightforward estimates of the probability of a 

correct answer provide a measure the average difficulty of the questions. We focus 

here on the probability of failing at the £64,000 question which, in our data, is about 

1/3rd . 

To simplify matters further we assume that the £125,000 prize is 128,000 

(=27) and we assume that the probability of failing this question can be approximated 

by the probability of failing the £64,000 question. In keeping with the simplified 

model outlined above a contestant will tackle this question whenever the expected 

utility of the gamble is greater than the utility of quitting with £64,000.  
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Two cases arise: 1ρ >  and 0 1ρ< < .  If 1ρ >  the condition that determines 

the decision to answer this question becomes 
( ) ( ) ( )

1 1 12 128 1 32 64. .
3 1 3 1 1

ρ ρ ρ

ρ ρ ρ

− − −

+ ≥
− − −

. Since 

1 0ρ− <  this is equivalent to 1 1 12 1.128 .32 64
3 3

ρ ρ ρ− − −+ ≤ . Furthermore, since 

7128 2= , 664 2= , and 532 2=  this implies ( )( ) ( )2 1 1 11 2 1 2
3

ρ ρ− + −+ ≤ . Substituting 

12 ρ θ− = , with θ  varying from 1 to 0 as ρ  varies from 1 to ∞ , we require 

( )21 2 1
3

θ θ+ ≤ . Note that the equation ( )21 2 1 0
3

θ θ+ − =  has one unique solution, 

*θ , in the interval [ ]0,1 .  To the right of this solution the inequality above is satisfied, 

to the left it is not.  Obviously, * 1 2θ = . Hence ρ  must be such that ( )2 1 2ρ1− ≥ , 

which gives 1 2ρ< ≤ . That is, if 1ρ >  it must be the case that contestants cannot be 

too risk averse. 

In the second case, 0 1ρ< < , and from the calculations above we find that ρ  

must be such that ( )( ) ( )2 1 1 11 2 1 2
3

ρ ρ− + −+ ≥ . Substituting 12 ρ θ− = , with θ  varying from 

2 to 1 as ρ  varies from 0 to 1 we get  ( )21 2 1
3

θ θ+ ≥ , which is satisfied for 1θ >  

and in turn implies 1ρ <  suggesting even more modest risk aversion.  

On the basis of these bounds, and bearing in mind that the simplified model 

here ignores the option values of continuing,  we conclude that it must be the case that 

2ρ <  for play to continue beyond this level. The fact that many individuals are 

observed to play beyond the £64,000 question suggests that risk aversion is, in fact, 

quite low. 

5. Extensions to the simplified version of WWTBAM 

5.1. Dynamics 

The model of participation we present now accounts for the potential future 

stages of the game, we focus on a simplified version of the game in which players are 

risk neutral and hence are expected income maximisers. We also ignore the “lifelines” 

of “asking the audience”, “phoning a friend” or “50:50” (which randomly discards 2 
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of the 3 incorrect answers) and assume that questions are selected by independent 

random drawing from a pool of questions of identical difficulty. 

Let p denote the probability that the player (of some given ability) is able to 

answer correctly a question, where p is a realisation of the random variable P whose 

cdf is [ ] [ ]: 0,1 0,1F  (we provide, in the next sections, a model for this 

distribution). Rounds of the game are denoted by the number of questions remaining, 

i.e. n=N,……1.  Let an be the accumulated winnings after the player has successfully 

completed N-n questions and there are n questions remaining. In the televised game 

N=15 and the prizes are given by the sequence 

{ } { }16

1
1000,500,250,125,64,32,16,8,4, 2,1,0.5,0.3,0.2,0.1,0n n

a
=
= .  

Similarly, let bn be the value of the winnings that are “protected” , i.e. the winnings 

that can be kept in the event of an incorrect answer. In the televised game the 

sequence of protected prizes is given by, 

{ } { }15

1
32,32,32,32,32,1,1,1,1,1,0,0,0,0,0n n

b
=
= .   

Now consider the decision problem at the start of the game when the player is faced 

with the first of 15 questions. The value of playing the game, and therefore answering 

the first question, is given by  ( ) ( ){ }15 16 14 14 15max ,V p a p f b b= − +  where 

( )14 14Ef V P= ⎡ ⎤⎣ ⎦  is the optimal expected value of the next questions and, at this stage 

16 15 0a b= = . This is the first stage of a recursion, such that when there are n 

questions to go and the question asked can be answered with probability p, the value 

of the game is  

( ) ( ){ }1 1max ,n n n n nV p a p f b b+ −= − + ,      (3) 

where ( )1 1En nf V P− −= ⎡ ⎤⎣ ⎦ and we set f0=a1. Note that the decision to quit or not to quit 

is made after the question has been asked. 

At any round of the game, there exists a critical value 

( ) ( )1 1n n n n np a b f b+ −= − −  such that if np p≤  the individual abandons the game and 

therefore ( ) 1n nV p a += . Otherwise np p>  and the individual offers an answer to the 

question and the value of the game is ( ) ( )1n n n nV p p f b b−= − + . Hence the immediate 
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value of answering correctly is 1na −  and the expected difference ( )1 1n np f a− −−  

represents the “option value” of continuing. These dynamic programming equations 

lead to the following relationship for the { }nf  : 

 ( ) ( )
1

1 1
n

n n n n
p

f f f b F p dp− −− = − ∫ .     (4) 

To obtain the likelihood we need to evaluate the probability of winning. The 

probability of continuing to participate through offering an answer to the nth question, 

but prior to seeing the questions, is  

[ ] ( ) ( )Pr "Play" 1 n nF p F p= − ≡ .       (5) 

The probability of giving a correct answer, having decided to answer, is given by 

[ ]
( )

( )
( )
( )

1

Pr "Win" | "Play"
1

np n

n n

p dF p G p
F p F p

= ≡
−

∫
.     (6) 

Hence the probability of answering correctly is simply [ ] ( )Pr "Win" nG p= .  

The likelihood of a contestant reaching round k and then quitting (i.e. refusing 

to give an answer to question k) is  

( ) ( ){ } ( )
15

1
L ,0 1 nk

n k
k F p G p

= +
= − ∏ .     (7) 

The probability of a contestant reaching round k and then giving an incorrect answer 

is  

( ) ( ) ( ){ } ( )
15

1
L ,1 nk k

n k
k F p G p G p

= +
= − ∏ .            (8) 

Finally, the probability of a contestant reaching round 1 and then winning (£1m) is : 

( ) ( )
15

1
L 1,. n

n
G p

=
= ∏ .                (9) 

The model can be adapted easily to allow for risk averse behaviour, indeed prizes 

simply need to be measured in utility terms, i.e. for some concave increasing utility 
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function ( )u x , consider { } ( ){ }1616

1 1n ni i
a u a

= =
=�  and { } ( ){ }15 15

11n n ii
b u b

==
=�  instead of { }16

1n i
a

=
 

and { }15

1n i
b

=
.  

5.2. Questions, Answers and Beliefs 

The purpose of this section is to propose a model for the distribution of the 

beliefs that an individual hold each time a question and several answers (in the real 

game, four) are presented to her. In this section and in the next, we take as a given 

that the player chooses (if she decided to participate) the answer with the highest 

subjective probability of being correct.  Hence once the distribution of that probability 

is defined it becomes, in principle, straightforward to describe the probability 

distribution of the maximum belief and, more generally, of the order statistics. 

The question/answer setting process we have in mind can be described as 

follows: first a given question and its possible answers in some specific order are 

drawn uniformly (at each stage of the game) from a pool of questions and 

corresponding candidate answers. The question and its possible answers (possibly in a 

different order) are presented to the candidate who is then endowed with a draw from 

the belief distribution concerning the likelihood of each answer. The formation of 

beliefs for all candidates is assumed to follow this process in an identical and 

independent manner. Hence, given a particular question, two identical individuals can 

hold distinct beliefs concerning the likelihood of each answer. Furthermore, any given 

individual can evaluate the distribution of her possible beliefs over the population of 

questions involved at any given stage of the game. 

Formally, suppose that X is an n-dimensional random vector with a continuous 

distribution on the simplex 

 
1

: 0 1.. , 1
n

n i i
i

x i n x
=

⎧ ⎫
∆ = ≥ ∀ = =⎨ ⎬

⎩ ⎭
∑x . 

We assume that X has the probability density function ( )nψ x , and we require it to 

exhibit the following symmetry property : 

Let , n∈∆x x� , such that x�  is obtained from x  by any permutation of two 

distinct elements, then ( ) ( )n nψ ψ=x x� . 
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For our purposes we limit our investigation to the cases where 4n ≤ . Our construction 

starts by considering a symmetric probability density function φ  on [ ]0,1 , i.e. such 

that ( ) ( )1 11x xφ φ= −  for all 1x  in [ ]0,1 .  Note that φ ’s symmetry implies  

( )( )
1

0

11
2

x x dxφ − =∫ and ( )( ) ( )( )
1 12 2

20 0
1 1x x dx x x dxφ φ µ− = − =∫ ∫         (10) 

where 2µ  is the second moment of φ . Note Φ the distribution function corresponding 

to φ . It is then straightforward to show that [ ] [ ]1 1z zΦ − = −Φ . 

Our construction of a class of belief distribution is based on φ . In the three 

cases of interest, we propose the following 

 ( ) ( ) ( )2 1 2 1 2
1,
2

x x x xψ φ φ= +⎡ ⎤⎣ ⎦ ,                (11) 

 ( ) ( )
{ } 3

3 1 2 3
, ,

1, , ,
3 1

j
k

i j k k

x
x x x x

x
ψ φ φ

∈

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

∑
P

               (12) 

 ( ) ( )
{ } 4

4 1 2 3 4
, , ,2

1, , , ,
12 1 1

jk
l

i j k l l l k

xxx x x x x
x x x

ψ φ φ φ
µ ∈

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

∑
P

            (13) 

where, for any n, nP  is the set of all permutations of { }1,..., n , and ( )
1 2

2 0
x x dxµ φ= ∫ . 

In each case the role of the summation of the set of permutations arises 

because of the unobserved random (uniform) order in which the candidate answers are 

presented to the participant. Because φ  is itself symmetric some (more or less 

obvious) simplifications are possible, we have 

 ( ) ( )2 1 2 1, ,x x xψ φ=                      (14) 

( ) ( ) ( ) ( )32 1
3 1 2 3 2 2 3

1 2 3

2, , ,
3 1 1 1

xx xx x x x x x
x x x

ψ φ φ φ φ φ φ
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞

= + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
   (15) 

( ) ( )4 1 2 3 4
, 1,...,42

1, , , ,
6 1 1

jk
l

l k l l k
k l

xxx x x x x
x x x

ψ φ φ φ
µ =

≠

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

∑             (16) 

These simplifications are useful in practice since the number of terms involved is 

halved. Note that in each case it can be verified that the integral of nψ  over n∆  is 
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unity, and that nψ  satisfies the symmetry property required above. In all cases if φ  is 

the density of the uniform distribution between 0 and 1, then nψ  is the uniform 

distribution over n∆ . 

This specification of the beliefs distribution is of course restrictive even 

among the distributions satisfying the imposed symmetry property. It leads, however, 

to simple specifications for the distribution of the ordered statistics and for the 

distributions of the maximum amongst ( )1,..., nx x .  

5.3. Distribution of the maximum belief 

The dynamic model outlined above involves the distribution, F, of the 

individual assessment on her chances of answering the question successfully. In the 

case without life lines, nF F≡  is the distribution of ( )max
n∈∆X

X  if X has the probability 

density function ( )nψ x . Indeed ( )max
n∈∆X

X  measures the individual assessment of her 

likelihood of answering the question correctly when faced with n alternatives. Hence, 

in this section we describe formulae for the distributions   

 ( ) { }1
Pr

n
n ii

F z X z
=

⎡ ⎤≡ <⎣ ⎦∩ ,                 (17) 

given that X  is distributed with density function nψ . In particular we can show (see 

appendix A for the details) that : 

 ( ) [ ]
1

2

1
22

0                 if 
2 1   if 1,
1                 otherwise.

z
F z z z

≤⎧
⎪= Φ − ≤ ≤⎨
⎪
⎩

                (18) 

and as a consequence the density function ( )2f z , [ ]0,1z∈ , is such that 

( ) [ ]
1

2
2 1

2

0           if 
2   if 1

z
f z

z zφ
≤⎧⎪= ⎨ ≤ ≤⎪⎩

                 (19) 

The distribution function at higher orders can be obtained from 2F  recursively. 

Whenever ( )0,1z∈ , we have  

 ( ) ( )
1

3 21
2

z

zF z F y y dy
y

φ
−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ ,                (20) 
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 ( ) ( )
1 2

4 31
2

1
z

zF z F y y dy
y

φ
µ −

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ ,                (21) 

and the relevant density functions, say 3f  and 4f , can be shown to exist and to be 

continuous everywhere inside ( )0,1 . For example, in the uniform case where 

( ) 1xφ =  for [ ]0,1x∈ , and 0 elsewhere, we find that  

 ( )
( )

( )

1
4

3 1 1
4 3

4 3 2 1 1
3 2

3 1
2

0                                     if 0

4 1                          if 

44 60 24 3  if 

1 4 1                   if 1

z

z z
F z

z z z z

z z

≤ ≤⎧
⎪

− ≤ ≤⎪
= ⎨

− + − + ≤ ≤⎪
⎪ − − ≤ ≤⎩

              (22) 

In this latter case it is easy to verify that the density function is continuous and that 

the derivatives match at the boundaries of each segment.  

Although the formula above tends to hide it, the distribution functions nF  do 

depend on the density φ  in an important fashion. We interpret φ  as a description of 

the individual’s knowledge. When φ  is diffuse over [ ]0,1  (i.e. uniform) all points on 

the simplex n∆  are equally likely and in some instances the individual will have the 

belief that she can answer the question correctly while in some cases the beliefs will 

be relatively uninformative, while if φ  is concentrated around, or in the limit at, ½ the 

individual is always  indecisive. Finally, when φ ’s modes are located around 0 and 1, 

the individual is always relatively informed about the correct answer.  

5.4. Lifelines 

Extending the model above to allow for the life lines makes the analysis more 

difficult but also enables us to exploit more aspects of the data. We first show how the 

model can be modified when only one life line is allowed for, and in a second sub-

section we show how the model is modified when all three life lines are included. We 

then present the precise assumptions that allow the modelling of each life line in 

particular. 

5.4.a. A simplified game 

Let us first consider the game with only one life line (say “50:50”, although 

the discussion does not depend on the properties of “50:50”). To clarify the difference 
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figure 1 presents the decision trees at stage n and to stage with or without the life 

lines.  

Hence, to account for the life line, the state space has to be extended.  We will 

write ( );nW γp  for the expected value of the game to a contestant faced with a 

question with belief vector p, when 0γ =  if the lifeline has been used and 1γ =  if it is 

still available. Whether to use a lifeline or not may depend on all components of p  so 

the value is a function of the whole vector of subjective probabilities.  However 

max i ip p=  is a sufficient statistic for p in the contestant’s decision problem with no 

life line left and we will write the value function as ( );0nV p . 

In what follows we assume that the life line is a draw of a new belief, say q , 

given p  the current belief. For example the use of the “50:50” reduces two 

components of the belief to 0. For the other lifelines the audience and/or one among 

several friends will provide some information which is then combined with the initial 

belief p . The new belief is the outcome of this process, and q  is then used instead of 

p  in the decision problem. We therefore assume that the conditional distribution 

function of q  given p  is well defined. Finally we define  

( ) ( )|E ,0 |n nk V q≡ ⎡ ⎤⎣ ⎦q pp p ,                 (23) 

the value of playing the lifeline at stage n where max i iq q= . 

The values, ( ),1nW p  and  ( ), 0nV p , are then related according to the 

following dynamic programming equations. When no lifeline is left we have the 

familiar equation: 

( ) ( )( ){ }1 1,0 max , 0n n n n nV p a p f b b+ −= − + ,               (24) 

where ( ) ( )0 E ;0n nf V P= ⎡ ⎤⎣ ⎦ . With the life line left the contestant will choose the largest 

of the three options in the first choice line in Figure 1b, where : 

 ( ) ( ) ( )( ){ }1 1,1 max , , 1n n n n n nW a k p f b b+ −= − +p p ,              (25) 

( ) ( )1 E ,1n nf W≡ ⎡ ⎤⎣ ⎦P  and ( ) ( )0 0 11 0f f a= = . 
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 Figure 1a Without Life Line 

 

Figure 1b With Life Line 

 

Note that contestants will never strictly prefer to quit with a lifeline left 

unused. However, it is still possible that for some p a contestant may be indifferent 

between quitting and using the lifeline if she would subsequently choose to quit for 

any realisation of q contingent on p. For example, if ( )1 1 1 1
4 4 4 4, , ,=p , by 

symmetry the possible realisations of q after using “50:50” are ( )1 1
2 2, , 0, 0=q . 

A contestant who would reject such a “50:50” gamble would place no value on the 

lifeline. Except in these circumstances, the life line will be used if ( )1n na k+ ≤ p , 

otherwise the contestant will answer and retain the lifeline for future use. 

5.4.b. The complete game 

We now assume that the three life lines are available but each can be played at 

most once. As above each life line generates a new belief q which is used in the 

Stage n 

Quits 
Plays 

Wins 
Stage n-1 

Loses 

Stage n, γ 

Quits 
Uses LifeLine if γ=1, 

p→q  
γ=0 

Stage n, γ 

Plays 

Wins 
Stage n-1, γ 

Loses 
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decision process instead of the individual’s initial belief. Given the initial belief p, the 

new belief is drawn from a separate distribution for each life line, say ( )1 ;H q p  for 

“50:50”, ( )2 ;H q p  for “Ask The Audience” and ( )3 ;H q p  for “Phone A Friend”. 

We write ( )1 2 3, ,γ γ γ γ=  for the “lifeline state” vector where 0iγ =  if the i’th 

lifeline has been played and 1 otherwise. Then, ( );nW γp  denotes the optimal 

expected value of the game at stage n, when the probability vector  of the current 

question is p and the lifeline state is ( )1 2 3, ,γ γ γ . As above, ( )nV p  is used as a 

shorthand for ( )( ); 0,0, 0nW p  and ( )nV p  satisfies the recursive dynamic 

programming equations set out in section 5.1 above. Below we write the dynamic 

programming equations using the notation: 

 ( )( ) ( )( )[ ]1 2 3 1 2 3, , E ; , , ,n n nf Wγ γ γ γ γ γ= P               (26) 

where the expectation is with respect to nP , the distribution of the belief vector p at 

stage n. 

 When there are one or more lifeline left, i.e. 1 2 3 1γ γ γ+ + ≥ , the contestant 

has three options: (i) quit, (ii) answer the question, (iii) use one of the remaining 

lifelines. The recursive equation is 

( ) ( )( ) ( ){ }1 1; max , , ;n n n n n nW a p f b b kγ γ γ− −= − +p p              (27) 

where ( );nk γp  denotes the maximum expected value from using a lifeline when the 

belief is p and the lifeline state vector is γ . Here, 

 ( )
( )

( ){ }; max E ; | ,n n
S

k W
γ

γ γ
∈

⎡ ⎤= −⎣ ⎦e
e

p Q e p               (28) 

where ( )( ) { }{ }3
1 2 3, , : 0,  for 1,2,3  and i iS R e iγ γ γ γ= ∈ ∈ = ≠e e 0  and eQ  

is the distribution of the belief vector when e is the indicator vector of the lifeline 

chosen. Note that ( )( )1 2 3, ,S γ γ γ  has 1 2 3γ γ γ+ +  elements all of which are unit 

vectors If the r’th unit vector achieves the maximum in (a), then the contestant does 

best to choose the r’th lifeline and the distribution of eQ  is ( );rH q p . This 

formulation does not preclude an individual from using more than one lifeline on the 

same question, a behaviour we observe in some contestants. 
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5.4.c. “50:50” 

This is the simplest life line to model. It provides the candidate with “perfect 

information” since two incorrect answers are removed. Ex-ante (i.e. before the life 

line is played) the contestant believes that the correct answer is i (=1,…,4) with 

probability ip . The “50:50” lifeline removes two of the incorrect answers, retaining 

j i≠ , say, with equal probability (1/3). By Bayes Theorem, the probability that 

answers i,j survive this elimination process is 3ip . The answers i and j  can also be 

retained if j is correct and i survives elimination. This occurs with probability 3jp . 

Applying Bayes Theorem gives the updated belief vector { },i jq , where 

 { },

 if ,

 if 

0 otherwise.

i

i j

ji j
k

i j

p k i
p p

p
k j

p p

⎧ =⎪ +⎪
⎪⎪= =⎨

+⎪
⎪
⎪
⎪⎩

q                  (29) 

Hence ( )1 ;H q p  is a discrete distribution with support { }{ }
{ } { }

,

, 1,2,3,4

i j

i j ∈
q  and such that  

{ }( ) ( ),
1 ; 3i j

i jH p p= +q p , and 0 elsewhere. 

5.4.d. “Ask the Audience” 

Modeling the “Ask the Audience” life line requires more than simply applying 

Bayes’ rule to the current belief draw. In particular we must allow the candidate to 

learn from the information provided by the life line, i.e. here the proportions of the 

audience’s votes in favour of each alternative answer. The difficulty here is to 

understand why and how should a “perfectly informed” rational individual revise 

his/her prior on the basis of someone else’s opinion?  

The route we follow here was proposed by French (1980) in the context of 

belief updating after the opinion of an expert is made available. French suggests that 

the updated belief that some event A is realised after some information inf has been 

revealed should be obtained from the initial belief, [ ]Pr A ,  the marginal probability 

that a given realisation of the information is revealed, [ ]Pr inf , and the individual’s 
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belief about the likelihood that the information will arise if A subsequently occurs, 

Pr[inf | ]A  according to the following rule, related to Bayes theorem: 

[ ] [ ]Pr | inf Pr inf | Pr[ ]/ Pr[inf]A A A= .                (30) 

In this expression Pr[inf | ]A  is understood as another component of the individual’s 

belief, his/her assessment of the likelihood of the signal given that the relevant event 

subsequently occurs. 

Introducing A , A’s alternative event, this is rewritten as 

 [ ] [ ]
[ ]

Pr inf | Pr[ ]
Pr | inf

Pr inf | Pr[ ] Pr inf | Pr[ ]
A A

A
A A A A

=
⎡ ⎤+ ⎣ ⎦

.              (31) 

In our context we understand the appeal to the audience as an appeal to an expert, and 

assume that the events of interests are the four events “answer k is correct”, k=1,2,3,4. 

We assume that contestants “learn” some information about the quality of the expert 

in particular the distribution of the quantities 

( )1 2 3 4Pr , , , | answer  is correct kq q q q k θ⎡ = ⎤ ≡⎣ ⎦q ,                (32) 

where kq  is the proportion of votes allocated to the kth alternative. Following French’s 

proposal, the kth component of the updated belief π  given the information q is: 

 
4

1
k k k j j

j
p pπ θ θ

=

= ∑ .                  (33) 

Let us assume for now that each contestant knows the joint distribution of the vector 

( )1 2 3 4, , ,θ θ θ θ θ= . In fact the above expression implies that, without loss of generality, 

we can normalise the kθ  to sum to one. Denote ( )I θ  the density function of θ  given 

some initial belief p. Given p, the density of the updated belief ( )2 ;H π p  can be 

calculated as: 

 ( ) ( )( )
44 4

1
2

11

; ; k k k
kk

H I p pπ θ π π −

==

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑∏p p ,              (34) 

with ( )
4

1 1

1
;i i i k k

k
p pθ π π π− −

=

= ∑p . The term 
44 4

11

k
k

kk k

p
p
π

==

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑∏  arises because of the 

change of variable from θ  to π . 
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The quantities ( )1 2 3 4Pr , , , | answer  is correct kq q q q k θ⎡ = ⎤ ≡⎣ ⎦q  represent the added 

information obtained from using the life line and are estimable from the data provided 

we assume a form of conditional independence. In particular we require that the 

candidate’s choice to ask the audience does not influence the audience’s answer. 

Furthermore, our assumptions concerning the generation of the questions 

imply that there is no information contained in the position of the correct answer, 

hence we expect the following symmetry restrictions to hold : 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 2 3 4 11 2 3

11 2 3

11 2 3

Pr , , , | answer 1 is correct Pr , , , | answer 2 is correct

Pr , , , | answer 3 is correct

Pr , , , | answer 4 is correct ,

q q q q q q q q

q q q q

q q q q

σ σ σ

σ σ σ

σ σ σ

′ ′ ′

′′ ′′ ′′

⎡ ⎤⎡ = ⎤ = =⎣ ⎦ ⎣ ⎦
⎡ ⎤= =⎣ ⎦
⎡ ⎤= =⎣ ⎦

q q

q

q

where ( ) ( ) ( )( )1 , 2 , 3σ σ σ , ( ) ( ) ( )( )1 , 2 , 3σ σ σ′ ′ ′   and ( ) ( ) ( )( )1 , 2 , 3σ σ σ′′ ′′ ′′   are some 

permutations of ( )2,3, 4  . 

The symmetry restrictions, the conditional independence assumption, and the 

uniform random allocation of the correct answer among four alternative answers 

allow us to estimate the likelihood of the information given the position of the correct 

answer, and therefore provide empirical estimates for 

( )1 2 3 4Pr , , , | answer  is correctq q q q k⎡ = ⎤⎣ ⎦q . 

In practice we assume that, given answer k is correct, information q has a 

Dirichlet density ( )( ); ,kD γ λ νq  , k=1…4, defined over 4∆  such that 

 ( )( ) ( )
( ) ( )

4
1

3
1

3
; , ,k i k

i

D q qν λ νν λ
γ λ ν

λ ν
− −

=

Γ + ⎛ ⎞
= ⎜ ⎟
Γ Γ ⎝ ⎠

∏q   

where the symmetry assumption is imposed through the parameter vector  

( ) ( ),k kγ λ ν ν λ ν= + −e  with ke  is a vector of zeros with a 1 in position k. This vector 

of parameters for the Dirichlet density depends on two free parameters only, λ  and 

ν . These two parameters can be estimated (independently from the other parameters 

of the model) by maximum likelihood from the observation of the information 

obtained from the audience (i.e. the histograms) whenever the life line is used, and the 

observation of the correct answer. For completeness note that kθ can be defined in 

terms of the elements of q as  
4

1
k k j

j
q qλ ν λ νθ − −

=

= ∑ . The information density which the 
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candidate expects is therefore the mixture ( ); , ,D λ νq p  of the previous densities 

( )( ); ,kD γ λ νq  , k=1…4, conditional on a given answer being correct, we have: 

( ) ( )( ) ( )
( ) ( )

44 4
1

3
1 11

3
; , , ; , ,i i i i i

i ii

D p D q p qν λ νν λ
λ ν γ λ ν

λ ν
− −

= ==

Γ + ⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟

Γ Γ ⎝ ⎠⎝ ⎠
∑ ∑∏q p q            (35) 

where the mixing weights are the initial beliefs , 1...4ip i = . 

5.4.e. “Phone a Friend” 

To use this lifeline the candidate determines ahead of the game six potential 

experts, “friends”, and when she plays the life line she chooses one in this list of six. 

Obviously one imagines that the candidate engages in some diversification when 

drawing the list (i.e. the range and quality of “expert knowledge” of the friends on the 

list is in some way optimised), and at the time of the choice of a particular friend the 

candidate is likely to assign the expert optimally. There is however little information 

available to us about this process. As a consequence our model for this particular life 

line is somewhat crude. 

We assume that the entire process can be modelled as an appeal to an expert 

who  knows the answer with some probability κ , and is ignorant with the probability 

1 κ− . We assume that the expert informs the candidate of his confidence. Hence 

either the candidate knows the answer and his/her opinion “swamps” the candidate’s 

belief, or the expert is ignorant and conveys no information and the candidate’s belief 

is left unchanged. The density of the updated belief is therefore: 

( ) ( ) ( ) [ ]3 1,0,0,0; 1H πππ κ κ ==⎡ ⎤⎣ ⎦
= + − pp 1 1 .               (36) 

6. Econometric specification and estimation 

6.1. Specification of the belief distribution 

The distribution of the beliefs is one of the main element of the model since it 

describes the distribution of the unobservables. Under the assumptions we make 

above (see section 5.2) the joint density ( )4ψ  can be constructed from some 
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symmetric density φ  over the unit interval. We assume that ( )xφ  is the density of a 

symmetric Beta random variable, ( ),B α α 7, i.e.: 

 ( ) ( )
( )

( ) [ ]
11

2 0,1

2
1 xx x x ααα

φ
α

−−
⎡ ∈ ⎤⎣ ⎦

Γ
= −
Γ

1 ,                 (37) 

with  α  some positive parameter, and where ( )uΓ  is the gamma function. For any 

random variable following a symmetric beta distribution the expectation is ½ and 

( ) ( )
( ) ( )2

2 2 1 1
2 2 2 2 1

α α αµ
α α α

Γ Γ + +⎛ ⎞= = ⎜ ⎟Γ Γ + +⎝ ⎠
. 

In what follows, it will prove necessary to obtain ordered draws from the joint 

distribution of ordered statistics of the belief distribution. Because of the symmetry 

assumptions that we impose on ( )4ψ , the joint density function of the order statistics 

(i.e. the vector of beliefs ordered in decreasing order)  is simply ( )44!ψ p� , where p�  is 

a vector of values ordered in decreasing order. From the definition of ( )4ψ  note that 

it is a mixture with equal weights of 4!=24 densities  of the form: 

( ) ( ) 32
4 1 2 3 4 1

2 1 1 2

2, , ,
1 1

xxx x x x x
x x x

χ φ φ φ
µ

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

 ,             (38) 

and the mixture is taken over all permutations of the argument. Note however that 

( )4ψ   and ( )4χ   share the same density for the order statistics. Clearly any 4! 

permutations of any given draw will lead to the same order statistics. Hence a given 

draw ( )1 2 3 4, , ,x x x x=x  from the order statistics for ( )4χ  occurs with probability: 

  ( )
{ } 4, , ,2

2
1 1

j k
i

i j k l i i j

x xx
x x x

φ φ φ
µ ∈

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

∑
P

,              (39) 

and this is exactly equal to ( )44!ψ x . 

Since it is straightforward to rank four numbers in decreasing order, the last 

issue is to draw from a multidimensional random variable with joint density ( )4χ .  

 
7 The density of a random variable following a general Beta distribution is : 

( ) ( )
( ) ( ) ( ) ( ) [ ]

1 1
0,1; , 1 ,  with , 0b a

z

a b
z a b z z a b

a b
β − −

⎡ ∈ ⎤⎣ ⎦

Γ +
= − >
Γ Γ

1  
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The result shown in Appendix 1 shows how this can be done straightforwardly since  

( )4χ  can be factorised as follows 

 
( )

( )

4 1 2 3 4

2 3
1

1 1 1 2 1 2

, , ,

1 1; , 2 ; , 1 ; , ,
1 1 1 1

x x x x

x xx a a a a a a
x x x x x x

χ

β β β⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= + + ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠− − − − − −
 

which suggest that a draw from ( )4χ  can be obtained from three independent draws 

from distinct Beta distributions with parameters ( ), 2a a + , ( ), 1a a +  and ( ),a a  

respectively.   

6.2.  Probabilities and Simulated Likelihood 

In this section we describe the evaluation of some of the probabilities that lead to the 

log likelihood. A complete description of the calculations can be obtained online8 

6.2.a. Calculating the probabilities when only one life line is available. 

When the candidate has used all his/her life lines before stage n, the events of 

interest are the occurrences of the candidate quitting or losing, and for the last 

question the event that the candidate wins the million prize. The probabilities of these 

events can be calculated directly from the analytical expressions given in section 5.1 

using the formulation for F we derive in section 5.3.  

When one (or more than one) life line is available the calculations are made 

more complicated because of the information which is gained when the lifeline is 

used and which allows the candidate to update their belief. Hence given the initial 

draw of the belief we are required to define whether this particular draw leads to the 

use of the (a) life line and then whether the updated belief (if the life line is played), 

or the original belief (if the life line is not played) is informative enough to lead the 

candidate to attempt an answer. Finally we evaluate the probability that the answer is 

correct (under the original or the updated belief).  

We will write ( ),
ijk
k nΩ p  as the probability that given p at stage n event k is 

observed (which is defined precisely below) given that the candidate is in the life line 

state ijk, where i, (respectively j or k)  is one if the first (respectively second or third)  

lifeline is yet to be played and zero otherwise. Moreover, ,
ijk
k nΩ  is the expected value 

 
8 http://www.qub.ac.uk/schools/SchoolofManagementandEconomics/Staff/LanotGauthier/ 
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of ( ),
ijk
k nΩ p  over all possible values of realisations of p, i.e. ( ), ,Eijk ijk

k n k n⎡ ⎤Ω = Ω⎣ ⎦P . 

Finally  ( ),
,

ijk i j k
k n

′ ′ ′Ω p  stand for the probability that given p at stage n event k is 

observed (which is defined precisely below) given that the candidate starts the 

question in the life line state ijk and transit to life line state i’j’k’. We consider below 

representative events for each life line.  

6.2.a.i)  “50:50” is the only life line available at stage n.  

The candidate uses “50:50”, plays and wins (moves to the next stage or wins the 

million prize). 

Define first the probability for the candidate to use “50:50”, play and win 

given a draw (ordered in decreasing order) p from the belief : 

{ } { } { } { } ( )

( ) ( )( ) ( )1
1 1

100
1,

100,000
1,,0,0,0 1,0,0

Pr use "50:50" plays wins | stagen ,

,
n n n n

n

nk p f b b−⎡ ⎤≥ − +⎣ ⎦

⎡ ∧ ∧ ⎤ ≡ Ω =⎣ ⎦
Ω

p

p p

1 p
             (40) 

where  ( ) ( ) ( )( )1 1

3 4
100,000
1, 0,0,0

1 1

1
3 jk n n n n

n j f b b a
j k j

p
π − +⎡ ⎤− + ≥⎣ ⎦= = +

Ω = ∑ ∑ p
p 1 ,  with j

jk
j k

p
p p

π =
+

. This last 

expression is the probability that given p the candidate answers correctly after using 

the life line, i.e. wins. Hence the unconditional probability is such that 

{ } { } { } { }

( ) ( )

( ) ( )( ) ( ) ( )1
1 1

100
1,

100
1, 4

100,000
1, 4,0,0,0 1,0,0

Pr use "50:50" plays wins | stagen

,
n n n n

n

n

nk p f b b

d

d

ψ

ψ
−

∆

⎡ ⎤≥ − +∆ ⎣ ⎦

⎡ ∧ ∧ ⎤ ≡ Ω =⎣ ⎦

Ω

Ω

∫

∫ p

p p p

1 p p p

�

�

�

�
4

4

             (41) 

where ( )1 2 3 4, , ,p p p p=p , 4∆�  is the subset of the 4-simplex where 1 2 3 4 0p p p p≥ ≥ ≥ ≥ .  

In order to determine the probabilities we have used the fact that a candidate 

with a life line available will either use it (or perhaps then quit) or play. It is then 

straightforward to verify that these five expressions above sum to unity, in particular 

the sum of the first three expression sum to the probability that the candidate uses the 

life line, i.e. the complement to the sum of the last two probabilities.  

Each term of the sum that determine ( )100
1Ω p  (and similarly ( )100

2Ω p and 

( )100
3Ω p ) is the product of the probability that a given two of the four options remain 
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after the life line is played,  with probability ( )1
3 j kp p+ , multiplied by the probability 

that the remaining alternative with the largest updated belief is correct, with 

probability ( ) j
jk

j k

p
p p

π =
+

p  with j kp p≥ , multiplied by the indicator that, given the 

updated belief, the candidate decides to play. 

6.2.a.ii) “Ask the Audience” is the only life line left at stage n. 

The candidate uses “Ask the Audience”, plays and loses, 

{ } { } { } { }

( ) ( )

010
2,

010
2, 4

Pr use "Ask the Audience" plays loses | stagen

,

n

n dψ
∆

⎡ ∧ ∧ ⎤ ≡ Ω =⎣ ⎦

Ω∫ p p p
�

�
4

             (42) 

where  ( ) ( ) ( )( ) ( )2
1 1

010 010,000
2, 2,,0,0,0 0,1,0n n n n

n nk p f b b−⎡ ⎤≥ − +⎣ ⎦
Ω = Ω

p
p 1 p , and 

( ) ( )( ) ( ) ( )( ) ( )
1 1 1

010,000
2, 1 ; 0,0,0

1 ; ; , ,
n n n n

n f b b a
D d

π
π λ ν

− +⎡ ⎤− + ≥∆ ⎣ ⎦
Ω = −∫ q p

p q p 1 q p q
4

 where ( );π q p  stands 

for the revised belief after information vector q  is made available and ( )1 ;π q p  is the 

largest element in ( );π q p .  

6.2.a.iii) “Phone a Friend” is the only life line left at stage n. 

The candidate uses “Phone a Friend” and quits, 

{ } { } { } ( ) ( )001 001
3, 3, 4Pr uses "Phone a Friend" quits | stagen ,n n dψ

∆
⎡ ∧ ⎤ ≡ Ω = Ω⎣ ⎦ ∫ p p p

�
�

4

 where 

( ) ( ) ( )( ) ( )3
1 1

001 001,000
3, 3,,0,0,0 0,0,1n n n n

n nk p f b b−⎡ ⎤≥ − +⎣ ⎦
Ω = Ω

p
p 1 p  and ( ) ( ) ( )( )1 1 1

001,000
3, 0,0,0

1
n n n n

n p f b b a
κ

− +⎡ ⎤− + <⎣ ⎦
Ω = −p 1 . 

6.2.b. General Case: all the life lines are available 

When more than one life line is available at stage n the number of elementary 

events of interest increases since not only the candidates can decide to play one life 

line among many but the candidate can decide to play several life lines to answer any 

given question. Hence while there is only five elementary events of interest when only 

one given life line is available there are nine such events when two particular life lines 

are available and seventeen when the three life lines are available, ignoring the order 

in which the candidate uses the life-line and not counting events with zero probability 

ex-ante (for example observing an event such as quitting while the three life lines are 
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available)9. In this section we present the relevant expressions needed to obtain the 

probabilities of few selected elementary event, all other probabilities can be obtained 

in a similar fashion. 

The candidate uses the three life lines (in any order), plays and loses. 

{ } { } { } { }

( ) ( )( ) ( ) ( ){ } ( )

( ) ( )( ) ( ) ( ){ } ( )

1 2 3
1 1

2 1 3
1 1

111
2,

111,011
2,,0,1,1 max 1,1,1 , ,1,0,1 , ,1,1,0

111,101
2,,1,0,1 max 1,1,1 , ,0,1,1 , ,1,1,0

Pr uses all life lines plays loses | stagen

n n n n n n

n n n n n n

n

nk p f b b k k

nk p f b b k k

k

−

−

∆

⎡ ⎤≥ − +⎣ ⎦

⎡ ⎤≥ − +⎣ ⎦

⎡ ∧ ∧ ⎤ ≡ Ω =⎣ ⎦

Ω

Ω +

∫
p p p

p p p

1 p

1 p

1

�
4

( ) ( )( ) ( ) ( ){ } ( )

( )

3 1 2
1 1

111,110
2,,1,1,0 max 1,1,1 , ,0,1,1 , ,1,0,1

4 .
n n n n n n

np f b b k k

dψ
−

⎡ ⎤≥ − +⎣ ⎦
Ω

p p p
p

p p�

             (43) 

where ( ) ( ) ( )( )( )
3 4

111,011 011
2, 2, , ,

1 1

1 , ,0,0
3n n j k k j

j k j
π π

= = +

Ω = Ω∑ ∑p p p ,              (44) 

( ) ( )( ) ( )111,101 101
2, 2, ; ; , ,n n D dπ λ ν

∆
Ω = Ω∫p q p q p q

4

,               (45) 

( ) ( ) ( ) ( )111,110 110 110
2, 2, 2,1,0,0,0 1n n nκ κΩ = Ω + − Ωp p .               (46) 

Inspection of these expressions reveals that the probabilities of events such that more 

than one life line is available, here 111
2,nΩ , can be defined recursively in terms of the 

conditional probability of events with one life line less, given the initial belief draw, 

here ( )011
2,nΩ p ,  ( )101

2,nΩ p  and ( )110
2,nΩ p . In turn each of these conditional probabilities can 

be calculated from conditional probabilities involving only one life line, i.e. ( )001
2,nΩ p ,  

( )100
2,nΩ p  and ( )010

2,nΩ p  . This property is clearly a consequence of the recursive 

definition of the value function over the life-line part of the state space (see section 

5.4.b).  

 
9 In the case of two life lines left : 1) Uses the two life lines, plays and wins; 2) Uses the two life lines, 
plays and loses; 3) Uses the two life lines, plays and loses; 4) Uses one of two life lines, plays and 
wins; 5) Uses one of two life lines, plays and loses; 6) Uses other life line, plays and wins; 7) Uses 
other life line, plays and loses; 8) Does not use any life line, play and win; 9) Does not use any life line, 
play and loses; …. 
In the case of three life line left: 1) Uses the three life lines, plays and wins; 2) Uses the three life lines, 
plays and loses; 3) Uses the three life lines, plays and loses; 4) Uses  “50:50” and “Phone a Friend”, 
plays and wins; 5) Uses “50:50” and “Phone a Friend”, plays and loses; 6) Uses another “50:50” and 
“Ask the Audience”, plays and win; 7) Uses “50:50” and “Ask the Audience”, plays and loses;… ; 10) 
“Uses “50:50”, plays and win; 11) Uses “50:50”, plays and loses; …16) Does not use any life line, play 
and win; 17) Does not use any life line, play and loses; 
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Recall, however, that the number of events of interest when the three life lines are 

available is larger than when only two or less are available. Hence the definition of 17 

probabilities with three life line at stage n, i.e. 111
,m nΩ , m=1…17, will involve the 27 

conditional probabilities with two life lines, i.e. ( )011
,m nΩ p , ( )101

,m nΩ p  and ( )110
,m nΩ p , 

m=1…9. In turn each of these conditional probabilities will depend on the 15 

probabilities with one life line as defined in the previous section, i.e. ( )100
,m nΩ p ,  

( )010
,m nΩ p  and ( )001

,m nΩ p  m=1…5. 

The three life lines are available, the candidate uses “50:50” , plays and wins. 

{ } { } { } { }

( ) ( )( ) ( ) ( ){ } ( ) ( )1 2 3
1 1

111
10,

111,011
10, 4,0,1,1 max 1,1,1 , ,1,0,1 , ,1,1,0

Pr uses "50:50" only among 3 life lines plays wins | stagen

.
n n n n n n

n

nk p f b b k k
dψ

−
⎡ ⎤≥ − +∆ ⎣ ⎦

⎡ ∧ ∧ ⎤ ≡ Ω⎣ ⎦

= Ω∫ p p p
1 p p p

�
�

4

           

with  ( ) ( ) ( )( )( )
3 4

111,011 011
10, 8, , ,

1 1

1 , ,0,0
3n n j k k j

j k j
π π

= = +

Ω = Ω∑ ∑p p p  where ( )011
8,nΩ p  is the probability 

that with “Ask the Audience” and “Phone a Friend” available, for some belief p, the 

individual plays and wins. 

Three life lines are available, the candidate does not use any, plays and loses. 

{ } { } { } { }

( )( ) ( ) ( ) ( ){ } ( ) ( )1 2 3
1 1

111
17,

1 41,1,1 max ,0,1,1 , ,1,0,1 , ,1,1,0

Pr does not use any of the 3 life lines plays loses | stagen

1 .
n n n n n n

n

p f b b k k k
p dψ

−
⎡ ⎤− + ≥∆ ⎣ ⎦

⎡ ∧ ∧ ⎤ ≡ Ω⎣ ⎦

= −∫ p p p
1 p p

�
�

4

 

6.3. Simulation and smoothing  

The evaluation of the probabilities ( ),
rst
m nΩ p , n=1..15, m=1..1710,  

( ) { }3, , 0,1r s t ∈  and of the conditional expectations ( ), , ,j
nk r s tp , n=1..15, j=1..3, and 

( ) { }3, , 0,1r s t ∈   requires the use multidimensional integration techniques. Under the 

specification of the belief we describe above simulation methods (as described in 

Gouriéroux and Monfort (1996) and Train (2003)) that are well suited and have been 

applied successfully in similar context (see the examples discussed in Adda and 

Cooper, (2003)). 

Clearly the specification of the belief lends itself perfectly to a simulation 

based likelihood methodology since simulations of Beta variates are obtained simply 
 
10 If ,

rst
m nΩ  is not defined for some m, and some r,s,t  we assume , 0rst

m nΩ = . 
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from Gamma variates (see for example Poirier (xxxx)). In turn Gamma variates 

themselves can be obtained directly using the inverse of the incomplete Gamma 

function. Numerically accurate methods to evaluate the inverse of the incomplete 

Gamma function are detailed in Didonato and Morris (1996)11. The main advantage of 

their results is that it allows for simulations that are continuous in the parameters of 

the Gamma distributions. Evaluation by simulations of an integral involving the 

density of a 4 dimensional Dirichlet random vector, ( ); , ,D λ νq p , is obtained directly 

by the simulation of each of its component. For example  

( ) ( ) ( ) ( )( ) ( ) ( )1
1 1

100 100 100,000
1, 1, 4 1, 4,0,0,0 1,0,0

,
n n n n

n n nk p f b b
d dψ ψ

−⎡ ⎤≥ − +∆ ∆ ⎣ ⎦
Ω = Ω = Ω∫ ∫ p

p p p 1 p p p
� �

� �
4 4

     (47)  

can be approximated by 

l ( ) ( ) ( ) ( )( ) ( )1
1, 1

100 100 100,000
1, 1, 1,,0,0,0 1,0,0

1 1

1 1 ,
n s s n n n

S S

n n s n sk p f b b
s s

S
S S −⎡ ⎤≥ − +⎣ ⎦= =

Ω = Ω = Ω∑ ∑ p
p 1 p             (48) 

where sp  is one of S (the number of simulations) independent draws from the 

distribution  of the order statistics of the belief,   ( )4 .ψ� . In fact the accuracy of this 

simulated probability (and of all others which involve draws from ( )4 .ψ�  ) can be 

improved upon through antithetic variance reduction techniques which involve the 

permutations of the gamma variates used to generate each individual beta variate12 (as 

explained for example in Davidson and McKinnon (2004) or in Train (2003)).  

Moreover the quantity  

( ) ( )( ) ( ) ( ){ } ( ) ( )1 2 3
1 1

111 111,011
10, 10, 4,0,1,1 max 1,1,1 , ,1,0,1 , ,1,1,0

.
n n n n n n

n nk p f b b k k
dψ

−
⎡ ⎤≥ − +∆ ⎣ ⎦

Ω = Ω∫ p p p
1 p p p

�
�

4

            (49) 

can be evaluated simply by 

( ) ( ) ( )( ) ( ) ( ){ } ( )1 2 3
1, 1

111 111,011
10, 10,,0,1,1 max 1,1,1 , ,1,0,1 , ,1,1,0

1

1ˆ
n s s n n n n s n s

S

n n sk p f b b k k
s

S
S −

⎡ ⎤≥ − +⎣ ⎦=

Ω = Ω∑ p p p
1 p ,            (50) 

 
11 This is implemented in Gauss in the procedure gammaii (contained in the file cdfchic.src) 
12 For example to simulate a draw from a ( ), 2α αΒ + , one can draw two independent realisations of a 

random variable distributed according to a ( )γ α , say 1z  and 2z ,  and one realisation from a ( )2γ , 

say 3z .  Then both ( )1 1 2 3z z z z+ +  and ( )2 1 2 3z z z z+ +  are draws from a ( ), 2α αΒ + , 
furthermore they are negatively correlated, so that the variance of their mean is smaller than the 
variance of the mean of two uncorrelated draws from a ( ), 2α αΒ +  (in fact the relative efficiency 

measured by the ratio of the variances is 
23 2 3 3

1
4 2 3 4
α α
α α
+ +

<
+ +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 for 0α > ). 
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or any improvement of it. Similarly ( ) ( )( ) ( )111,101 101
2, 2, ; ; , ,n n D dπ λ ν

∆
Ω = Ω∫p q p q p q

4

 can be 

evaluated by ( ) ( )( )
4

111,101 101
2, 2, ,

1 1

1ˆ ; ;
S

n i n s i
i s

S p
S

π
= =

⎡ ⎤Ω = Ω⎣ ⎦∑ ∑p q p , where ,s iq  is one of S 

independent draws from ( )( ); ,iD γ λ νq .  

Finally all quantities ( ) ( )
2

2
|, , , E , , , |n nk r s t W r s tπ≡ Π⎡ ⎤⎣ ⎦pp p

�
 which involve a 

multi dimensional integral and the joint density ( ); , ,D λ νq p  can be obtained in a 

similar fashion, for example using ( ) ( )
4

2
,

i=1 1

1ˆ , , , ; = , , ,
S

S

n i n s i
s

k r s t S p W r s t
=

∑ ∑p q , where 

,s iq  is one of S independent draws from ( )( ); ,iD γ λ νq . 

In practice these expression are modified in order to smooth out the 

discontinuities that are created by the indicators terms. Hence the terms { }1 2 3 4max , , ,v v v v⎡ ⎤≥⎣ ⎦
1  

{ }1 2 3max , ,v v v⎡ ⎤≥⎣ ⎦
1  or [ ]1 2

,v v≥1  are replaced by smoothed versions, respectively, 

( )( ) ( )( ) ( )( )2 1 3 1 4 1

1 ,
1 exp exp expv v v v v vη η η+ − + − + − ( )( ) ( )( )2 1 3 1

1
1 exp expv v v vη η+ − + −

, and 
( )( )2 1

1
1 exp v vη+ −

 where η  is a smoothing constant. In the limit as η → +∞   

the smoothed versions tend to the indicators. 

6.4. Likelihood. 

The contribution to the likelihood for some individual history is the product of 

the probabilities of success and of the particular pattern of use for the life lines for that 

individual history up to and including the penultimate question, multiplied by the 

probability that for his/her last question the candidate wins a million, loses or quits 

and the observed use of the life-lines for this last question.   

We assume that the expected utility function takes the form 

( ) ( ) ( )1 1U c c ργ ρ−= + −  which features the CRRA assumption and treats initial 

wealth, γ , as a parameter to be estimated13. 

Hence the contribution to the likelihood of candidate i’s history which ends at 

stage *
in , has the general form 

 
13 Later we also consider a generalisation of the CRRA function that encompasses both CRRA and 
CARA. 
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 � ( ) ( )( ){ } ( ) � �( ) l ( )
( ) l

( )
( )

*
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* *

1 , ,
, , ,

, ,1
1

, , , ; , , , ; ,
i

ii

i i

n LL k i LL n in
S i ll k i k

ll n i nk
k

L LL k i ll k i α ρ γ κ λ ν
−

=
=

⎧ ⎫⎪ ⎪⎛ ⎞ = Ω Ω⎨ ⎬⎜ ⎟
⎝ ⎠ ⎪ ⎪⎩ ⎭

∏ ,             (51) 

where ( ),LL k i  indicates the number and nature of the life lines available to the 

candidate i at stage k, and ( ),ll k i  selects the relevant probability depending on the life 

line used by candidate i at stage k. ( ), , ,α ρ γ κ  is the vector of parameters of interest, 

i.e. α  is the parameters of the belief distribution, ρ  is the coefficient of relative risk 

aversion, γ  is a scaling factor in the utility function, and κ  is the unknown parameter 

in the distribution of the updated belief which results from the use of  “phone a 

friend”. Finally � �( ),λ ν  are the independent estimates of the parameters of the density 

of the updated belief which results from the use of “Ask the Audience”. 

7. The Data 

For each broadcast show the operator, Celador PLC, selected 10 names at 

random from a (large) list of entrants who had successfully answered a simple 

screening question over a premium rate phone line. These 10 individuals attended the 

recording session for their show where they would compete against each other to be 

quickest to correctly answer a general knowledge question in a simple first round 

game known as the Fastest Finger. The winner of this initial round then competes, 

against the house, in the second round sequence of multiple choice questions. 

Typically each show would have time for two or three second round contestants. 

Contestants still playing at the end of the show would continue at the start of the next 

show. 

Our data comes from two sources. We have data extracted from videotapes of 

the broadcast shows, kindly made available to us by Celador. These tapes cover all 

shows in the eleven series from its inception to June 2003. This gives us information 

on the behaviour of 515 contestants14 who played the second round sequence of 

multiple choice questions.  

 
14 We drop the shows that featured couples (including twins, father/sons, professors/freshers) and 
celebrities. One show, where a contestant was the subject of litigation, was not available to us. 
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However, a major concern about the findings of the gameshow literature is 

that the data is generated by selected samples15. To investigate this issue a 

questionnaire was sent to all of the 2374 potential contestants (except one) who had 

ever been invited to the studio for all UK shows in the first eleven series of shows 

broadcast. The questionnaire was designed to identify differences between players 

and the population as a whole. The questions aimed to provide data that was 

comparable to that available from official social surveys of large random samples of 

the population16. 

Questionnaire replies were received by 791 cases, a response rate of 33% , 

where 243 (32%) of these cases were Fastest Finger winners and so played the 

second round game. These 243 represent a response rate of 47% of the population of 

second round players. Not surprisingly, these second round players were more likely 

to respond to the survey because they were well disposed towards Camelot, having 

had the opportunity to win considerable amounts of money. It was immediately 

obvious that men were heavily overrepresented in both datasets – something that is 

consistent with previous papers which have found that men to be less risk averse than 

women. Table 1 shows the means of the data for the second round competitors and for 

the non-competitors. The Fastest Finger winner who go on to become WWTBAM 

competitors are more likely to be male, are a little younger, and have slightly longer 

education than those that failed at this first round.  

The one very clear difference between WWTBAM entrants and the population 

sample survey data is that they are much more likely to be male. Attempting to enter 

the gameshow is risky and this would be consistent with the finding, in some of the 

earlier literature, that women are more risk averse. Of course, it would be consistent 

with other hypotheses too and no specific inferences can be made from this gender 

difference.  The table also shows the corresponding information from various social 

surveys, re-weighted to match the gender mix in the questionnaire data. 

 
15 In fact, Hersch and McDougall (1977) and Fullenkamp et al (2003) do report some comparisons 
between players and the population and finds no significant differences on observable characteristics 
except for lottery play. This latter difference is unsurprising since all contestants have had to have 
played the lottery and won in order to appear on these shows. In the UK, lottery players do seem to 
have different characteristics than non-players (see Farrell and Walker (1999)). 
16 To protect confidentiality, we were not able to match the questionnaire data to the gameshow 
videotape information so we ensured that the questionnaire also contained information about play 
during the game 
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Table 1 Questionnaire Sample and Population Data 

 Population survey 
data* 

WWTBAM 
competitors 

WWTBAM 
non-competitors 

 Mean Std Dev Mean Std Dev Mean Std Dev 
Male 0.52 0.40 0.76 0.43 0.66 0.48 

Age 44.41 10.21 43.14 9.36 47.86 11.67 

Married 0.80 0.44 0.79 0.41 0.76 0.43 

Education years 13.88 4.10 13.71 3.99 12.82 3.22 

Smoker ++ 0.25 0.42 0.22 0.41 0.26 0.44 

Renter 0.25 0.33 0.144 0.35 0.177 0.38 

Contents uninsured + 0.09 0.26 0.07 0.27 0.06 0.31 

House value (£k) ** ++ 178.9 157 190.8 127 184.8 188 

Employed 0.652 0.44 0.638 0.48 0.593 0.49 

Self-employed 0.155 0.38 0.193 0.40 0.189 0.39 

Not working 0.194 0.40 0.160 0.37 0.195 0.40 

Gross earnings (£k pa) *** 27.08 23.0 31.17 24.0 28.67 22.7 

Regular lottery player +++ 0.67 0.40 0.63 0.41 0.65 0.41 

Observations various 243 548 
Notes: * the survey datasets have been re-weighted to reflect the gender mix in the WWTBAM data. Population 
data comes from the 2002 Labour Force Survey with the exception of:  + from Family Expenditure Survey 2002 
data, ++ from British Household Panel Study 2001 wave, and +++ from the Gambling Prevalence Survey 2002.   ** 
if owner occupier. *** if employed. 

Once the population datasets are re-weighted the observable differences 

between the questionnaire data and the population survey data tend to be quite small. 

Two variables are particularly worthy of note: the proportion of individuals who 

report that their household’s contents are not insured is similar to the population value 

(in fact slightly smaller suggesting more risk aversion ); and the proportion who 

report being regular lottery ticket purchasers is also quite similar. Thus, our 

questionnaire dataset does not suggest that those that play (in the second round of) 

WWTBAM are heavily selected according to observable variables – except gender. 

Indeed, for those variables which might be expected to reflect risk attitudes we find 

no significant differences with our population surveys. 

However, whether the same can be said about the videotape information which 

is the population of WWTBAM contestants depends on the questionnaire respondents 

being representative of this underlying population. Thus, in Table 2, we compare the 

questionnaire data for the sample of 243 contestants with the population of 515 actual 

contestants. We have no consistent information on the characteristics of players in the 
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population apart from what we see on screen. Thus, Table 2 records on gender and the 

outcomes of play. There are no significant differences in gender and although the 

outcomes information shows, as might be expected, that the questionnaire respondents 

were bigger winners on average, these differences are not significant. Thus, we can 

have some confidence that the representativeness of players (in the questionnaire 

data) carries over to the population data in the videotapes. 

Table 2 Questionnaire Contestant Sample and Population of Contestants 

 Questionnaire sample of 
contestants 

Population of contestants on 
videotapes 

 Mean Std Dev Mean Std Dev 
Male 0.76 0.43 0.77 0.43 

Winnings £,000 61.96 104.1 54.26 105.9 

% quit last Q 0.68 0.47 0.67 0.47 

N 243 515 
Note: We categorise players who won the maximum £1m as quitters. 

The distribution of winnings, for the second round contestants, depends on 

whether the player quit or failed to answer the last question asked. Figure 1 illustrates 

using the videotape data where a small amount of jitter has been added to the data to 

show the nature of the joint distribution of quitting and stage of the game. Almost all 

players who survived beyond £125,000 quit rather than failed – only one player failed 

at £500,000 and so went away with just £32,000 instead of quitting and going away 

with £250,000.    Those that failed to answer correctly the last question that they were 

asked went away with their corresponding value of b, the reserve level of winnings. 

Only three contestants failed at a sub £1000 question and went away with nothing. 

Three players won the £1m prize. Two-thirds of players quit and one-third failed. 

“Failures” left the studio with an average of £17,438 (£15,000 for women and 

£18,244 for men) while “quitters” went away with an average of £72,247 (£68,182 for 

women and £73,411 for men)17.  

Finally, the use of lifelines is an important part of observed behaviour that our 

model attempts to explain. There was a systematic tendency for lifelines to be played 

in order. ATA was played, on average, with 8.5 questions remaining; 50:50 was 

played with, on average, 7.0 questions left; and PAF was uses with just 6.9 questions 

remaining, on average.  
 
17 Here we categorise those that won the maximum £1m as quitters. 
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Figure 1 Distribution of winnings (% £ ,000)  

 

 

Figure 2 Observed Fails and Quits Frequencies and Rates  
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8. Estimation and Results 

To estimate the parameters of the model, we first estimate our model for the 

histograms that are produced by the life line “Ask the Audience” using the data we 

have collected on this histogram and on our knowledge of what the correct answer 

was. The parameters estimates are presented in Table 3. Assume that the first 

candidate answer is the correct one, these estimates imply that on average we expect 

the life line “Ask the Audience” to produce the histogram (0.63, 0.12, 0.12, 0.12). 

These parameters allow us to evaluate the quality of the lifeline in the manner 

described in section 5.4.d above.  

Table 3 Maximum Likelihood Estimates of the Parameters of the Distribution 
of Histograms (ATA) 

Parameter Estimate Std. err. 

λ 4.754 0.210 

ν 0.914 0.030 

Number of observations 501  

Log-Likelihood 1526.41  

 

Treating these parameters as constants we then proceed to estimate the 

remaining parameters of the model. Table 4 presents the preference parameters as 

well as the estimate of the probability that the chosen friend, in the PAF lifeline, 

knows the correct answer is  0.41κ � .  

Our preferred estimated value for the coefficient of relative risk aversion is 

remarkably close to 1 (although statistically significantly different from 1). The 

parameterγ  , which can be interpreted as initial wealth measured in thousands of 

pounds, is significantly estimated at 0.41 (i.e. an initial “wealth” of £410). 

Two additional parameters which allow for the distribution of the initial belief 

to change with each round of the game are estimated. To illustrate how the 

distribution of the beliefs changes as the game progresses we have calculated, in 

Figure 3, the distribution of the maximum belief when one (respectively 3, 5, 8, 10) 

question(s) remain to be played. We can contrast this distribution at the beginning of 

the game, where the maximum belief is relatively concentrated around 1,  to the later 
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rounds of the game, where the maximum belief is in fact concentrated away from 1. 

To see this compare the slopes of the distribution functions to the left of 1 - in the 

former case the slope is large while in the latter case the slope is close to zero.  

Table 4 Maximum Likelihood Estimates  

Parameters Estimates Std. err. 

ρ 1.018 0.001 

γ 0.410 0.077 

1ln 1
κ
⎛ ⎞− −⎜ ⎟
⎝ ⎠

 -0.325 0.112 

Number of  observations 515 - 

Log-Likelihood -4543.8141 - 
Note: Two further parameters are estimated. These parameters specify the dependence of 

the belief distribution on the question round. 

Figure 4 describes the value of playing the game as a function of the number 

of questions remaining (on the x-axis) and the number and the nature of the lifelines 

left. As we would expect the value of playing rises as the number of remaining 

questions falls and lifelines add positive value to playing. “Ask the Audience” appears 

to be the most valuable lifeline while “5050” and “Phone a Friend” have almost 

identical values. In fact, the model predicts that “Ask the Audience” is almost as 

valuable as “5050” and “Phone a Friend” together. 

In Figure 5 we use the estimates to compute the predicted probabilities of 

quitting and failing at each question and compare these with the observed 

distributions. There are many fails and no quits when there are four more questions to 

come – i.e. when confronted with the £64,000 question – since there is no risk at this 

point. We broadly capture the peak in quits immediately before this point but 

underestimate the number immediately afterwards. 

Finally, in Table 5, we compute the certainty equivalent of the gambles taken 

at each stage of the game for three different types of individual. The top third of the 

table corresponds to a very able player, the middle third is about a typical individual, 

while the bottom third is for a low ability player. The certainty equivalents measure in 

money terms the value of being able to play the game and take into account the value 
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of being able to play further if the player is successful at the current stage. Moreover 

we present similar calculations for the value of playing the lifeline (again given a 

particular draw). Clearly the belief has a substantial effect on the certainty 

equivalents. Indeed our model predicts that if faced with either of the second or third 

belief draw, candidates would be prepared to pay sizeable amounts (amounts larger 

than £300,000 in the case of the million pounds question) to avoid having to answer 

the question. Lifelines are clearly valuable when the belief draw is not an extreme 

one. 

Figure 3 
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Figure 4  Value of playing the game at stage n, given the life line state. 

 

Figure 5 Observed versus Predicted Frequencies of Fails and Quits 
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Table 5 Certainty Equivalents (£ ,000) 

 
  5050 PAF ATA 
    CEa CE of LLb CEa CE of LLb CEa CE of LLb 
p=(0.9,0.05,0.03,0.02)       
500 32 701.85 848.12 701.85 912.84 701.85 845.07 
250 32 409.16 435.58 604.16 484.06 522.76 438.82 
125 32 232.61 225.51 335.19 241.31 282.85 229.18 
64 32 139.39 121.47 187.43 120.31 157.20 123.14 
32 32 89.86 73.34 114.35 74.13 91.43 73.95 
16 1 47.12 46.08 54.37 53.63 46.91 47.35 
8 1 26.08 19.72 35.06 22.49 26.44 20.22 
4 1 14.04 11.05 19.70 12.15 13.88 11.30 
2 1 8.95 7.22 12.70 7.69 9.30 7.35 
1 1 6.46 5.38 8.78 5.64 6.78 5.46 
0 0 4.35 4.04 5.62 4.29 4.47 4.15 
p= (0.6,0.2,0.15,0.05)       
500 32 174.40 544.80 174.40 789.05 174.40 719.35 
250 32 130.14 282.30 160.81 438.58 148.67 360.24 
125 32 95.63 152.25 116.75 222.49 106.42 180.99 
64 32 72.21 92.07 84.96 114.14 77.14 93.78 
32 32 56.70 61.84 64.76 72.74 57.24 62.56 
16 1 9.29 22.75 10.06 46.06 9.27 31.15 
8 1 6.66 11.19 7.87 18.06 6.71 14.05 
4 1 4.68 7.01 5.68 10.83 4.65 7.33 
2 1 3.60 4.97 4.41 7.44 3.68 5.10 
1 1 2.97 3.91 3.56 5.31 3.06 4.00 
0 0 1.19 2.31 1.41 4.05 1.21 2.41 
p= (0.4,0.3,0.2,0.1)       
500 32 123.81 499.10 123.81 780.24 123.81 719.35 
250 32 98.08 254.91 116.07 396.12 109.05 360.24 
125 32 76.73 133.95 89.95 217.27 83.55 181.05 
64 32 61.33 81.53 69.82 110.96 64.65 93.03 
32 32 50.56 57.46 56.22 72.13 50.94 59.99 
16 1 6.16 18.08 6.57 46.92 6.14 31.15 
8 1 4.70 9.22 5.38 18.65 4.73 14.05 
4 1 3.52 5.73 4.12 10.81 3.50 7.37 
2 1 2.84 4.22 3.35 7.31 2.89 4.64 
1 1 2.43 3.40 2.81 5.29 2.49 3.70 
0 0 0.81 1.80 0.94 3.85 0.82 2.09 

 a: ( )( )1

1n n nu p f b b−

−
− +   

 b: ( )( )1 ,.,.,.nu k− p  
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9.      Conclusions and Extensions 

This paper provides new evidence about the degree of individual risk aversion. 

The analysis is firmly embedded in the expected utility paradigm. Surprisingly, we 

find the model is broadly effective in explaining behaviour in this simple, and 

popular, gameshow - Who Wants to be a Millionaire? A feature of our analysis is that 

it is based on data that appears to be representative of the UK population, both in 

terms of observable characteristics and in terms of other aspects of risk-taking 

behaviour. Our headline result is that expected utility is approximately logarithmic -  

the CRRA is 1, with a high degree of precision.  

We also use our data to estimate the value of additional information to players 

in this game of skill. Our headline result is consistent with the results of recent work 

on the Hooster Millionaire gameshow which is the only other game which features, 

like WWTBAM, such large stakes and involves no complex probability calculations 

by players. 

In part, the paper addresses the challenge to expected utility made by Rabin 

(2000) who suggests that, since individuals are risk averse when faced with small 

gambles the implied behaviour with respect to large gambles would be perverse. We 

indeed find that, in this model with constant CRRA across the huge range of stakes in 

the game, we do underpredict the extent to which individuals take risk when the 

stakes are low.  

A deficiency of the current work is that we assume that risk aversion does not 

vary across individuals. We view this as an approximation and we plan to conduct 

further work that relaxes this by exploiting our questionnaire data which is rich in 

information about the individuals who played this game, and has been used in this 

paper only to confirm the representativeness of the videotape data. In particular, we 

wish to explore the extent to which risk aversion varies with observable 

characteristics and whether unobserved heterogeneity in risk aversion is correlated 

with observable risk-taking behaviour.  
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Appendix A 

Proposition (factorisation of ( )4 1 2 3 4, , ,x x x xχ ): 

The joint density: ( ) ( ) 2 3
4 1 2 3 4 1

2 1 1 2

2, , ,
1 1
x xx x x x x
x x x

χ φ φ φµ
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠− − −

, 

with ( )1 2 3 4, , ,x x x x  such that 
4

1
1i

i
x

=
=∑ , 0ix ≥  for all i, can be factorised as 

follows: 

( ) ( ) ( ) ( )
1 2 1 3 1 24 1 2 3 4 1 | 2 1 | , 3 1 2, , , ; ; ,U U U U U Ux x x x f x f x x f x x xχ = ,  

with ( )
1Uf u , ( )

2 1| ;U Uf v u ,  ( )
3 1 2| , ; ,U U Uf w u v , (conditional) densities such that 

 ( )
( ) ( )

[ ]1

2

0 1
2

1
U u

u uf u φ
µ ≤ ≤

−= 1 , with ( ) ( )
1 2

2
0

1 x x dxµ φ= −∫ , 

 ( )
( )
( ) ( ) [ ]2 1| 0 12
1; 2

11U U v u
u v vf v u

uu
φ ≤ ≤ −

− −=
−−

1 , 

 ( ) ( ) [ ]3 1 2| , 0 1
1; ,

1 1U U U w u v
wf w u v

u v u v
φ ≤ ≤ − −=

− − − −
1 . 

Proof: 

It is easy to verify by simple integration for ( )
1Uf u , ( )

2 1| ;U Uf v u ,  and by 
construction for ( )

3 1 2| , ; ,U U Uf w u v , all three are well defined densities over the 
relevant ranges. Moreover their product is equal to ( )4 .χ .  

This implies that if 1 2,U U  and 3U  are three random variables each distributed with 

densities ( )
1Uf u , ( )

2 1| ;U Uf v u ,  and ( )
3 1 2| , ; ,U U Uf w u v , then the random vector 

( )1 1 2 1 2 3 1 2 3P U UU UU U UU U= , with 1i iU U= −  for all i=1..3, is distributed 

with joint density: ( ) ( ) 2 3
4 1 2 3 4 1

2 1 1 2

2, , ,
1 1
x xx x x x x
x x x

χ φ φ φ
µ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠− − −
. Note 

that by construction ' 1P =e , and 0P ≥ . 

Since ( )4χ x  and ( )4ψ x  share the same joint density for the order statistics, i.e. 

( )44 !ψ x  where x  is such that its element are sorted in descending order, to sample 

from ( )44 !ψ x  we propose to sample first from ( )4 .χ  and then to sort the resulting 

vector in descending order. 


