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Abstract

Periodic models for seasonal data allow the parameters of the model to vary across the different

seasons. This paper uses the components of UK consumption to see whether the periodic autore-

gressive (PAR) model yields more accurate forecasts than non-periodic models, such as the airline

model of Box and Jenkins (1970), and autoregressive models that pre-test for (seasonal) unit roots.

We analyse possible explanations for the relatively poor forecast performance of the periodic models

that we find, notwithstanding the apparent support such models receive from the data in-sample.
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1 Introduction

Traditionally, the class of seasonal autoregressive-moving average (SARMA) models developed by Box

and Jenkins (1970) have been popular amongst time-series analysts for modelling seasonal time series.

More recently, increasing attention has been paid to periodic models of seasonality, where the parameters

of the model are allowed to vary with the season. Such models are highly parameterised compared to the

parsimonious description of the data accorded by the SARMA models. Important papers on periodic

models include Tiao and Grupe (1980) and Osborn (1988), and recently, Philip Hans Franses and his co-

authors have developed modelling approaches for periodic models, see, e.g., Franses and Paap (1994)

and Franses (1996). Such models arise quite naturally when consumer tastes change over the year: see

Osborn (1988).

However, whether the added complexity of periodic models offers a much improved forecast per-

formance relative to simpler, non-periodic models (such as the SARMA class referred to above) is still

a relatively open question. Osborn and Smith (1989) (henceforth OS) was an early contribution on the

practical usefulness of periodic models for forecasting seasonal series. They found some improvement

in forecast accuracy for the components of seasonal UK consumption at horizons less than a year.

In this paper we also use the components of UK consumers’ expenditure to assess the usefulness of

periodic models for forecasting. We are able to extend OS’s study in a number of directions. Firstly, we

now have at our disposal an additional 11 years of quarterly observations, for the period 1984:1 – 1994:4.

So, by following OS and using the period from 1979:1 onwards for post-sample forecasting, we obtain 55

1; 2; : : : ; 10 -step ahead forecasts, compared to OS’s 20 1-steps, 19 2-steps ahead, etc. The larger sample

of multi-step forecasts, particularly at medium and longer horizons, allows conclusions concerning the

relative merits of the models to be drawn with greater confidence, and we are also able to test whether

apparent differences in forecast accuracy are statistically significant, using the test developed by Diebold

and Mariano (1995).

Secondly, there have been a number of theoretical advances in periodic modelling, such as the recog-
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nition that processes with periodically varying parameters may be periodically intergrated. We assess the

forecast gains from imposing periodic integration when this phenomenon is not rejected by the data.

Thirdly, it is now recognised that a satisfactory in-sample fit is no guarantee of out-of-sample forecast

performance (see, for example, Clements and Hendry, 1996, 1997b, Fildes and Makridakis, 1995), and

we wish to explore the implications of structural breaks for models of seasonal processes.

Our results generally indicate that the short-run gains to periodic models found by OS do not extend

to the larger sample of forecasts that we are able to calculate, and the remainder of the paper addresses

the question of why we are unable to exploit the periodicity that appears to be a feature of the data to

forecast more accurately.

The plan of the paper is as follows. Section 2 describes the data on the components of seasonally

unadjusted UK non-durable consumption used in the analysis. Section 3 describes the models that we

consider, and the estimates we obtain from fitting these models to the data. Section 4 reports the results of

the forecast comparison exercise, and section 5 offers an explanation for the pattern of our results based

on a simulation study. Finally, section 6 reviews our main results and offers some concluding remarks.

2 Description of the consumption data

The data is quarterly seasonally unadjusted nondurable consumption for the UK over the period 1955:1 to

1994:4, taken from Economic Trends Annual Supplement 1996.2. Consumers’ expenditure divides into

seven categories: food; alcohol and tobacco (referred to as ‘alcohol’); clothing and footwear (‘clothing’);

energy products (‘energy’); other goods; rents, rates and water charges; and other services (’services’).

For reasons outlined in Osborn and Smith (1989), rents, rates and water charges are excluded from the

analysis and total nondurable consumption (‘total’) is then defined as the sum of the remaining six com-

ponent categories.

Summary statistics on these series are presented in table 1. Plots of the seven series (six components

plus the total) are given in figures 1 and 2 for each of the 4 quarters separately. The seasonal patterns
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of each series are essentially distinct, although alcohol, clothing and other goods all exhibit increasing

consumption over the four quarters of the year to peak in quarter four.

3 Models of seasonal economic time series

3.1 AR models

The HEGY (Hylleberg, Engle, Granger and Yoo (1990)) testing procedure is based on the regression

equation:

�(L)�4xt = �t + �1z1;t�1 + �2z2;t�1 + �3z3;t�2 + �4z3;t�1 + �t (1)

where:

�t = �1 + �2t+

3X
i=1

�2+iQit (2)

and:

z1t = (1 + L+ L2 + L3 + L4)xt; z2t = �(1� L)(1 + L2)xt; z3t = �(1� L2)xt:

�(L) is a pth order lag polynomial, where p is chosen to whiten the error term (as judged by the usual

diagnostic tests for serial correlation, heteroscedastic and normality). Taylor (1997) discusses some of

the problems with the HEGY testing procedure – in particular, the choice of p, and generalising (2) to

include seasonal deterministic trends.

The tests for roots at the zero, bi-annual and annual frequencies are based on whether �1 = 0, �2 = 0

and �3 = �4 = 0, respectively.

We adapt the HEGY procedure to generate models for forecasting seasonal processes, whereby after

testing for unit roots, the regression is re-run omitting the zi which are not significantly different from

zero. We also omit the linear trend term because the null hypothesis that �1 = 0 is not rejected for any

of the series.1 A zero-frequency root in conjunction with a linear trend would imply the rate of change

1Strictly, the null is rejected for total non-durable consumption using the HEGY procedure, but standard unit root tests on

seasonally-adjusted data suggest the aggregate is I(1).
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of the variable follows a linear trend, which appears unreasonable, albeit that it may not matter much for

short horizon forecasts.

Table 2 reports the outcomes of the HEGY-testing procedure based on a regression of the form of (1)

over 1958:1-1994:4 for each of the consumption components.

Notice that all roots are imposed when the null hypotheses that �1 = 0, �2 = 0 and �3 = �4 = 0 are

not rejected. Separately to pre-testing for unit roots, we estimate models that have this property, since

Clements and Hendry (1997a) found such models forecast reasonably well. The models were specified

as:

' (L)�4xt = � + �t

where ' (L) is at most a sixth-order lag polynomial. The model implies that the expected annual rate

of growth (E[�4xt]) is a constant (' (1)�1 �), and it seems unreasonable to include higher deterministic

terms (such as a trend).

3.2 SARMA models

For quarterly data, the general class of seasonal autoregressive-moving average (SARMA) models de-

veloped by Box and Jenkins (1970) can be written as:

� (L) (1� L)
�
1� L4

�
xt = �+ (1� �1L)

�
1� �4L

4
�
�t (3)

where �t � IN(0; �2� ), j�1j < 1, j�4j < 1 and Lkxt = xt�k. � (L) is a polynomial in L with all its roots

outside the unit circle, which we restrict to the form � (L) = (1� �1L)(1� �4L
4).

Franses (1996) p.42–46 references empirical studies that fit SARMA models and provides examples.

When � (L) = 1 this model is sometimes known as the ‘airline’ model. The filter �4 = (1�L4) captures

the tendency for the value of the series in a particular season to be highly correlated with the value in the

same season a year earlier. The filter � = (1 � L) relates to the non-seasonal part of the model and

specifies a stochastic trend in the level of the series (with drift when � 6= 0). The model suggests that
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the expected quarterly change in the annual rate of growth depends on � (equals � when � (L) = 1), so

not surprisingly the empirical estimates of � are close to zero.

Expanding ��4 we obtain:

(1� L)
�
1� L4

�
= (1� L) [(1� L) (1 + L) (1� iL) (1 + iL)]

suggesting two zero-frequency roots, as well as roots at the bi-annual and seasonal frequencies (taking

the two complex roots as (1 � iL)(1 + iL) = (1 + L2)). The results of the HEGY procedure (see

table 2) suggest that only for food, alcohol, and other goods do we find a single zero-frequency root

and and roots at all the seasonal frequencies. There is no evidence of a second zero-frequency root for

any of the series. This tension concerning the number of roots has been documented by a number of

authors, e.g, Osborn (1990), Hylleberg, Jørgensen and Sørensen (1993). Clements and Hendry (1997a)

review a number of possible explanations, such as the neglect of the MA component in the HEGY testing

procedure leading to over-sized tests (see, for example, Franses and Koehler, 1994), and the possibility

that ‘over-differencing’ in (3) converts level shifts in seasonal means into ‘blips’ which may be mistaken

for outliers. Conversely, Smith and Otero (1997) show that HEGY will have low power to reject seasonal

roots if there are shifts in the seasonal pattern, so that such testing procedures may overstate the number

of roots.

Table (3) gives the results from estimating models of the form of (3) over the sample 1955:1-1994:4

(less periods lost by taking lags).

3.3 Periodic Autoregressive Models

The Periodic Autoregressive (PAR) model can be written as:

yt = �s + �1syt�1 + : : :+ �psyt�p + �t; t = 1; 2 : : : n (4)

or more succinctly as:

�s(L)(yt � ��s) = �t
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where the intercepts (�s, ��s) and the autoregressive parameters (�1s; : : : ; �ps) may vary with the season,

s, where for quarterly data s = 1; : : : ; 4, and there are n = 4N quarterly observations, where N is the

number of annual observations. The disturbance term is assumed to be independently distributed with

zero mean and variance �2. Tiao and Grupe (1980) extend this basic model by allowing for periodic

Moving Average (MA) terms.

Franses and Paap (1994) recommend a strategy for selecting the lag order p of the PAR model based

on minimizing an information criterion, such as the Schwarz Criterion (SC), subject to an F -test of the

restriction H0 : �p+1;s = 0; s = 1; : : : 4 failing to reject. However, we found that a strict application of

this strategy sometimes resulted in models with serially correlated and heteroscedastic disturbances, or

in highly parameterised models compared to e.g., Franses (1996), Table 7.10, p. 112.

Consequently, for each series we selected a model with no holes in the lag distribution (the PAR

model), taking in to account the properties of the equation disturbance term, as well as a restricted PAR

model (RPAR) which sets insignificant lags to zero. For non-durable consumption, we obtain p = 1

following the mixed strategy (as in Franses, 1996, Table 7.10, p. 112 and Proietti, 1996, Table 1) and

beginning with a maximum lag of 5, since p = 1 minimises SC and F�2;s=0 does not reject. However,

lag 5 is highly significant: F�5;s=0 = 10:15 (which isF4;126 under the null). Hence for total consumption

we estimated a fifth-order model (the PAR model), and a restricted PAR model (RPAR) with lags 1 and

5 only, since intermediate lags were not significant. For food, the mixed strategy led to a fourth-order

model, as lower order models suffered from serial correlation and ARCH. Intermediate lags were not

clearly insignificant, so the RPAR and PAR models are one and the same. For alcohol, the mixed strategy

gave p = 4. On the basis of the individual t-statistics on the second and third lags, we also estimated a

RPAR model with lags 1 and 4 only. For clothing, the mixed strategy led to p = 4. The SC suggested a

lower order model, but the F -test for deleting lag 2 rejected, and similarly for testing lag 3 in a third-order

model, and lag 4 in a fourth-order model. For energy, the mixed strategy led to p = 4.

For other goods, the mixed strategy suggested p = 1. However, all models of order lower than 5
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rejected the null of serially uncorrelated errors with p-values numerically indistinguishable form zero.

Hence the PAR model order was set at 5, and we also considered an RPAR with lags at 1, 4 and 5 only.

The story for services was the same as that for other goods, and we ended up with a fifth-order model

and an RPAR with lags at 1, 4 and 5 only.

Table 4 summarizes our results on model selection. It reports the order p of the PAR model for each

of the components, the SC, the F -test for the null hypothesis H0 : �p;s = 0 of whether the order of the

model can be further reduced, and the usual diagnostic statistics of model adequacy. The final column

records the lags that comprise the RPAR model.2

Conditional on p, for the (unrestricted) PAR models we run tests of whether the slope parameters

exhibit periodic variation. This is the FPAR test which tests (4) against the nested non-periodic (in the

slopes) AR(p) model:

yt = �s + �1yt�1 + : : : + �pyt�p + �t: (5)

The test is that �js = �j , s = 1; : : : 4, j = 1; : : : ; p, which has an F3p;n�4p�4 distribution under the null

of no periodic variation. We find a a clear rejection of the null for each of the component series at the

5% level.

Franses (1996) suggests including a periodic trend for testing UK non-durable consumption, and we

follow this advice for each of the components. In that case, the test of periodic variation is whether the

AR parameters are equal across seasons in:

2The PAR, PIAR and NPIAR models include the following dummy variables to address the problem of outliers: total non-

durable consumption included two dummy variables, one for Q1 of 1974 – 1977, and the other for 1980:2; Alcohol & Tobacco

had two dummy variables, for 1973:2 and 1980:2; clothing & footwear two dummy variables for 1973:1 and 1978:3; and for

services a single dummy variable for 1976:1.

For the HEGY and 5th-order fourth-differenced model we included the following dummies: alcohol, 1980:2; energy, 1963:3;

other goods, 1968:2; services, 1978:1; total consumption, 1974:1 and 1978:1.
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yt = �s + 
st+ �1syt�1 + : : :+ �psyt�p + �t; (6)

denoted by F (t)PAR. For all the components series and the total, except other goods, we are able to

reject the null hypothesis at the 5% significance level – see table 4.

Equation (6) can be reparameterised as:

(1� �sL) yt = �s + 
st+

p�1X
j=1

�js (1� �s�jL) yt�j + �t (7)

where �s�4i = �s, i = 1; 2; : : :. This parameterisation motivates the notion of periodic integration (PI).

A series is said to be periodically integrated if
Q4

s=1 �s = 1, in which case the periodic filter (1��sL)

removes the stochastic trend. Such models are known as PIAR models. A consequence is that such series

can not be decomposed into seasonal and stochastic trend components: see Franses (1996) ch. 8.

Table 5 presents two tests of the hypothesis of PI due to Boswijk and Franses (1996): the LR(t)

statistic tests the restriction on the �i’s based on (7), and the LR tests the same restriction but with the

periodic trend term (
st) absent. For all the series the LR test fails to reject the null of periodic integra-

tion. Similarly for the LR(t) test, with the exception of services.

Finally, the F(1�B) and F (t)(1�B) statistics test whether, assuming periodic integration, we can im-

pose the further restriction that �s = 1. In that case the model is non-periodically integrated – NPIAR.

The first statistic tests this restriction against (7) with periodic integration imposed and the seasonal trend

term absent, and the second allows the seasonal trend term to be present. When the restriction is not re-

jected the PAR model simplifies to:

�yt = �s + 
st+

p�1X
j=1

�js�yt�j + �t: (8)

F(1�B) rejects the simplification to (8) for all series at the 5% significance level, with the exception of

other goods. Using F (t)(1�B) we are unable to reject the unit root at the 10% level for alcohol, other

goods and services.
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Following, e.g. Franses (1996) p.151, we can show that the PIAR model with seasonal intercepts

suggests that the annual growth rate will differ across the seasons, suggesting increasing seasonal vari-

ation over time. This is most easily seen using a PIAR(1) model:

yt = �s + �syt�1 + �t; �1�2�3�4 = 1

so that by backward substitution:

�4yt = �s + �t + �s�t�1 + �s�s�1�t�2 + �s�s�1�s�2�t�3

where �s depends on the �’s and �’s. Hence E[�4yt] = �s. Even when �s = �, the �s will differ unless

�s = 1, i.e., we have a NPIAR process. Hence, to rule out increasing seasonal variation in the PIAR

case we need to set �s = 0, whereas in the NPIAR we can allow �s = �.

4 Empirical forecast comparison exercise

Each of the models discussed in the preceding section was used to generate ‘rolling forecasts’ of the

UK consumption components. Following Osborn and Smith (1989) the models were specified on the

full sample (in our case 1955–94), and then initially estimated on data up to 1978:4. Forecasts for the

subsequent 10 periods (1979:1 – 1981:2) were calculated, yielding a single sequence of 1 to 10-step ahead

forecasts. The estimation period is then increased by one observation to include 1979:1, and another

sequence of 1 to 10-step ahead forecasts is calculated, and so on up to an estimation period that includes

1992:3. This rolling method of forecasting yields a sample of 55 1 to 10-step ahead forecasts. Table 6

reports (for selected horizons) the Mean Squared Forecast Error (MSFE) measure of forecast accuracy:

MSFEh =
1

55

55X
j=1

(yj � ŷj;h)
2

where ŷj;h is the forecast of yj made at time j � h.

In table 6, BIC�s refers to the PAR model of OS, chosen according to the BIC criterion by considering

subsets of lagged regressors (see Osborn and Smith, 1989 for details). PAR�s refers to the model given by
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(4) which includes seasonal intercepts, PIAR�=0 is the PAR model with PI imposed (and no intercepts),

and NPIAR� to the non-periodically integrated PAR model with a non-seasonal intercept. AR�4
denotes

the linear model in the fourth-differences of the variable. For some of these models we have considered

a number of variants with different (seasonal) deterministic terms. The reported models are those which

forecast the best.

Firstly, we compare the results for the alternative periodic model specifications. The PAR�s mod-

els generally dominate the BIC�s models indicating that the subsets of regressors chosen by OS can be

improved upon on the current vintage of data and sample period.

Table 5 provides evidence that the variables are periodically integrated. Imposing this restriction

PIAR�=0 generally leads to more accurate forecasts (an exception is total consumption). There is little

evidence that further restricting the model to have a unit root, NPIAR�, improves forecast accuracy, and

for alcohol, other goods and services, for which the restriction appears to be reasonable (when we allow

for seasonal trends), the performance 10-steps ahead is worse.

Comparing the AR�4
and HEGY models, the AR�4

model is better for alcohol, otherwise the two

models’ forecasts are of similar accuracy. HEGY imposes roots at all frequencies for alcohol, so in this

respect the models are equivalent, and the gains to the AR�4
model result from p = 5 rather than the

augmentation suggested by the HEGY testing procedure (1 for alcohol). The largest 1-step ahead gain

for HEGY over AR�4
is for total consumption, when it is of the order of 5%. Again, both models impose

the same roots (all) for this variable.

The results also include tests of the statistical significance of differences in forecast accuracy, ex-

pressed as pairwise comparisons of models against the SARMA. Notice that the 1-step forecasts of food,

clothing, other goods and services from the PIAR�=0 model are all significantly less accurate than those

from the SARMA model at the 10% level, while at this significance level we are unable to reject the

null of equal forecast accuracy of the AR�4
and HEGY model, relative to the SARMA, for any of the

series. While the SARMA forecasts of total consumption are not statistically superior to those from the



12

PIAR�=0, they are numerically more accurate on MSFE at h = 1; 2.

At longer horizons (e.g., h = 10) the autoregressive models (PIAR�=0, AR�4 and HEGY) tend to

have numerically smaller MSFEs than the SARMA, the exception being the non-periodic AR models for

alcohol.

Concern over the large number of parameters of the PAR models, which were either of order 4 or 5

(including the PIAR and NPIAR models), led us to include restricted PAR models (RPAR) in the com-

parisons for alcohol, other goods, services and total consumption. The RPAR forecasts were generally

only a little better, suggesting that our suspicion that the over-parameterisation of the periodic models

may account for their relatively poor performance is ungrounded.

5 Post forecast comparison analysis: shifts in seasonal means

While the formal testing procedures clearly reject the null of no periodic variation in the slope paramet-

ers for all the components, allowing for periodic variation yields no significant gains in forecast accuracy

relative to the non-periodic models (SARMA, AR�4
and HEGY), and in a number of cases the forecasts

are significantly less accurate. Only for alcohol are the PIAR�=0 model forecasts numerically more ac-

curate than those of the AR or HEGY model forecasts, and even then they are matched at short horizons

by the SARMA forecasts.

In this section we explore a potential explanation for the poor performance of the periodic models

framed in terms of shifts in deterministic seasonal components.

Un-modelled structural breaks that show up in mean shifts are known to bias tests of zero frequency

roots toward non-rejection (Perron, 1989, 1990), and seasonal mean shifts have a similar effect on tests

for seasonal roots. Franses and Vogelsang (1995) and Smith and Otero (1997) discuss testing for roots

in seasonal time series with mean shifts. Clements and Hendry (1997a) argue that more accurate out-

of-sample forecasts may result from imposing extraneous roots when there are shifts in seasonal means

over the forecast period. The imposition of unit roots can partially robustify sequences of rolling fore-
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casts against (untreated) shifts in the deterministic seasonal components of the series, yielding improved

forecast accuracy.

Equally, un-modelled seasonal mean shifts may also show up as seasonal variation in slope paramet-

ers, so that periodic models are found (see Franses and McAleer, 1995). Thus, while periodic models

may appear to fit the data better than non-periodic models in-sample, non-periodic models that ‘over-

difference’ the data may have the edge for out-of-sample forecasting.

We use the testing procedure suggested by Franses and McAleer (1995) to assess the evidence for

mean shifts in the consumption series. Their procedure is designed to discriminate between a PIAR(p)

and a NPIAR(p) (non-perioidically integrated PAR) with deterministic shifts. The motivation for testing

between these alternatives is that a PIAR with the �s all close to 1 may be mistakenly chosen when the

non-periodic (1�L) filter is more appropriate if there are mean shifts, and vice versa. Since our empirical

results give support to non-periodic models, a simple extension to their testing procedure allows us to test

whether once we allow for structural change the periodic variation in the slope parameters is redundant.

We make use of nested tests because the nesting model is itself a possible candidate model for the series.

The PIAR(p) model is given by (7) (with 
s = 0). The NPIAR with deterministic mean shifts

(NPIAR� ) is (7) with �s = 1 and the addition of the terms in ��s :

�yt = �s + ��sI
�
T +

p�1X
j=1

�js�yt�j + �t (9)

where I�T = 1 when t � � . Consequently, the nesting model is:

yt � �syt�1 = �s + ��sI
�
T +

p�1X
j=1

�js(yt�j � �s�jyt�j�1) + �t (10)

with �1�2�3�4 = 1.

Under the null that the PIAR is appropriate, an F -test based of (7) against (10) is asymptotically

distributed as F4;T�(4p+7), where the 4 restrictions result from setting ��s = 0 in (10). This test is denoted

FPIAR.

The null that (9) is correct can be tested by an F -test that compares the residual sum of squares

(RSS) from (9) against the unrestricted RSS from (10). This is asymptotically distributed as F3;T�(4p+7),
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where the 3 restrictions result from setting �s = 1 for each s, where the maintained hypothesis is that

�1�2�3�4 = 1. This test is denoted FNPIAR� . Testing the null of no periodic variation in the slope

parameters once we allow for mean shifts:

�yt = �s + ��sI
�
T +

p�1X
j=1

�j�yt�j + �t (11)

is again accomplished by an F -test (which we denote FAR�1;�
) that compares the RSS from (11) and the

RSS from (10), and is asymptotically distributed as F3+3(p�1);T�(4p+7), where the 3(p� 1) restrictions

result from setting �js = �j , j = 1; : : : ; p� 1.

To make these tests operational, � has to be chosen. We follow Franses and McAleer (1995) by plug-

ging in a prior estimate based on:

argmax
�

LR (�) = T log

�
RSS

RSS1 +RSS2

�

where RSS results from the full-sample (1955-94) estimation of the PIAR(p) model in (7), and RSS1

and RSS2 are obtained by splitting the sample at � and estimating models of the form of (7) on each

sub-sample. The grid of values �, such that � 2 �, is recorded in the notes to table 7, which reports the

estimated values of � . A test that a structural change has occurred can be conducted by comparing the

largest LR statistic (the supLR) to the critical values in Andrews (1993), Table 1. These values are also

recorded in table 7, along with the outcomes of the nested tests described above. It is apparent that the

null of no structural break is clearly rejected for all the series. A comparison of the estimated break dates

in table 7 with the time series plots of the separate quarters for each series (figures 1 and 2) is informative.

For food, the PIAR model is clearly rejected, while neither the FNPIAR� or FAR�1;�
tests reject at

the 5% level. Testing the restriction of no periodic variation in the slope parameters conditional on the

NPIAR� model (i.e., �js = �j) yields a p-value of 0:15 (the last column of table 7). Hence (11) appears to

be adequate for explaining food. The estimated break date of 1973 is supported by the visual evidence.

Around that date quarter 1 food consumption falls markedly relative to annual average consumption,

quarter 4 consumption is more closely matched by that in quarters 2 and 3.
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The nested testing outcomes for services and total consumption are similar to food, although the re-

jection of the PIAR for services is marginal, suggesting the nesting model may be appropriate. The es-

timated break date for services (1978) is not so obvious visually, although at that time the relationship

between consumption in quarters 1 and 4 appears to alter. After 1974 total consumption in quarters 2

and 3 appears to fall relative to that in the other two quarters.

Alcohol requires the nesting model. Here the break date appears to reflect lower quarter 2 and 3

consumption relative to quarters 1 and 4. Clothing is adequately characterised by the PIAR model, and

visually there is less evidence of a structural break. Energy can be explained by the NPIAR� , but the

rejection of the PIAR is marginal. The seasonal pattern appears to alter at the end of the 1960’s, as indic-

ated by the estimated break date. Other goods fail to reject either the PIAR or the NPIAR� , suggesting

that either is adequate and the tests lack power. Since the PIAR is rejected at the 10% level, there is some

evidence that the NPIAR� model is more appropriate. The break is not as clearly evident as it is for some

of the other series.

The outcomes of the nested tests suggest little support for the periodic models (especially the PIAR

model) as compared to non-periodic models with mean shifts, or to composite models. They accord reas-

onably well with the poor empirical forecast performance of the periodic models. An exception is cloth-

ing, where we fail to reject the PIAR model (and the structural change models are rejected) but the PIAR

forecasts are inferior to the non-periodic model forecasts.

In the next sub-section we report the results of a Monte Carlo study that attests to the usefulness of

‘over-differenced’ non-periodic models when the process is generated by a model in first differences with

mean shifts (as appears to be the case for food, services and total consumption). In the final sub-section

some simple algebraic manipulations are presented to help interpret the results.

5.1 A Monte Carlo study

We conducted a Monte Carlo study to see if the empirical forecasting results we obtained are broadly

compatible with the models of the variables suggested by the nested tests. We took the preferred models
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for each variable as the DGP (food, services and total: AR�1;� ; alcohol: nesting model; energy, other

goods: NPIAR� ; clothing: PIAR) and simulated data for a period corresponding to that of the empirical

exercise. We then estimate PIAR3 and AR�4
models for the simulated data, and carry out a forecasting

exercise just as we did for the observed data. That is, we estimate models on a number of observations

corresponding to the original in-sample data period (1955 – 1978), and then calculate rolling sequences

of 1-to 10-step ahead forecasts. The model specifications (e.g., lag lengths) are those of the empirical

models. We then move the origin forward by 1 observation, as in the empirical exercise, re-estimate and

forecast. In this way we build up a sample of multi-step forecast errors. The above is then repeated on

each of the 100 replications of the Monte Carlo, yielding 55� 100 simulated multi-step forecast errors

for h = 1; : : : 10. The models are compared on the basis of RMSFE and the Diebold and Mariano (1995)

test of equal forecast accuracy is implemented on the MSFEs.

The results are summarised in table 8. Note the higher levels of significance are because there are one

hundred times as many forecast errors as in the empirical work. It is apparent that when the DGP is an

AR�1;� process, as for food, services and total consumption, the AR�4
model outperforms the PIAR. For

these three series we also recorded the number of replications for which the test of no periodic variation

in the slope parameters rejected. On the full simulated sample (corresponding to 1959–94) the rejection

frequencies (out of 100) were: food 86, services 73 and total consumption 89. Notwithstanding the small

Monte Carlo sample these results attest to the likelihood of incorrectly selecting a periodic model when

the process is non-periodic (given by the AR�1;� model).

Thus our empirical results for these three series can be explained if the AR�1;� model is a reasonable

empirical characterisation, as suggested by the outcomes of the testing procedures.

Not surprisingly, when the DGP is a PIAR, as for clothing, the PIAR model fares best. We noted

above that the finding in favour of the PIAR for clothing on the nested tests was surprising given the

empirical forecast performance of the periodic models.

3In the nested testing procedures, the PIAR model was estimated with seasonal intercepts, while in the simulation study we

estimate intercepts when this leads to an improved forecast performance.
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We find that for the nesting model DGP for alcohol the AR�1;� forecasts better than the PIAR model.

Both energy and other goods are characterised as NPIAR� processes: for the former the PIAR model

yields more accurate forecasts, and for the latter, the AR�1;� model. We suspect this is because the peri-

odic variation for other goods is less marked than for energy: conditional on the NPIAR� model we are

unable to reject the AR�1;� model for other goods (see the last column of table 7), although FAR�1;�

does reject. Moreover, the supLR statistic for energy, although significant, is the smallest for all the

series, suggesting the break may be less marked than for other goods.

For some of the series characterised as AR�1;� processes we experimented with an additional break,

of a similar magnitude to the historical (estimated) break, assumed to occur in the forecast period. As

expected, this further favoured the AR�4
model. In the following sub-section we illustrate the effects of

structural breaks in the forecast period.

5.2 Seasonal mean shifts

Firstly, consider a seasonal mean shift at the beginning of the forecast period, so the effect on the estim-

ated model parameters can be ignored. Assume the DGP is the AR�1;� :

' (L)�yt =

4X
s=1

�sQs;t +

4X
s=1

��sI
�
T + �t (12)

where we introduce explicit seasonal dummy variables, Qs;t = 1 if t = s + 4j, j = 0; 1; 2 : : :. Mul-

tiplying (12) by S (L) = 1 + L+ L2 + L3 results in a model for the fourth differences:

' (L)�4yt =

4X
s=1

S (L) �sQs;t +

4X
s=1

S (L) ��sI
�
TQs;t + S (L) �t:

Let S (L) �s = �, and S (L) ��s = ��. If we assume that �� = 0, so that the expected annual growth rate

(E[�4yt]) is unchanged by the shift in seasonal means at � , then:

' (L)�4yt = � +

4X
s=1

��sI
�
�+2Qs;t + S (L) �t:
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The S (L) operator converts the level changes to blips. A model of this process that ignores the structural

change would be:

'+ (L)�4yt = �+ + �+t (13)

where �+ ' �.

Consider forecasting �yt using (12) with the ��i terms absent (the shifts are not modelled), and setting

' (L) = 1. Forecasts of �y�+j , j � 0made pre-break at time � � 1 rapidly go off course (we are

forecasting �s instead of (�s + ��s ) for season s). The outcome is moderated a little if the forecast origin

is moved forward to � + 1; � + 2; : : : and the model estimates updated on the extended sample, but the

impact of the post-break observations on the estimated model parameters will initially be slight. By way

of contrast, consider forecasting using (13) with '+ (L) = 1. At time � � 1, the expected value of the

forecast is:

E [�y� ] = E [(1� S (L))�y� ] + �+

= �

3X
i=1

�s�i + �+ = � (� � �s) + �+ ' �s

when � falls in season s. The forecasts are biased, and similarly for origins up to � +1, but for forecasts

made at � + j, j � 2:

E [�y�+j] = �

3X
i=1

�
�s�i + ��s�i

�
+ �+ = � (� � �s)� (���s) + �+ ' �s + ��s

assuming � + j falls in season s. This demonstrates that forecasts made with the AR�4
model after the

mean shift has occurred are approximately unbiased.

Secondly, we can demonstrate the effect of a seasonal mean shift during the estimation period. The

(13) parameters will be little affected provided �� = 0. But suppose we estimate a second-order periodic

model for the AR�1;� DGP:

yt � �syt�1 = �s + �s(yt�1 � �s�1yt�2) + vt (14)
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and we impose �s = 1 8s, then:

�yt = �s + �s�yt�1 + vt (15)

where 0 < �s < 1 and as ��s��s !1, �s ! 1. The forecast function is (ignoring parameter estimation

uncertainty):

\�yT+h = �s

h�1X
i=0

(�s)
i + (�s)

h�yT !
�s

1� �s
as h!1 and for j�sj < 1 :

Let �+s = �s
1��s

. Then �+s is the long-run mean of the process in season s from the historical data, which

incorporates the two regimes. The long-run mean of the process after t = � is �s, and �+s 6= �s, so the

forecasts from the NPIAR model are biased for large h.

6 Conclusions

The in-sample support for periodic models (the null of no periodic variation in the slope parameters is

clearly rejected for all series) does not translate in to clear forecast gains, even at short horizons, in con-

trast to the findings if Osborn and Smith (1989). We find that for a number of series the periodic model

can be rejected in favour of a model with a shift in the seasonal means, and we provided simulation and

analytical evidence that such processes could explain some of the results of our empirical forecast accur-

acy comparisons.
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Table 1 Shares for Consumption Components in Total and Across Year.

Variables Mean Q1 Q2 Q3 Q4

Food 0.210 0.241 0.251 0.250 0.258

Alcohol 0.151 0.215 0.245 0.255 0.285

Clothing 0.069 0.207 0.240 0.240 0.313

Energy 0.090 0.290 0.232 0.209 0.269

Other goods 0.125 0.225 0.238 0.247 0.290

Services 0.355 0.232 0.251 0.274 0.243
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Table 2 HEGY tests for unit roots.

Variable p t(�1) t(�2) F (�3; �4) AR(5) ARCH(4) NORM RESET

Food 6 -2.620 -2.104 3.612 0.552 0.034 0.585 0.532

Alcohol 1 -2.323 -2.505 4.993 0.793 0.236 0.591 0.140

Clothing 2 -2.944 -2.460 7.221� 0.427 0.018 0.168 0.893

Energy 0 -3.108 -4.642�� 2.984 0.375 0.421 0.697 0.979

Other goods 4 -2.659 -1.739 3.649 0.299 0.851 0.628 0.506

Services 5 -1.801 -2.649 7.112� 0.094 0.463 0.373 0.394

Total 5 -3.605� -2.563 3.016 0.270 0.190 0.669 0.631
� denotes significance at the 5% level, and �� at the 1% level using the appropriate (non-standard) critical

values (see Hylleberg et al., 1990).

AR(5) is a test for 5th-order residual serial correlation: see Godfrey, 1978.

ARCH(4) is a 4th-order residual autoregressive conditional heteroscedasticity test: see Engle, 1982.

NORM is a �2 test for normality: see Jarque and Bera, 1980.

The RESET test is a test of appropriate functional form: see Ramsey, 1969.

The elements in the last 4 columns are p-values.
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Table 3 SARMA Model. (1� �1L)(1 � �4L
4)�1�4'(L)yt = (1 + �1L)(1 + �4L

4)"t.

Variable � �1 �4 �1 �4 AR(5) ARCH(4) NORM

Food 8.93e�5 -0.567 -0.654 0.435 0.156 0.285

(0.002) (0.082) (0.060)

Alcohol 1.44e�4 0.368 -0.451 -0.849 0.011 0.001 0.234

(0.000) (0.093) (0.090) (0.061)

Clothing 1.52e�4 -0.330 -0.589 0.053 0.028 0.319

(0.079) (0.092)

Energy -1.80e�4 0.093 -0.789 -0.886 0.746 0.190 0.056 0.307

(0.001) (0.051) (0.083) (0.042) (0.116)

Other goods 5.56e�4 -0.353 0.104 -0.286 0.0120 0.480 0.460

(0.001) (0.154) (0.160) (0.137)

Services -2.68e�4 -0.365 0.317 0.329 0.221

(0.001) (0.095)

Total 4.98e�4 -0.426 0.742 0.488 0.997

(0.000) (0.091)
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Table 4 Periodic Models.

Variable p SC F (�p;s) AR(4) ARCH(4) NORM FPAR F (t)PAR RPAR lags

Food 4 -1179.22 0.000 0.006 0.158 0.421 2.414** 1.926* 1–4

Alcohol 4 -1027.41 0.000 0.159 0.303 0.976 5.199** 3.266** 1,4

Clothing 4 -1041.68 0.011 0.171 0.256 0.035 5.918** 2.070* 1–4

Energy 4 -910.90 0.000 0.461 0.786 0.512 2.196* 3.255** 1–4

Other goods 5 -1087.03 0.000 0.205 0.959 0.087 2.984** 1.538 1,4,5

Services 5 -1165.96 0.000 0.170 0.182 0.388 2.431** 2.872** 1,4,5

Total 5 -1300.46 0.000 3.222** 2.072* 1,5

SC is the Schwarz criteria: see Schwartz (1978).

F (�p;s) is an F -test of the null hypothesis H0 : �p;s = 0, i.e., a test of whether the order of the model

can be further reduced.

FPAR tests the null of no periodic variation (in the slopes) and is F3p;n�4p�4.

F (t)PAR tests the null of no periodic variation allowing for seasonal trends.
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Table 5 Periodic Integration Tests.

Variable p LR F(1�B) LR(t) F (t)(1�B)

Food 4 2.553 2.630* 0.000 5.326**

Alcohol 4 0.207 4.233** 1.152 1.983

Clothing 4 2.967 8.004** 1.258 2.445*

Energy 4 0.001 3.637** 1.221 7.359**

Other goods 5 0.009 1.801 7.692 0.491

Services 5 0.015 2.606* 11.337* 1.207

Total 5 4.947 3.753** 10.247 3.880**

The LR and LR(t) statistics test the null of periodic integration.

The F(1�B) and F (t)(1�B) statistics test for ‘non-periodic’ integration.

Critical values for LR are 9:24 and 7:52 and for LR(t) 12:96 and 10:50 at the 5% and 10% significance

levels, the corresponding critical values for F -statistic are around 2:69 and 2:13.
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Table 6 RMSFEs for seasonal UK consumption.

h Food Alcohol Clothing Energy Other goods Services Total

BIC�s
1 2.13 3.33� 3.79�� 4.85 2.35�� 2.38�� 1.34��
2 2.40� 4.06� 4.37�� 5.37 3.13�� 3.34�� 2.01��
5 3.13� 5.53 6.20 6.46� 6.11 6.91�� 4.12

10 4.25� 7.77 10.29 8.17 10.69 13.76�� 7.58
PAR�s

1 2.26�� 3.01 3.51�� 4.15 2.28�� 2.51�� 1.24
2 2.43� 3.34 4.02�� 3.75� 2.90�� 3.43�� 1.76
5 3.12� 4.62 5.86 5.22�� 5.35 7.09�� 3.53

10 3.94 6.33 10.16 6.02 9.65 14.19� 6.98��

RPAR�s
1 2.26�� 2.98 3.51�� 4.15 2.12 2.30�� 1.30
2 2.43� 3.40 4.02�� 3.75� 2.74 3.26�� 1.97�
5 3.12� 4.68 5.86 5.22�� 5.13 6.47�� 3.81

10 3.94 6.45 10.16 6.02 9.40 13.22�� 7.33
PIAR�=0

1 2.12�� 2.77 3.53�� 3.87 2.25�� 2.24�� 1.30
2 2.44�� 3.32 3.88� 3.53� 2.71 3.14�� 1.89
5 2.74 4.55 5.43 4.92�� 5.04 5.89 3.54

10 3.37�� 6.57 8.25 5.72 8.98 10.44 6.54��

NPIAR�
1 2.28�� 2.77 3.44�� 3.92 2.44�� 2.22�� 1.34
2 2.41�� 3.37 3.80� 3.55� 2.99� 3.11�� 1.89
5 2.89 4.82 5.79 5.07�� 5.62 6.10� 3.49

10 3.51 7.55 8.72 5.75 10.10 10.84 6.63��

AR�4

1 1.92 3.03� 3.12� 3.75 1.82 2.06� 1.21
2 2.18 3.59� 3.76 3.62� 2.28 2.91 1.70
5 2.58 5.97� 5.35 5.36�� 4.32 5.53 3.36
1 3.33� 9.60�� 8.03 6.84 7.47� 10.72 6.65�

HEGY�

1 1.95 3.48 3.03� 3.76 1.81 2.01 1.15
2 2.19 4.15� 3.51 3.53� 2.29 2.82 1.71
5 2.65 6.94�� 5.22 4.93�� 4.28 5.52 3.30

10 3.52 10.92�� 7.96�� 5.70 7.47� 10.65 6.98
SARMA�=0

1 1.92 2.76 2.79 4.21 1.92 1.90 1.18
2 2.15 3.30 3.45 4.98 2.40 2.68 1.68
5 2.73 5.18 5.32 15.85 4.88 5.43 3.58

10 3.79 8.02 9.34 65.45 9.32 11.03 7.34
�� (�) denotes the forecast model is more accurate (on MSFE) than SARMA at the 10% (20%) level. �� and �

imply less accurate. The test is implemented as in Diebold and Mariano (1995) (i.e., using a uniform window).
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Table 7 Nested tests.

p supLR(�) � FPIAR FNPIAR� FAR�1;�
FNPIAR� ;AR�1;�

Food 4 77.29 1973 6.67 [0.000] 2.33 [0.077] 1.74 [0.065] 1.50 [0.154]

Alcohol 4 75.07 1980 7.15 [0.000] 3.57 [0.016] 3.65 [0.000] 3.48 [0.001]

Clothing 4 57.41 1979 1.58 [0.183] 6.75 [0.000] 3.57 [0.000] 2.23 [0.024]

Energy 4 44.68 1969 2.50 [0.046] 1.13 [0.339] 2.43 [0.007] 2.85 [0.004]

Other goods 5 55.08 1974 2.05 [0.091] 1.52 [0.213] 2.09 [0.022] 1.69 [0.076]

Services 5 78.29 1978 2.46 [0.049] 1.31 [0.274] 1.04 [0.417] 0.71 [0.740]

Total 5 73.59 1974 6.04 [0.000] 0.47 [0.704] 1.59 [0.102] 1.49 [0.136]

p denotes the order of the PIAR model within which the test for a structural break is carried out. The

candidate breakpoints are 1968, 1969, through to 1983. Thus, for the 1968 breakpoint the PIAR model

is estimated on the two sub-samples 1956:1 – 1967:4 and 1968:1 – 1994:4 (for p = 4), and the sum

of the residual sums of squares is compared to the overall (1956:1 – 1994:4) residual sum of squares.

The reported value of � maximises the value of the LR test for a structural change – supLR(�) is the

value of the test statistic. From Andrews (1993), Table 1 an approximate 1% critical value for the PIAR

model with p = 4 is 44:76 (since there are 19 parameters to be estimated, and we are approximately

considering breaks in the range [0:3; 0:7] of the sample). Thus the test outcomes are significiant at the

1% level. Critical values are not tabulated for p = 5 (23 parameters) but crude extrapolation suggests

that the test outcomes would again be significant at the 1% level. The final column reports the test of

the NPIAR model with seasonal mean shifts versus a model in first differences with mean shifts but no

seasonal variation (AR�1;� ). The values in squared brackets are p-values.
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Table 8 RMSFEs for simulated data.

h Food Alcohol Clothing Energy Other goods Services Total

PIAR

No �s �s No �s No �s �s No �s No �s

1 1.77�� 4.16�� 4.73�� 4.58�� 3.01�� 2.04�� 1.20��

2 1.84�� 4.87�� 5.26�� 4.89�� 3.70�� 2.70�� 1.65��

5 2.31� 6.22 7.03�� 6.16�� 5.78�� 4.58�� 2.76��

AR�4

1 1.72 3.99 4.93 4.81 2.52 1.87 1.13

2 1.80 4.50 5.57 5.00 3.21 2.49 1.56

5 2.28 6.19 7.33 6.47 5.48 4.31 2.67
�� (�) denotes the PIAR model is more accurate (on MSFE) than the AR�4

model at the 1% (5%) level.

�� and � imply less accurate. The test is that of Diebold and Mariano (1995).



31

60 70 80 90

9

9.1

9.2

9.3

Food
Q1 Q2
Q3 Q4

60 70 80 90

8.5

8.75

9

Alcohol
Q1 Q2
Q3 Q4

60 70 80 90

7.5

8

8.5

9 Clothing

Q1 Q2
Q3 Q4

60 70 80 90

7.5

8

8.5

Energy
Q1 Q2
Q3 Q4

Figure 1 Time series of quarters: Food, alcohol, clothing, energy.
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