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1 Introduction

The key issue we investigate in this paper is whether agents�beliefs or perceptions about the current

state of the economy a¤ect the future evolution of the economy. In a recent paper, Rodriquez Mora

and Schulstad (2007, p. 1934) argue that:

The beliefs of agents (expressed in the announcement, their available information)

determine the future path of the economy much more than the true events that the

announcement measures.

The assertion is based on the empirical evidence that last quarter�s actual rate of output growth

has no predictive power for the present quarter�s actual rate of output growth once we take into

account the �rst announcement of the rate of output growth in the last quarter. They relate their

results to those of Oh and Waldman (1990, 2005), who report that announcements of the leading

economic indicator a¤ect future activity (as measured by industrial production), and that these

announcements are an important source of expectational shocks. Speci�cally, Oh and Waldman

(2005) show that errors in the initial announcements of the leading indicator a¤ect survey expec-

tations of future activity. Referring to the literature on strategic complementarity, they state that

[p.75]:

if all agents suddenly revised upwards their beliefs concerning the production plans

of other agents - even if there were no change in any real variable - the result would be

a type of self-ful�lling increase in the future level of production

which would be consistent with their earlier �ndings that false announcements a¤ect the future

evolution of the economy. As they note, the importance of expectational errors for business cycle

�uctuations dates back to an earlier literature associated with such luminaries as Keynes and Pigou,

as well as the more recent literature on sunspot equilibria and strategic complementarities (see Oh

and Waldman (2005) for references).

In this paper we consider an alternative explanation of the �nding by Rodriquez Mora and

Schulstad (2007) which stresses issues to do with measurement, rather than behavioural explana-

tions which suppose agents respond to announcements irrespective of the true state of the economy.

A reason for considering measurement issues is simply that revisions to estimates of the true state

of the economy are ongoing, so that the �true�GDP growth rate in any period will not be de-

termined until a number of years later, and will typically depend on a whole raft of revisions, as

discussed below. There is the very real possibility that the nature of the revisions process may of

itself generate the �ndings that Rodriquez Mora and Schulstad (2007) report.

There has been much interest in the recent literature in the nature of data revisions and the

revisions process, and whether early estimates are e¢ cient forecasts of later, revised estimates, or
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are simply noisy estimates of ��nal�values (see, e.g., Mankiw and Shapiro (1986), Aruoba (2008),

as well as the review in Jacobs and van Norden (2006)). We will consider how the �ndings of

Rodriquez Mora and Schulstad (2007) �t within this literature on �measurement�.1

As well as issues to do with the nature of the revisions process, the question of whether data

vintages matter has also been addressed - do key macroeconomic results or relationships estab-

lished for one particular vintage of data remain relevant for other vintages of data. For example,

Croushore and Stark (2003) examine three major studies in macroeconomics, and �nd that of these

three the results of the seminal paper by Hall (1978) on the rational expectations permanent in-

come hypothesis appear to be dependent on the particular data vintage studied. Runkle (1998),

Orphanides (2001) and Orphanides and van Norden (2005) consider the e¤ects of data revisions

on the conduct of monetary policy and the calculation of output gaps. There has also been much

interest in data vintages and forecasting, as the use of �nal-revised data may give a misleading

impression relative to the use of data available at the time in pseudo real-time forecasting exercises

(see, for example, Diebold and Rudebusch (1991), Faust, Rogers and Wright (2003), and the re-

cent review by Croushore (2006)). Recently, a number of authors have considered how to specify

forecasting models when there are various data vintage estimates of the same observation (see,

e.g., Koenig, Dolmas and Piger (2003), Clements and Galvão (2008b) and Clements and Galvão

(2008a)).

Relative to this burgeoning literature on measurement in the presence of multiple data vintages,

consideration of the impact of early vintage estimates on the �nal value of real output in subsequent

quarters gives rise to a di¤erent line of analysis. Our interest is not in whether the same macro

relationship holds on di¤erent vintages of data, but in a putative relationship that draws on di¤erent

data vintages, namely �rst-release data, and �nal release data. In this paper we consider whether

the recent literature on modelling and testing data revisions is compatible with the �ndings of

Rodriquez Mora and Schulstad (2007).

Our main contribution is to show that the dependence of real output growth on prior �rst

announcements can be viewed as a by-product of the data revision process, rather than revealing

agents responding to �rst announcements. We use two di¤erent models of the dynamics of the

revision process to investigate the relationship between real output growth and �rst announcements,

and the dependence of this relationship on the revisions process. The �rst model supposes that the

true state of the economy is a latent process that may never be observed, and is based on the state-

space model of Jacobs and van Norden (2006) and allows for correlated revisions or �spillovers�. The

1Rodriquez Mora and Schulstad (2007, p. 1926) talk of �noise�in the �rst announcement, but it appears that they

are not using this term in the Mankiw and Shapiro (1986) sense, as discussed below. They do not test for noise,

although their regression (2) of the �nal value on the �rst announcement is a test of news (this is formally equivalent

to the more familiar form of regressing the revision on the �rst announcement), and they reject the news hypothesis.
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second is a vector autoregression that models the various data vintages directly. Both approaches

allow the identi�cation and testing of whether data revisions incorporate news to the measurement

of output growth. Of interest are two related questions: whether these frameworks are capable

of generating the �nding that �rst announcements a¤ect the future course of the economy; and

assuming that they do, whether the predictive power of �rst announcements holds for empirically

relevant regions of the parameter space.

The next section describes the main �ndings of Rodriquez Mora and Schulstad (2007), and

reproduces their estimates on our data set. Section 3 analyses their �ndings within a modelling

framework that characterises data revisions as news or noise processes. Section 4 investigates the

impact of announcements within the vector autoregressive framework which has become the most

popular modelling framework for empirical research since its inception by Sims (1980). Finally,

section 5 o¤ers some concluding remarks.

2 Perceptions and the economy

Rodriquez Mora and Schulstad (2007) argue that �perceptions a¤ect the economy�based on the

empirical evidence they report that shows that last quarter�s actual rate of output growth has no

predictive power for the present quarter�s actual rate of output growth once we take into account

the �rst announcement of the rate of output growth in the last quarter. By �actual�is meant the

estimate published a number of years later, which is assumed to reveal the truth.

Letting yt denote the �nal vintage value of real output growth (GNP/GDP) in quarter t, the

regression:

yt = �0 + �1yt�1 + "t (1)

over the sample period 1967 to 1991, is found to yield a statistically signi�cant estimate �̂1 of around

0:32, giving rise to the standard �nding that post WWII US output growth can be approximated

by a �rst-order autoregression. But if the �rst announcement of growth in t � 1 is included as an
additional explanatory variable, Rodriquez Mora and Schulstad (2007) �nd that the estimate of

the coe¢ cient on yt�1 is no longer statistically signi�cantly di¤erent from zero. Letting ytt�1 denote

the �rst announcement of the value of output in period t � 1 (available one period later- denoted
by the �t�superscript), then the regression model becomes:

yt = �0 + �1yt�1 + �2y
t
t�1 + vt (2)

and we fail to reject the null that then �1 = 0, but reject the null that �2 = 0, with �̂2 equal to

0:36. The �rst announcement has a statistically signi�cant impact on the �nal value, whilst last
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period�s �nal value has no predictive power once the �rst announcement of the value of output in

that period is included.

We begin by replicating these �ndings. Rodriquez Mora and Schulstad (2007) use the �advance�

or �rst announcement (see their footnote 4), made available soon after the end of the quarter.

Our �rst-release series is taken from the monthly vintages of real output growth made available by

the Real-Time Data Set for Macroeconomists (www.philadelphiafed.org, see Croushore and Stark

(2001)), and we use the vintage from the second month in the quarter after the quarter of interest

(which corresponds to the advance report of the Bureau of Economic Analysis, BEA). Here and

throughout we use a number of di¤erent de�nitions of �nal data because of the ambiguity in this

notion. We take the �nal data to be the value after three years of revisions, after six years of

revisions, and the value recorded in the latest available vintage, 2008Q2. We denote these by�
yt+12t

	
,
�
yt+24t

	
and

n
y2008Q2t

o
, respectively, so that yt+12t is the estimate of the value of y in

period t from the data vintage of t+ 12 (12 quarters after the observational period), and so on.

Rodriquez Mora and Schulstad (2007) use GNP data from 1967 to 1991. We will consider a

number of di¤erent sample periods, the longest of which will be 1965Q3 to 2001Q4. By ending the

estimation sample in 2001Q4, all the observations
n
y2008Q2t

o
will have undergone a minimum of

seven years of revisions. But the earliest observations (those for the 1960�s) will have been subject

to nearly forty years of revisions. Every �ve or ten years data are typically subject to benchmark

revisions, re�ecting methodological changes in measurement or collection procedures (including

base year changes), in addition to the �regular revisions� process which normally runs for three

years.2 This motivates the use of the
�
yt+12t

	
as a partial control for benchmark revisions. The

use of
�
yt+12t

	
in place of

n
y2008Q2t

o
in (2) should mitigate the impact of benchmark revisions on

the relationship between the ��nal�and early release. Corradi, Fernandez and Swanson (2007) and

van Dijk, Franses and Ravazzolo (2007) both warn of the consequences of benchmark revisions on

the relationship between �rst and �nal release estimates. The use of
�
yt+24t

	
, the vintage available

six years after the �rst estimate of each observation of the output growth, as a measure of the �nal

series is motivated in section 4.

Hence, our choice of data vintage and estimation sample should ensure that the main di¤erence

between
�
yt+12t

	
and both

�
yt+24t

	
and

n
y2008Q2t

o
as measures of the �nal values is in terms of the

2Data published by the BEA are normally revised up to three years after they are �rst released. In July of each

year there are revisions to the National Accounts data for the �rst quarter of the current year, as well as all the

quarters of the previous three years. Siklos (2008) identi�es eight benchmark revisions in 1966, 1971, 1976, 1981,

1986, 1992, 1996 and 2001, all occurring in the data vintage of the �rst quarter of the year - so, for example, the

1981:1 data set has data up to 1980:4 calculated on a di¤erent basis or de�nition to the 1980:4 vintage data set.

The way which the national accounts data are calculated then remains unchanged until the 1986:1 data set. Base

year changes occurred in 1976, 1985 and 1991. Although we only consider growth rates, the use of a �xed-weighting

method prior to the introduction of chain-weighting in 1996 means that the growth rates of real variables changed,

especially observations not close to the base year.
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e¤ects of benchmark revisions rather than the number of standard revisions they have been subject

to.

When
n
y2008Q2t

o
is taken as the series of �nal values, table 1 reproduces the �nding that the

lagged actual series is insigni�cant when the lagged �rst-release series is included, pointing to the

importance of �rst announcements as opposed to the events which they measure. The size of

the coe¢ cient on the lagged �rst-released data is also larger than that on lagged �nal-data when

instead the �nal series is measured by
�
yt+24t

	
. Clearly there is a degree of collinearity between

the explanatory variables that a¤ects the estimated coe¢ cients� standard errors, whereby even

with an R2 as large as 16% the null hypotheses of the individual insigni�cance of both regressors

cannot be rejected. Because of multicollinearity, we will consider magnitudes of e¤ects and not

just statistical signi�cance, especially when smaller sample sizes are being used. The regressions

involving
n
y2008Q2t

o
and

�
yt+24t

	
will be subject to the e¤ects of benchmark revisions. When we

estimate the regression (2) using
�
yt+12t

	
for the �nal data, the dependence of output growth on

the ��rst announcement�no longer holds. Using the
�
yt+12t

	
series partially controls for benchmark

revisions and indicates that lagged �rst release output growth is not statistically signi�cant, whereas

lagged actual is borderline signi�cant at the 10% level.

Table 1 also presents results using the same period as Rodriquez Mora and Schulstad (2007),

that is, 1967-1991. The broad pattern of results is con�rmed, subject to the caveats about statistical

signi�cance. Finally, we report results for the period 1974-2001, as this matches the sample period

used in the next two sections. Importantly, we �nd that the lagged announcements is the key

explanatory variable when
n
y2008Q2t

o
and

�
yt+24t

	
are used as �nal data, and the lagged actual is

more important when
�
yt+12t

	
are the �nal data.

Finally, the last column records the results of regressing the t + 24 ��nal values� on the t +

12 vintage ��rst announcements�. A telling �nding is that the lagged value of the �nal series is

insigni�cant, and the �earlier�announcement is either statistically signi�cant or has an e¤ect four

or �ve times as large, depending on the sample period. Because the earlier announcement is not

available until 3 years after the observation to which it refers, the signi�cance of this term in the

regression cannot be because agents alter their behaviour in response to it. Instead we suggest

that the signi�cance of the earlier announcement term is due to the data revision process. In the

remainder of the paper we consider whether the data revision process is also able to explain the

signi�cance of the �rst announcement in the �rst three columns of table 1.

In the next two sections we analyse whether these �ndings are consistent with two standard

approaches to modelling data revisions process: the state-space model in section 3 and the vector

autoregressive model in section 4.
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3 A state-space model of data vintages

Generally, the basic statistical framework for modelling data revisions relates a data vintage esti-

mate to the true value plus an error or errors, where the errors are typically unobserved. So the

period t+ s vintage estimate of the value of y in period t, denoted yt+st , where s = 1; : : : ; l, consists

of the true value yt, as well as (in the general case) news and noise components, vt+st and "t+st :

yt+st = yt + v
t+s
t + "t+st :

Data revisions are news when initially released data are optimal forecasts of later data, so news

revisions are not correlated with the new released data, that is,

Cov
�
vt+st ; yt+st

�
= 0:

Data revisions are noise when each new release of the data is equal to the true value yt plus noise,

so that noise revisions are not correlated with the truth:

Cov
�
"t+st ; yt

�
= 0:

We adopt the framework of Jacobs and van Norden (2006) which stacks the l di¤erent vintage

estimates of yt, namely, yt+1t ; : : : ; yt+lt in the vector yt =
�
yt+1t ; : : : ; yt+lt

�0
, and similarly the vector

of noise revisions "t =
�
"t+1t ; : : : ; "t+lt

�0
and the one of news revisions vt =

�
vt+1t ; : : : ; vt+lt

�0
, so

that yt = yt + vt + "t. One way of de�ning a revisions process with the required characteristics

is to assume a process for yt, for example, an AR(1) with iid disturbances �1t, plus a sum of iid

disturbances �2t:

yt = �1yt�1 +R1�1t +
lX
i=1

�vi�2t;i: (3)

and then specify vt and "t as:

yt266666664

yt+1t

yt+2t

yt+lt

377777775
= yt

fvtg ���������������������������!

�

2666666664

�v1 �v2 : : : �vl

�v2
. . .

0 �vl

3777777775

266666664

�2t;1

�2t;2

�2t;l

377777775
+

f"tg266666664

�"1�3t;1

�"2�3t;2

�"l�3t;l

377777775
; (4)

where �t = [�1t;�
0
2t;�

0
3t] is iid, E (�t) = 0, with E (�t�

0
t) = I. Thus �v1 ; :::; �vl are standard

deviations of �2t;1; :::; �2t;l processes, �"1 ; :::; �"l are standard deviations of �3t;1; :::; �3t;l processes,

and R1 = ��1 is the standard deviation of the disturbances of the underlying AR(1) process for the

true values. Therefore, the �rst estimate of yt, yt+1t , estimates yt with noise (�"1�3t;1) and a news

term consisting of l separate components (�
Pl
i=1 �vi�2t;i). Later estimates are also characterised
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by noise, but fewer news components and therefore provide more accurate estimates of yt. If �vl = 0

and �"l = 0 the l-vintage value is the true value, y
t+l
t = yt.

Combining equation (4) with the statistical process for yt, equation (3), the speci�cation implies

that the set of revisions, yt � iyt = vt + "t (i an l � 1 vector of ones) is uncorrelated with yt when
there is no news (vt = 0), i.e., E ("tyt) = 0 by the assumption that E (�t�

0
t) = I. As a consequence,

when revisions are pure noise:

yt � iyt = "t, so that E ("tyt) = 0:

Combining equations (4) and (3) also implies that the revisions are uncorrelated with yt when there

is no noise ("t = 0), because then: yt+st = yt+�
t+s
t = �1yt�1+R1�1t+

Pl
i=1 �vi�2t;i�

Pl
i=s �vi�2t;i =

�1yt�1+R1�1t+
Ps�1
i=1 �vi�2t;i. Hence E

�
vt+st yt+st

�
= 0 since �st = �

Pl
i=s �vi�2t;i, for s = 1; : : : ; l.

As a consequence, when revisions are pure news:

yt+st = �1yt�1 +R1�1t +
s�1X
i=1

�vi�2t;i, so that E
�
�t+st yt+st

�
= 0:

The model can be cast in state-space form (SSF), where the transition equations are described by:

�t+1 = T�t +R�t+1

�t+1 =

2666664
yt

yt�1

vt+1

"t+1

3777775 ; T =
2666664
�1 0 0 0

1 0 0 0

0 0 T3 0

0 0 0 T4

3777775 ; R =

2666664
R1 R3 0

0 0 0

0 �U1:diag(R3) 0

0 0 R4

3777775 ; �t =
2664
�1t

�2t

�3t

3775
(5)

Here, R3 = [�v1 : : : �vl], U1 is an upper-triangular matrix of ones, and R4 = diag (�"1 ; : : : ; �"l).The

measurement equation is:

yt = yt + Ilvt + Il"t (6)

This SSF gives the setup we have described when T3 = 0 and T4 = 0, but otherwise allows for

what Jacobs and van Norden (2006) refer to as �spillover e¤ects�.

3.1 Implications of the SS Model of data revisions for the Rodriquez Mora and

Schulstad (2007) regression estimates

Given this statistical model of data revisions, we can calculate the least-squares population values

of the coe¢ cients in the regression (2) for both news and noise revisions. We begin by assuming

the absence of spillovers (T3 = 0 and T4 = 0) and that vt+lt = "t+lt = 0, so that yt+lt = yt. That is,

we assume that the series taken as �nal values are equal to the true values. Our �ndings for this

case are recorded in the following proposition (with detailed proofs con�ned to the appendix).
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Proposition 1. When the revisions process is given by the measurement and transition equations

in (6) and (5), and assuming that the �nal values are the true values, vt+lt = "t+lt = 0, then the

population values of the parameters in the regression model (2) are �1 = � and �2 = 0 under both

pure news and pure noise data revisions processes in the absence of spillovers.

Suppose there are news and noise spillovers of the type that C
�
vt+st ; vt+s�1t�1

�
= �V

�
vt+s�1t�1

�
and C

�
"t+st ; "t+s�1t�1

�
= �V

�
"t+s�1t�1

�
for s = 1; : : : ; l. This suggests that the extent of the upward

revision to one period (say, t) is related to the extent of the upward revision to the previous period

(t � 1). In other words, the revisions are serial correlated. If we allow for this type of spillover,
then the true process for yt in the SS model (eq. 3) needs to be amended to

yt = �1yt�1 +R1�1t +
lX
i=1

�vi�2t;i � �vtt�1;

to re�ect the fact that

vt+1t = �vtt�1 �
lX
i=1

�vi�2t;i:

The results for when we allow spillovers of this sort are collected in the following proposition.

Proposition 2. When the revisions process is given by the measurement and transition equations

in (6) and (5), while news and noise spillovers are allowed, and maintaining the assumption that

vt+lt = "t+lt = 0, the population values of �1 and �2 in (2) are �1 = �+ � and �2 = �� for news
revisions, and �1 = � and �2 = 0 for noise revisions.

Thus the coe¢ cient on the lagged �rst-announcement, �2, equals zero when there are noise

spillovers, but is non-zero in the presence of news spillovers. Moreover, in the case of news spillovers

�1 + a2 = �.

Suppose now that the �nal series yt+lt does not reveal the truth, as either vt+lt 6= 0 or "t+lt 6= 0.
We collect our results in two propositions, treating the case of noise and news revisions separately.

Proposition 3. When the revisions process is given by the measurement and transition equations

in (6) and (5) but with only noise revisions, and when in addition "t+lt 6= 0, in general �1 6= � and
�2 6= 0, and the values of �1 and �2 depend on the properties of the revisions process. However, we
can establish a number of interesting special cases, notably, i) if � = �, then �1 = � and �2 = 0;

ii) if � > 0, � > 0, and � > �, then 0 < �2 < � � �, and iii) if � = 0, then �1=�2 = V"1=V"l, the
ratio of the variances of the �rst and last noise components.

Proposition 4. When the revisions process is given by the measurement and transition equations

in (6) and (5) but with only news revisions, and when in addition vt+lt 6= 0, then �1 = � and �2 = 0
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when � = 0. When � 6= 0, �1 � �+ � and �2 � ��, where the approximations depend on � being
small.

Hence, if the SSM is a good model of the data revisions process, we would expect to �nd �2

non-zero in (2) when either: revisions are noisy, and the series of �nal observations remain noisy

estimates of the true values, i.e., "t+lt 6= 0; or, revisions are news, and the news revisions are

correlated (irrespective of whether the �nal series reveal the true values).

3.2 Empirical Assessment of Analytical Results

We have established that the characterisation of revisions as news or noise may a¤ect whether

announcements matter, in the sense that �2 6= 0 in regression (2). Revisions are de�ned as reducing
noise if the initial estimate is an observation on the �nal series but measured with error, in which

case the revisions are uncorrelated with revised data, but typically are correlated with data available

when the initial estimate was made. Hence noisy revisions are predictable. Alternatively, revisions

contain news if the initial estimate is an e¢ cient forecast of the revised data or �nal value, such

that the revision is unpredictable from information available at the time the initial estimate was

made.3 We test for news and noise revisions using, respectively, the following regressions:

yft � yt+1t = �+ �yt+1t + !1t (7)

yft � yt+1t = �+ �yft + !2t (8)

where the null hypothesis is that � = � = 0 in both cases. yft is one of the three estimates of

the �nal value, yt+12t , yt+24t , y2008Q2t , and we also include tests of the revisions between yt+12t and

yt+24t , and between yt+24t and y2008Q2t .

Table 2 summarises our results. Focusing �rstly on revisions that include the initial data (yt+1t ),

a key �nding is that the revisions from the initial data to the 3 and 6 year vintages (yt+12t , yt+24t )

appear to be characterised as news (although the news hypothesis would be rejected at the 10%

level for the longer-period revision). The news hypothesis is clearly rejected for the revision to the

2008Q2 vintage. For the revision from the 6-year vintage to the 2008Q2 vintage we also reject the

news hypothesis. In nearly all cases, and in all cases of revisions involving �rst announcements, the

noise hypothesis is rejected. In summary, it appears that revisions between the �rst release and

three years later can be characterised as containing news, whereas longer period revisions are more

di¢ cult to characterise.

This pattern of results suggests that the nature of the revisions process is in�uenced by bench-

mark revisions. Generally, the �rst three years of revisions are based on new information and

enhance the estimates, and consequently show up as news revisions, whereas revisions after three

3See Mankiw and Shapiro (1986) for an early contribution: they found that revisions to real output added news.

See also Croushore and Stark (2003) and Aruoba (2008).
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years are essentially benchmark revisions of a methodological nature which provide little new in-

formation on more distant past observations.4 For example, the base year changes that formed

part of the benchmark changes in 1976, 1985 and 1991 disproportionately a¤ected more distant

observations under the �xed-weighting scheme and are likely to have contributed to the rejection

of the news hypothesis when revisions are calculated using the 2008Q2 vintage data.

We use these �ndings to guide the speci�cation of our empirical SS model. However, it is

important to appreciate at the outset that the SS model is not designed to capture the structural

changes that constitute the benchmark revisions, and it is not clear how this could best be done

(but van Dijk et al. (2007) o¤er a promising approach). We would hope to be able to model the

regular revisions that characterise the data for up to three years, but doubt that such a model will

prove adequate for the 2008Q2 vintage.

We make a number of adjustments and simpli�cations to the general framework of section 3

to facilitate the estimation of the SSM, and to more accurately estimate the parameters that the

analytical results in section 3.1 suggest are key to determining the apparent relationship between

real growth and early announcements. The population values of the parameters �1 and �2 in (2)

depend on the process for the true data, yt, on the nature of the revisions (news, noise; spillovers),

and on whether yt is observable (that is, whether yt+lt = yt). When yt is only observable with error

(�"l 6= 0), the size of the measurement error also a¤ects the values of �1 and �2. Based on table
2, it appears we can set �"1 = �"2 = : : : = �"l = 0. Estimating the variance of the news revisions

turned out to be di¢ cult unless we assume that �vl = 0.
5 Setting �vl = 0 implies that y

t+l
t = yt

in the absence of noise, so a pragmatic solution is simply to allow measurement error only for the

last vintage (yt+lt ).

Although we have data vintages from t+1 to t+24, and 2008Q2, we select only some vintages

to use in the estimation of the model. This keeps parameter proliferation in check while providing

enough information to accurately estimate the parameters of interest. Speci�cally, we use:

yt =
�
yt+1t ; yt+4t ; yt+8t ; yt+12t ; yt+24t ; y08:Q2t

�0
:

Given the above speci�cation of the revision process, the state vector is:

�t =
�
yt; yt�1; v

t+1
t ; vt+4t ; vt+8t ; vt+12t ; vt+24t ; v08:Q2t ; "08:Q2t

�0
;

where we assume �v08:Q2 = 0. The data suggest that the news revisions are serially correlated - the

4Aruoba (2008) takes the view that three years of revisions account for the information content of the revisions

to US macro variables.
5�vl appears to be poorly identi�ed. Jacobs and van Norden (2006, Table 3) appear to �nd the same: their

estimate of �vl (also when only allowing news) is ten times larger than the other news variances.
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spillover phenomenon described in section 3.1. The T matrix of equation (5) is speci�ed as:

T =

26666666666666666664

� 0 �� 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 � 0 0 0 0 0 0

0 0 0 � 0 0 0 0 0

0 0 0 0 � 0 0 0 0

0 0 0 0 0 � 0 0 0

0 0 0 0 0 0 � 0 0

0 0 0 0 0 0 0 � 0

0 0 0 0 0 0 0 0 0

37777777777777777775

:

We also add a constant to the yt equation. Figure 1 present smoothed estimates of the state variables

including con�dence intervals using data from 1975:Q3. The crucial estimates are �̂ = :41, �̂ = �:11
and �2

"08:Q2t

= :048, all of which are statistically signi�cant at the 5% level.

From the estimated parameters of the SSM we can deduce the values of �1 and �2 in (2).

As a check on the usefulness of the analytical results for small samples, we simulate data from

the estimated SSM and calculate the Monte Carlo estimates (as averages over replications) of

quantities of interest, such as the parameter estimates and rejection frequencies of tests of the

signi�cance of the parameters. The results reported in table 3 are based on two sample sizes,

T = 150 and T = 1; 000. In the �rst case the researcher has just over 37 years of quarterly

data. For each simulated series of size T from the data generating process, the estimated SSM, we

estimate equation (2) and record whether the null hypotheses that �1 = 0 and that �2 = 0 are

rejected at the 5% level using t-tests with robust standard errors. Table 3 presents the average

estimates over replications and the proportion of replications that the null hypothesis was rejected

assuming di¤erent vintages as �nal data (all vintages incorporated in the state-space model).

Consider �rstly the two regressions based on using yt+24 and yt+12 respectively as the �nal

values, and ytt�1 as the second explanatory variable, when T takes on the empirically relevant value

of 150. Given the speci�cation of the revisions process, i.e., news spillovers, Proposition 4 predicts

that �1 = �+ � = :41� :11 = :30, and �2 = �� = :11, which is a close match to the Monte Carlo
estimates of these quantities. The Monte Carlo point estimates are 0:293 for �1 for both yt+24

and yt+12, and 0:099 and 0:098 respectively for �2. The simple analytical formulae do not apply

directly when there is measurement error, as when y2008Q2t are used as �nal values, but nevertheless

the clear �nding is that lagged output is more important than the lagged �rst announcement, both

in terms of magnitude, and in terms of its statistical signi�cance. For both yt+24 and yt+12, the

rejection frequency of �2 = 0 is only around 0:09, while that for a1 = 0 is around one half. If

instead we set T = 1; 000 the rejection frequency for �1 = 0 is approximately one, and that for

�2 = 0 increases, but the relative magnitudes of the sizes of the estimated e¤ects of lagged �nal

12



output and lagged �rst announcements is clearly at odds with the �ndings of Rodriquez Mora and

Schulstad (2007), and with our empirical �ndings when yt+24 and y2008Q2 are used as �nals.

The key �nding is that the SSM is only able to capture the aspects of the data revisions process

that relate to �regular revisions�. The yt+12t vintage consists mainly of regular revisions to yt+1t .

Hence the Monte Carlo estimates of the regression (2) based on the estimated SSM match the

empirical �ndings when we consider the relationship between yt+12t , and yt+11t�1 and ytt�1. The SSM

does not capture the structural aspects of the benchmark revisions that generate the empirical

correlation between yt+24t and ytt�1 (or between y
2008Q2
t and ytt�1) so that the simulation results for

this case do not match the empirical �ndings, and are similar to those for yt+12t . In principle the

SSM is capable of generating the �nding that the �rst announcement a¤ects output growth, but

this would require a news spillover (�) over twice as large as the empirical estimate.

4 A vector autoregressive model of data vintages

The vector autoregression (VAR) is an alternative to the SSM for modelling di¤erent data vintages

(see e.g., Garratt, Lee, Mise and Shields (2006)). Whereas the news and noise components in

the SSM are unobserved, the VAR models the relationship between observables directly without

recourse to additional latent variables. This allows the use of models of data revisions with more

complex dynamics. Models which allow for potential instabilities caused by benchmark revisions

have been used in related contexts, such as the �exible time-varying parameter (TVP) model of

van Dijk et al. (2007), but for our current purposes the constant-parameter VAR will be used.

We require a systems model of the set of di¤erent data estimates in order to be able to simulate,

whereas the TVP model of van Dijk et al. (2007) is a single-equation forecasting model.

To motivate our approach, suppose that there are just two vintages, and the second vintage (i.e.,

the �rst revision) reveals the truth (so ytt�2 = yt�2). The vector of endogenous variables consists

of the new information that becomes available at period t, Yt =
�
ytt�1; y

t
t�2
�0. At period t we also

observe ytt�3, y
t
t�4; : : : ; etc., but under the assumption that the second vintage reveals the truth,

ytt�3 = y
t�1
t�3 = yt�3, which was in the period t� 1 data set. As we are modelling growth rates, it is

reasonable to assume that the elements of Yt are stationary so that Yt has a Wold representation.

We assume that this can be approximated by a �nite order VAR of order p:

Yt = �0 +

pX
i=1

�iYt�i + "t

where Yt�i =
�
yt�it�1�i; y

t�i
t�2�i

�
. "t = ("1t; "2t)

0 are the innovations to the variables
�
ytt�1; y

t
t�2
�
based

on the information set comprising It�1 = fYt�1; Yt�2; : : :g, and in general will be correlated, so that

 = E ("t"

0
t) is non-diagonal.

Within this framework, a more general version of the �news hypothesis� can be tested and

applied as a restriction on the VAR if warranted. The simple news hypothesis is often implemented
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as a test of E
�
yt+2t � yt+1t j yt+1t

�
= 0, i.e., the revision to the �rst estimate is unrelated to the

�rst estimate. The more general version is E
�
yt+2t � yt+1t j It+1

�
= 0, so that the revision does

not vary systematically with past values of Yt+1, Yt; : : :. In terms of the VAR this requires that

2 = 0, 1;2;1 = 1, 1;2;2 = 0 and i;2;j = 0 for all i > 1 and j = 1; 2, where �0 = (1; 2)
0, and

i;j;k = �i[j;k] (the j; k element of �i). Hence y
t
t�2 = y

t�1
t�2 + "2t with E ("2t j It�1) = 0.

As noted in section 2, data revisions are ongoing, but suppose there are q revisions before

the truth is revealed. This suggests a q + 1 dimensional Yt, Yt =
�
ytt�1; y

t
t�2; : : : y

t
t�q�1

�0, where
ytt�q�2 = y

t�1
t�q�2, so that data on time periods prior to t� q � 1 are already known in period t� 1.

If we model all q revisions using a p-th order VAR, there will be p � (q + 1) slope coe¢ cients in
each of the q + 1 equations. Our interest is primarily in the variables in regression (2), that is, the

�rst estimate and a measure of ��nal�output growth. There would be no loss of information in

estimation if we simply estimated the 2-variable system consisting of the VAR equations for ytt�1
and ytt�q�1. Formally this amounts to estimating the equation system given by:

S0Yt = S0�0 +

pX
i=1

S0�iYt�i + S"t

Y
(2)
t = �

(2)
0 +

pX
i=1

�
(2)
i Yt�i + "

(2)
t (9)

where the 2� 1 vector Y (2)t � S0Yt, etc., and S is the (q + 1)� 2 selection matrix that picks up the
�rst and last elements of Yt. However there would be a loss of information in using the estimated

model to simulate data as the second through to q-estimates are no longer modelled. We make a

further simpli�cation and instead estimate bivariate VARs for Yt =
�
ytt�1; y

t
t�q�1

�0. Relative to (9),
the explanatory variables are lags of

�
ytt�1; y

t
t�q�1

	
, as opposed to lags of

�
ytt�1; y

t
t�2; : : : ; y

t
t�q�1

	
.

The advantages are that we are able to entertain a longer number of lags and the estimated model

can be used to simulate data.

4.1 Speci�cation issues and empirical results

We estimate two VAR models to investigate the dynamic relationships between the �rst and �nal

data. In the �rst, VARq=12, the �nal data were taken to be the data estimates made three years

(q = 12) after the time period to which the observation refers, and in the second case, VARq=24,

the �nal data are the estimates after six years (q = 24). For the �rst VAR we set p = 12, and for

the second p = 24.

Consider VARq=12 with Yt =
�
ytt�1; y

t
t�12

�0. The second equation in the VAR allows ytt�12 to
depend on

�
yt�1t�2; : : : ; y

t�12
t�13; y

t�1
t�13; : : : ; y

t�12
t�24

	
. That is, the period t estimate of t� 12 (assumed to

be the �nal value of y in t � 12) can depend on estimates of more recent observations (say, y at
time t� 2) provided those estimates are vintage-dated earlier than t. The choice of q = 12 re�ects
the fact that regular revisions typically occur for the �rst three years, as discussed in section 2. For
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VARq=12 the news hypothesis (i.e., E
�
ytt�12 � yt�11t�12 j It�11

�
= 0) requires that the coe¢ cient on

yt�11t�12 in the equation for y
t
t�12 is unity, and the coe¢ cients on

�
yt�12t�13, y

t�11
t�23, y

t�12
t�24

	
in the equation

for ytt�12 are all zero.

VARq=24 has Yt =
�
ytt�1; y

t
t�24

�0 and p = 24. This is to approximate taking the �nal values

from the last available data vintage. Hence these �nal data will contain benchmark revisions as well

as regular revisions. Using
n
y208Q2t

o
as �nal values would be inconsistent with the interpretation

of the elements of the vector Yt as the new information that is revealed at period t, as the latest

vintage values are not revealed until t = 2008Q2.6 We also need to increase the lag length for the

second VAR if we wish to allow the news hypothesis to be incorporated as a special case. The news

hypothesis requires that E
�
ytt�24 � yt�23t�24 j It�23

�
= 0, so that the VAR needs to include yt�23t�24, the

23rd lag of ytt�1 (the �rst element of Yt).

We estimated the two VARs on the common sample period 1977:3 to 2004:4. We then simulated

data from the estimated VARs, and ran the Rodriquez Mora and Schulstad (2007) regression,

recording the Monte Carlo estimates of the estimated parameters as well as the rejection frequencies

of the standard t-tests of the hypotheses of the individual insigni�cance of the two explanatory

variables. The model disturbances were drawn from a bivariate normal distribution with covariance

structure equal to that of the VAR residuals. We simulate T + 300 observations, and discard the

initial 300 observations to minimise the impact of initial values. As in the case of the SSM, of

interest is whether the VAR is able to reproduce the underlying data generation process su¢ ciently

well that the empirical �ndings hold in the simulated data.

We also estimated both VARs models imposing the restrictions of news revisions. For both

cases q = 12; 24; we are not able to reject the restrictions imposed by the news hypothesis using a

Wald statistic (details available on request). However, imposing the news hypothesis does have a

signi�cant impact on some of our simulation results, as we explain below. This apparent anomaly -

the restricted and unrestricted models used as data generating processes yield marked di¤erences in

terms of estimates of equation (2), even though one is a valid restriction of the other - we attribute to

the relatively large number of model parameters compared to the available number of observations,

resulting in the imposition of the restriction having only a small e¤ect on the maximised value of

the model likelihood function.

We �rstly consider the results when the news restriction is not imposed. The results are recorded

in the �rst two columns of table 4 for T = 150, 1; 000. When T = 150, we �nd that the magnitude of

the e¤ect of the �rst announcement is larger than that of lagged growth in the �rst VAR (VARq=24,

using yt+24 as �nals), and the �rst announcement is more often signi�cant. In the second VAR

(VARq=12) for yt+12 the situation is reversed. The lagged �nal value has the larger coe¢ cient

and is more often signi�cant. For the larger sample size the rejection frequencies accentuate the

6Formally, we could write Yt =
�
ytt�1; y

t
t�1

�0
for all t prior to 2008Q2, as for these t no �nal values are revealed.
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importance of the �rst announcement for yt+24, and the importance of the lagged �nal value for

yt+12. These �ndings are in tune with the empirical estimates recorded in table 17: especially

that the signi�cance of the �rst announcement in (2) depends on whether the �nal series contains

benchmark revisions (yt+24) or not (yt+12). The use of long lags in the VAR (especially VARq=24)

results in a model which is better able to capture the e¤ects of benchmark revisions than the SSM:

the VARq=24 adequately captures the relationship between the initial data and that revised six

years later.

Consider now the impact of imposing the news hypothesis on the VAR models, and using the

restricted VAR models in the Monte Carlo. The results are recorded in the �nal two columns of

table 4. The results for VARq=24 are little changed. Recall from table 2 that we failed to reject both

the news and noise hypotheses for yt+24. For yt+12 the e¤ect of imposing the news hypothesis is to

push the estimated value of �1 close to zero and double the size of �2, pointing to the importance of

�rst announcements in (2). This is markedly at odds with the empirical �ndings for yt+12 reported

in table 1, and suggests that the characterisation of revisions between t+1 and t+12 as being purely

news is too simplistic: in table 2 we found that the news hypothesis was borderline signi�cant at

the 10% level. This suggests a more complex dynamic process for revisions than that they are

simply news, and that the unrestricted VAR captures this reasonably well.

We also use a VAR with q = 12 to model the revision processes of ytt�12 and y
t
t�24, and the

simulation results with this data-generating process are presented in the last two columns of table

4. The imposition of the news hypothesis has a minor e¤ect on the estimates, in agreement with

the results of table 2. Comparing the estimates of equation (2) using the VAR data generating

process and the results using the actual data in the last column of table 1, we conclude that in

general the VAR model with the imposition of the news hypothesis is a good representation of the

revision process from the t + 12 up to the t + 24 vintage. Between these two vintages, the lagged

value of the t+ 12 vintage a¤ects yt+24 but the lagged ��nal�value (yt�1) is insigni�cant.

5 Conclusions

In the recent literature the correlation between real output growth and the �rst announcement

of growth in the previous period (controlling for lagged real output growth) has been given a

7For example, in table 4 we obtain Monte Carlo estimates of �2 of 0:221 and 0:126 respectively for yt+24 and

yt+12, compared to empirical estimates in table 1 of 0:238 and 0:124 for the comparable sample period (1974�2001).

The Monte Carlo results also indicate that whereas a2 = 0 is only rejected a third of the time for yt+24 when T = 150,

the rejection frequency is close to one when T = 1; 000, suggesting that the lack of signi�cance we �nd empirically

might be due to the small sample size.

16



behavioural interpretation: agents respond to the �rst announcement, and this a¤ects the future

course of real output growth. We show that instead this correlation can be viewed as a by-product of

the data revision process, and in particular, is occasioned by the structural changes that accompany

benchmark revisions. The importance of the �rst announcement is found to depend crucially on

whether the series taken as the �nal estimates of real output contains primarily regular revisions

that add news to the initial estimate, or also includes benchmark revisions.

We analyse whether two popular modelling frameworks for data revisions are able to adequately

model the relationship between the initial and ��nal�data to the extent that data simulated from

these models matches the empirical data in certain respects. Namely, �rst announcements do not

have predictive power for three-year revised �nal values, but do appear to explain six-year revised

�nals. The state-space modelling framework that characterises data revisions as (unobservable)

news and noise processes a¤ecting a (generally unobserved) true value does not match the empirical

�ndings, although our analytical results suggest that it would do so were revisions news with a

larger spillover e¤ect. That is, the �rst-announcement of output growth would help predict future

output growth even controlling for lagged output growth if data revisions add new information

to the measurement of output growth and are negatively serial correlated. In contrast, a vector-

autoregression in terms of observables provides a closer match to the empirical �ndings for the

six-year revised �nal series, but is unable to explain the empirical �ndings for the three-year revised

�nal series if we assume that revisions are purely news within this framework.

Given the high degree of collinearity between the two explanatory variables, the �rst announce-

ment of the lagged value, and the ��nal� lagged value, of output growth, and the complexity of

the revision process between the �rst and �nal value, it is perhaps unsurprising that the relative

importance of the two explanatory variables depends on the de�nition of ��nal�. The two modelling

approaches we consider help to partially illuminate some aspects of the problem, but neither serves

as a comprehensive statistical framework. However taken together they are su¢ ciently informative

to indicate that the presumption that the �rst announcement has a causal impact on future output

growth appears unwarranted.
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A Proofs of Propositions

For the state space data generating process outlined in section 3, we derive the population values

of �1 and �2 in equation (2).

In the general case we allow that yt+lt 6= yt, because either �vl 6= 0 and/or �"l 6= 0.
From section 3 we have that:

yt+1t = yt + v
t+1
t + "t+1t , yt+lt = yt + v

t+l
t + "t+lt and yt = �yt�1 +R1�1t � vt+1t .

Allowing for news spillovers, vt+1t = �vtt�1 �
Pl
i=1 �vi�2t;i, v

t+l
t = �vt+l�1t�1 � �vl�2t;l; and for

noise spillovers, Cov
�
"t+1t ; "tt�1

�
= �V

�
"tt�1

�
.

The population values of �1 and �2 in the equation (2) are given by:

�1 =
V (ytt�1)C(y

t+l
t ; yt+l�1t�1 )� C(yt+l�1t�1 ; ytt�1)C(y

t+l
t ; ytt�1)

V (yt+l�1t�1 )V (ytt�1)� C(y
t+l�1
t�1 ; ytt�1)

2
:

�2 =
V (yt+l�1t�1 )C(yt+lt ; ytt�1)� C(yt+l�1t�1 ; ytt�1)C(y

t+l
t ; yt+l�1t�1 )

V (yt+l�1t�1 )V (ytt�1)� C(y
t+l�1
t�1 ; ytt�1)

2
:

To compute these values one needs to compute the required moments: (1) C(yt+lt ; ytt�1); (2)

C(yt+l�1t�1 ; ytt�1); (3) C(y
t+l
t ; yt+l�1t�1 ); (4) V (ytt�1), and (5) V (y

t+l�1
t�1 ). To compute these moments,

we use the following notation:

Vy = V (yt) ;

Vv1 = V

 
lX
i=1

�vi�2t;i

!
; Vvl = V

�
�vl�2t;l

�
;

V1;l = C
�
vt+1t vt+lt

�
; V11 = C

�
vt+1t vt+1t

�
;

V"1 = V
�
"tt�1

�
; V"l = V

�
"t+l�1t�1

�
:

(1A)

C(yt+lt ; ytt�1) = Cov
h�
yt + v

t+l
t + "t+lt

� �
yt�1 + v

t
t�1 + "

t
t�1
�i

= Cov (ytyt�1) + Cov
�
ytv

t
t�1
�
+ Cov

�
yt�1v

t+l
t

�
+ C

�
vt+lt vtt�1

�
= �Vy + (�� �)Cov

�
yt�1v

t
t�1
�
� �V11 + �Cov

�
yt�1; v

t+l�1
t�1

�
+ �V1;l

(2A)

C(yt+l�1t�1 ; ytt�1) = Cov
h�
yt�1 + v

t+l�1
t�1 + "t+l�1t�1

� �
yt�1 + v

t
t�1 + "

t
t�1
�i

= V (yt�1) + C
�
yt�1v

t
t�1
�
+ C

�
yt�1v

t+l�1
t�1

�
+ Cov

�
vt+l�1t�1 ; vtt�1

�
= Vy + C

�
yt�1v

t
t�1
�
+ C

�
yt�1v

t+l�1
t�1

�
+ V1;l
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(3A)

C(yt+lt ; yt+l�1t�1 ) = C
h�
yt + v

t+l
t + "t+lt

��
yt�1 + v

t+l�1
t�1 + "t+l�1t�1

�i
= Cov (ytyt�1) + C

�
ytv

t+l�1
t�1

�
+ C

�
yt�1v

t+l
t

�
+ C

�
vt+lt vt+l�1t�1

�
+ C

�
"t+lt "t+l�1t�1

�
= �V (yt�1)� �C

�
yt�1v

t
t�1
�
+ �C

�
yt�1v

t+l�1
t�1

�
� C

�
vt+1t vt+l�1t�1

�
+

+�C
�
yt�1v

t+l�1
t�1

�
+ �V

�
vt+l�1t�1

�
+ �V

�
"t+l�1t�1

�
= �V (yt�1)� �C

�
yt�1v

t
t�1
�
+ (�+ �)C

�
yt�1v

t+l�1
t�1

�
+ �V

�
"t+l�1t�1

�
= �Vy + (�+ �)C

�
yt�1v

t+l�1
t�1

�
+ �V"l � �C

�
yt�1; v

t
t�1
�

(4A)

V
�
ytt�1

�
= V (yt�1) + V

�
vtt�1

�
+ V

�
"tt�1

�
+ 2C

�
yt�1v

t
t�1
�

= Vy + V11 + V"1 + 2C
�
yt�1v

t
t�1
�

(5A)

V
�
yt+l�1t�1

�
= V (yt�1) + V

�
vt+l�1t�1

�
+ V

�
"t+l�1t�1

�
+ 2C

�
yt�1v

t+l�1
t�1

�
= Vy + V1;l + V"l + 2C

�
yt�1v

t+l�1
t�1

�
All these moments can be further simpli�ed by using that:

V1;l = Vvl
�
1� �2

��1
V11 = Vv1

�
1� �2

��1
:

C
�
yt�1v

t+l�1
t�1

�
= ��C

�
yt�2v

t+l�2
t�2

�
� V1l = �V1l(1� ��)�1 = �Vvl(1� ��)�1(1� �2)�1:

C
�
yt�1v

t
t�1
�
= �V11(1� ��)�1 = �Vv1(1� ��)�1(1� �2)�1:

Re-writing using previous results:

(1B)

C(yt+lt ; ytt�1) = �Vy + (�� �)Cov
�
yt�1v

t
t�1
�
� �V11 + �Cov

�
yt�1; v

t+l�1
t�1

�
+ �V1;l

=
�
Vy� (1� ��)� �

�
1� �2

�
V11 � ��2V1;l

�
(1� ��)�1

(2B)

C(yt+l�1t�1 ; ytt�1) = Vy + C
�
yt�1v

t
t�1
�
+ C

�
yt�1v

t+l�1
t�1

�
+ V1;l

= [Vy (1� ��)� V11 � ��V1;l] (1� ��)�1
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(3B)

C(yt+lt ; yt+l�1t�1 ) = �Vy + (�+ �)C
�
yt�1v

t+l�1
t�1

�
+ �V"l � �C

�
yt�1; v

t
t�1
�

= [Vy� (1� ��) + �V"l (1� ��) + �V11 � (�+ �)V1;l] (1� ��)
�1

(4B)

V
�
ytt�1

�
= Vy + V11 + V"1 + 2C

�
yt�1v

t
t�1
�

= [Vy (1� ��) + V"1 (1� ��)� V11 (1� ��)] (1� ��)
�1

(5B)

V
�
yt+l�1t�1

�
= Vy + V1;l + V"l + 2C

�
yt�1v

t+l�1
t�1

�
= [Vy (1� ��) + V"l (1� ��)� V1;l (1� ��)] (1� ��)

�1

Using 5A, 3A, 2A and 1A, the numerator for �1 is:

V (ytt�1)C(y
t+l
t ; yt+l�1t�1 )� C(yt+l�1t�1 ; ytt�1)C(y

t+l
t ; ytt�1) (10)

=
�
Vy + V11 + V"1 + 2C

�
yt�1v

t
t�1
��

�
h
�Vy + (�+ �)C

�
yt�1v

t+l�1
t�1

�
+ �V"l � �C

�
yt�1; v

t
t�1
�i

�
h
Vy + C

�
yt�1v

t
t�1
�
+ C

�
yt�1v

t+l�1
t�1

�
+ V1;l

i
�
h
�Vy + (�� �)Cov

�
yt�1v

t
t�1
�
� �V11 + �Cov

�
yt�1; v

t+l�1
t�1

�
+ �V1;l

i
Using 5A, 1A, 2A and 3A, the numerator of �2 is:

V (yt+l�1t�1 )C(yt+lt ; ytt�1)� C(yt+l�1t�1 ; ytt�1)C(y
t+l
t ; yt+l�1t�1 ) (11)

=
h
Vy + V1;l + V"l + 2C

�
yt�1v

t+l�1
t�1

�i
�
h
�Vy + (�� �)Cov

�
yt�1v

t
t�1
�
� �V11 + �C

�
yt�1v

t+l�1
t�1

�
+ �V1;l

i
�
h
Vy + C

�
yt�1v

t
t�1
�
+ C

�
yt�1v

t+l�1
t�1

�
+ V1;l

i
�
h
�Vy + (�+ �)C

�
yt�1v

t+l�1
t�1

�
+ �V"l � �C

�
yt�1; v

t
t�1
�i
:

And the denominator of both expressions using 5A, 4A and 2A is:

V (yt+l�1t�1 )V (ytt�1)� C(yt+l�1t�1 ; ytt�1)
2 (12)

= V (yt+l�1t�1 )V (ytt�1)�
�
Vy + C

�
yt�1v

t
t�1
�
+ C

�
yt�1v

t+l�1
t�1

��2
= V (yt+l�1t�1 )V (ytt�1)�

h
Vy + C

�
yt�1v

t
t�1
�
+ C

�
yt�1v

t+l�1
t�1

�i2
=

�
Vy + V11 + V"1 + 2C

�
yt�1v

t
t�1
��
�
h
Vy + V1;l + V"l + 2C

�
yt�1v

t+l�1
t�1

�i
�
h
Vy + C

�
yt�1v

t
t�1
�
+ C

�
yt�1v

t+l�1
t�1

�
+ V1;l

i2
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A.1 Proof of proposition 1:

When "t+lt = vt+lt = 0; the numerator of �1 (from eq.(10)) is:�
Vy + V11 + V"1 + 2C

�
yt�1v

t
t�1
��
�
�
�Vy � �C

�
yt�1; v

t
t�1
��

�
�
Vy + C

�
yt�1v

t
t�1
��
�
�
�Vy + (�� �)Cov

�
yt�1v

t
t�1
�
� �V11

�
= �VyVy + �VyV11 + �VyV"1 + 2�VyC

�
yt�1v

t
t�1
�

��C
�
yt�1; v

t
t�1
�
Vy � �C

�
yt�1; v

t
t�1
�
V11 � �C

�
yt�1; v

t
t�1
�
V"1 � �C

�
yt�1; v

t
t�1
�
2C
�
yt�1v

t
t�1
�

��V 2y � Vy (�� �)Cov
�
yt�1v

t
t�1
�
� C

�
yt�1v

t
t�1
�
�Vy � C

�
yt�1v

t
t�1
�
(�� �)Cov

�
yt�1v

t
t�1
�

+�V11Vy + �V11C
�
yt�1v

t
t�1
�

= (�+ �)
�
VyV11 � C

�
yt�1v

t
t�1
�2�

+ �
�
Vy � �C

�
yt�1; v

t
t�1
��
V"1

The denominator (from eq. (12)) is:

V11Vy + V"1Vy � C
�
yt�1v

t
t�1
�2

As a consequence, the population value of �1 assuming "t+lt = vt+lt = 0 is:

�1 =
(�+ �)

�
VyV11 � C

�
yt�1vtt�1

�2�
+ �

�
Vy � �C

�
yt�1; vtt�1

��
V"1

V11Vy + V"1Vy � C
�
yt�1vtt�1

�2 (13)

When revisions are pure news, �1 = (�+ �) : When they are either pure noise or news with � = 0,

one has �1 = �. This means that when there is no spillovers, that is, � = 0, for both the cases of

news and noise revisions, one has that �1 = �.

Under the assumption that "t+lt = vt+lt = 0; the numerator of �2 (from equation (11)) is:

V (yt+l�1t�1 )C(yt+lt ; ytt�1)� C(yt+l�1t�1 ; ytt�1)C(y
t+l
t ; yt+l�1t�1 )

= Vy �
�
�Vy � �V11 + (�� �)Cov

�
yt�1v

t
t�1
��

�
�
Vy + C

�
yt�1v

t
t�1
��
�
�
�Vy � �C

�
yt�1; v

t
t�1
��

= ��V11Vy + �C
�
yt�1; v

t
t�1
�2
:

And the population value of �2 assuming "t+lt = vt+lt = 0,

�2 =
��V11Vy + �C

�
yt�1vtt�1

�2
V11Vy + V"1Vy � C

�
yt�1vtt�1

�2 : (14)

This implies that the revisions are news �2 = �, but if there is no spillovers �2 = 0. When revisions

are noise, �2 = 0.

A.2 Proof of Proposition 2:

Using equations (13) and (14), one can show that �1 = � and �2 = 0 when revisions are noise,

while �1 = �+ � and �1 = �� when revisions are news.
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A.3 Proof of Proposition 3:

When "t+lt 6= 0, vt+lt 6= 0, and there is no spillovers, that is, � = � = 0, the numerator (eq. 10) is:

V (ytt�1)C(y
t+l
t ; yt+l�1t�1 )� C(yt+l�1t�1 ; ytt�1)C(y

t+l
t ; ytt�1)

=
�
Vy + V11 + V"1 + 2C

�
yt�1v

t
t�1
��
�
h
�Vy + �C

�
yt�1v

t+l�1
t�1

�i
�
h
Vy + C

�
yt�1v

t
t�1
�
+ C

�
yt�1v

t+l�1
t�1

�
+ V1;l

i
�
�
�Vy + �Cov

�
yt�1v

t
t�1
��

= �VyV11 + �VyV"1

+�C
�
yt�1v

t+l�1
t�1

�
V11 + �C

�
yt�1v

t+l�1
t�1

�
V"1 + �C

�
yt�1v

t+l�1
t�1

�
C
�
yt�1v

t
t�1
�

��VyV1;l � �Cov
�
yt�1v

t
t�1
�2 � �Cov �yt�1vtt�1�V1;l

When � = 0, one can use the following V1;l = Vvl , V11 = Vv1 , C
�
yt�1vtt�1

�
= �Vv1 , C

�
yt�1v

t+l�1
t�1

�
=

�Vvl . Substituting these expressions gives:

= �VyVv1 + �VyV"1 (15)

��VvlVv1 � �VvlV"1 + �VvlVv1
��VyVvl + �V 2v1 + �Vv1Vvl

= �VyVv1 + �VyV"1 � �VvlV"1 � �VyVvl + �V 2v1 + �Vv1Vvl

Therefore, the population value of numerator of �1 assuming pure noise and "t+lt 6= 0 is:

(Vy + V"1)� (�Vy + �V"l)� �V 2y
= �VyV"l + �V"1Vy + �V"1V"l

The denominator (from equation (12)) assuming noise is:

(Vy + V"1) (Vy + V"l)� V 2y
= VyV"l + V"1Vy + V"1V"l :

As a consequence, the population value of �1 is:

�1 =
�VyV"l + �V"1Vy + �V"1V"l
VyV"l + V"1Vy + V"1V"l

:

This means that �1 6= 0, and depends on the properties of the revision process. And if � = �, then
�1 = �.

When data revisions are noise, the numerator of �2 (from equation (11) is:

= �VyV"l � Vy�V"l
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The population value of �2 assuming pure news and "t+lt 6= 0 is:

�2 =
(�� �)VyV"l

VyV"l + V"1Vy + V"1V"l

This means that �2 6= 0. However, if � = �, �2 = 0. In addition if � > 0, � > 0, and � > �, then
0 < �2 < ���. Finally comparing the expressions for �1 and �2 in the case of no spillover ( � = 0),
one has that �1=�2 = V"1=V"l , the ratio of the variances of the �rst and last noise components.

A.4 Proof of Proposition 4:

When data revisions are pure news and there are no spillovers, the numerator of �1 (equation (15)

becomes:

= �VyVv1 � �VyVvl + �V 2v1 + �Vv1Vvl

While the denominator (equation (12)) is:

= (Vy � Vv1) (Vy � Vvl)� (Vy � Vv1)
2

= VyVv1 � VyVvl + V 2v1 + Vv1Vvl

This expression makes use of the fact that V1;l = Vvl , V11 = Vv1 , C
�
yt�1vtt�1

�
= �Vv1 , C

�
yt�1v

t+l�1
t�1

�
=

�Vvl when there are no spillovers. Combining the numerator and the denominator, we have that
�1 = �.

When data revisions are pure news and there are no spillovers, the numerator of �2 (equation

(11) becomes:

= (Vy + Vvl � 2Vvl)� (�Vy � �Vv1)

� (Vy � Vv1)� (�Vy � �Vvl)

= �VyVvl � �VyV1;l � �Vv1Vvl + �Vv1V1;l = 0

using C
�
yt�1v

t+l�1
t�1

�
= �V1;l = �Vvl and C

�
yt�1vtt�1

�
= �V11 = �Vv1 .Therefore �2 = 0 when

data revisions are pure news and vt+lt 6= 0 with � = 0.
Now let us assume that there are spillovers, that is, � 6= 0, when vt+lt 6= 0. The numerator of
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�1 (eq. 10) using expressions 4B, 3B, 2B and 1B and eliminating noise terms is:

= ([Vy (1� ��)� V11 (1� ��)] � [Vy� (1� ��) + �V11 � (�+ �)V1;l])

�([Vy (1� ��)� V11 � ��V1;l] �
�
Vy� (1� ��)� �

�
1� �2

�
V11 � ��2V1;l

�
)

= V11Vy (1� ��)�� V11Vy� (1� ��) (1� ��) + V11Vy (1� ��)
�
1� �2

�
�+ V11Vy� (1� ��)

�V1;lVy (1� ��) (�+ �) + V1;lVy (1� ��) �2�+ V1;lVy�2� (1� ��)

+V1;lV11 (1� ��) (�+ �)� V11V1;l�2�3 � V1;lV11
�
1� �2

�
�2�

��2�3V 21;l
�V 211 (1� ��)�� �

�
1� �2

�
V 211

= (�+ �)(1� ��)V11Vy
�((�+ �) + 2�2�)(1� ��)V1;lVy
+(�+ �) (1� ��)V1;lVy � �2�V1;lV11
��2�3V 21;l
�(�+ �)V 211 + 2�2�V 211

To obtain an approximate expression for �1, we separate out the terms that are �small�when both

j�j and j�j are small (recall that both these parameters are small in our empirical model for real
output growth):

= (�+ �)V11Vy � (�+ �)V1;lVy + (�+ �)V1;lV11 � (�+ �)V 211
[(��2 + �2�)V11Vy � 2�2�(1� ��)V1;lVy � �2�V1;lV11 + 2�2�V 211]:
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The denominator (eq. 12) using 5B, 4B and 2B is:

V (yt+l�1t�1 )V (ytt�1)� C(yt+l�1t�1 ; ytt�1)
2

= [Vy (1� ��)� V1;l (1� ��)]� [Vy (1� ��)� V11 (1� ��)]

� [Vy (1� ��)� V11 � ��V1;l]� [Vy (1� ��)� V11 � ��V1;l]

= �VyV11 (1� ��) (1� ��) + 2V11Vy (1� ��)

�VyV1;l (1� ��) (1� ��) + 2VyV1;l (1� ��) ��

+V11V1;l (1� ��) (1� ��)� 2��V11V1;l
��2�2V1;l
�V 211

= (1� �2�2)VyV11
�(3�2�2 � 4��+ 1)VyV1;l
+(�2 � 4��+ 1)V11V1;l
��2�2V1;l
�V 211

Again separating out terms that are small when j�j and j�j are small:

= VyV11 � VyV1;l + V11V1;l � V 211 + [�2�2VyV11 � (3�2�2 � 4��)VyV1;l � �2�2V1;l]

And ignoring the terms in square brackets in the expressions for the numerator and denominator,

we �nd:

�1 �
(�+ �)V11Vy � (�+ �)V1;lVy + (�+ �)V1;lV11 � (�+ �)V 211

VyV11 � VyV1;l + V11V1;l � V 211
� �+ �:

The population value of �1 is not exactly equal to �+ � because we have ignored terms which are

powers of � and � or enter as products of these two parameters.

The numerator of �2; using expressions 5B, 1B, 2B and 3B and ignoring noise terms, when

vt+lt 6= 0 and � 6= 0 and revisions are news is:
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= [Vy (1� ��)� V1;l (1� ��)]�
�
Vy� (1� ��)� �

�
1� �2

�
V11 � ��2V1;l

�
� [Vy (1� ��)� V11 � ��V1;l]� [Vy� (1� ��) + �V11 � (�+ �)V1;l]

= �VyV11 (1� ��) �
�
1� �2

�
� VyV11 (1� ��)�+ V11Vy� (1� ��)

�VyV1;l (1� ��) ��2 � V1;lVy� (1� ��) (1� ��) + VyV1;l (1� ��) (�+ �) + V1;lVy�2� (1� ��)

+V1;lV11 (1� ��) �
�
1� �2

�
� (�+ �)V11V1;l + ��2V1;lV11

+V 21;l (1� ��) ��2 � �� (�+ �)V 21;l
+�V 211

= VyV11 (1� ��) (��2 � �)

+VyV1;l (1� ��) (�+ 2�2�� ��2)

+V1;lV11(�
2�3 � �2�� �)

+V 21;l(��
2 � �2�3 � �2�� ��)

+�V 211

Separating out small terms as before:

= ��VyV11 + �VyV1;l � �V1;lV11 + �V 211
[(2��2 � �2�3)VyV11 + (2�2�� 2��2 � �2�2 + �2�3)VyV1;l +

(�2�3 � �2�)V1;lV11 + (��2 � �2�3 � �2�� ��)V 21;l]

gives rise to an approximation to the population value of �2 of:

�2 �
��VyV11 + �VyV1;l � �V1;lV11 + �V 211

VyV11 � VyV1;l + V11V1;l � V 211
� ��
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Figure 1: Smoothed estimates of the revisions processes from the state-space model.
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Table 1: Regressions of �nal output on lagged �nal output and �rst announcements

Final output 2008Q2 t+ 24 t+ 12 t+ 24

Sample 1965:4 to 2001:4 1965:4 to 2001:4 1965:4 to 2001:4 1965:4 to 2001:4

Const. 0.537*** 0.416*** 0.389*** Const. 0.424***

(.097) (.105) (.110) (.105)

yt�1 -0.031 0.135 0.269* yt�1 -0.178

(.132) (.185) (.165) (.320)

ytt�1 0.409*** 0.290 0.175 yt+11t�1 0.572*

(.133) (.189) (.183) (.321)

� 0.819 0.807 0.794 � 0.805

R2 0.132 0.159 0.181 R2 0.163

Sample 1967:1 to 1991:4 1967:1 to 1991:4 1967:1 to 1991:4 1967:1 to 1991:4

Const. 0.541*** 0.375*** 0.367*** Const. 0.367***

(.113) (.121) (.129) (.123)

yt�1 -0.101 0.143 0.218 yt�1 -0.113

(.154) (.235) (.204) (.386)

ytt�1 0.465*** 0.275 0.223 yt+11t�1 .508

(.154) (.232) (.216) (.385)

� 0.912 0.905 0.898 � 0.904

R2 0.141 0.159 0.178 R2 0.161

Sample 1974:3 to 2001:4 1974:3 to 2001:4 1974:3 to 2001:4 1974:3 to 2001:4

Const. 0.511*** 0.418*** 0.390*** Const. 0.416***

(.101) (0.110) (.111) (.110)

yt�1 0.092 0.165 0.305* yt�1 -0.107

(.147) (.205) (.170) (.366)

ytt�1 0.289** 0.239 0.124 yt+11t�1 0.491

(.146) (.207) (.191) (.361)

� 0.793 0.811 0.787 � 0.809

R2 0.134 0.146 0.175 R2 0.151

Note. The dependent variable yt is ��nal�output, which is taken to be either
n
y2008Q2t

o
,
�
yt+24t

	
or
�
yt+12t

	
. In the �nal column we replace the regressor ytt�1 by y

t+11
t�1 .

The �gures in parentheses are robust (Newey-West) standard errors, � is the estimated regression

standard error, and ���, �� and � denote signi�cance at the 1%, 5% and 10% levels respectively.
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Table 2: Tests of the news and noise hypotheses

Revised Data 2008 : Q2 t+ 24 t+ 12 t+ 24 2008 : Q2

Initial Data t+ 1 t+ 1 t+ 1 t+ 12 t+ 24

H0: News 7:42[:001] 2:46[:089] 2:32[:101] 1:06[:348] 9:38[:000]

H0: Noise 17:08[:000] 11:39[:000] 10:42[:000] 1:36[:324] 7:28[:000]

Note. Sample period is 1965:Q3-2001:Q4. The entries are the F -statistics (robust Wald statistic) of

the null hypotheses that H0: � = � = 0 in regressions (7) and (8), followed by p-values in brackets.

Table 3: Monte Carlo estimates based on the estimated SSM

T = 150

Simulated �nal data y08:Q2 yt+24 yt+12 yt+24

yt�1 0.245 0.293 0.293 yt�1 0.293

[.520] [.584] [.494] [.216]

ytt�1 0.146 0.099 0.098 yt+11t�1 0.076

[.187] [.117] [.109] [.077]

T = 1; 000

Simulated �nal data y08:Q2 yt+24 yt+12 yt+24

yt�1 .251 .299 .298 yt�1 .298

[.999] [1] [.999] [.828]

ytt�1 .156 .108 .106 yt+11t�1 .084

[.744] [.418] [.354] [.123]

Note. Number of replications is 10,000. Value in [] is the proportion of rejections of the null of no

statistical signi�cance at the 5% level using robust standard errors over the replications.

We simulate 50 additional observations in each, which are then discarded, to approximate a sta-

tionary draw.
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Table 4: Estimates and Rejection Frequencies for the Rodriquez Mora and Schulstad (2007) regres-

sion based on the estimated VAR models

T = 150

VAR: q = 24 q = 12 q = 24 q = 12 q = 12 q = 12

News imp. News imp. News imp.

Simulated Final Data: yt+24 yt+12 yt+24 yt+12 yt+24 yt+24

yt�1 0.065 0.162 -0.026 0.019 yt�1 -.085 -.083

[.114] [.241] [.099] [.070] [.102] [.089]

ytt�1 0.221 0.126 0.267 0.242 yt+11t�1 .444 .435

[.329] [.152] [.381] [.347] [.437] [.395]

T = 1000

q = 24 q = 12 q = 24 q = 12 q = 12 q = 12

News imp. News imp. News imp.

Simulated Final Data: yt+24 yt+12 yt+24 yt+12 yt+24 yt+24

yt�1 0.065 0.167 -0.029 0.022 yt�1 -.082 -.079

[.263] [.851] [.119] [.076] [.193] [.164]

ytt�1 0.239 0.130 0.287 0.245 yt+11t�1 .449 .441

[.987] [.630] [.997] [.977] [.997] [.992]

Note. Number of replications is 10,000. Value in [] is the proportion of rejections of the null of no

statistical signi�cance at the 5% level with robust standard errors over the replications.

We simulate 300 additional observations in each replication, which are then discarded, to approxi-

mate a stationary draw.
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