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Technological change, expansion and improvement

Since Solow (1956), technological change is regarded as one of the main
sources of economic growth. Without continuous improvements of the
technologies we use and without the discovery of totally new technologies,
growth depends on the ’balanced’ accumulation of the physical factors of
production only. Using neo-classical marginal productivity assumptions,
technological change (or labour growth) is needed to compensate for the
negative productivity effects of capital accumulation. Although the importance
of technological change is widely accepted, the almost casual (exponential)
specification of growth models which incorporate the use of this concept,
does not match its overriding importance. Especially in models which concern
the environment, technological change takes an important place in practice.
Most of these models, which are used to evaluate environmental policy, treat
technological change exogenously [c.f. Verberne (1995)]. The outcomes of
these models depend widely on the rate of technological change chosen and
the number of backstop technologies available at a certain point in time.
Taking an exogenous rate of exponential technological change, and keeping it
constant over a relatively long period of time, might give too optimistic a
view of the future. In addition, this assumption neglects the fact that new
technologies depend on R&D expenditures, investment decisions and
economic policy. From these practical observations we concluded that,
especially in light of the outcomes of these environmental models and their
far reaching conclusions, technological change should be determined
endogenously rather than exogenously.

The concern for endogenous technological change has resulted in the
emergence of the so called ’new growth theory’. This endogenous growth
literature provides us with better insights in the causes and effects of
technological change as a determinant of economic growth. Basically we can
distinguish two different types of technological change: an increase in the
number of technologies on the one hand [c.f. Romer (1990), Grossman &
Helpman (1991)] and a quality improvement of the existing technologies [c.f.
Aghion & Howitt (1992), Grossman & Helpman (1991)] on the other. The
first type of technological change can be compared, at least in terms of its
effects, with product innovation or embodied technological change. The
second type of technological change, improving the quality of already existing
technologies, with process innovation or disembodied technological change. It
is common practice to use these two types of technological change separately
[c.f. Barro & Sala-i-Martin (1995), Grossman & Helpman (1991)], although
the combination of both new technologies and quality improvements is
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suggested by Helpman & Trajtenberg (1994)1. The goal of this paper,
however, is to incorporate both notions of technological change in one
encompassing technology framework which is as close as possible to the
’standard’ optimal control framework used by Lucas (1988) and Romer
(1990), for instance. This will result in a model in which both the ’average’
type of technological change will be endogenous, and the ’average’rate of
technological change. The combination of these two types of technological
change is important, considering the possibility that the emergence of new
technologies defines potential expansion/growth paths, which the economy
can move along. The rate of growth along this path is set by the
characteristics of the path itself (exponential versus asymptotic growth paths)
and by the resources spent on revealing the potentials of the path through
applied R&D. However, rather than going into these particular issues here, we
focus on the outline of the general optimal control framework and the general
problem of choosing between basic R&D on the one hand, which in our
interpretation expands the number of technologies available, and applied R&D
on the other, which improves the quality of already known technologies in an
incremental way. This particular framework may provide a better insight in
the role of technological change in macroeconomic models concerning the
environment. We will not, however, in this stage, incorporate this exercise
into an environmental model. But intuitively it is clear that quality
improvements of already existing technologies, i.e. increasing the efficiency
of energy generating or energy using technologies, might in some cases have
to give way to investments in totally new technologies, especially in case of
asymptotic potential growth paths.

In this paper we will focus on a situation of steady state growth in a social
optimum. In the first two sections, R&D growth models based on either an
increase in the number of technologies or the improvement of already existing
technologies will be summarized. In section three both notions of
technological change will be compared, using the concept of the marginal
growth productivity of human capital. In section four a first attempt is made
to incorporate both notions of technological change into one model using
standard ’constant returns’ assumptions with respect to R&D in generating
growth, introducing a two-step approach. In the case of constant returns
technology functions, the solution of this model leads to corner solutions

1 In their paper, Helpman and Trajtenberg distinguish general purpose technologies (GPTs), such
as the invention of the steam engine and electricity, and complementary innovations in which the
GPTs are used. Their approach differs from the approach taken in this paper because we do not
focus on the complementary ’offspring’ of these new technologies but on the improvement of
specific technologies.
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rather than interior solutions, in which case again only one of the two types
of technological change is economically relevant. The next sections show that
by dropping the assumption of constant returns in the technology equations a
steady state solution with a non-trivial technology mix can be obtained. The
paper ends with a summary and some suggestions regarding the future use
and expansion of the framework.

1. Expanding the number of technologies

Technological change by means of an increase in the number of available
technologies will be discussed using a simplified version of the Romer (1990)
model. In this simplified version of the Romer model human capital (H) and
physical capital (K), together with the level of existing technology (A), are the
only factors of production. This makes the model easier to handle without
changing the essential features and outcomes of the model. As in the Romer
(1990) model, two types of knowledge are distinguished. The first type of
knowledge consists of human capital which can be used to generate
blueprints. The total number of blueprints reflects the total stock of directly
productive knowledge available to the economy. Human capital is a rival
good because its use by one firm precludes its use by another firm.
Technology, on the other hand, is non-rival because its use by the one firm
does not limit its use to another firm. Human capital can be used both for the
production of the final output (Y) and the generation of new technologies. In
the R&D sector, new technologies are generated by using human capital and
the stock of knowledge, which is proportional to the number of blueprints.
Therefore the technology generation equation can be written as follows,

where v is the fraction of the total stock of human capital devoted to the

(1.1)dA
dt

δvHA

R&D sector andδ is a productivity parameter. Note that (1.1) implies that for
a constant value ofvH, growth itself is constant. The amount of human
capital devoted to the R&D sector and the amount of human capital devoted
to the final goods sector equals the total amount of human capital. From (1.1)
it is also clear that human capital is a scale variable and that an exogenous
increase in the total stock of human capital implies a higher rate of growth of
the level of knowledge. If we would scale human capital to one from equation
(1.1) onwards, we would in essence have the same model as in Lucas (1988),
in which the growth of human capital has the same function as the knowledge
in the Romer (1990) model. In the Lucas (1988) model labour is the scale
variable and is scaled to one. Note that the research sector is human-capital-
intensive and technology-intensive. Physical capital (K) does not enter the
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technology equation; it is used in the production of final goods only,

where xi represents the amount of capital of typei. This Cobb-Douglas type

(1.2)Y [(1 v)H ]α
A

i 1

(xi)
1 α

production function is based on an Ethier (1982) production function were
output is an additively separable function of different types of capital goods
each of them built in accordance with a different blueprintxi. Since all xi

enter the production function symmetrically2 we can write (1.2) directly as,

As in the Romer (1990) model we will assume that the growth rate of human

(1.3)Y [(1 v)H ]α K 1 α A α

capital is zero3. An increase in the share of human capital devoted to the
generation of new technologies will increase the growth rate ofA and
therefore final output indirectly. But it will also decrease, at least in the short
run, final output because of the decrease in human capital available for final
production.

In order to look at the long run effects of changes in the share of human
capital devoted to either final production or the generation of new
technologies and the steady state growth rates, we will derive the necessary
conditions for a social optimum from the maximization of the present value
of an infinite stream of consumer utility (U),

where C is consumption. The intertemporal substitution parameter,θ, lies

(1.4)U ⌡
⌠
∞

0

e ρt C 1 θ 1
1 θ

dt

between zero and one and the rate of time preference,ρ, is always positive.
This utility function is called the constant intertemporal elasticity of
substitution (CIES) utility function, because the elasticity of substitution
between units of consumption at different points in time is constant and equal
to 1/θ. A higher value of θ implies that consumers are less willing to
substitute consumption possibilities at different points in time [Barro & Sala-
i-Martin (1995)], i.e. consumers are less willing to trade current consumption
for future consumption. The socially optimal rate of growth can be obtained

2 The aggregation over the individual blueprints, in order to obtain effective capital, is explained
in more detail in Appendix A.
3 Assuming zero population growth and assuming that the accumulation of human capital is the
result of schooling and on the job training which is lost at the end of a lifetime, the net
cumulative effect is zero growth in human capital.
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by means of intertemporal maximization of the present value of total utility
(U) over an infinite horizon, subject to the technology generation equation
(1.1) and the economy’s budget constraint,

This results in4,

(1.5)dK
dt

Y C

wherev represents the fraction of human capital allocated to the generation of

(1.6)v δH ρ
θδH

new technologies. From this it follows thatδH is the productivity parameter
of v. Note that again the scale effect of human capital is present. An
exogenous increase in the stock of human capital would increase the share of
this stock allocated to the generation of new technologies. Sincev has to be
non-negative and at most equal to one, it has to be the case that

. Note thatv depends positively on the productivity parameterδρ≤δH≤ ρ
1 θ

and human capital. A higher productivity of human capital in the technology
generating sector induces a higher share of human capital to be allocated to
this sector. The positive relation betweenv and the stock of human capital
implies that there is some sort of scale effect. An exogenous increase in the
stock of human capital increases the share of this stock allocated to the
generation of new technologies. In models in which the stock of human
capital grows [c.f. Lucas (1988)], this effect is absent. This is obvious since
an increase in human capital would in that case imply an ever increasing
share of human capital allocated to the generation of new technologies. The
share depends, furthermore, negatively on the rate of time preference and the
intertemporal substitution parameterθ. A higher rate of time preference
implies that a lower fraction of human capital is devoted to the production of
new technologies. In other words, present production (and consumption) is
preferred over future consumption possibilities.

Since the steady state growth rate of the various quantities equals the
common growth rate, we know from equation (1.1) thatg=vδH, so,

This shows that a shift from future to present consumption, caused by an

(1.7)g δH ρ
θ

4 See Appendix A for a derivation of the results.
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increase in the rate of time preference, decreases the steady state growth rate
caused by a reduction of the amount of human capital allocated to increasing
future consumption potentials through research, thus stressing the importance
of R&D in generating future consumption possibilities. Note that, because of
the fact that human capital is a scale variable, a higher stock of human capital
implies a higher growth rate.

2. Improving already existing technologies

The other way in which technological change can be modelled is to treat
technological change as the increase in quality of a fixed number of already
existing technologies. This notion can be found in Aghion & Howitt (1992)
and Grossman & Helpman (1991). Since we want to incorporate both types of
technological change into one model, they are modelled in as similar a way as
possible. In our set-up, the source of quality increases is assumed to be the
use of human capital. As in the previous section we will divide the total
available amount of human capital between final production and the
generation of technological change.

We can rewrite the production function from the previous section somewhat,
so as to be more in line with the production function used by Barro & Sala-i-
Martin (1995),

In this production function the number of technologies,A, is fixed. Note that

(2.1)Y [(1 v)H ]α
A

i 1

(qxi)
1 α

an increase in the quality,q, increases the total efficiency ofall designs (or
capital goods),xi, and increases therefore total output,Y.5 As in the previous
section we can rewrite this production function and replace all the separate
capital goods (or designs),xi, by an expression inq, A andK,

The engine of growth is no longer the increase in the number of technologies,

(2.2)Y [(1 v)H ]α (qK)1 α A α

as expressed in equation (1.1), but the increase in quality of existing
technologies. The relevant technology generation equation is now,

As in the previous section, we assume that only human capital is needed to

(2.3)dq
dt

δvHq

5 As in Appendix A, the capital aggregate can be seen as a linear homogeneous CES aggregate of effective
capital. The efficiency is in this case positively affected by an increase in quality.
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improve the quality of already existing technologies. Human capital is still a
scale variable in the sense that an exogenous increase in the stock of human
capital increases the growth rate of quality improvements.

Intertemporal utility maximization from the point of view of the social
planner, results in6,

Note the complete similarity between (2.4) and (1.7). Again a higher rate of

(2.4)v
δH 1 α

α
ρ

θδH 1 α
α

time preference implies a lower share of human capital devoted to generating
technological change. The difference between both equations is the term

. This term will be interpreted in more detail in the next section.1 α
α

Since the steady state growth rate of the various variables equals the common
growth rate, we know that,

Substitution of equation (2.4) into this equation results in,

(2.5)g K̂ Ŷ Ĉ 1 α
α

q̂ 1 α
α

δvH

This shows that a shift from future to present consumption, caused by an

(2.6)
g

δH 1 α
α

ρ

θ

increase in the discount rate, decreases the steady state growth rate. Again the
close relation between the growth rate in this section and the previous section
is obvious.

3. The Marginal Growth Productivity of Human Capital

As noticed in the previous sections, both notions of technological change are
almost identical, at least in terms of their growth rates and the amount of
human capital allocated to the generation of technological change. The

6 See Appendix B for a derivation of the results presented here.
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interpretation of both notions will become even more clear if we rewrite
equations (2.4) and (2.6) to,

where . Note thatδ and represent the change in the steady

(3.1)v δ H ρ
θδ H

g δ H ρ
θ

δ δ







1 α
α

δ

state values of growth due to allocating an additional unit of human capital to

research:δ and are therefore equal to the marginalgrowth productivitiesδ
of human capital, or MGP for short.

Interpreting both cases in terms of the marginal growth productivity of human
capital we can simply identify the similarity between the two cases. It is
exactly this marginal growth productivity that determines the growth
possibilities of both systems. In the representation of the Romer (1990) model
the steady state growth rates ofA, K, and Y were equal. This means that,
since

the marginal growth productivity of human capital equals,

(3.2)Ŷ α Â (1 α) K̂

Note that vH represents here the amount of human capital allocated to the

(3.3)MGPA

∂Ŷ
∂ (vH)

∂Â
∂ (vH)

δ

production of new technologies.

In our representation of the framework in which technological change is
generated by improving existing technologies, it follows that,

Hence, the marginal growth productivity of human capital is,

(3.4)Ŷ (1 α) q̂ (1 α) K̂

Note that vH represents here the amount of human capital allocated to the

(3.5)MGPq

∂Ŷ
∂ (vH)









1 α
α

∂q̂
∂ (vH)









1 α
α

δ δ

generation of better quality.

Thus, reformulating the results of both notions of technological change in
terms of their marginal growth productivity, we can show the similarity

between both notions. The factor appears due to the different way1 α
α
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quality improvement and the amount of new technologies influence the
production process.

4. A two-step model of combined technological change

If we want to incorporate both notions of technological change into one
model, the simplest solution would be to just combine the two notions. This
would mean that next to an increase in the number of technologies it would
also be possible to increase the quality of already existing technologies. This
would require two technology equations, one explaining the growth of the
number of technologies and the other explaining the growth of the quality of
those technologies that already exist. However, the resulting three-sector
model can not that easily be solved using the ordinary optimization
framework. It can be shown that if we solve the combined technology model
using the Hamiltonian approach, the result will be an economically difficult to
interpret corner solution (see Appendix C). An intuitively clearer way to solve
the three-sector model of combined technological change is to describe it in
two steps7. This essentially reduces the three-sector problem of the
intertemporal optimization of consumer utility to a two-sector problem. The
framework to be developed will make the solution of the model easier and the
results better to interpret.

In this two-step approach we will introduce an extra equation which describes
the combined technology input,T. One can link this combined technology
input, which is simply the combination ofA and q as found in the original
production function, to the total factor productivity (TFP) in the production
function,

Using the combined technology inputT, rather than the TFP itself, it follows

(4.1)TFP A q
1 α

α

α

T α ⇔ ˆTFP α







Â 







1 α
α

q̂

that the production function can be written as,

The fractions attached to the allocation of human capital are now redefined in

(4.2)Y [(1 z)H ]α K 1 αT α

order to clarify the two-step approach we take here. The technology
generation equations are changed to,

7 It can be shown, at least for the technological progress functions we have specified, that the
two-step approach and the standard approach generate the same results (the formal proof can be
found in Appendix D). However, the two-step approach has the advantage over the standard
approach of being relatively easy to interpret.
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Note that uH is now the amount of human capital allocated to quality

(4.3)

dA
dt

δA(z u)HA

dq
dt

δquHq

improvements and(z-u)H is the amount of human capital allocated to the
generation of new technologies. The redefinition of the human capital
fractions in the context of the two-step approach can best be explained using
Figure 1.

The total amount of human capital is allocated in two steps. The first step
divides human capital between final production on the one hand and the
generation of TFP, through ’combined’ technological changeT, on the other.
The fraction 1-z is available for final production, while the fractionz of the
total stock of human capital will be used in the generation of TFP growth. In
the second step the fractionu is allocated to the improvement of quality and
the remaining fractionz-u is used to generate totally new technologies8.

H

Y
1-z

z

T

q̂

A

u

z-u
^

^

Figure 1 The Two-Step-Approach

Using the two technology generation equations in (4.3), we can derive a
combined technology contour (CTC). The CTC is comparable in nature to the
invention possibility frontier introduced by Kennedy (1964). It represents all
the efficient combinations of growth rates ofA and q which can be achieved
for a given amount of human capital (zH) allocated to the generation of TFP.
The CTC can be obtained directly by solving thedq/dt equation foru and

8 Note however, that it may very well be possible thatz itself depends on the way in which
human capital can be distributed overu and z-u, if the growth rate ofT itself depends on that
distribution.
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substituting this result in thedA/dt equation. So, the CTC defines the trade off

between and ,q̂ Â

The partial derivative of this equation with respect to is equal to-δA / δq.

(4.4)Â δA











z










q̂
δqH

H

q̂

Hence the CTC is downward sloping. Moreover, it is linear in and .q̂ Â

Equation (4.1) provides the ’iso-TFP-growth-profile’ (ITP) which also gives a

relation between and . In other words, this ITP depicts the combinationsq̂ Â

of and in which the combined technology impact on and therefore onq̂ Â T̂
TFP-growth is the same. Since intertemporal utility can only be maximized
when scarce resources are allocated in an efficient manner, this implies that a

given value ofz should generate the highest rate of growth ofT, hence ,Ŷ

hence , since otherwise the same rate of growth could be realized whileĈ
reallocating part ofz back again to current output production, thus increasing
the value of intertemporal utility. Hence, assuming that there is indeed a

steady state where, as before, and are constant for constantH, it followsq̂ Â
that the intertemporal utility is maximized only when a given value ofz is

distributed over and such that the combined impact of and onq̂ Â q̂ Â Ŷ

and therefore onC and , is also as high as possible. But in the steady stateĈ

T cannot be maximized without maximizing at the same time. Hence, theT̂

problem of distributing zH over and is reduced to the familiarq̂ Â
framework of shifting the ITP line outward until it has just one point in
common with the linear CTC9. Maximizing the total factor productivity
growth therefore implies choosing the highest possible ITP by choosing an

optimal combination of and . For a concave CTC this requires the slopesq̂ Â
of the CTC and the ITP to be the same. For a linear CTC, this may be too
strong a requirement, resulting in complete specialization as depicted in
Figure 2.

The iso-TFP-growth-profile is represented by the line IIa or IIb, depending on
the value ofα, since it has a slope -α/(1-α). The CTC is represented by line I

9 Note the complete similarity with the Ricardian Trade model. Note too that the same complete
specialization conclusions apply here.
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and has a slope-δq/δA. Whether there will be complete specialization in the
production of new technologies or in the quality improvement of existing
technologies depends on the slope of the ITP compared to the slope of the
CTC.

Â

I
IIa

IIb2

1

q̂

Figure 2 Choice of Technology Types

If the slope of the ITP is smaller (larger) than the slope of the CTC, i.e. line
IIb (line IIa), maximizing TFP growth implies complete specialization in the
quality improvement of existing technologies (generation of new
technologies).

In terms of the MGP interpretation of the human capital allocation process in
the previous section, an optimal allocation implies that the MGPs of both
technology generating sectors have to be equal. ThusδA has to be equal to

. Note that this condition is similar to the condition that the slopesδq









1 α
α

of the ITP and the CTC have to be equal.

The analysis so far has only given a theoretical explanation for technological
change in case of generating new technologies or improving existing
technologies. The two-step approach shows why, in case of linear technology
equations, only one of the two notions of technological change is relevant in
practice. Obviously, if we want to incorporate both notions of technological
change into one model, we have to switch to non-linear (decreasing returns)
versions of the technology equations.

5. Decreasing marginal returns

The corner solutions of the previous section arise because of the linear nature
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of the combined technology contour. This linear CTC is the result of
assumption of the constant returns to scale with respect to the amount of
human capital. One additional unit of human capital leads to a proportional
change in the technology growth rate values. Jones (1995) criticises the
assumption of constant returns with respect to the use of human capital.
According to Jones (1995), empirical evidence shows that,’The assumption
embedded in the technology equation that the growth rate of the economy is
proportional to the level of resources devoted to R&D is obviously false.’One
of the solutions Jones suggests in order to improve the empirical results of the
R&D-based models is to introduce decreasing returns with respect to human
capital. In order to do this, we have reformulated the technology generation
equations somewhat,

where γA≤1 and γq≤1. Note that, whereas Jones (1995) introduces decreasing

(5.1)

dA
dt

δA[(z u)H ]γAA

dq
dt

δq[uH]γqq

returns on the level of knowledge, we have decreasing returns solely with
respect to human capital. Only in our case the result is a concave CTC. Using
Figure 2 we can predict what will happen to the solution of this model at
least in the context of the two-step approach. With diminishing returns to
scale (DRS) the combined technology contour will be concave (line II), in
which case optimization results in one unique solution, pointS (see Figure 3),
implying that both types of technological change are present.

A
^

q

S

I
II

^

Figure 3 Choice of Technology with DRS

The combined technology contour (CTC) can be derived from the technology
equations (5.1) and the iso-TFP-growth-profile (ITP) from equation (4.1). At
the optimal combination of technology types, denoted by pointS in Figure 3,
the slopes of the two curves have to be equal. For a given value ofz, the
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two-step approach can be used to obtain the efficient values of andq̂ Â
(which will only become ’optimal’ values by a suitable choice ofz) according

to the technology generation equations (5.1). Substituting and intoq̂(z) Â(z)

provides the ’efficient’ dynamic constraint,T̂ Â 







1 α
α

q̂

in terms of z, which value can now be determined in the usual way10. Note

(5.2)dT
dt

T[Â(z) 







1 α
α

q̂(z)]

that the dynamic constraint onT, as given by (5.2), replaces the original
dynamic constraints onA andq, as given by (5.1).

Unfortunately the model becomes rather difficult to solve analytically with
different values forγq and γA. Hence we will focus first on a special case. In
this case,γA=1 and γq<1. This means that the generation of totally new
technologies has constant returns to scale with respect to human capital, i.e
Romer’s case. We expand the Romer model with an equation that describes
the quality aspect of technological change. The case in whichγA<1 andγq=1
is completely equivalent. However, this would mean that there are
diminishing returns in the generation of new technologies, while the quality
improvement has constant returns to scale. Since the results of both cases are
almost identical we will only focus on the case whereγA=1 andγq<111.

6. An asymmetric model of combined technological change

An extra equation describing the increase in the quality of existing
technologies is added to the simplified Romer (1990) model we used in
section 1. This equation exhibits decreasing returns to scale. From equation
(5.2) we know that the exact formulation of the dynamic constraint onT
follows from the individual dynamic constraints ofA and q. The restrictions
γA=1 and γq<1 imply that the growth rate ofA depends onz whereas the
growth rate ofq is independent ofz. This asymmetric allocation of a marginal
unit of human capital can be interpreted in terms of the marginal growth
productivities (see Figure 4). In case of the generation of better quality, the

MGPq, i.e. falls for increasing values of (uH), whereas∂T̂
∂(uH)









1 α
α

∂q̂
∂(uH)

10 A detailed derivation of the results can be found in Appendix E.
11 Appendix F shows the detailed derivation of the combined model withγA<1 andγq=1.
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the MGPA, i.e. is constant. Hence, as long as∂T̂
∂[(z u)H]

∂Â
∂[(z u)H]

δA

it follows that any increase in human capital should be∂T̂
∂(uH)

> ∂T̂
∂[(z u)H]

allocated toq up to the point where , i.e. pointQ in Figure 4.∂T̂
∂(uH)

δA

Further increases in (uH) would contribute less to growth than increases in
[(z-u)H].

t=0 t=1
MGPq

MGP
A

0 Q R S
zH

MGPA

qMGP

Figure 4 Asymmetrical allocation of a
marginal unit of human capital

Hence, δA functions as a kind of lower limit to the marginal growth
productivity of human capital. Note that in the Romer (1990) model the
marginal growth productivity was equal to this lower limitδA. Therefore, we
can conclude that the Romer (1990) result can be regarded as the lower limit
of our results in case of combined technological change withγA=1 andγq<1.
If the amount of human capital allocated to the generation of technological
change, (zH), increases at timet=1, from pointR to S in Figure 4, it follows
immediately that the extra amount of human capital is only allocated to the
generation of new technologies, in this case whereγA=1 andγq<1.

Thus, an increase inz means an outward shift of the CTC since more human
capital is available for technological change. The ITP does not change due to
an increase inz. A marginal increase inz does not affect the growth rate ofq,
only the growth rate ofA. This asymmetrical shift of the CTC takes place
because of the asymmetry in the technology equations and thus because of the
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assumptions regarding the values ofγA andγq
12.

We can now derive the equations forz, u and the various growth rates going
through some straight forward calculations which are based on the notion that
the ITP, being a function ofz and the various productivity parameters and
using the assumption of efficient allocation of human capital, essentially
defines a dynamic combined technology constraint which can be used to
reduce the three-sector model to a ’standard’ two-sector framework as used
by Romer (1990) and Lucas (1988) (see Appendix E).

The equation forz, which is the share of the total stock of human capital that
is devoted to technological change, is

where Ψ is implicitly defined in terms of the parameters in the model (see

(5.3)
z

(1 θ)















1 α
α

δqΨγq δAΨ

θHδA

δAH ρ
θHδA

Appendix E) and defines the amount of human capital allocated to quality
generation. The last part of this equation is equal to the fraction found by
Romer (equation (1.7)). Thus, by adding an extra technology equation for the
improvement of quality results in a comparable fraction. Recall thatz is the
fraction of human capital used for combined technological change and is
therefore comparable to Romer’s fractionv. The equivalence between the two
shares can be explained in an even better way if we letδq go to zero, i.e.
essentially eliminating the technology quality equation. In that caseΨ goes to
zero and the share of human capital devoted to the generation of
technological change will go to the Romer share - cf. Appendix E where we
show that .Ψ uH

The steady state growth rate of this model equals,

Using the result , this equation can be easily interpreted if we look at

(5.4)
g









1 α
α

δqΨγq δA(H Ψ) ρ

θ

Ψ uH

12 In the case, whereγA<1 andγq=1 the same asymmetry will occur for the same reasons. But this
time the growth ofA is independent ofz whereas the growth ofq increases withz. Only in the
case where both R&D sectors exhibit diminishing returns (to the same extent), the shift of the
CTC will be symmetric.
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the marginal growth productivities of human capital13,

The second term of the RHS of this equation is exactly the Romer steady

(5.5)
g











1
γq

MGPq MGPA uH

θ
δAH ρ

θ

state growth rate. The first term of the RHS is the effect of adding an extra
technology generating equation featuring decreasing returns to the Romer
(1990) model. Since in the steady state equilibrium the MGPs have to be
equal (see Appendix H), it follows that the first part of the RHS has to be
positive. Therefore, we can conclude again that the Romer specification is a
special case of our specification, and that the Romer growth rate is a lower
limit to the optimal growth rate with combined technological change.

In the next section we solve the model forγq = γA = γ. This results in an
equation forz that cannot be solved analytically. However, by investigating
the properties of this equation we can nonetheless give some relations
between the various variables and parameters. The two cases discussed here
give an idea of the way in which we solved the problem and also provide the
background for the evaluation of the results found in caseγq = γA = γ.

7. Decreasing returns in both technology equations

Since the previous case showed the asymmetrical shift of the CTC for an
increase inz, the most interesting case, from an analytical and theoretical
point of view, is the case where bothγq and γA have identical values and are
smaller than one. This is also important in the face of the notion that there is
no a priori reason to assume the effectiveness of R&D efforts to be
principally different in both applications. The CTC will shift symmetrically
(see Figure 5) in case of an increase inz, i.e. the share of human capital
devoted to technological change. The results based onγq=γA=γ<1 can be

13 The marginal growth productivity of the amount of human capital allocated to the generation of
new technologies is equal to

∂Ŷ
∂[(z u)H]

δA

sinceγA was assumed to be equal to one. The marginal growth productivity of the amount of
human capital allocated to the improvement of existing technologies is equal to

∂Ŷ
∂(uH)

γq









1 α
α

δq(uH)γq 1
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found in Appendix G. As can be seen from equations (G2) and (G3) in
Appendix G, both the growth rate ofA andq depend on the fractionz. This is
also clear from Figure 5, where an increase inz results in a shift fromS to S*.
This implies an increase in the growth rates ofA and q. Dynamic
optimization results in equation (G15). Unfortunately, this equation inz does
not give an explicit solution forz, but for given values of the relevant
parameters, numerical values ofz can readily be obtained.

A
^

q̂

S

S*

Figure 5 Symmetrical shift of the CTC

But we can also analyze the properties of this equation by means of simple
graphs, for equation (G15) can be rewritten as (see also Appendix G)

with

(6.1)A Bz z1 γ

where ε can be expressed in the parameters of the model (see Appendix G).

A γε
ρ

B ε (1 θ γ)
ρ

The right-hand side (RHS) depends only onz and γ while the left-hand side
(LHS) depends onz and several other parameters. Sinceε>0, γ>0 andρ>0, A
is always positive.

The sign of B depends on the value ofθ and γ. If θ + γ < 1, B will be
positive and otherwiseB will be negative. This means that we have to
distinguish between two possible cases with respect to the sign ofB. In
Figure 6 the case in whichA>0 andB>0 is depicted. A positiveB implies a
positive slope of the LHS. In this case we have three possibilities depending
on the value of the interceptA. If A is relatively large, no economically
relevant solution will be possible. The LHSA lies above the RHS. IfA is
relatively small, it is possible to have two solutions (LHSC). Only in the

18



special case where the slopes of the RHS and the LHS are equal (LHSB) there
is one unique value ofz,

Sincez has to be positive, it follows from equation (6.2) thatθ + γ < 1.

(6.2)

B (1 γ)z γ

z 







(1 γ)ρ
ε (1 θ γ)

1
γ

0 z

RHS

LHS
A

LHS
B

LHS
C

S

S

S

1

2

Figure 6 Graphical analysis of share
equation (A>0, B>0)

Since in this case , this solution is not relevant from an economicdz
dρ

>0

point of view, for a higher rate of time preference should raise current
consumption relative to future consumption, which requires a rise in the
fraction of human capital devoted to final production, and therefore a fall in
the value of z. Although it is not possible to find an exact value for the
solutions if the LHS and the RHS do intersect (LHSB), we can nonetheless
perform a graphical analysis as in Figure 7.

LHS
LHS

C

C0
1

RHS

z0

Figure 7 The effect of an increase inρ on z
when B>0
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An increase inρ implies a decrease in both the interceptA and the slopeB of
the LHSB: LHS0

B shifts to LHS1
B. As can be seen from Figure 7, the effect of

an increase inρ results in a smallerz, as one would expect, in case of the
smallest root and in a larger value ofz in case of the largest root. This means
that only the smallest root shows the desired economically relevant behaviour.
Another solution to (6.1) results whenA>0 andB<0. This implies a negative
slope for the LHS. Contrary to the previous case, this must result in only one
point of intersection. Again we can say more about this solution if we look at
the effect of an increase in the rate of time preference. This will cause the
LHS to shift downwards while its slope is decreased at the same time.

LHS

LHS

RHS

z0

0

1

Figure 8 The effect of an increase inρ on z
when B<0

As can be seen in Figure 8, a higher value ofρ results in a smaller value of
z. Thus, we have found a second economically relevant solution14.

As before, also in this case the steady state growth rate of this model,g
equals the growth rate ofY, K, C andT. From equation (G12) in Appendix G,
we know that the growth rate ofT, however, still depends positively onz.
And so, also in this more generalized framework the growth rate still
resembles the previous growth rates we found.

14 Note that it is possible that an increase inρ leads to a ’rotation’ of LHS1 in an upward
direction such that the downward shift in the intercept of LHS1 is more than compensated. This
would result in an increase of the equilibrium value ofz rather than a decrease. However, one can
rule this possibility out on logical grounds, see Appendix H.
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7. Summary and conclusions

In this paper we have presented an optimal growth model with two types of
technological change. The first type generates new technologies, as in the
Romer (1990) model, while the second type generates quality improvements,
as in the Aghion & Howitt (1992) model. Solving our model with decreasing
returns technology equations results in a combined technology effect. In the
steady state both types of technological change are present. The actual
amounts of basic research and quality improvement depend on the different
marginal growth productivities of human capital of the technologies involved.
In section 3 it has been shown that a true technology mix could not be
obtained in case of linear technology equations. By defining a two-step
approach which provides a better insight in the optimization process and
which helps to simplify the solution of the model, we found that even when
introducing non-linearities in the technology equations, the model could still
be solved. In sections 5 and 6 we described the results of this model.
Although we continued to use the two step approach the same results where
found applying the usual optimization method with Hamiltonians. However,
the two-step approach did not only simplify the calculation of the steady state
solutions and share values, but also provided an extra analytical tool. By
graphically depicting the combined technology contour (CTC) and the iso-
TFP-profile (ITP) the results could be predicted and interpreted.

The idea to incorporate both notions of technological change resulted in a
model in which the growth rate found by Romer (1990) can be regarded as a
lower limit to optimal growth. Thus, by combining the different types of
technological change, depending on their marginal growth productivities of
human capital, it is possible to generate higher growth rates. The optimal
growth rate, however, now depends not only on the optimal allocation of
human capital between current production on the one hand and future
production on the other, but also on the optimal allocation of human capital
between basic research and quality improvements.

Again based on their marginal growth productivities, one could imagine an
’optimal’ mix of both types of technological change. This would enable us, at
least in the long run, to say something about the desired type of technological
change.

The general framework which is presented here can be extended in various
ways suggested by international trade theory. The Rybczinsky theorem, for
instance, awaits a straight forward technology interpretation. But more
importantly, future extensions of this framework should enable us to study the
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more pressing problem of the trade-off between basic and applied research in
the face of asymptotic efficiency increases in energy conversion. For, this
asymptotic behaviour is implied by the laws of nature, while being ignored by
economists for reasons of analytical convenience.
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Appendix A

Derivation of the simplified Romer model

Note that the capital aggregate in (1.2) can be seen as a linear homogeneous
CES aggregate representing effective capitalKe, with,

In order to get the highest amount of effective capital for a given amount of

(A1)K e











A

i 1

x 1 α
i

1
1 α

physical capital, it is necessary to distribute ’raw’ capital evenly over all the
different blueprints. This follows directly from the concavity and symmetry of
Ke in xi. Hence, it follows that

where 1/η is the ’productivity’ of raw capital15. Substituting (A2) in (A1) we

(A2)x xi

K
ηA

find

Hence, the amount of effective capital is proportional to the amount of

(A3)
K e











A

i 1









K
A

1 α
1

1 α










A







K
A

1 α
1

1 α
A

α
1 α K

physical capital. Moreover, it also depends positively on the number of

blueprints, where the blueprint elasticity of effective capital is equal to .α
1 α

This elasticity depends positively onα, because a higher value ofα increases

the ’curvature’ of for small values ofxi and hence it increases thex 1 α
i

contribution of the concavity ofKe in xi to output growth for a given growth
rate of the number of blueprints (note that continuous and positive growth in

A implies, ceteris paribus, a continuous fall in ). Using (A3), thexi

K
A

production function can be written as,

Because Romer (1990) assumes that total capital is cumulative forgone

(A4)Y [(1 v)H ]α K e1 α

[(1 v)H ]α K 1 α A α

consumption (C) this means that capital grows with,

15 For reasons of simplicity we will assume thatη=1, i.e. it takes one unit of foregone consumption to create one
unit of a capital good.
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This aggregation of the individual types of capital goods (designs) to a

(A5)dK
dt

Y C

generalized capital expression, which consists of capital and knowledge,
results in a production function that is similar to Lucas (1988). Since they use
the same framework, the results found by Romer (1990) and Lucas (1988)
can be considered as equivalent.

Using equations (1.1), (1.5) and (1.6) we can construct the following
Hamiltonian (φ16), in which v and C are the control variables andK and A
the state variables,

The first order conditions with respect to the control variables are,

(A6)φ e ρt C 1 θ 1
1 θ

λ0 [(1 v)H ]α K 1 α A α C λ1δvHA

The equations of motion for the costate variables are,

(A7)∂φ
∂C

e ρt C θ λ0 0 ⇒ λ0 e ρt C θ

(A8)∂φ
∂v

λ0

αY
(1 v)

λ1δHA 0 ⇒ λ0

λ1δH (1 v)A

αY

We can rewrite equation (A10) by substituting the result of equation (A8),

(A9)∂φ
∂K

dλ0

dt
λ0

(1 α)Y
K

⇒ λ̂0

(1 α)Y
K

(A10)∂φ
∂A

dλ1

dt
λ0

αY
A

λ1δvH ⇒ λ̂1

λ0

λ1

αY
A

δvH

The steady state is a situation in which the various quantities grow at constant

(A11)λ̂1

δH (1 v)A
αY

αY
A

δvH ⇒ λ̂1 δH

rates. This means in this case that the growth rates ofA, K, C, andY have to
be constant. The steady state growth rate of human capital is assumed to be
zero. (If this would not be the case, then growth would increase with a
positive growth of H) Rewriting equation (A7) in growth rates,

16 The Hamiltonian is denoted byφ in order to avoid possible confusion with theH of human capital.
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Rewriting equation (A8) in growth rates,

(A12)λ̂0 ρ θ Ĉ

Rewriting the production function in growth rates,

(A13)λ̂0 λ̂1 Â Ŷ

From (A11) we know that the growth rate ofλ1 is constant. Since the growth

(A14)Ŷ (1 α) K̂ α Â

rates ofA and Y are also constant in the steady state we can conclude thatλ0

is constant. Applying these steady state conditions we get from equation (A9),

Since the growth rate ofK equals the growth rate ofY, it follows that the

(A15)ˆ̂λ0
Ŷ K̂ 0 ⇒ Ŷ K̂

growth rate ofA equals the growth rate ofY. Using equation (A3),

and becauseK/Y is constant, we can conclude thatC/Y is constant too, and

(A16)C
Y

Y
Y

K̂ K
Y

hence the growth rate ofC equals the growth rate ofY. The common steady
state growth rate for this model,g, is therefore equal to the growth rates ofA,
K, Y andC. This means that equation (A13) can be reduced to,

Substituting all the results above in equation (A12), we get

(A17)λ̂0 λ̂1

(A18)

λ̂1 ρ θ Â ⇒ δH ρ θδvH ⇒

v δH ρ
θδH

⇒ Â δH ρ
θ
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Appendix B

Derivation of the technology model with quality improvements

Again we will derive the necessary conditions for a social optimum which
maximizes consumer utility (U) in equation (1.4). To solve this optimization
problem we construct the following Hamiltonian, in whichv and C are the
control variables andK andq the state variables,

The first order conditions with respect to the control variables are,

(B1)φ e ρt C 1 θ 1
1 θ

λ0 [(1 v)H ]α (qK)1 α A α C λ1δvHq

The equations of motion for the costate variables are,

(B2)∂φ
∂C

e ρt C θ λ0 0 ⇒ λ0 e ρt C θ

(B3)∂φ
∂v

λ0

αY
(1 v)

λ1δHq 0 ⇒ λ0

λ1δH (1 v)q

αY

We can rewrite equation (B5) by substituting the result of equation (B3),

(B4)∂φ
∂K

dλ0

dt
λ0

(1 α)Y
K

⇒ λ̂0

(1 α)Y
K

(B5)∂φ
∂q

dλ1

dt
λ0

(1 α)Y
q

λ1δvH ⇒ λ̂1

λ0

λ1

(1 α)Y
q

δvH

Applying the usual steady state conditions, we find that (see also

(B6)λ̂1

δH (1 v)q
αY

(1 α)Y
q

δvH ⇒ λ̂1 δH (1 v) 1 α
α

δvH

Ŷ K̂ Ĉ
Appendix A). If we rewrite the production function (2.2) in growth rates and

use the fact that in the steady state , we find the following relationŶ K̂
between the growth rate ofY and the growth rate ofq

Note that the relation between the growth rate ofY and the growth rate ofq

(B7)Ŷ 1 α
α

q̂

differs from the relation between and in the previous section. TheŶ Â
growth rate of final production is no longer equal to the growth rate of the
technological change, but adjusted by a factor (1-α)/α. This means that if we
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write equation (B3) in growth rates and replace the growth rate ofY by the
adjusted growth rate ofq, the result is

All we have to do now is to rewrite equation (B2) in growth rates and replace

(B8)λ̂0 λ̂1 q̂ 1 α
α

q̂

with equation (B8) and by equation (B7). The results in an expressionλ̂0 Ĉ

in and , which can be substituted into equations (2.3) and (B6),q̂ λ̂1

Rearranging terms, we can calculate the fractionv,

(B9)λ̂1 q̂ 1 α
α

q̂ ρ θ 1 α
α

q̂

(B10)

δH 1 α
α

ρ θ 1 α
α

δvH

v
δH 1 α

α
ρ

θδH 1 α
α
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Appendix C

A naive model of combined technological change

The production function and technology generation equations, which are part
of the intertemporal utility maximization problem are denoted by,

Note that it is now necessary to divide total human capital between final

(C1)

Y [(1 u v)H ]α (qK)1 α A α

dA
dt

δAvHA

dq
dt

δquHq

production (fraction is 1-u-v), the generation of new technologies (fractionv)
and the improvement of already existing technologies (fractionu). Also note,
that the Cobb-Douglas production function enables us to collect the impact of
the various forms of technological change on output into one measure by
defining a combined technology variable,

Again we will derive the necessary conditions for a social optimum which

(C2)T Aq
1 α

α ⇔ T̂ Â 







1 α
α

q̂

maximizes consumer utility (U). To solve this optimization problem we
construct the following Hamiltonian, in whichv, u and C are the control
variables andK, A andq the state variables,

The first order conditions with respect to the control variables are,

(C3)
φ e ρt C 1 θ 1

1 θ
λ0 [(1 u v)H ]α (qK)1 α A α C

λ1δAvHA λ2δquHq

The equations of motion for the costate variables are,

(C4)∂φ
∂C

e ρt C θ λ0 0 ⇒ λ0 e ρt C θ

(C4)∂φ
∂v

λ0

αY
(1 u v)

λ1δAHA 0 ⇒ λ0

λ1δAH (1 u v)A

αY

(C5)∂φ
∂u

λ0

αY
(1 u v)

λ2δqHq 0 ⇒ λ0

λ2δqH (1 u v)q

αY
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We can rewrite equation (C8) by substituting the result of equation (C5),

(C7)∂φ
∂K

dλ0

dt
λ0

(1 α)Y
K

⇒ λ̂0

(1 α)Y
K

(C8)∂φ
∂A

dλ1

dt
λ0

αY
A

λ1δAvH ⇒ λ̂1

λ0

λ1

αY
A

δAvH

(C9)∂φ
∂q

dλ2

dt
λ0

(1 α)Y
q

λ2δquH ⇒ λ̂2

λ0

λ2

(1 α)Y
q

δquH

We can rewrite equation (C9) by substituting the result of equation (C6),

(C10)λ̂1

δAH (1 u v)A

αY
αY
A

δAvH ⇒ λ̂1 δAH (1 u)

Applying the steady state conditions we get from equations (C7), (C4), (C5)

(C11)

λ̂2

δqH (1 u v)q

αY
(1 α)Y

q
δquH ⇒

λ̂2 δqH 1 α
α

(1 u v) δquH

and (C6),

From equations (C14) and (C15) we know that,

(C12)ˆ̂λ0
Ŷ K̂ 0 ⇒ Ŷ K̂

(C13)λ̂0 ρ θ Ĉ

(C14)λ̂0 λ̂1 Â Ŷ

(C15)λ̂0 λ̂2 q̂ Ŷ

Substituting the previous results in this equation we get

(C16)λ̂1 λ̂2 q̂ Â

This equation can only hold in two cases. Either the fractionsv and u add up

(C17)

(1 u)δAH 1 α
α

(1 u v)δqH uδqH uδqH vδAH ⇔

(1 u v) ( 1 α
α

δq δA) 0
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to one, but this implies that final production will become zero since no human
capital is left to be used in final production, or in the second case, which is
the relevant one from an economic point of view, the marginal growth
productivities of human capital have to be equal. However, in the case of
technology generation equations which are linear in human capital this is the

exception rather than the rule. Moreover, when , both







1 α
α

δq δA 0

applications of human capital would generate the same (and constant) MGP,
in which caseu andv are not uniquely defined.
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Appendix D

Formal proof of the equivalence between the two-step approach and the
standard approach

Rewrite the production function using,

to,

(D1)

q ln(q) ⇒ dq
dt

q̂

A ln(A) ⇒ dA
dt

Â

This transformation enables us to derive optimal control results directly in

(D2)Y [(1 z)H]αe (1 α)q αA K 1 α

terms of and , i.e. the concepts used in the context of the two-stepq̂ Â
approach.

The associated technology generation equations and the Hamiltonian are,

The first order conditions with respect to the control variables are,

(D3)

dA
dt

Â f [(z u)H] f >0, f ≤0

dq
dt

q̂ g[uH] g >0, g ≤0

Φ e ρ t C 1 θ 1
1 θ

λ0(Y C) λ1q̂ λ2Â

The equations of motion for the costate variables are,

(D4)∂Φ
∂C

0 ⇒ λ̂0 ρ θĈ

(D5)∂Φ
∂z

λ0

αY
(1 z)

λ1

∂Â
∂z

0

(D6)∂Φ
∂u

λ1

∂q̂
∂u

λ2

∂Â
∂(z u)

∂(z u)
∂u

0
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(D7) and (D8) follow from the fact that and are independent of and

(D7)∂Φ
∂q

dλ1

dt
λ0(1 α)Y

(D8)∂Φ
∂A

dλ2

dt
λ0αY

q̂ Â q

, respectively.A

In the steady state,z andu are constant. Hence,

are constant too. Differentiating (D6) with respect to time we find,

(D9)∂Â
∂(z u)

f and ∂q̂
∂u

g

The slope of the CTC implied by and as given by (D3) is by definition

(D10)dλ1

dt
∂q̂
∂u

dλ2

dt
∂Â

∂(z u)
0

q̂ Â
equal to,

by virtue of (D10). Substitution of (D7) and (D8) into (D11) results in,

(D11)dq̂

dÂ

∂q̂
∂u

∂Â
∂(z u)

dλ2

dt
dλ1

dt

Hence the optimality conditions of the two-step approach are contained in the

(D12)dq̂

dÂ

α
1 α

first order conditions of the Hamiltonian problem and the steady state
assumption. Note that (D12) and (D11) taken together imply that,

i.e. in the optimum situation the marginal growth productivities of human

(D13)







1 α
α

∂q̂
∂u

∂Â
∂(z u)

capital should be the same in both technology applications of human capital.
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Appendix E

A two-step model of combined technological change withγq<1 and γA=1

The slopes of the CTC and the ITP have to be equal in the optimal point S,

Using (E1), we can derive an equation for

(E1)1
γq

δA

δq











q̂
δq

1
γq

1








1 α
α

q̂

whereΨ is implicitly defined in terms of the parameters of the model and is

(E2)q̂
δq























γqδq(1 α)

δAα

1
1 γq

γq

Ψγq

equal to the amount of human capital allocated to quality generation. We can

now derive an equation for by substituting the result of (E2) in the CTC,Â
giving

This results in

(E3)
Â δA













zH










q̂
δq

1
γq

Substituting both equations for and into the ITP results in

(E4)Â δA(zH Ψ )

q̂ Â

This is the ITP we will use in the optimization problem. The Hamiltonian

(E5)T̂ 







1 α
α

δqΨγq δAΨ δAzH

associated with this problem is

(E6)

Φ e ρ t C 1 θ 1
1 θ

λ0 [(1 z)TH]αK 1 α C

λ1T[






1 α
α

δqΨγq δA(zH Ψ)]

33



The first order conditions with respect to the control variables are

The equations of motion for the costate variables are

(E7)∂Φ
∂C

e ρtC θ λ0 0 ⇒ λ0 e ρtC θ

(E8)∂Φ
∂z

λ0

αY
1 z

λ1THδA 0 ⇒ λ0

(1 z)λ1THδA

αY

Substituting (E8) in (E10) gives

(E9)∂Φ
∂K

dλ0

dt
λ0

(1 α)Y
K

⇒ λ̂0

(1 α)Y
K

(E10)∂Φ
∂T

dλ1

dt
λ0

αY
T

λ1[






1 α
α

δqΨγq δA(zH Ψ)]

In the steady state, the growth rates ofY, K, C and Tare the same. This

(E11)

dλ1

dt

(1 z)λ1THδA

αY
αY
T

λ1[






1 α
α

δqΨγq δA(zH Ψ)]

λ̂1 (1 z)HδA









1 α
α

δqΨγq δA(zH Ψ)

means that we can rewrite equation (E7) in

By substituting (E11) into (E12) we get an equation for

(E12)
λ̂0 ρ θ Ĉ

λ̂1 ρ θ T̂

T̂

We now have two equations for , (E5) and (E13), which can be used to

(E13)
T̂









1 α
α

δqΨγq δA(H Ψ) ρ

θ

T̂
solve forz. Givenz, we can then solve foru and the various growth rates.









1 α
α

δqΨγq δA(zH Ψ)









1 α
α

δqΨγq δA(H Ψ) ρ

θ
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Substituting this result forz into equation (E4), we get the growth rate ofA

(E14)

z









1 α
α

δqΨγq(1 θ) δAΨ (θ 1) δAH ρ

θHδA

z
(1 θ)
















1 α
α

δqΨγq δAΨ δAH ρ

θHδA

Since

(E15)
Â

(1 θ)







1 α
α

δqΨγq δA(H Ψ) ρ

θ

we can now calculateu by substituting equations (E14) and (E16). The result

(E16)u z Â
δA

is

The final fraction we have to calculate isz-u

(E17)u Ψ
H

The steady state growth rate is equal to

(E18)
z u

(1 θ)







1 α
α

δqΨγq δA(H Ψ) ρ

θHδA

(E19)
g









1 α
α

δqΨγq δA(H Ψ) ρ

θ
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Appendix F

A two-step model of combined technological change withγA<1 and γq=1

The slopes of the CTC and the ITP have to be equal in the optimal point S,
given thatγq=1 andγA<1, hence

Using (F1), we can derive an equation for

(F1)γa

δA

δq











z
q̂
δq

γA 1









1 α
α

q̂

Note that Ψ is again defined in terms of the parameters of the model.

(F2)
zH q̂

δq











δq(1 α)

γAδAα

1
γA 1

≡Ψ

q̂ δq(zH Ψ )

However, Ψ now represents the amount of human capital allocated to the

generation of new technologies. We can now derive an equation for byÂ
substituting the result of (F2) in the CTC denoted by equation (4.4),

Substituting both equations for and into the ITP results in,

(F3)Â δAΨγA

q̂ Â

This is the ITP we will use in the optimization problem. The Hamiltonian

(F4)T̂ δAΨγA








1 α
α

δqΨ 







1 α
α

δqzH

associated with this problem is,

The first order conditions with respect to the control variables are

(F5)

Φ e ρ t C 1 θ 1
1 θ

λ0 [(1 z)TH]αK 1 α C

λ1T[






1 α
α

δq(zH Ψ ) δAΨγA)]

(F6)∂Φ
∂C

e ρtC θ λ0 0 ⇒ λ0 e ρtC θ
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The equations of motion for the costate variables are,

(F7)∂Φ
∂z

λ0

αY
1 z

λ1TH







1 α
α

δq 0 ⇒ λ0

(1 z)λ1TH







1 α
α

δq

αY

Substituting (F7) in (F9) gives,

(F8)∂Φ
∂K

dλ0

dt
λ0

(1 α)Y
K

⇒ λ̂0

(1 α)Y
K

(F9)∂Φ
∂T

dλ1

dt
λ0

αY
T

λ1[






1 α
α

δq(zH Ψ) δAΨγA]

In the steady state, the growth rates ofY, K, C and T are the same andz is a

(F10)

dλ1

dt

(1 z)λ1TH







1 α
α

δq

αY
αY
T

λ1[






1 α
α

δq(zH Ψ) δAΨγA)]

λ̂1









1 α
α

δq(H Ψ) δAΨγA

constant. This means that we can rewrite equation (F6) in

By substituting (F10) into (F11), we get a equation for

(F11)
λ̂0 ρ θ Ĉ

λ̂1 ρ θ T̂

T̂

We now have two equations for , (F4) and (F12), which can be used to

(F12)
T̂









1 α
α

δq(H Ψ) δAΨγA ρ

θ

T̂
solvez. From this we can solve foru and the various growth rates.









1 α
α

δq(zH Ψ) δAΨγA









1 α
α

δq(H Ψ) δAΨγA ρ

θ
⇒
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Substituting this result forz into equation (F2), we get the growth rate ofq

(F13)

z









1 α
α

δq(H Ψ θΨ) δAΨγA(1 θ) ρ

θH







1 α
α

δq

⇒

z
(1 θ)








δAΨγA








1 α
α

δqΨ

θH







1 α
α

δq

δq









1 α
α

H ρ

θH







1 α
α

δq

From (F14) and the equation of motion ofq, it follows that,

(F14)q̂
(1 θ)δAΨγA









1 α
α

δqΨ

θ







1 α
α

δq









1 α
α

H ρ

θ







1 α
α

The final fraction we have to calculate isz-u

(F15)u q̂
δq

H
(1 θ)δAΨγA









1 α
α

δqΨ

θ







1 α
α

δqH









1 α
α

δqH ρ

θ







1 α
α

δqH

The steady state growth rate is equal to,

(F16)z u HΨ≡H










δq(1 α)

γAδAα

1
γA 1

(F17)
g

δAΨγA








1 α
α

δq(H Ψ ) ρ

θ
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Appendix G

A two-step model of combined technological change withγA=γq=γ<1

The slopes of the CTC and the ITP have to be the same in the optimal point
S, given thatγq=γA=γ<1

From this we can derive an equation for17,

(G1)
γ

δA

δq













z










q̂
δq

1
γ

γ 1

1
γ











q̂
δq

1
γ

1








1 α
α

q̂

Note thatχ is defined in terms of the parameters of the model. We can now

(G2)
z γ q̂

δq























δq

δA









1 α
α

1
γ 1

1

γ

≡χ ⇒ q̂ δqχz γ

derive an equation for by substituting the result of (G2) in the CTC givenÂ
by equation (4.4)

Substituting both equations for and into the ITP results in

(G3)
Â δAz γ (1 χ

1
γ )γ

q̂ Â

This is the ITP used in the optimization problem. The Hamiltonian is,

(G4)
T̂ z γ











δA(1 χ
1
γ )γ 








1 α
α

δqχ

The first order conditions with respect to the control variables are,

(G5)

Φ e ρ t C 1 θ 1
1 θ

λ0 [(1 z)T]αK 1 α C

λ1T zγ










δA(1 χ
1
γ )γ 








1 α
α

δqχ

17 We have normalized human capital to a value of one. This simplifies the analysis without changing the basic
outcome.
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The equations of motion for the costate variables are,

(G6)∂Φ
∂C

e ρtC θ λ0 0 ⇒ λ0 e ρtC θ

(G7)

∂Φ
∂z

λ0

αY
1 z

λ1Tγz γ 1











δA(1 χ
1
γ )γ 








1 α
α

δqχ 0 ⇒

λ0

(1 z)λ1Tγz γ 1











δA(1 χ
1
γ )γ 








1 α
α

δqχ

αY

Substituting (G7) in (G9) gives,

(G8)∂Φ
∂K

dλ0

dt
λ0

(1 α)Y
K

⇒ λ̂0 λ0

(1 α)Y
K

(G9)∂Φ
∂T

dλ1

dt
λ0

αY
T

λ1z γ










δA(1 χ
1
γ )γ 








1 α
α

δqχ

In the steady state, the growth rates ofY, K, C and T are the same andz is a

(G10)λ̂1 γ z γ 1 z γ (1 γ )










δA(1 χ
1
γ )γ 








1 α
α

δqχ

constant. This means that we can rewrite equation (G6) in

By simple and straight forward substitution we get an equation for

(G11)
λ̂0 ρ θ Ĉ

λ̂1 ρ θ T̂

T̂

We can now substitute equation (G4). To simplify we set,

(G12)
T̂

γzγ 1 z γ (1 γ)










δA(1 χ
1
γ )γ 








1 α
α

δqχ ρ

θ

This results in the following equation,

(G13)ε δA(1 χ
1
γ )γ 








1 α
α

δqχ
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or

(G14)

z γ ε γzγ 1 z γ (1 γ) ε ρ
θ

z γ γ
θ 1 γ

z γ 1 ρ
ε (θ 1 γ)

(G15)z1 γ
z γ

θ 1 γ
ρ

ε (θ 1 γ)

γε
ρ

(1 θ γ 1)ε
ρ

z
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Appendix H

Parameter analyses

Note that in order for to be negative, it is necessary that at the ’old’dz
dρ

value of z, i.e. z*, but at the ’new’ (increased) value ofρ the LHS(z*,ρ),
should be smaller than the RHS(z*,ρ). Hence, we would require

Since θ≤1 by assumption cannot in any way be a binding

(H1)dA
dρ

dB
dρ

z <0 ⇒ z < γ
Θ γ 1

z < γ
θ γ 1

constraint forz*, i.e. for any logically feasible value ofz*≤1, the requirement

that is automatically satisfied. Therefore, ifz* is a feasiblez < γ
θ γ 1

solution, then it exhibits the relevant economic behaviour. The corollary of
this result is that if a solutionz* is feasible, then

which would makez* infeasible, contrary to our assumption. Therefore we

(H2)dA
dρ

dB
dρ

z >0 ⇒ z > γ
Θ γ 1

>1

can rule out the possibility that . Similar conclusions hold with respectdz
dρ

>0

to the other parameters.
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