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Abstract

This paper examines the evolution of networks when innovation takes
place as a result of agents bringing together their knowledge endowments.
Agents freely form pairs creating a globally stable matching. paired agents
combine their existing knowledge to create new knowledge. We study the
properties of the dynamic network formed by these interactions, and the
resultant knowledge dynamics. Each agent carries an amount of knowl-
edge of a certain type, and the innovative output of a pair is a function of
the partners’ endowments and types. We find evidence that the pattern
of substitution between quantity and type of knowledge in the innovation
function is vital in determining the growth of knowledge, the emergence
of expertise and the stability of a number of network structures. Network
structure itself exhibits a phase change when the relative importance of
diversity compared to quantity increases beyond a threshold value.
Keywords: Knowledge, Networks, Innovation, Stable Matching, Small
Worlds.
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1 Introduction

This paper is concerned with three issues: knowledge creation; knowledge dif-
fusion, and the creation and evolution of networks.

In recent years many empirical studies of the creation of knowledge argue
that innovation is to a very great extent the recombination of existing knowl-
edge.! At the same time, economists have observed that the knowledge base
underlying a firms productive and innovative activities has broadened. That
is, to operate competitively, or to innovate effectively a firm has to have access
to more and more types of knowledge. A strategy that firms now commonly
employ to address these to problems is for form alliances with other firms for
the purpose of producing knowledge.?

To model diffusion economists first turned to epidemiology, and adapted the
epidemic model of diffusion. Populations mix, any agent being equally likely
to contact any other, and innovations spread by “infected agents” contacting
“uninfected agents”.> More recently, however, economists have observed that
this sort of global mixing does not describe well the way knowledge or informa-
tion is passed among agents. Economists now recognize that much knowledge
transmission takes place in bilateral or small multi-lateral interactions.* If this
is generally the case, then the nature and structure of these interactions will be
central in determining the speed and extent of diffusion in an economy. Thus,
to study diffusion will involve studying the networks over which the diffusion
takes place. There are growing numbers of network models in economics now,
but many of them take the network structure as fixed, and even if agents have
many interactions, they are all with the same small subset of the population.
This is reasonable in many instances, but a more general approach, wherein the
network is allowed to evolve over time would be more general, since an agent will
typically change the set of agents with whom he interacts as he gains experience
about where the highest rents lie.

The literature contains models in which networks evolve.® This literature
tends to have an equilibrium approach, with rational agents whose actions pro-
duce a static equilibrium, in which the network structures that emerge tend to
be driven by the costs of form ing links. There is a small contrasting literature
that is more evolutionary in spirit.® In this literature agents learn about the
value of interacting with other agents over time, and the network evolves, typi-
cally through some form of reinforcement learning. The present paper includes
features of both approaches. In this paper we treat networks as evolving as

1See for example Kodama (1986,1992); Gibbons et al. (1994); Sutton and Hargadon (1996)
or Hargadon and Sutton (1997).

2See for example Zimmermann (1995); Cowan and van de Paal (2000). Smith (2000);
Hagedoorn (2001) or Antonelli (1999).

3See for example Griliches (1957) or Mansfield (1961).

4See for example David and Foray (1992); Valente (1995); Steyer and Zimmermann (1998);
or Cowan and Jonard (1999 and 2000).

5See for example Debreu (1969); Haller (1994); Qin (1996); Bala and Goyal (1998, 2000)
(1997). For a recent survey of the game theoretic work, see Jackson and Dutta (2001).

6see for example Plouraboué et al. (1998); or Weisbuch et al.



agents interact with each other, changing their own and each other’s charac-
teristics and consequently changing partners as time passes. In the model we
develop here, firms form alliances in order to create knowledge, and in so doing,
transmit knowledge between them. Firms can change partners, and this is the
mechanism that provides the global diffusion of knowledge. In modelling part-
ner choice we use the stable Marriage Matching algorithm of Gale and Shapley
(1962), but because agents characteristics change as a result of these partner-
ships, the network can continually evolve. Thus this model lies between the
pure search for Nash equilibria of evolutionary game theory and the melioration
models of social network dynamics.

In this paper we develop a model in which each period every firm in the
population seeks a partner for knowledge creation. We restrict attention to
bilateral partnerships. Firms come together and pool their existing knowledge
to create new knowledge which they then both absorb. Partnerships last for one
period exactly, at the end of which each firm seeks a new partnership, possibly
with the previous partner. That firms search for (possibly) new partners each
period implies that over time a network of knowledge flows can form, as firms
create links with several different firms. The central question in this paper has to
do with the structural properties of these networks and whether the properties
change under different knowledge production technologies.

When innovation is the outcome of agents’ pairwise interactions, rational
agents will seek partners to maximize the expected outcome of the partnership.
Put another way, at each period of time, an agent will rank each of his potential
partners on the basis of the expected benefits from that interaction. The issue
then is to divide the population into n/2 pairs such that each agent’s partner
is the best he can have, given everyone else’s preferences. This is known as the
room-mate problem. In general stable matches are not guaranteed in the room
mate problem, but as we show below in our model they are. This implies that
in every period the network of paris that forms is stable in a Nash sense.

2 The model

Innovation and pair formation take place in parallel. Regarding innovation,
individuals’ knowledge is combined to produce new knowledge. A production
function encompassing both agents’ amounts and types of knowledge determines
how much new knowledge is generated. Agents rank each other depending on
the expected output of a partnership. Hence rankings change over time because
innovation changes individual knowledge profiles. Two broad categories of issues
are examined: the process of network formation; and the properties of knowledge
growth.



2.1 Knowledge and matching

Consider a finite set S = {1,...,n} of individuals engaged in repeated inter-
actions. Each individual ¢ € S is characterized by a real-valued knowledge
endowment, v;, in the form of a quantity of knowledge p; > 0 and a composite
index representing a type of knowledge 6 € (0,7/2) : v; = (p;, 6;. This allows
a very simple polar representation of individuals, as well as the existence of a
continuum of knowledge types. Individual knowledge level and type are ran-
domly drawn from a uniform distribution over (0, 1) x (0, 7/2) at the beginning
of the process. At each period, agents seek partners with whom to innovate,
after which knowledge is absorbed and agents start again a round of matching,
based on their new knowledge profiles.

Innovation then, is a process that combines the knowledge of two agents and
produces new knowledge. In this process, all else equal, more knowledge will be
better. But diversity of knowledge inputs may also matter. Two agents whose
expertise lies in exactly the same field are likely not to find many synergies.
Thus in general diversity is beneficial to the innovative process, and enters pos-
itively into the production function. To fix ideas we model this as a constant
returns Cobb-Douglas function, the arguments being the lengths of the knowl-
edge vectors of the two agents (how knowledgeable they are), and the extent
to which their expertise differs, that is, the difference between their knowledge
“angles”. The extent to which diversity matters is a parameter we vary as the
exponent on the “difference in angles” argument in the Cobb-Douglas function.

2.2 Knowledge and innovation

There are many ways to characterize knowledge, none of them without its pit-
falls. For our purposes two aspects of knowledge are important—quantity and
type. Recent views of innovation as recombination make it imperative that
any formal characterization of knowledge permit that equally knowledgeable
agents may know different things. That is, the knowledge of an agent comprises
many different types of knowledge. One approach then would be to formalize
knowledge as a long vector, each element representing a different type of knowl-
edge. Agents differ then along many dimensions. This proves cumbersome in
implementation however, and is more detailed than necessary for the issues we
are exploring here. A simplification of this approach is to represent an agent’s
knowledge as a pair: one element signifying a quantity of knowledge; the other
signifying a type. This representation has the drawback that it takes what
is clearly a complex thing, an agent’s knowledge stock, and represents it as a
pair. But it has the great benefit of simplicity; it is easily generalized; and does
capture some important elements of the nature of knowledge.

A representation of the innovation process must satisfy several minimal re-
quirements. Consider two individuals i and j with knowledge stocks (p;, 6;) and
(pj, ;) respectively. Suppose they are paired in a stable matching. As innova-
tion is jointly conducted, after innovation has taken place, the following should



be true:

e the knowledge amounts held by ¢ and j have increased;
e the knowledge types of ¢ and j have changed;

e the distance between the knowledge types of ¢ and j has fallen.

In a geometric sense, both vectors are longer after the innovative episode,
and the angle between them has decreased. A fourth assumption is necessary
for the description of innovation to be complete:

e most often, innovation produces knowledge of a type which is “between”
the types of the two contributors; however, innovation sometimes produces
very different knowledge.

Operationally, each pair of agents creates an amount of new knowledge
determined by the production function, and this amount is simply added to
their existing knowledge endowments. The type of knowledge determined is
a random variable 6 distributed according to a truncated normal, with mean,
f = (6; +6;) /2 and standard deviation s. The knowledge type of an individ-
ual is modified by innovation and becomes a weighted mean of his previous
knowledge type and the type of new knowledge generated by innovation. This
accounts for the relative importance of old and new knowledge in an individual’s
knowledge stock. B

The standard deviation of 6 is a parameter we vary. If a technological system
is deeply entrenched in a trajectory, we would expect the standard deviation to
be small. On the other hand, in a case in which there is wide scope for technolog-
ical discovery in many areas, the standard deviation of this distribution would
be large. The smaller the standard deviation the more likely the new knowl-
edge will lie “between” the knowledge of the partners. Varying this parameter
permits us to explore the dynamics of these different situations.

Formally, the innovation function is r : $2 — R, , with

r(i,§) = 16; — 0,1 (pip;)' 7,8 € (0,1).

Parameter 3 measures the importance of diversity in knowledge types in the in-
novative process. Individual i’s new knowledge endowment is simply p; (t + 1) =
pi (t) +7(i,7), and given the innovation is in type f-knowledge, i’s new knowl-
edge type is

i (T r(i,J
pi(t+1) pi(t+1)
the weighted mean of his previous knowledge type and the new knowledge type,
where the weights are the relative amounts of knowledge involved.

0;(t+1) =



2.3 The knowledge dynamics

Each period pairs are formed, innovation takes place and endowments change.
At the end of the period the partnership is dissolved. This process is repeated,
and we investigate the long run behaviour of the system. In principle knowledge
vectors grow in length indefinitely, but types of knowledge are bounded between
0 and /2. Eventually, in the creation of knowledge, only amounts matter as
that argument will dominate in the production function. This is clearly un-
reasonable. To solve this problem we re-normalize every period so that the
population average knowledge vector has length one. What this implies is that
data on aggregate knowledge levels have no meaning. However, we can still rea-
sonably measure growth rates, and variance in knowledge levels across agents.
In examining knowledge, two issues are of concern: its growth and its distribu-
tion. and allocation of knowledge in this economy. The economy’s knowledge
growth rate is simply the growth rate of the average knowledge level per pe-
riod. It will be evaluated along the simulation horizon. Since the mean level of
knowledge is by definition 1, the variance of knowledge levels o2 = % >pi—1
provides a good measure of the equality of the distribution.

2.4 Network dynamics

A relational network exists in this economy, but in a dynamic rather than a
static sense. To study its properties, we focus on the frequency of contacts (in
practice, the frequency of meetings over 2,000 rounds). G (S,V;) is the graph
associated with the stable matching achieved at time ¢ = 0,1,2,..., that is
Vi(i,j) = 1if (i,4) € Ty and Vi (i,j) = 0 otherwise. The weighted graph
recording past interactions is denoted G (S,W), where W (i,5) = W (j,i) is
the frequency of activation of the connection between ¢ and j over the final ¢
periods. For this graph several quantities are of interest. We study the frequency
distribution of collaborations and, following Watts and Strogatz (1998), two
structural parameters: the average path length and the average cliquishness.”

The value associated to a path between i and j is the product of the interac-
tion frequencies along that path. The length of the shortest path (or distance)
between any pair of individuals is the number of interactions in the path having
largest value. Formally, defining d (i, j) as the distance or length of the shortest
path between ¢ and j, the average path length is

=iyt
e

and simply measures how distant vertices are on average, which is a global
property of the graph. Average cliquishness C' is a measure of local connectivity

7If one thinks of social networks representing friendship, both have intuitive interpretations.
The path length is the number of friendships in the shortest chain connecting two agents.
Cliquishness reflects the extent to which the friends of one agent are also friends of each
other.



capturing the share of active links between any given vertex’s neighbours. It is

written
Z Z nl nl—1/2 2)

i FleEW (i

where n; = #{j | d(¢,j) = 1} is the size of i’s neighbourhood. These statistics
give a reasonably complete description of the structural properties of the under-
lying network. We add one simple measure, namely the average degree of the
graph D = % > i, as a measure of the density of the interaction structure.

3 Existence: Stable matching

Before turning to the emergence of network structure and the associated knowl-
edge dynamics, we discuss the matching mechanism present in this model. Be-
cause any pair of agents assigns the same cardinal value to their match, a unique
stable match always exists. We can prove this proposition by construction.

Proposition 1 For any innovation function r : S> — Ry generating a strict
preference ordering =, the matching problem (S, =) has a unique stable matching

L.

Proof The algorithm to construct the stable matching is as follows. Let Sy = S
and po = {@}. Consider the roommate matching problem (Sp, >), where the
profile of preference orderings > is defined by the innovation function r, as stated
in equation (?7). As preferences are strict, there is a single pair (a1, b;) such
that r (a1, b1) = max; jyesz i=; 7 (i, ) . No matching which does not involve this
pair could be stable, as a; and b, both prefer each other to any other person they
might be matched with. Hence the pair (a1, b;) is necessarily part of a stable
matching. Let p; = po + (a1, b1) and Sy = Sp — {a1, b1 }. Consider then the new
matching problem (S7,>). It only involves n — 2 individuals with exactly the
same preferences (modulo those concerning a; and b;) as before this operation.
Again there is a single pair (as, b2) such that r (a2, b2) = max; jyesz i2; 7 (i,]) -
Let then ps = p1 + (az,bs) and Sy = S; — {a2,b2}. Repeat until everyone
belongs to a pair: the set 4 = p,/, is a stable matching as no pair can blockade
it, and it is unique as the sequence (ay,b1), (az,b2), ..., (an/2,by/2) is uniquely
defined. O

In case of a tie (that is to say when individual ¢ can achieve the same inno-
vative output with two or more different partners), existence is still guaranteed
but uniqueness is lost. The elimination algorithm to find a stable matching is
unchanged, except that when two (or more than two) pairs achieve the same
output, one of them is picked up randomly and the procedure just iterates.



4 Numerical analysis

There are in the model two parameters that could affect the evolution of the
network structure: s, the standard deviation of the distribution from which the
angle of innovation is drawn; and (3, the value of diversity in knowledge pro-
duction. In the experiments that follow we simply examine two representative
values for s, running each experiment twice, once for high and once for low s.
The effects of 3 we examine in more detail. Random values of 3 are drawn from
a uniform distribution over (0,1). For each 8 value n = 100 individuals repeat-
edly interact over a horizon of length 3,000 periods. We build a data sample
of 100 different J-values and two s-values and the associated statistics. We ex-
tract the underlying structure from these data using non-parametric estimation
techniques.

4.1 Network dynamics

The emergence of network structure can be described using three indicators:
local order or cliquishness; path lengths; and density or degree of the graph.
We examine the effects of two parameters, 3, a measure of the importance of
diversity in innovation, and s, which measures the extent to which new knowl-
edge lies between the expertise of the innovators. In the discussion that follows,
we restrict ourselves to the 0/1 graph. Analyzing the weighted graph, using the
measures discussed above creates a problem of interpretation, since the mea-
sures are not bounded. Graphically, however, the patterns are identical to those
produced by analysing the 0/1 graph.

4.1.1 Density

Figure 1 plots the relationship between density, as measured by the average
degree, and g for two values of s, s = 0.1 (focussed trajectory) and s = 3
(diversified trajectory).

What we observe is that there is a phase change in the structure of the graph
for f* =~ 0.4. When 8 < * the degree is very low. This implies that agents
in general have had very few partners over history, and have tended to interact
repeatedly with the same partners. For # > *, the network is very different.
Agents interact with many different partners over time, no longer sticking to
the same ones. It is worth mentioning that for small values of 3 (for both values
of s) and for 3 close to 0.25 in the case s = 0.1, the degree can be significantly
larger than 1 although not systematically. This suggests a small region (roughly
speaking for 0.2 < 3 < 0.4) where two types of regimes can exist: a world of
pairs (degree equal to one) and a more complex world of degree above 1 and
below 15, depending on the path taken by the process. After 8* by contrast
there is only one regime with degree around 50. Also note that when 3 is
further increased after 0.75, the degree tends to decline when innovation is very
localized (small s), while it remains constant when innovation is less focussed
(large s).
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Figure 1: Average number of connections per individual

In Figure 2 we depict the number of individuals involved only in pairs that
are stable over time, i.e., of individuals having a unique life-long innovation
partner.

The phase change that exists for the degree is also present when the number
of paired individuals is considered, with a sharp decline from a large number
(between 96 and 100) below 3* to 0 for § > §*. There is also some noise in the
region [0.2,0.4], with a number of paired individuals that doesn’t follow a clear
pattern, a phenomenon similar to what we observed for the degree on Figure
1. Above * persistent pairs do not form. Interestingly, for very small 5 and
a diversified innovative trajectory (large s), no pairs form and, as we will see
when the path length is considered, we even get a connected graph.

4.1.2 Path Length

We see in Figure 3 the same phase change, at the same value of 8* in average
path length as in the density graph.

For 8 < (3%, the graph is disconnected. That is, there are isolated groups
of agents who interact within groups but not across groups. In principle, this
makes the average path length infinite.® To keep the figure informative, we only

8Recall that average path length refers to the average path length between pairs of nodes in
the graph. If there is no path between two agents, this creates an infinitely long path between
them, making the average path infinite. In our calculation of path length, two disconnected
agents have a path length of 10,000 rather than infinity. This makes the calculation possible.
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consider a small range over the y-interval so between 0 and £* most of the points
are invisible. When 3 > *, path length is very small. The lowest possible path
length is 1, and exists only in a complete graph. The networks we obtain are thus
not complete (their degree is below 55, and a complete graph must have degree
99 in our case) but do have relatively short paths. What this implies is that
knowledge flows relatively rapidly around the graph, and indirect exploitation
of distant knowledge, through successive rounds of innovation, can be an active
feature of the economy. It is known that for a fixed density, random graphs
have very short average path lengths. The formula (which is valid for infinite
size graphs) for the average path length over a random graph with n vertices
and average degree d is In(n)/In(d). In Figure 3 we represent the path length of
the equivalent random graph (that is the random graph with 100 vertices and a
degree a given in Figure 1). The path length in our case is consistently above the
path length of the equivalent random graph. The networks that emerge from
our dynamic process are not random, but do have path lengths approaching
those of a random graph of the same degree. Interestingly, and related to the
previous paragraph, it is worth mentioning that in a diversified trajectory (and
to a smaller extent in a focussed one) there are situations with low 3 (8 = 0)
in which path length is finite (between 2 and 7 in the figure).
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Figure 3: Average path length between any pair of individuals

4.1.3 Local Order and Network Structures

To describe local order we use the standard measure of cliquishness: the share
of my partners who are also partners of each other.

Like the previous structural measures, cliquishness shows a phase change
at the same value of #*. Cliquishness is not defined for a graph of disjointed
pairs, so our convention is to assign a value of zero for cliquishness of a pair. At
the other extreme, a complete graph has a value of 1, and so does a collection
of complete disconnected components. In figure 4 we see for small values of 8
many networks with C' close to 0, but most often strictly positive. Since we
know that the graph is disconnected here (and thus not complete) this means
that we must be observing the emergence of a “caveman graph”, that is, a graph
of disconnected, complete subgraphs. From figure 1 it is clear that the caves
are very small, since the average number of connections per agent is between 1
and 3. When the value of the average cliquishness gets very small, is that there
are many isolated pairs in the network. In this part of the parameter space
“only length matters” so the two agents with the most knowledge will partner,
and create the largest innovation, thus maintaining their positions as the most
knowledgeable agents. Their partnerships is stable, as is the partnership of
the next most knowledgeable pair, and so on. There is a small range, roughly
0.3 < 8 < 0.45 in which the graph consists of several, but a falling number of,
subgraphs which are themselves highly cliquish. We no longer have a caveman
graph, but rather several connected, but not complete subgraphs.

10
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The cliquishness of the equivalent random graph almost perfectly tracks the
observed cliquishness, whatever the value of s.

4.2 Knowledge dynamics

Figure 5 depicts the relationship between the long-run economy-wide knowledge
growth rate and (.

For both values of s there seem to be, again, two regimes of knowledge growth
— one associated with a disconnected graph, and one with a connected graph.
In both regions knowledge growth rates as diversity becomes more important.
The contrast between large and small s is explained by the fact that with a
small value of s, there is a natural convergence over time in the knowledge type
of the population. Since innovations tend to occur “between” the knowledge
of the members of the innovating pair, knowledge types converge over time.
When S is large, diversity is important, and this convergence effect reduces
growth. When s is large, however, diversity is preserved over time, since there
is a large variance in the type of knowledge created, so the natural convergence
is mitigated by the randomness here.

Again, though, there is a small ambiguous region, for 0.25 < 3 < 0.4, where
there is some intermediate behaviour between that of the connected and dis-
connected regimes. As discussed above, in this region we see the emergence
of something resembling a caveman graph — small connected (sometimes com-
plete) sub-graphs within the disconnected total graph. Within each cave, we

11
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Figure 5: Growth rate of the average knowledge level

have the behaviour of a connected graph, which, holding 3 constant, is good for
knowledge production.

The issue of equity is addressed by considering v = o/p, the coefficient of
variation of individual knowledge levels. Coeflicient v measures how dispersed
around the average individual the population is, relative to this average individ-
ual. As we re-normalize at each time step, the coefficient of variation reduces
to the standard deviation. Figure 6 depicts the way ~ varies with .

For 3 < *, v is approximately equal to 7, which corresponds to a situation
in which knowledge is concentrated in the hands of exactly 2 individuals.” There
is a first fall in dispersion a bit before the critical 8, and then a very marked
one down to a point where under both small and large s things stabilize. For
small s the coefficient of variation stays around 1 whereas it stabilizes in the
vicinity of 0.5 for large s. Hence dispersion decreases with 3 in a non-smooth
way, and the decrease is more marked when the trajectory is more dispersed,
undergoing a phase change which again is very comparable to what could be
observed concerning network structure. In the beginning of the parameter space
“only length matters” so the two agents with the most knowledge will partner,
and create the largest innovation, thus maintaining their positions as the most
knowledgeable agents. Their partnerships is stable, as is the partnership of
the next most knowledgeable pair, and so on. As renormalization carries on,

9Given that we renormalize knowledge levels each period, the standard deviation is equal
to 7 if and only if 98 individuals have 0 (or almost 0) and 2 have 50, for an average 1.

12



4 Raw data (large s)
— Kernel regression (large s)
4 Raw data (small s)
p = Kernel regression (small s)
4
2
M
At s A
Marisrbu—drsbgsiit—e—d
0
0.00 0.25 0.50 0.75 1.00

Figure 6: Coefficient of variation of individual knowledge levels

we end up with all the “renormalized” knowledge being held by the two most
knowledgeable individuals. It takes a significant weight on variety to combat
this tendency and to allow for pairs to fluctuate, entailing that homogeneity
in terms of levels decreases. It is worth mentioning that at the other end of
the parameter space, “only angle difference matters”, which means that the
two most distant (in angle) individuals will be matched, so will the next more
different individuals, and so on. However the size of their innovation does not
matter, only angles do. So with time, because innovation tends to take place
“between” the knowledges of the innovating pair, there is a trend of decreasing
diversity in the population, as all agents lie between the two most extreme
agents of the previous period. This effect is mitigated, of course, as s increases.

5 Conclusion

In this paper we have focussed on issues of knowledge dynamics and emerging
network structures when agents create knowledge through partnership agree-
ments. We have emphasized that knowledge creation through cooperation can
be a complex process that involves pooling the competencies of the partners in
different ways, depending on the nature of the innovation process. Similarly,
given a pooling structure, different types of knowledge can be either substitutes
or complements for each other in the innovation process itself. The former con-
sideration is represented by the # parameter in our model, the latter by the

13



elasticity of substitution £ in a constant elasticity of substitution production
function. Both parameters affect the results, both in terms of the rate of knowl-
edge production, and in terms of the network structure. Knowledge creation is
fastest when the knowledge creation production function exhibits complemen-
tarity in its inputs. The nature of knowledge pooling has no noticeable effect
however. By contrast, heterogeneity among agents regarding their knowledge
levels is, generally, decreasing in 6. As it becomes more possible for one partner
to dominate in the pooling process (or perform more of the innovation activity)
heterogeneity across agents decreases.

The nature of knowledge pooling turns out to be crucial in determining the
emergent structure of the network. When 6 is very low, stable matchings create
pairs of agents whose expertise lies in the same fields fields — agents can be
seen as substituting for each other. Innovation tends to occur in that single
field of expertise, and the two agents remain good partners for each other in the
next round. This implies the emergence of stable pairs of agents; the network
becomes a set of n/2 disconnected pairs. By contrast, when 6 approaches 1,
stable matchings create pairs of agents whose respective expertise lies in differ-
ent fields. Innovation in this case does not reinforce existing expertise of the
two agents and thus make them more similar, but rather reducing the differ-
ences between them. Thus a pair matched in this round, because they are more
similar to each other after innovation are less likely to be a good match in the
next round. What this implies is that pairs of agents will form and disintegrate
rapidly, agents will constantly search for new partners, and the emergent net-
work will approach a random network. With 6 values between these extremes,
the network structure too is between the extremes. Here knowledge pooling
creates a mixture of the two agents’ knowledge with each knowledge type. As
6 grows from its minimum value the diameter of the stable groups or cliques
increases from two. The emergent cliques tend to be relatively complete, but
globally the graph remains disconnected. Cliquishness increases, and is maxi-
mal at § = 0.5. For intermediate values, 0.5 < 6 < 1, cliquishness falls, as the
islands of communicating agents make external connections, opening themselves
to each other by establishment of “shortcut” links. Global path length falls in
this region and it may be that small worlds, as defined by Watts and Strogatz
(1998), emerge.
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