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Abstract— Knowledge about computer users is very beneficial
for assisting them, predicting their future actions or detecting
masqueraders. In this paper, a new approach for creating and
recognizing automatically the behaviour profile of a computer
user is presented. In this case, a computer user behaviour is
represented as the sequence of the commands (s)he types during
her/his work. This sequence is transformed into a distribution
of relevant subsequences of commands in order to find out a
profile that defines its behaviour. Also, because of a user profile
is not necessarily fixed but rather it evolves/changes, we propose
an evolving method to keep up to date the created profiles using
an Evolving Systems approach. In this paper we combine the
evolving classifier with a trie-based user profiling to obtain a
powerful self-learning on-line scheme. We also develop further
the recursive formula of the potential of a data point to become
a cluster centre using cosine distance which is provided in the
Appendix. The novel approach proposed in this paper can be
applicable to any problem of dynamic/evolving user behaviour
modelling where it can be represented as a sequence of actions
and events. It has been evaluated on several real data streams.

I. INTRODUCTION

RECOGNIZING the behaviour of others in real-time is
a significant aspect in many different environments.

Specifically, the recognition of computer users can be very
beneficial for assisting them, predicting their future actions or
detecting masqueraders. This recognition needs the creation
of a user profile that contains information that characterizes
the usage behaviour of a computer user. The construction
of effective user profiles is a difficult problem for different
aspects: human behaviour is usually erratic, and sometimes
humans behave differently because of a change in their goals.
This last problem makes necessary that the user profiles we
create evolve.

In recent years, significant work has been carried out for
profiling users; however, most of the user profiles do not
change according to the environment and new goals of the
user. In this research, it is proposed an adaptive approach
for creating behaviour profiles and recognizing users. We
call this approach EvABCD (Evolving Agent Behaviour Clas-
sification based on Distributions of relevant events). It is
based on representing the behaviour of an agent (user) as an
adaptive distribution of her/his relevant atomic behaviours in
an evolving way.

For evaluating EvABCD, the UNIX operating system en-
vironment is used. Some research on this environment [1],
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[2] focus on detecting masquerades (individuals who im-
personate other users on computer networks and systems)
from sequences of UNIX commands. However, EvABCD
creates evolving user profiles from a sequence of commands
and classifies a new user into one of the previously created
profiles. Thus, the goal of EvABCD in the UNIX environment
can be divided into two phases: 1) creating and updating
user profiles from the commands the users typed in a UNIX
shell. 2) classifying a new sequence of commands into the
predefined profiles. Because of we use an evolving classifier,
it is constantly learning and adapting the existing classifier
structure to accommodate the newly observed emerging
behaviours. Once a user is classified, relevant actions can
be done, however this task is not addressed in this paper.

The creation of UNIX user profiles from a sequence of
UNIX commands should consider the sequentiality of the
commands typed by the user and the influence of his/her
past experiences. This aspect motivates the idea of automated
sequence learning for computer user behaviour classification;
if we do not know the features that influence the behaviour
of a user, we can consider a sequence of past actions
to incorporate some of the historical context of the user.
However, it is difficult or in general impossible, to build
a classifier that will have a full description of all possible
behaviours of the user because the user behavior evolves with
time, they are not static and new patterns may emerge as well
as an old habit may be forgotten or stopped to be used. The
descriptions of a particular behaviour itself may also evolve
(we assume that each behaviour is described by one or more
fuzzy rules). Therefore, we use an evolving (fuzzy) system
that allows for the user behaviours to be dynamic, to evolve.

This paper is organized as follows: Section 2 provides a
brief overview of the background and related work relevant
to this research. Our approach (EvABCD) is explained in
detail in section 3. Section 4 describes the construction of
the user behaviour profile. The evolving Unix user classifier
is detailed in Section 5. Section 6 describes the experimental
setting and the experimental results obtained. Finally, Section
7 contains future work and concluding remarks.

II. BACKGROUND AND RELATED WORK

Different methods have been used to find out relevant
information under the human behaviour in many different
areas: Macedo et al. [3] propose a system (WebMemex) that
provides recommended information based on the captured
history of navigation from a list of known users. Pepyne et
al. [4] describe a method using queuing theory and logistic
regression modeling methods for profiling computer users
based on simple temporal aspects of their behaviour. Gody
and Amandi [5] present a technique to generate readable user

978-1-4244-2754-3/09/$25.00 ©2009 IEEE 16

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/69364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


profiles that accurately capture interests by observing their
behaviour on the Web.

In the computer intrusion detection problem, Coull et
al. [6] propose an effective algorithm that uses pair-wise
sequence alignment to characterize similarity between se-
quences of commands. Schonlau et al. [1] investigate a
number of statistical approaches for detecting masqueraders.
Angelov and Zhou propose in [7] to use evolving fuzzy
classifiers for computer intrusion detection.

Although there is a lot of work focusing on user profiling
in a specific environment, it is not clear that they can be
transferred to other environments. However, EvABCD can
be used in any domain in which a user behaviour can be
represented as a sequence of actions or events. Because
sequences are very relevant in human skill learning and
reasoning [8], the problem of user profile classification is
examined as a problem of sequence classification. According
to this aspect, Horman and Kaminka [9] present a learner
with unlabelled sequential data that discover meaningful pat-
terns of sequential behaviour from example streams. Popular
approaches to such learning include statistical analysis and
frequency based methods. Lane and Brodley [10] present an
approach based on the basis of instance-based learning (IBL)
techniques, and several techniques for reducing data storage
requirements of the user profile.

It should be emphasized that all of the above approaches
ignore the fact that user behaviours can change or their
description can change and evolve. To the best of our
knowledge this is the first publication where user behaviour is
considered, treated and modelled as a dynamic and evolving
phenomenon. This is the most important contribution of this
paper.

III. THE PROPOSED APPROACH EVABCD
This section introduces the proposed approach for auto-

matic clustering, classifier design and classification of the
behaviour profiles of users. Although the proposed approach
can be applied for any behaviour represented by a sequence
of events, we detail it using the UNIX Commands envi-
ronment. Therefore, a behaviour profile is created from the
commands a UNIX user types during a period of time. In
addition, a novel evolving user behaviour classifier based on
Evolving Fuzzy Systems is presented which takes into account
the fact that the behaviour of any user is not fixed, but is
rather changing, evolving.

In order to classify an observed behaviour, our approach,
as many other agent modeling methods [11] creates a library
which contains the different expected behaviours. However,
in our approach this library is not a pre-fixed one, but is
evolving, learning from the observations of the users real
behaviours and moreover it starts to be filled in ’from
scratch’ by assigning temporarily to the library the first
observed user as a prototype. That means that the library is
continuously changing, evolving influenced by the changing
user behaviours observed in the environment. This evolving
library (called evolving-profile-library (EPLib)) is created
and updated by the Evolving user classifier.

Thus, the proposed approach includes at each step the
following two main actions:

1) Learning and Update of the Classifier: This action
involves in itself two sub-actions:

a) Update User Behaviour Profiles. This sub-
action analyzes the sequences of commands typed
by different UNIX users (data stream) on-line and
creates and updates the corresponding profiles.
This process is detailed in Section 4.

b) Evolving the Classifier. This sub-action includes
on-line learning and update of the classifier, in-
cluding the potential of each behaviour to be
a prototype, and update of the evolving-profile-
library (EPLib). This whole process is explained
in Section 5.

2) User Classification: The user profiles created in the
previous action are associated to one of the prototypes
from the EPLib and they are classified into one of the
classes formed by the prototypes. This action is also
detailed in Section 5.

IV. CONSTRUCTION OF THE USER BEHAVIOUR PROFILE

In order to construct a user behaviour profile in on-line
mode from a data stream we have to extract an ordered se-
quence of recognized atomic behaviours. For this purpose we
consider that the atomic behaviours of a user are represented
by the commands (s)he types in.

The commands typed by an agent are inherently sequen-
tial, and this sequentiality is considered in the modeling
process (when a user types a command, it usually depends
on the previous typed commands and it is related to the
following commands). According to this aspect, in order
to get the most representative set of subsequences from a
sequence, we propose the use of a trie data structure [12].
This trie data structure was also used in [13] and in [14]
where a team behaviour was learned as well as in [15]
to classify the behaviour patterns of a RoboCup soccer
simulation team.

The construction of a user profile from a single sequence
of commands is done by a three steps process: 1. Seg-
mentation of the sequence of commands, 2. Storage of the
subsequences in a trie, and 3. Creation of the user profile.
These steps are detailed in the following 3 subsections.

In order to clarify this process for creating, lets consider
the following sequence as an example: {ls → date → ls →
date → cat}.

A. Segmentation of the sequence of commands
First, the sequence is segmented into subsequences of

equal length from the first to the last element. Thus, the
sequence A=A1A2...An (where n is the number of commands
of the sequence) will be segmented in the subsequences de-
scribed by Ai...Ai+length ∀ i,i=[1,n-length+1], where length
is the size of the subsequences created and this value deter-
mines how many commands are considered as dependent. In
the remainder of the paper, we will use the term subsequence
length to denote the value of this length.
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In the proposed sample sequence ({ ls→ date→ ls→ date
→ cat}), let 3 be the subsequence length, then we obtain:
{ls → date → ls} and {date → ls → date} and {ls → date
→ cat}.

B. Storage of the subsequences in a trie

The subsequences of commands are stored in a trie in a
way that all possible subsequences are accessible and ex-
plicitly represented. In a trie, a node represents a command,
and its children represent the commands that follow it. Also,
each node keeps track of the number of times a command has
been inserted on to it. When a new subsequence is inserted
into the trie, existing nodes of the trie are modified and/or
new nodes are created. Moreover, as the dependencies of the
commands are relevant in the user profile, the subsequence
suffixes (subsequences that extend to the end of the given
sequence) are also inserted.

Considering the previous example, the first subsequence
({ls → date → ls}) is added as the first branch of the empty
trie (Figure 1 a). Each node is labeled with the number 1
which indicates that the command has been inserted in the
node once (in Figure 1, this number is enclosed in square
brackets). Then, the suffixes of the subsequence ({date →
ls} and {ls}) are also inserted (Figure 1 b). Finally, after
inserting the 3 subsequences and its corresponding suffixes,
the completed trie is obtained (Figure 1 c).

Fig. 1. Steps of creating an example trie.

C. Creation of the user profile

Once the trie is created, the subsequences that characterize
the user profile and its relevance are obtained by traversing
the trie (where a subsequence is a path from the root node
to any other node of the trie). For this purpose, frequency-
based methods can be used. In particular, in EvABCD, to
evaluate the relevance of a subsequence, its relative frequency
or support [16] is calculated. In this case, the support of a
subsequence is defined as the ratio of the number of times
the subsequence has been inserted into the trie to the total
number of subsequences of equal size inserted. Because
of the frequency of a command is always higher than the
frequency of two consecutive commands, it is important to
calculate the support according to the subsequences of equal
size.

Thus, in this step the trie can be transformed into a set
of subsequences labeled with its support value. In EvABCD
this set of subsequences is represented as a distribution of
relevant subsequences.

In the previous example, the trie consists of 9 nodes;
therefore, the profile consists of 9 different subsequences
which are labeled with its support. Figure 2 shows the
distribution of these subsequences.

Once a user behaviour profile has been created, it is
classified by the classifier as explained in the next section.

V. EVOLVING UNIX USER CLASSIFIER

A classifier is a mapping from the feature space to the
class label space. In the proposed classifier, the feature
space is defined by distributions of subsequences of events
(a distribution represents a user behaviour and has been
calculated as explained in the previous subsection). On the
other hand, the class label space is represented by the most
representative distributions. Thus, a distribution in the class
label space represents a specific behaviour which is one of
the prototypes of the evolving-profile-library (EPLib). The
prototypes are not fixed and evolve (dynamically change)
taking into account the new information collected on-line
from the data stream - this is what makes the classifier
Evolving. The number of these prototypes is not pre-fixed but
it depends on the homogeneity of the observed behaviours.
The whole classifier is detailed in the following sub-sections.

A. User behaviour representation

EvABC receives observations in real-time from the en-
vironment to analyze. In our case, these observations are
the commands typed by a user. These observations are con-
verted into the corresponding distribution on-line. In order
to classify UNIX user behaviours these distributions must be
represented in a data space. For this reason, each distribution
is considered as a data vector that defines a point that can
be represented in the data space.

The data space in which we can represent these points
should consist of n dimensions, where n is the number of
the different subsequences observed. It means that we should
know all the different subsequences of the environment a
priori. However, these subsequences could be unknown and
the creation of this data space from the beginning is not
efficient. For this reason, in EvABCD the dimensions of the
data space also evolves (is incrementally growing) according
to the different subsequences that are represented in it.

Figure 3 explains graphically this novel idea. In this
example, the distribution of the first user consists of 5
subsequences of commands (ls, date, ls-date, cat and vi),
therefore we need a 5 dimensional data space to represent
this distribution (each different subsequence is represented
by one dimension). If we consider the second user, we can
see that 2 of the 5 previous subsequences have not been typed
by this user (ls-date and cat). It is important to consider that
this value is not available so it can not be represented by the
number 0. Also, there are 2 new subsequences (emacs and
rm) so the representation of this value in the same data space
needs to increase the dimensionality of the data space from 5
to 7. To sum up, the dimensions of the data space represent
the different subsequences typed by the users and they
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Fig. 2. Distribution of subsequences.

will increase according to the different new subsequences
obtained.

Fig. 3. Distributions of subsequences of events in evolving systems -
Example

B. Calculating the potential of a data sample

As in [7], a prototype is a data sample (a behaviour
represented by a distribution of subsequences of events) that
represents several samples and has been selected from the
available data by an unsupervised learning. The classifier
is initialized with the first data sample (which is stored in
EPLib). After this, each data sample is classified to one
of the prototypes (classes) defined in the classifier. Then,
based on the potential of the new data sample to become a
prototype [17], it could form a new prototype or replace an
existing one.

The potential of a data sample (zk) is calculated by the
equation (1) which represents a function of the accumulated
distance between a sample and all the other samples in the
data space per class. The result of this function represents
the density of the data that surrounds a certain data sample.

P (zk) =
1

1 +
∑k−1
i=1 distance2(xk,xi)

k−1

(1)

where zk denotes the kth data sample and distance repre-
sents the distance between two samples in the data space.

In [18] the potential is calculated using the euclidean
distance and in [7] it is calculated using the cosine distance.
Cosine distance has the advantage that it tolerates different
samples to have different number of attributes (subsequences
labeled with its support value). Cosine distance also tolerates

if the value of several subsequences in a sample can be null
(null is different than zero). Therefore, EvABCD uses the
cosine distance (cosDist) to measure the similarity between
two behaviours.

cosDist(zk, zp) = 1−
∑n

j=1 zkjzpj√∑n
j=1 z

2
kj

∑n
j=1 z

2
pj

(2)

where zk and zp represent the two samples to measure its
distance and n represents the number of different attributes
(subsequences) in both samples.

Note that the expression in the equation (1) requires all
the accumulated data which contradicts to the requirement
for real-time and on-line application needed in the proposed
approach. For this reason, a recursive expression of the
potential in which is not needed to store the history of all
the data was developed in [17] [18] using euclidean distance
and in [7] using cosine distance.

As it is explained in the Appendix, to get recursively the
value of the potential of a sample using the equation (1)
is necessary to calculate nxn different accumulated values
which store the result of multiply a value by all the other
different values (these values are represented as dij

k ). As it
is detailed in the Appendix, the result of this derivation is:

Pk(zk) =
1

2 + [ 1
h(k−1) [[−2BK ] + [ 1

hDk]]]
k = 2, 3...;P1(z1) = 1
where :

Bk =
n∑

j=1

zkjb
j
k ; bjk = bj(k−1) +

√
(zj

k)2∑n
l=1(z

l
k)2

bj1 =

√
(zj

1)2∑n
l=1(z

l
1)2

; j = [1, n+ 1]

Dk =
n∑

j=1

zj
k

n∑
p=1

zp
kd

jp
k ; djp

k = djp
(k−1) +

zj
kz

p
k∑n

l=1(z
l
k)2

d1j
1 =

zj
1z

1
1∑n

l=1(z
l
1)2

; j = [1, n+ 1]

(3)
However, in our particular application of user behaviour

modelling the data represent support values and are thus
positive. Thus, to simplify the expression (1) one can use
simply the distance instead of square of the distance. For
this reason, we use equation (4) instead of (1).
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P (zk) =
1

1 +
∑k−1
i=1 cosDist(xk,xi)

k−1

(4)

Using the equation (4), we develop a recursive expression
similar to the recursive expressions derived in [18] and [7].
This formula is as follows:

Pk(zk) =
1

2− 1
k−1

1√∑n
j=1(z

j
k)

2
Bk

; k = 2, 3, ...;P1(z1) = 1

where Bk =
n∑

j=1

zj
kb

j
k ; bjk = bj(k−1) +

√
(zj

k)2∑n
l=1(z

l
k)2

and bj1 =

√
(zj

1)2∑n
l=1(z

l
1)2

; j = [1, n+ 1]

(5)

C. Creating new prototypes

The proposed evolving user behaviour classifier EvABCD
can start ’from scratch’ (without prototypes in the library)
in a similar manner as eClass evolving fuzzy rule-based
classifier proposed in [18], used in [19] for robotics and
further developed in [7]. The potential of each new data
sample (user behaviour represented by a distribution of
subsequences) is calculated recursively and the potential of
the other prototypes is updated. After that, the potential of
the new sample (zk) is compared with the potential of the
existing prototypes. A new prototype is created if its value
is higher than any other existing prototype, as shown in
equation (6).

∃i, i = [1, NumPrototypes]; P (zk) > P (Proti) (6)

Thus, if the new data sample is not relevant, the overall
structure of the classifier is not changed. Otherwise, the
classifier evolves by adding new prototypes which represent
a part of the observed data samples.

D. Removing existing prototypes

After adding a new prototype, we check whether any of the
already existing prototypes are described well by the newly
added prototype [7]. By well we mean that the value of
the membership function that describes the closeness to the
prototype is a Gaussian bell function due to its generalization
capabilities (equation (7)):

∃i, i = [1, NumPrototypes]; µi(zk) > e−1 (7)

For this reason, we calculate the membership function
between a data sample and a prototype which is defined
as (8):

µi(zk) = e
− 1

2 [
cosDist(zk,Proti)

σi
] ; i = [1, NumPrototypes]

(8)
where cosDist(zk, P roti) represents the cosine distance

between a data sample (zk) and the ith prototype (Proti);

σi represents the spread of the membership function, which
also represents the radius of the zone of influence of the
prototype. This spread is determined based on the scatter [20]
of the data. The equation to get the spread of the kth data
sample is defined in (9):

σi(k) =

√√√√1
k

k∑
j=1

cosDist(Proti, zk) ; σi(0) = 1 (9)

where k is the number of data samples inserted in the same
class; cosDist(Proti, zk) is the cosine distance between the
new data sample (zk) and the ith prototype.

However, to calculate the scatter without storing all the
received samples, this value can be updated (as shown
in [18]) recursively by equation (10):

σi(k) =

√
[σi(k)]2 +

1
k

[cosDist2(Proti, zk)− [σi(k − 1)]2]
(10)

E. Classification Method

In order to classify a new data sample, we compare it
with all the prototypes stored in the evolving-profile-library
(EPLib). This comparison is done using cosine distance and
the smallest distance determines the closest similarity. This
aspect is considered in equation (11).

Class(xz) = Class(Prot∗);
Prot∗ = MINNumProt

i=1 (cosDist(xPrototypei , xz))
(11)

The time-consumed for classifying a new sample depends
on the number of prototypes and its number of attributes.
However, we can consider (in general terms) that both
the time-consumed and the computational complexity are
reduced and are acceptable for real-time applications (in
order of milliseconds per data sample).

F. Structure of the EvABCD

Once explained the different parts in which the proposed
classifier can be divided, we show the structure of this
classifier. The input of the proposed classifier is a behaviour
stream, where each behaviour is represented as a distribution
of subsequences of events. Therefore, once the distribution
has been created from the stream, it is processed by the
classifier. The structure of the proposed classifier is as
follows:

1) Classify the new sample in a class (represented by a
prototype) using (11).

2) Calculate the potential of the new data sample to be
a prototype using the recursive formula (5).

3) Update all the prototypes considering the new data
sample (using (5)). It is done because the situation of
the data space changes with the insertion of each new
data sample.

4) Insert the new data sample as a new prototype if
needed (if (6) holds).
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5) Remove any prototype if needed (if (7) holds).

Therefore, as we can see, the classifier does not need
to be configured (the classifier can start ’from scratch’)
according to the environment where it is used. Also, the
relevant information of the obtained samples is necessary
to update the library, but it is not necessary to store all the
information in it.

G. Supervised and unsupervised learning

The proposed classifier can be used for both supervised
and unsupervised learning.

• Supervised learning: The data samples that are ob-
served can have a label assigned to them a priori. In this
case, a specific class (label) is represented by several
prototypes (the number of prototypes depends on how
heterogeneous are the samples of the same class). This
techniques is used for example in eClass1 [18] and [7];

• Unsupervised learning: The observed data samples do
not have labels. In this case, the classes are created
based on the prototypes and, thus, any prototype repre-
sents a different class (label). Such technique is used for
example in eClass0 [18] and [7] which is a clustering-
based classification.

VI. EXPERIMENTAL SETUP AND RESULTS

In order to evaluate EvABCD in the UNIX environment,
we use a data set with the UNIX commands typed by 168
real users and labeled in 4 different groups. Therefore, in
these experiments we will use supervised learning.

A. Data Set

For evaluating EvABCD in the UNIX environment, we
have used the command-line data collected by Green-
berg [21] using UNIX csh command interpreter. In these data,
four target groups were identified, representing a total of 168
male and female users with a wide cross-section of computer
experience and needs. Salient features, the size of the data
stream (the number of people observed) and command lines
of each group are described below.

• Novice Programmers: The users of this group had little
or no previous exposure to programming, operating sys-
tems, or Unix-like command-based interfaces. Sample:
55 Users and 77423 command lines.

• Experienced Programmers: In this group, the members
were senior computer science undergraduates, expected
to have a fair knowledge of the Unix environment.
Sample: 36 Users and 74906 command lines.

• Computer Scientist: This group had varying experience
with Unix, although all were experts with computers.
Sample: Sample: 52 Users and 125691 command lines.

• Non-programmers: Document preparation was the dom-
inant activity of the members of this group. Knowledge
of Unix was the minimum necessary to get the job done.
Sample: 25 Users and 25608 command lines.

B. Experimental Design

In order to measure the performance of the proposed
classifier using the above data, the well-established technique
of cross-validation is used. For this research, 10-fold cross-
validation is chosen. Thus, all the users (training set) are
divided into 10 disjoint subsets with equal size. Each of
the 10 subsets is left out in turn for evaluation. It should
be emphasized that the proposed EvABCD does not need
necessarily to work in this mode. This is done mainly in
order to have comparable results with the established off-
line techniques. In reality the proposed EvABCD classifier
can work on a per sample and per user basis.

The number of UNIX commands analyzed per user is very
relevant for the result of the classification. Using EvABCD
in a real application, after a user has typed a particular
number of commands, its behaviour can be classified and
the evolving behaviour library updated. However, in order to
use all the data we have, in this experiment all the commands
the user has typed during a long period of time are used. For
this resason, a distribution (which represent a behaviour) is
represented by a very large number of subsequences. And
if the number of users increases, the number of different
subsequences increases, too.

In the phase of behaviour model creation, the length of the
subsequences in which the original sequence is segmented
(used for creating the trie) is a relevant parameter: using
longer subsequences, the time consumed for creating the
trie and the number of relevant subsequences in the corre-
sponding distribution increase drastically. In the experiments
presented in this paper, the subsequence length value was
selected to be 3.

C. Results

Although the sequence length is small (3 commands),
the number of commands typed per user is large; thus,
the number of different subsequences of commands created
per user is very large. The number of diffeerent subse-
quences is shown per group as follows; Novice Programmers:
25614, Experienced Programmers: 43049, Computer Scien-
tists: 66490, Non-Programmers: 10572. Also, the number of
different subsequences of commands typed by the 168 users
is 135317.

According to this data, after applying EvABCD using the
explained experimental design, the percentage of users cor-
rectly classified into its corresponding group is: 100% on
validation data! Therefore, this result shows that the proposed
classifier works excellent in this kind of environments.

The number of prototypes created per group is important,
too. As we have used 10-fold cross validation, the number
of different prototypes created in each of the 10 runs is
shown in table VI-C. This number varies depending on the
heterogeneity of the data.

The result obtained in this experiment shows that the pro-
posed classifier can be very useful to classify user behaviours
in a dynamic environment for the example of the UNIX user
profiles with a great amount of data (in this case, commands
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TABLE I
EVABCD: NUMBER OF PROTOTYPES CREATED PER GROUP USING

10-FOLD CROSS-VALIDATION

Prototypes in each of the 10 runs
Group 1 2 3 4 5 6 7 8 9 10
Novice Progr. 3 2 7 2 2 2 3 4 2 2
Exp. Progr. 2 3 3 2 2 2 2 2 2 2
Comp. Scientists 2 2 1 2 1 1 1 1 3 3
Non-Progr. 2 2 1 2 2 2 2 2 2 2

per user). In order to compare these results we consider
two well established classifiers - the algorithm C4.5 used to
generate a decision tree and the k-nearest neighbor algorithm
(k-NN) used to classify objects based on closest training
examples in the feature space. However, this comparison
could not be done in this experiment because of the big
amount of attributes per sample to consider. This obstructed
both algorithm C4.5 and k-nearest neighbor algorithm (k-
NN) could not run because of the memory overload. Note,
that our proposed approach does not need to store entire data
stream in the memory and disregards any sample after being
used. Thus, based on the experiment size and dimensions as
described so far, the proposed approach EvABCD was the
only working alternative.

However, in order to make a comparison, we reduced the
number of subsequences of commands per user using its
support value. In this case, we consider that the subsequences
with a higher support are more relevant. The percentage of
subsequences reduced is very high and only around the 3%
of the initial data were used. It means that the total number
of different subsequences considered was in this reduced
dimensionality second experiment equal to 3531. In this
reduced dimension experiment, again the proposed EvABCD
evolving classifier outperformed the well established off-line
classifiers and the results are tabulated in table VI-C.

TABLE II
COMPARATIVE RESULTS

Classifier Rate of unknown users correctly classified
EvABCD 81,54 %
C4.5 73,80 %
3-Nearest Neighbor 44,64 %

Note that this reduction in the dimensionality of the
experiment as well as the 10-fold cross-validation is needed
only for the sake of comparison. Inevitably, the reduction of
the raw data leads to a lower performance, but nevertheless,
the proposed evolving classifier EvABCD outperforms signif-
icantly the well established off-line classifiers. Moreover, it
is computationally more simple and efficient as it is recursive
and one pass (works on a per sample basis).

VII. CONCLUSIONS

In this paper we propose a generic approach to user
behaviours modelling and consider the specific example of
users of Unix computer command sequences. The proposed

evolving classifier EvABCD is one pass, non-iterative, recur-
sive and therefore, computationally very efficient and fast.

The test results with a data sequence of 168 real users
of Unix demonstrates that it is also able to outperform
significantly the well established off-line classifiers in terms
of correct classification on validation data. Although it is not
addressed in this paper, the proposed method can be also used
to monitor, analyze and detect abnormalities based on a time
varying pattern of same users and to detect masqueraders. It
can also be applied to other type of users such as users of
e-services, digital communications, etc.

APPENDIX

In this appendix the expression of the potential is trans-
formed in a recursive expression in which the potential is
calculated using only the current data sample (zk). For this
novel derivation we combine the expression of the potential
for a sample data (equation (1)) represented by a vector of
elements and the distance cosine expression (2).

Pk(zk) =
1

1 + [ 1
k−1

∑k−1
i=1 [1−

∑n
j=1 zjkzji√∑n

j=1(z
j
k)

2
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j=1(z

j
i )

2
]2]

(12)
where zk denotes the kth sample inserted in the space data.

Each sample is represented by a set of values represented by
a number: the ith attribute (element) of the kz sample is
represented as: zi

k.
In order to explain the derivation of the expression step by

step; firstly, we consider the denominator of the equation (12)
which is named as den.P (zk).
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den.Pk(zk) = 1 + [
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h gi
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(13)
We can observe that the variables fi and gi depend on

the sum of all the data samples (all these data samples are
represented by i); but the variable h represents the sum of
the attributes value of the sample. Therefore, deriving (13),
we obtain:

den.Pk(zk) = 2 + [
1

h(k − 1)
[[−2

k−1∑
i=1

fi

gi
] + [

1
h

k−1∑
i=1

(
fi

gi
)2]]]

(14)
In order to obtain an expression for the potential from (14),

we rename as follows:
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den.Pk(zk) = 2 + [
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(15)

If we analyze each variable (Bk and Dk) separately
(considering the renaming done in (13)):
Firstly, we consider Bk
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If we define bik, each attribute of the sample b, we get:
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n∑
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√
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l
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(17)

Thus, the value of Bk can be calculated as a recursive
expression:
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Secondly, considering Dk with the renaming done in (13),
we get:
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If we define di
k, each attribute of the sample d, we get:
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Therefore:
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Finally:

Pk(zk) =
1

2 + [ 1
h(k−1) [[−2BK ] + [ 1

hDk]]]
k = 2, 3...;P1(z1) = 1

(22)

where Bk is obtained as in (18), and Dk is described
in (21).

Note that to get recursively the value of Bk, it is necessary
to calculate n accumulated values (in this case, n is the
number of the different subsequences obtained). However,
to get recursively the value of Dk we need to calculate
nxn different accumulated values which store the result of
multiply a value by all the other different values (these values
are represented as dij

k ).
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