NBER WORKING PAPER SERIES

ESTIMATION OF ECONOMETRIC MODELS USING NONLINEAR
FULL INFORMATION MAXTMUM LIKELIHOOD:
PRELIMINARY COMPUTER RESULTS

David A. Belsley*
Kent D. Wall¥#

Working Paper No. 142

COMPUTER RESEARCH CENTER FOR ECONCMICS AND MANAGEMENT SCIENCE
National Bureau of FEconomic Research, Inc.
575 Technology Square
Camtridge, Massachusetts 02139

July 1976

Preliminary: Not for quotation

NBER working papers are distributed informally and in limited
numbers for camments only. They should not be quoted without
written permission.

This repart has not undergone the review accorded official NBER
publications; in particular, it has not yet been sulmitted for
approval by the Board of Directors.

#*NBER Computer Research Center and Boston College. Research
supported in part by National Science Foundation Grant SOC75-13626
to the Naticnal Bureau of Economic Research, Inc.

**NBER Computer Research Center. Research supported in part by
National Science Foundation Gramt S0C75-13626 to the National Bureau
of Economic Research, Inc.



Abstract

This working paper provides same preliminary results on the computational
feasibility of nonlinear full information maximum likelihood (NLFIML)
estimation. Several of the test cases presented were also subjected to
nonlinear three stage least square (NL3SLS) estimation in order to
illustrate the relative performance of the two estimation techniques.

In addition, certain other aspects central to practical implementation
are highlighted. These include the effect of various computers on the
efficiency of the code, as well as the relative merits of numerical and
analytical generation of gradient information. Broadly speaking, NLFIML
appears campetitive in cost and superior in statistical properties to
NL3SLS.
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1. INTRODUCTION

The potential benefits of nonlinear full information maximum likelihood
(NLFIML) estimation in econometric modeling are many and enviable. Notable
among these are its inherent flexibility and asymptotic consistency and
efficiency. These advantages of NI.I‘Il"ﬂ.. have, to date, been more than
offset by its camputational burdens. In the general nonlinear case the
camputational requirements are often considered extreme - indeed pro-
hibitive. However, recent advances in modern digital camputers and pro-
graming techniques appear to have mitigated this disadvantage. The signi-
ficant increase in capability of third generation computers, the avail-
ability of optimizing campilers (such as the FORTRAN H compiler), and
programming methodology which borders on the frontiers of the state-of-art
can now be cambined to alleviate (if not eliminate) the drawbacks of NLITML
estimation.

An awareness of present-day technology and methodclogy has guided the
National Bureau of FEconomic Research, Computer Research Center, in its
specification and construction of a NLFIMI, facility. The proof of the pudding,
is, of course, in the eating; ard to this end preliminary testing of the
resulting facility has been undertaken. The results of these first tests,
which are in part to be interpreted as a progress report on our appreach to
FIML estimation, we feel lend credence to the claim that there is indeed
hope for NLFIML., NLFIML (its practical usefulness with an acceptable compu-

tational cost) appears to be feasible.



2. THE NLFIML ESTTMATOR
Full Information Maximm Likelihood estimates multiequation econametric
models can be obtained by determining that value of the parameter vector, 8,
which maximizes the concentrated log-likelihood function. This function may
be derived as (see Eisenpress and Greenstadt [1968], Chow [1973]),
T

!

(L 2*%(8) = const. - T in{det é) +
2 t=1

in(|det g,
where é is the estimated residual variance-covariance matrix:

(2) S = §(8) =

n e~13

1
= u (8ul(e) ,
T =1 t t

and Jt is the Jacobian matrix evaluated at time t:

O (y;»250)
3%

(3) Jp = Jt(B) =

The generally nonlinear vector function ft(yt, »8) represents the model

2t
specification, and is related to the residuals, by definition, according to

(4 ft(yt,zt,e) = .
Both f‘t and u, are Gx1 vectors,

f‘t = [flt, f2t Be ey fg_t armay fGt]|

u, = [ult’ Upp seees ugt yeees ugt]' .
representing a G equation model for each t. The GxT vector i contains the
endogenous variables at time t, while the Kx1 vector z,. represents all the
predetermined variables of the model at time t. The sequences of random

vectors {u_t 3+ 1 £t < T} are assumed to form a jointly normal, zero mean

stochastic process, independent over t. Therefore,

U v N(0,S)



The actual implementation of the NLFIML involves the estimation of 8

via the solution to an equivalent nonlinear function minimization problem:

It has proven more expedient to determine the estimate of & as that value

which minimizes the scaled negative log likelihood function,

T
(5) V(8) = an(det 8) —% 7 in(|det J‘I:I)‘
t=1

Most of the test models described below also were estimated using a
version of nonlinear three-stage least squares (NL3SLS) due to Jorgenson
and laffont [1974]. This provided camparative information regarding the
speed and camputational demands of NLFIML estimation. Without indulging
in all the details, (for which see the article cited), the Jorgenson-

Laffont NL3SLS estimator is that value of 6 which minimizes

(6) V(o) = F'(6) [§1® XX ™X'] F(e)

where,
F'(g) = [fl(yl,zl,e), fl(yz,zz,e) grves fG(yl,zl,e) yees fG(yT’ZT’a)]’

and X is a matrix of exogenous variables which need not include all the elements
of Zy given in the original model specification. § is any consistent esti-
mator of S.

The definitions for V(8), given by (5) and (6), illustrate how, from
a camputational point of view, non-linear similtanecus-equation estimation
reduces to a problem in function minimization - the only difference being
the precise definition of the function to be minimized. Given V(8), any
suitable function minimization algorithm can be employed to compute the

optimal 6.



3. NONLINEAR FUNCTION MINIMIZATION
The particular function minimization algorithm employed in this work

is that due to Davidon [1959] as refined by Fletcher and Powell [1963],

and popularly referred to as the Davidon-Fletcher-Powell (DFP) algoritim.”

There are certainly several applicable algorithms; however, the DFP has
so far proved superior in all around performance. A detailed discussion
of the DFP algoritlm is unnecessary here, but a brief account of the compu-
tations will aid in understanding the results of Section 5.

Given an initial guess, 6%, the DFP algorithm proceeds by generating

a sequence of contimually improving estimates {Bk; k= 1,2,...} according

‘to:2

(7) ¥l - oKy oK = o + oK (M) ()

o = a scalar quantity, the optimal steps:.ze
along the conjugate gradient search direction
H(9 ) = a matrix, the Kt th approximation to the
inverse Hessian of V(e).

a vector, the gradient of V(o) evaluated at 6 = ek.

265

The optimal step uk in this algorithm is determined by cubic interpolation
of V(8) along the current search direction (=H(Bk) g(Bk)). The H matrix is
generated autamatically within the algorithm. The gradient vector g may be
generated by simple finite differencing, but the implicit-function-
differentiation capability of the TROLL system has been employed in order
automatically to generate the analytic expressions to allow g 6%) to be
computed exactly.

The gradient expressions for NLITML estimation follow from the fact

th

that the i“' element of g{(8) can be written as



2
T u u_
av(e) _ 2 5
(8) == 1 u —%
3, T .. gsp t 26, ay_t
where
p; = set of equation numbers in which 6, appears,

& = gth column of §-l,

g ghmwole

The partial derivatives augy/ 26, and azug_t/ 38i3yt are camputed using the
definitions for gth element of u, given in (4). At run time the differentia-
tion routine is called to scan (4) and generate the code for the required
derivatives. This code is then compiled and saved for the actual execution
of the program. Therefore, during estimation, gradients can be camputed very
rapidly. Note that the additional cost for obtaining exact gradients is
minimal since the inverses of § and J, effectively have been computed during
the evaluation of the determinants Iin v(e).

The generation of exact gradient expressions for NL3SLS follows in a

canpletely analogous way once it is realized that, in this case,

/e _
(9) Eg.é_:lz 2 [*‘Egi’] [ exx ™1 re) .

The process of improving Bk according to (7} contimues until convergence .
is obtained. Convergence ocours whenever the predicted change in ek is less

than some prespecified error tolerance. Thus, if

k
(10) I(SBil < g;,



the iterations terminate, and the current estimate Bk is accepted as optimal.
The user supplies the vector of error tolerances e. Other, more practical,
convergence criteria are currently under study. (See the discussion of
the results in Section 5.)

Since there is no prior guarantee that convergenced will be achieved,
the improvement process autcmatically terminates after a prespecified

number of iterations have been reached.

4. THE TEST MODELS

In order to obtain as much information as possible concerning computa-
tional performance six test problems were considered ranging from the esti-
mation of small, strictly linear models to large, nonlinear models. Each
model is presented in detail in the Appendix, but a brief discussion of
their essential characteristics is given here in order to provide the proper

perspective for the discussion of camputer results contained in Section 5.

Model 1

The first test problem involves the estimation of a small, three-equation
model with a total of 10 unknown parameters. The model is linear in both the
paremeters and the variables, and no lagged endogenous variables appear. The
exogenous variables are taken from actual econcmic time series, while the
endogenous variates are similated data generated by the model with known
parameters a.nd error structure. This model, then, exemplifies the simplest

and cleanest class of estimation problems one can consider.



-7-

Model 2

The second test problem is a small two-equation model with five para-
lIIB‘tE‘I‘S.S It is highly nonlinear in the paremeters and contains across-
equation parameter constraints. No lagged endogenous variables appear and
no special assumptions are made on the errcr structure. Although small in

size, this model highlights the problems faced in nonlinear estimation.

Model 3

Case 3 is a six equation, 22 parameter sub-model of GNP components
congidered by Fair [1873]. The model is linear in both variates and para-
meters. The exogenous variables are taken directly from Fair, while the
endogenous data are ge.ne:rﬁted through simulation of Fair's model based on
the assumption that his parameter estimates are true. This case represents a
significant increase in the size (both in mumber of equations and parameters)
of the estimation problem, thereby constituting a much more realistic (i.e.,

difficult) function minimization problem.

Model U4

This case duplicates Model 3 except that the generating error structure
contains first-order autocorrelation. Accordingly, in estimation, a Cochrane-
Orcutt transformation has been employed in specifying the model. This intro-
duces a multiplicative form of nonlinearity and six additonal paremeters,
bringing the mumber of pavameters to 28. The model thus constitutes a mildly
nonlinear estimation problem (as compared to the severe nonlinearities in

Model 2) of moderate size.
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Model 5

The fifth test problem deals with ancther variant of Model 3. Actual
econamic data, rather than simulated data are used for the endogenous vari-
ables, ard dummy variables are included in many of the equations to take
account of strikes, In fact, this specification is precisely that of the
money-GNP sector of the model used by Fair [1973]. There are now 38
unknowns to estimate including the autoregressive parameters of the Cochrane-

Orcutt transformation.

Model 6

The last estimation problem uses the entire Fair [1572] model of 16
equations and 61 parameters. Actual econcmic series are used for all the
data. This problem is most closely representative of a realistic econamic

estimation problem - both in terms of size and nonlinearity.

5. THE RESULTS

The preceeding models are all estimated by the NLFIML facility within
GREMLIN, and whenever possible, the same models are also estimated by
NL3SLS and ERSF, ancther program capable of maximum-likelihood estimation.
ERSF, however, does not permit for the estimation of models nonlinear in
the varisbles and therefore could not be employed with Models 2 and 6.
Nonetheless, its inclusion is of interest because for linear models both ERSF
and NLITML emplcy the same computations except in the way the gradients are
determined: ERSF uses first finite-differences of V(8) while NLFIML
employs the exact analytically genefated gradient expressions. Thus, it
should be possible to determine whether analytic or mmeric differentiation

is the more efficient for this use. Table 1 summarizes the results.
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TABLE 1. Convergence and Timing Summary: All Models

§
Times in o
No. of No of function mins:sec E‘
Convergence iterations evaluations Total | Virtual Starts
Model 1 (3 equation, 10 parameter, linear)
NLFIML yes 19 51 :14 NA G true
IRSF yes 31 63 :18 115 G true
NL3SLS yes 11 22 :06 :03 E OLS
NLEFIML yes 31 69 113 :08 H 0OLS
Model 2 (2 equation, 5 parameter, nonlinear)
NLFTML yes 16 27 :18 t16 H OLS
NL3SLS ves 11 22 :09 :07 H OLS
Model 3 (6 equation, 22 parameter, linear)
NLFIML yes 36 105 1:18 1:17 G OLS
ERSF no 64 NA L:13 3:53 G 0LS
NL3SLS yes 23 23 136 125 H 0LS
NLFTML yes 36 105 :35 132 H 0LS
Model 4 (b equation, 28 parameter, nonlinear)
NLFTML yes 134 288 7:E4 7:47 G QLS
NLFTML yes 134 288 1:49 1:42 H QLS
NL3SLS yes 43 123 :35 125 H oLs
Model 5 (b equation, 38% parameter, nonlinear)
NLEIML yes 99 214 1:26 1:19 H Huber
Model 6 (16 equation, 61 parameter, nonlinear)
NLFIML yes? 72 44 14:08 13:32 H Fair

NA indicates quantity not available.

*pecause of the observation interval employed, only 4 of the additional 10 coefficients

were estimated together with the 28 previous coefficients.
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Several points of interpretation need to be made:

1. Different starting values are used for the maximm likelihcod estimators.
0LS, of course, refers to ordinary least squares., TRUE refers to the true para-
meter values that are used in the generation of simulated data and are only
employed in Model 1. Other names refer to specific estimates of parameters fram
other studies.

2. Compiler. Different campilers were used in the development of these
packages, and they clearly result in differing degrees of camputational speed.
The H canpiler is designed for fast "mumber crunching” and separate entries
were included in order to preserve a proper comparison between NLFIML and
ERST which is campiled with the G-level campilex.

3. CPU Time. The total time is relevant to billing, but more meaningful
canparisons of the relative computations efficiencies results from the use of
the virtual figures. These figures refer to the IBM 370-168.

4. Nurber of iterations: ccmparison between NL3SLS and NLFIML is best
made on the basis of virtual CPU time. The number of iterations for NL3SLS is
that required after the preliminary NL2SLS estimation has been run on each equation
separately. Mmber of iterations therefore does not indicate the full effort

involved for NL3SLS relative to NLFIML.

5. Convergence. The unqualified "yes" indicates that convergence is obtained
using the stringent gradient criterion utilized by the version of DFP currently

employed, namely, stop the iterations if
) 4
|aei| <
for all elements of 6, where ; = € = 1073, Convergence by a weaker but

meaningful criterion usually occurs significantly earlier. This weaker

criterion uses the computed elasticity of the likelihood function with respect



to each element of 8. In essence, convergence is obtained whenever

k k
B_i gi( 8 )

V(o)

for all i. The qualified "yes" (dencted by the preserxe of a question mark)
indicates that a strict criterion was not met, but that the camputed elasti-

cities are all less than 0.01.

Model 1. As expected, the first model posed no problem for any of
the estimation methods. Convergence is obtained in each run, and computa-
tion times are all camparable except in the case of ERSF. Inaccurate
gradient information, due to numerical approximation, caused ERSF to take
many more iterations. It should be mentioned, however, that this phenomenon
only arises near the solution point. Further, from the soluticon (where the
gradients are larger and the percent error of the numerical gradient compu-
tation is smaller) both NLFIML and ERSF behaved quite similarly. The small
size of the problem minimizes the advantages of the optimizing H campiler.
With a problem of this size and complexity there do not appear to be any
camputational reasons for preferring one method to ancother. Table 2

Presents the parameter estimates and true values for comparison.

Model 2. The highly nonlinear nature of this model failed to produce
any real obstacles for either NLFIML or NL3SLS, both converging with little
difficulty. Table 3 presents these estimated coefficients. There did appear.

however, some difference in the computational costs with NLFIML requiring a
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or the OLS estimates as the initial guess.

c. The first column contains the standard errors using the true values
as the initial guess while the second column gives the estimates standard
errors resulting from OLS estimates as the starting values.

TABLE 2%
MODEL 1: Tyue Parameter Values and Parameter Estimates
Coefficient True Value FIML Est:bra‘teb Staﬁg:féa tfgribrsc
Al 10.00 12,1590 2,2175 2.2254
A2 0.15 0.0366 0.1304 0.1311
A3 0.70 0.7255 0.0827 0.0833
Al 5.00 b,8422 2.058Y4 2,0634
Ab 0.80 0.6117 0.0452 0. 0u54
AB -.20 -.0840 0.1325 0.1322
A7 -.25 -.2820 0.0437 0.0430
A8 ~1z,00 =12.7526 3,4915 3.4763
A9 0.30 0.3136 0.0769 0.0767
Al0 0.u0 0.4299 0.0491 0.0u485
a. Estimation was over the period 1960(I) through 1972(IV).
b. The same final estimate was obtained whether using the true values

TABLE 32
MODEL 2: NLFIML and NL3SLS Estimates
Coefficient NL3SLS Estimatesb FIML Est:imatesb
Cl 0.6364(0.0163) 0.5839(0,0163)
C2 0.0055(0.0008) 0.0058¢0,0006)
C3 1.3665(0.1267) 1.3618¢0,0911)
Cy -0.1248(0.1622) 0.4749(0.1891)
C5 0.3160(0.0328) 0.4470(0.0434)
a. Estimated using annual series fram 1 to ul.

b. Estimates standard ervors are given in parentheses.
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little more than twice the time and twice the number of iterations than for
NL3SLS. At face value it would appear that the latter has much tc offer

in terms of costs. This advantage must, however, be balanced with the

better "quality" of the NLFIML estimates. First, the NLFIML estimates

converged to exactly the same estimates obtained by Dr. Eisenpress using

a full Newton-Raphson algorithm with analytically derived second partial
derivatives.®* The NL3SLS estimates are significantly different, especially

in regard to Cl, C4 (given the wrong sign by NL3SLS), and C5. Second, when
campared to NLFIML, the NL3SLS estimates proved to be suboptimal both in terms of
the negative log-likelihood function (~11.08 compared to -10.49) and its gradient.
The gradient of the negative log-likelihood, evaluated at the NL3SLS estimates is,

§§|3S = [0.093, -130.3, -1.46, -2.11, -1.66]",
1S

while that associated with the NLFIML estimates is

vy = [2.6 x 107>, 1.0 x 1077, 1.76 x 10°°, 2.8 x 10>, ~1.1 x 10~

This quality difference between 3SLS and FIML is more important in the nonlinear

cases where 3SLS does not share FIML's asymptotic efficiency.

Model 3. Convergerce proved a problem for ERSF, the routine using
numerically generated gradients. The significant improvement in camputation
time resulting from the use of the H campiler is now quite evident, computa-
tion time being reduced by approximately 30% for NLFIML. This moderate-size,
linear problem does not appear to provide any evidence for preferring NL3SLS

#yhile analytic first partial derlvatlves of V(8) are used in NLITML, only
mmerical approximations to 3 2y/38. aej are employed in the DFP algorithm,
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over NLFIML from a cost viewpoint - both methods take almost exactly the

same time to arrive at a solution.

the true coefficients and the NLFIML solution.

TABLE 4

Table 4 provides a camparison between

MODEL 3: (a) True Coefficient Values
Ell ~41.272 B1z 0.109 Bl3 0.217
Blu 0.102 B21 0.0547 B22 0.78
B23 0.07 B3l 0.029 B32 0.915
B33 -0.023 Bul =7.7 B42 0.073
Buy3 0.515 Bs1 -2.476 B&2 0.014
BS3 6.055 BS4 0.0878 Bb5 0.018
B61 -166.57 B&2 0.5E7 B63 -0.521
BoH 0.473
f—— e —————= — — —— |
(b) NLFIML Coefficient Estimates

COEF VAIUE STD ERR T-STAT |COEF VALUE STD ERR T-STAT
Bl1T -40.7169 3.75491 -10.8436 Bl2 (0.109797 0.001u3 76.8039
B13 0.299665 0.058797 5.09659 { B14 0.008743 0.062358 0.1s0204
B21 0.073768 0.012028 6.13309 | B22 0.688904  0.051339 13.4188
B23 0.116294 (0,018679 6.2261 B3l 0.02811 0.006755 4.16135
B32 0.920227 0.025746 35,7419 B33 -0.02654) D0.005062 =-5.2434
B4l ~-6.7889 1.39438 -4,86953 | B42 = 0.069682 0.006518 10.6911
B43 0.542429 0.067734 8,0082 B51 -3.12944 0.68493 -k .569
B52 0.01u432 0.000463 30.8293 B53 0.067092 0.008u458 7.9325
BS54 0.0563u7 0.011978 4.70393 | B5S  0.0u40887 0.008347 L, 89833
B6l -1.603E+02 11.5798 -13.8461 B62  0.464845 0.096369 L4,82357
B63 -0.501609 0.035396 -14.1755 Bey  0.527378 0.111714 4.7208

Model 4. Both NLFIML and NL3SLS obtained unqualified convergence, however,

a difference in computation time is now evident between the two methods.

The effect of the H compiler is also extremely proncunced in this case, improv-

ing the camputational efficiency of NLFIML by approximately a factor of four.

The computational advantage of NL3SLS (35 sec. total CPU time versus 109 sec

total CPU time for NLFIML) is not overwhelming, and reference to Table 5

reveals some interesting characteristics concerning the quality of the

three-stage estimates when measured against the NLFTML
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TABLE S5A

MODEL 4: Likelihood Function and Gradients Fvaluated at NL3SLS Estimates

ITERATION: 0 1 FCN EVALS FCN = 1.58585
GNORM = 24.8119

Coef Value Grad Std. Err. T-Stat
B11 ~56.7122 -0.004355 8.51761 -5.95866
B12 0.11946 -0.518696 0.008252 14.4756
B13 0.282167 -0.511326 0.061576 L. 5821
B1L 0.1469 -0.027318 0.066011 2.22537
B21 0.129674 0.02415 0.015937 8.13655
B22 -0.07158 0.531824 0.103792 =0.68965
BR23 0.188521 0. 910057 0.064095 2.95686
B3l 0.028855 -21.9063 0.001931 14,9435
Ba2 0.921487 ~8.11427 0.009323 98.B385
B33 -0.032713 -4.33417 0.0083u8 -3.91874
B4l -17.3008 -0.005176 4.u8739 -3.85543
Bu2 0.123908 2.46052 0.01627 7.61585
Bu3 0.219958 -0.356135% 0.08813 2.49585
B51 3.18432 -0.006878 3.65055 0.872284
BS2 0.005083 -4 45746 0.005886 0.863427
B53 0.066256 2.314987 0.00%077 7.29893
B5Y4 0.063322 2.495%76 0.008361 6.76468
B55 0.02656 =(.,02603 0.009331 2.84648
B61 =106.874 =0.002323 28.0256 ~3.81343
B62 0.325044 0.257067 0.14975L 2.17053
B&3 -0.464352 -~0.761012 0.064611 ~7.18693
B6lL 0,2839867 -0.045716 0.143323 1.9813
Rl 0.676472 -0.080584 0.088928 7.60701
R2 0.888041 -0.245155 0.036053 24.909
R3 0.073135 0.172537 0.096324 0.759257
R4 0.661802 0.041769 0.08026 g8.2u694
RS 0.851849y -0.739133 0.037609 22.6512
R6 0.8540886 -2.53u83 0.033861 25,2224
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TABLE 5B

MODEL U4:

ITERATION: 0 1 FCN EVALS FCN = 1.32101

GNORM = 0.024121

Likelihood and Gradients at NLFIML Solution

Coef Value Grad Std. Err. T=-Stat
Bll -55.6078 -2.629088E-06 8.87677 -6.26442
Bl12 0.116414 -0.001349 ¢.007869 14,7931
B13 0.290481 -0.000244 0.05934 4.89524
B14 0.144435 -0.000245 0.063472 2.27557
B21 0.160488 -0.00055 0.020529 7.8178
B22 -0.268705 =-7.526274E-05 0.107083 -2.50932
B23 0.071895 -8.196232E-05 0.077345 0.929537
B3l 0.02919Y4 -0.022774 0.001797 16.2498
B32 0.916936 -{0.006293 0.008616 106,425
B33 -0.027558 ~0.004201 0.007874 ~3.49998
B4l =-7.4318 -2.568153E-06 6.93669 -1.07137
Bu2 0.082072 -0.0013u8 0.021534 3.81127
B43 0.435165 ~0.000147 0.105942 4,10757
R51 3.74985 -2.300765E-06 3.46911 1.08092
R52 0.005064 -0.001206 0.005983 0.8u46286
B53 0.056254 -0.000273 0.008634 6.51575
BS54 0.06387 -0.000273 0.00922 6.92703
B&5 0.033041 ~0.000261 0.00944 3.50002
Bel -93.011 -1.263592E-06 23.1194 -4.02307
B62 0.204178 -0.000162 0.148204 1.37768
B63 ~-0.392424 6.388946E-05 0.046676 -8.40734
Be4 0.34%4255 -0.000159 0.108349 3.17728
Rl 0.649792 -1.673411E-06 0.084132 7.72347
R2 0.9u43569 -0.00033 0.04326Y4 21.8098
R3 -0.037683 -4.277731E-06 0.099158 -0.380027
R4 0.719822 5.960077E-06 G.082967 8.67602
RS 0.839265 -1.585828E-05 0.038928 21.5586
R6 0.836636 -6.237008E-05 0.040259% 20.7811
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results. TFirst, note that the NL3SLS estimates produced a scaled log-likeliheod
value of 1.595 as opposed to a value of 1.321 for NLFIML. Next, note that

the gradients of the likelihood function, when evaluated at the NL3SLS estimates,
are considerably larger than those associated with the NLFIML estimates. In
particular, the norm of the gradient for the NL3SLS estimator is 24,8119, while
that of the NLFIML is 0.02412. The suboptimality of the NL3SLS estimates, judged
in terms of the NLFIML loss function and the asymptotic efficiency of NLFIML, does
seem to detract fraom the camputational value of NL3SLS. Both estimates must,
however, be subjected to further analysis, including their prediction capabilities,
before a final verdict can be reached regarding the overall advantage of one method.

Model 5. The addition of 4 dummy variable coefficients to the problem
did not cause any significant problems for FIML. Nor did any difficulty arise
because of the use of real data. Convergence was obtained in 99 iterations,
requiring a total of only 79 seconds of virtual machine time. The scaled nega-
tive log-likelihood was reduced from a value of 0.565 to 0.420. The norm of
the gradient at the final iteration was 0.0355. The final estimates together

with their gradients are contained in Table 6.

Model 6. The entire Fair model, using actual data over the interval
1960(II) to 1973(I), achieved convergence in 72 iterations when the convergence

4 to 10_3. It is

criterion in (10) was relaxed by increasing €5 from 10~
interesting to note, however, that convergence would have been achieved at
the first iteration using the elasticity criterion max|e;|< 0.1! The initial
loss function, using the Fair estimates, was computed at 36.21; at convergence
its value had been reduced to 36.2066. Since the initial gradient norm was

56.333, while that at iteration 72 was 0.009, it is obvious that most of the
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TABLE 6%
MODEL 5: Final Estimates arnd Gradients

Coef Value Grad

C31 -26.1935 -1.236810E-05
C3z2 0.107512 -0.009014
C33 0.118663 =0.001151
C3u 0.053564 -0.001159
Cul 0.043608 0.028933
Cu2 0.835926 0.007341
C43 0.038562 0.003475
Ch1 0.010347 ~0.000285
Cs2 0.514176 7.267064E=-06
Ch3 ~0.006807 ~(.000u488
C61 =4 Uys7L -1.165192E-06
Cg2 0.075997 -0.000968
C63 0.421463 -7.436336E-05
C71 «l,32556 1.077380E-05
C72 0.016043 0.008187
C73 0.051321 0.00122
C74 0.087822 0.00121
C75 0.030281 0.001215
CBl -495.405 6.489034E~07
ca2 0.648711 0.000185
ca3 -0.350476 0.000152
CBY 0.136498 -2.742165E-06
R3 0.452277 -3.345026E-06
Ry -0.2632%84 =-1,550233E-07
Rb 1.01869 0.017828
RB 0.861498 -2.835667E~06
R7 0.587505 5.713341E-07
R8: 0.795925 1.057235E-06
C35 -1.9408Y4 -2.799074E~07
C38 2.95738 ~-2.380445E-07
€85 =-1.47457 2.030344E-08
C86 3.28608 -2.582679E~09

a.

Estimated over the range 1959(IV) to 1972(IV). Therefore
C37, C38, C64, C65, C87, and C88 were inactive and not

estimated.,
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iterations were spent in minor adjustments to @ in order to reduce the
gradient components to nearly zero. Practically speaking, it appears

that the initial guess could have been accepted as the final solution -
as indicated by the elasticity criterion and the relative change in the

loss function.

6. CONCLUSIONS
The results summarized in Table 1, while revealing nothing startling

concerning the effect of model size and starting values, indicate that NLFIML
estimation is not nearly as costly in relation to 3SLS as i1s commonly thought.
Indeed, for small estimation problems (Models 1 and 2) cost differences are
negligible. TFurthermore, in Model 2 NL3SLS produced an estimate for

Ch that was of incorrect sign. For larger problems (Models 3,4, and 5), NLFIML
always achieved convergence in under two minutes (or approximately $36 on the
_Cor'nell IBM370/158 camputer). In cases where NL3SLS showed a noticeable savings
in computation time (such as the larger nonlinear models like Model 4), such savings
should be weighed against the loss in statistical efficiency that characterizes
minimm distance relative to maximum likelihood in the nenlinear case.

Other conclusions of importance in terms of software development can
also be drawn from Table 1. In particular, rumerically generated gradients,
i.e., resulting from finite differencing of the loss function, tend to degrade
the performance of the optimization phase, especially near the solution where
the percentage error in the differencing dominates the true value of the
gradient. Analytically generated gradient expressions, while requiring
more programming and debugging, offer such improved performance so as to
far outweigh the initially high development costs. The importance of
employing a sophisticated "optimizing" compiler (such as the FORTRAN-H
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campiler) is also emphasized in Table 1. The larger and more complex the
problem, the greater are the savings in camputation time over using the
standard FORTRAN-G campiler.

Finally, it should be emphasized that even greater savings could be
achieved by employment of more realistic and practical convergence criteria
in determining when a solution to maximizing the likelihood function has been
reached. Use of the elasticity criterion in Models 4,5, and 6 would have
reduced the mumber of required iterations by 10% to 25%, thus further

enhancing the attractiveness of NLFIML.
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FOOTNOTES

l. The intevrested reader is referred to Dennis and More [1976] for an
excellent discussion and review of nonlinear function minimization
algorithms.

2. Any sequence {ek; 1,2,...} for which V(& J>V(Bl)>v(62)>
is termed a continually improving sequence.

3. We are indebted to Dr. Harry Eisenpress of IBM for supplying this
model and data.
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Appendix A. Models Used in Evaluating NLFIML and NL3SLS

Model 1
ENDOGENQUS :
Y1 Y2 Y3
EXOGENOUS:
X1 X2 X3
COEFFICIENT:
Al Al0 A2 A3 A4 A5 A8 A7 A8 A9
EQUATIONS
1: Y1 = Al+A2%Y2+A3%Y1
2: Y2 = AU+ASRYI+AGHYI+ATHX2
3: Y3 = AS+AQ*YI+A]0%X3
Model 2
ENDOGENOUS :
Y1 Y2
EXOGENQUS:
¥11 Y3 ¥9
COEFFICIENT:
¢l C2 C3 C4 C5
EQUATIONS

1: CLAL Ok (C2%Y11) % (CH*YLR%(~Cli }+(1-CEY*Y2%% (-Cl) Y** ((-C3)/CH) = ¥3
2: (Y1/Y2)#%%*(-Cu-1)*(C5/(1-C5)) = Y9

Model 3

ENDOGENQUS :
O CN C5 IH IP V

DEFINITION:
GNP

EXOGENQUS :
CD.1 CN.1 CS.1 EX G HSQ HSQ.l HSQ.2 IMP MOOD.1 MOOD.2 PE2 UNIT V.1



Model 3: (Con't)

POLICY:
MOOD

COEFFICIENT:
Bli Bl2 Bl3 Bl4 B21 B22 B23 B31 B32 B33 B41 B42 Bu43 B51 B52
B53 BS4 BS5 B6l B62 B63 B64

EQUATTONS
1: GNP = = CDFCN4CSHIP+IHHDEL(L : V)+(EX-IMP+G)
2:  CD = BI1*B12%GNP+B13*MOOD(~1)+B14*MOOD(-2)
3:  CN = B21*GNP+B22*CN(-1)+B23*MOOD(~2)
4:  CS = B31*GNP+B32#CS(-1)+B33*MOOD(-2)
5: IP = B41+B42GNP+B4I*PE2
6: IH = B51+B52*GNP+BS3*HSQ+B54*HSQ(-1)+B55%HSQ(~2)
7: DEL(1 : V) = B61+B62%(CD+CN)+B63*V(-1)+B64*(CD(-1)+CN(-1))

Model 4

ENDOGENOUS :
CO CN CS IH IP V

DEFINITION:
GNP

EXCGENQUS :
EX G HSQ IMP MOOD PE2 UNIT

COEFFICIENT:
Bll Bl2z B13 Bi4 B2 B22 B23 B3l B32 B33 B4l B4Z B43 B51 B52 BS3
B54 BG5S Bl B62 Be3 B4 R1 R2 R3 R4 RS RE

EQUATTONS

1: GNP == CD+CN+CS+IP+IH+DEL(1 : V)+(EX-IMP+G)

2: CD = R1*CD(-1)+B11%*(1-R1)}+B12%(GNP-R1*GNP(-1}}+B13%(MOOD(-2)-R1*MOOD(-2))
+B14#*(MOCD(-2)~-R1*MOCD(-3) )

3: CN = R2*CN(-1)+B21#*{GNP-R2*GNP(~1))+B22*(CN(~-1)-R2*CN(-2))
+B23*(MOOD(-2)~R2*MOCD(~3))

4, CS = R3I®CS(-1)+B31*(GNP-R3*GNP(~1) }+B32*(CS(~-1)-R3*CS(-2))
+B33#*(MOOD(-2)-R3*MOOD(-3})

5. IP = Ru*IP(~1)+B4l#(1-Ru4)+Bu2%(GNP-R4*GNP(-1}+B43%(PE2-RU*FPE2(~1))

6.  IH = RS*IH(-1)+B51%(1-R5)+B52+(CNP-RS*GNP(~1) )+B53%(HSQ-RS*HSQ(-1))
+B5l% (HSQ(-1)-R5*HSQ(~2) ) +B55% (HSQ(~2)-R5*HSQ(~3) )

7. DEL(1 : V) = R6*DEL(1 : V(-1))+B61%*(1-R6)+B62%*(CD+CN-R6*(CD(-1)+CN(~1)))
+B63*(V(-1)-R6*V{(-2})+BBU* (CD(~1)+CN(~1)-R6*(CD(-2)+CN(-23))



Model 5

ENDOGENQUS :
Cb CN CS TH IP V

DEFINITION:
GNP

EXOGENOUS :
Dé44 DES1 D704 D711 EX G HSQ IMP MOOD PE2

COETTICIENT:
C31 C32 €33 (€34 €35 C36 €37 (38 Cul Cu2 Cu3 C51 C52 (€53 C6l
C62 C63 CB4 €65 C71 C72 €73 C74 C75 (81 (B2 (B3 (8B4 (CB5 (86
€87 (€88 R3 R4 RS R6 R7 R8

EQUATTONS

1: @NP == CD+CN+CS+IP+IFMDEL(1 : V)=-IMP+EX+G

2 CD = R3*CD(-1)+C31%(1-R3)+C32% (GNP=R3*GNP(~1) }+C33%(MOOD{-1)-R3*MOOD(~2))
+C34 % (MOOD( -2 ) ~R3EMOOD( -3) ) +C3 5% (DBuL4-R3*DE4Y (-1 ) ) +C36%*(D651~R3*D651 (~1)
+C37*(D704-R3*D70u(-1) )+C38%(D711~-R3*D711(-1))

3: CN = R4RCN(-1)+C41%(GNP-RUFGNP(-1))+C42*(CN(-1)-RU*CN(-2))
+Cl 3% (MOOD(~ 2) -RU#MOOD( -3 )

Y CS = R5ACS(-1)+C51%(GNP-R5*GNP(~1))}+C52%(CS(~1)-RE6*C3(-2))
+C53% (MOOD(-2) ~R54¥MOOD(-3) )

5 IP = RE*IP(-1)+C61%*(1-R6)+C62%*(GNP-RE*GNP(-1))+C63%(PE2~RE6*PE2(-1))
+CHU* (D70u~-RE*D704 (-1) )+C65%(D711-R6¥D711(~1))

R7#TH(-1)+C71%#{1-R7)+C72% (GNP-R7*GNP(~1) ) +C73%* (HSQ-R7*HSQ(-1) )
+C 7% (HSQ(-1)~R7RHSQ(~2) ) +C75% (HSQ(~2) ~R7*HSQ(-3))

7: DEL(1 : V) = R8*DEL(1 : V(-1))+C81%(1-R8)+C82¥(CD(~1}+CN(-1)-R8*(CD{-2)
+CN(=2) ) )+C83%(V(~1)-R8*V (-2) )+(-CB84)*(DEL(L : CDHCN)-RB*DEL(1 : CD(-1)
+CN(~1) ) )+C8 5% (DELL4-RE*DEUY (=1 ) ) +C86% (DBS1-RB#DE51L{-1) ) +C8T*
(D704~RB¥D704(-1) )+C88*(D711-R8*D711(-1))

6: IH

Model b

ENDOGENOQUS :
CD CN ¢S D I IP IFl1 LFf2 M FPD V

DEFINITION:
E GAP?2 GNP GNPR MH UR V1 ¥

EXOGENOUS :
AF ALPHA De44 D651 D704 D711 EX G GG GNPRP HSQ IMP MA MCG MOOD

PE2 P1 P2 T YA YG



A=Y

FUNCTION:
LOG

COEFFICIENT:
Cl21 Cl22 Cl61 Cl62 (€163 Cle4 €165 Cl66 €167 C168 Cl69 Ci71 Cl72
C173 C191 (€192 €201 (C202 €203 C31 €32 (C33 (34 C35 C36 C37 (38
cyl C42 Cu3 C51 C52 (53 C61 €62 CB3 Céu4 C65 C71 C72 C73 C7u
€75 €81 C82 (83 (84 (B85 CB6 C87 (88 R16 R17 R19 R20 R3 R4 RS

R6 R7 RS
EQUATIONS
1: V1l == V-V(-1)
2: E == M+MA+MCG-D+300
3: UR == 1-E/(LF1+L¥2-AF)
L GNP == CDH+CN+CS+IP+TH+DEL(1 : V)-IMP+EX+G
5: GNPR == 100%(GNP-GG)/FD}+YG
6: GAP2 == GNPRP-GNFR(-1)-DEL(1 : GNF)
7: == GNPR-YA-YG
8: == 1/ALPHA®Y%1000000
g:

= R3*CD(-1)+C31%(1-R3)+C32%(CNP-R3I*GNP(~1) )+C33%*(MOOD(~1)-R3*MOOD(~2) )
+C34% (MOOD( ~2 ) ~R3*MOOD(-3) }+C35% (D6UL-R3*DEUL (-1) }+C36%(DE51-R3*D651(-1))
+C37% (D7 04-R3*D704(~1) )+C38#(D711~-R3%D711(~1))

10: CN = RU*CN(-1)+Ch1%(GNP-RH#CNP(~1))+Cl2% (CN(-1)-RU*CN(-2) }+CU3* (MOOD(~2)
~R4*MOOD(-3))

11: CS = R5*CS(-1)+C51* (GNP-R5*GNP(-1) )+C52%(CS(-1)-R5*CS(=2))+C53%(MOOD(-2)
-R5*MOCD{~-3))

RE*IP(-1)+C61%(1-R6)+C62% (GNP-RE*GNP(~1) ) +C63% (PE2-R6*PE2(-1))
+C64* (D7 04~R6*D7 04 {~1) )+CE5*(D711~-R6¥D711(~1))

13: TH = R7*TH(-1)4C71%(1-R7)+C72%(GNP-R7*GNP(-1) )+C73* (HSQ-R7#HSQ(-1))
+CTU% (HSQ(-1) ~R7#HSQ( -2 ) )+C75% (HSQ(-2) -R7*HSQ(~3))

14: DEL(1 : V) = RBADEL(1 : V(~1))+C81%(1-R8)+C82%(CD(-1)+(N(-1)-R8*(CD(-2)
+CN(=2) ) )+C83%(V(-1)~-R8*V(-2) }+(-C84 )#(DEL(1 : CD+CN)-RB*DEL(1 : CD(-1)
+CN(=1)) )+C85*(D6L4-~RE#DEUL (=1 ) ) +C86*(DB51-RB*DESL(-1)) - '
+C87%(D704-R8#*D7 04 (1) )+C88*(D711-R8*D711(-1))

15: DEL(1 : FD) = C121+C122%SUM(T = -19 TO 0 : GAP2(I})/20

16: DEL(1 : LOG(M)) = RIG*DEL(1 : LOG(M(~1)))+Cl61%(1-R16)+C162%*(T-R16*T(-1))
+C163% (LOG(M(-1) ) ~-LOG(MH(-1) }-R16% (LOG(M(-2))~LOG(MH(-2))))
+C164%(DEL(L : LOG(Y(~1)))-RI6*DEL(1 : LOG(Y(=2))))+C165%(DEL(1 : LOG(Y))
-R16*DEL{1 : LOG(Y(-1))))+C166*(D6u4-R16*D644(~1))+C167*(DE51-R1E*DES1I(-1))
+C168%* (D704 -R16*D704 (~1) ) +C169% (D711-R16*D711(-1))

12: IP



