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ABSTRACT 

In this paper we calculate robustly optimal monetary policy rules for several variants of a
simple optimizing model of the monetary transmission mechanism with sticky prices and/or wages.
We discuss representations of optimal policy both in terms of interest-rate feedback rules that
generalize the well-known “Taylor rule,” and in terms of commitment to a target criterion of the
kind discussed in familiar proposals for “flexible inflation targeting.” 

Optimal rules, however, require that policy be history-dependent in ways not contemplated
by many well-known proposals. We furthermore find that a robustly optimal policy rule is almost
inevitably an implicit rule, that requires the central bank to use a structural model to project the
economy's evolution under the contemplated policy action. Finally, our numerical examples suggest
that optimal rules do not place nearly as much weight on projections of inflation or output many
quarters in the future as occurs under the current practice of inflation-forecast targeting central banks.
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In a companion paper (Giannoni and Woodford, 2002), we have expounded a general

approach to the design of an optimal criterion on the basis of which a central bank should

determine its operating target for the level of overnight interest rates. Our discussion there

was framed in the context of a fairly general linear-quadratic policy problem. Here we

consider the implications of our approach in the context of a particular (admittedly stylized)

model of the monetary transmission mechanism, or rather a group of related variant models.1

This allows us to address a number of questions raised by recent characterizations of actual

central-bank policies in terms of “Taylor rules” or “flexible inflation targets”.

One basic question is whether it makes sense for a central bank’s policy commitment to

be formulated in terms of a relationship between the bank’s interest-rate instrument, some

measure of inflation, and some measure of an “output gap” that the bank seeks to ensure will

hold — as is true both of the interest-rate rule recommended by Taylor (1993) and common

formulations of “flexible inflation targeting” rules. Can a desirable policy rule be expressed

without reference to a monetary aggregate? Can the rule be optimal despite a lack of any

explicit dependence of policy upon the nature of the exogenous disturbances affecting the

economy? If a desirable rule can be expressed in terms of a relation between these variables,

which inflation measure, and which conception of the output gap should it involve? And

how do the optimal coefficients of the respective variables depend on quantitative features

of one’s model of the monetary transmission mechanism?

A particular concern here will be with the optimal dynamic specification of a monetary

policy rule. Taylor’s well-known proposal prescribes a purely contemporaneous relation

between the federal funds rate target, an inflation measure, and an output-gap measure; but

estimated central-bank reaction functions (e.g., Judd and Rudebusch, 1998) always involve

additional partial-adjustment dynamics for the funds rate, and sometimes other sorts of

lagged responses as well. To what extent are such lags in the rule used to set interest

1While the general approach to the construction of robustly optimal policy rules used here is the same
as that discussed in the companion paper, the derivations presented here are self-contained and do not rely
upon any of the results for the general linear-quadratic problem presented in the earlier paper. It is our hope
that a self-contained exposition of the relevant calculations for these simple models will serve to increase
insight into the method, in addition to delivering results of interest with regard to these particular models.
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rate desirable? Some empirical studies (e.g., Clarida et al., 2000) imply that central banks

respond to forecasts of the future levels of inflation and/or output rather than to current

values. Is this preferable, and if so, how far in the future should these forecasts look?

We address these questions here along the lines proposed in Giannoni and Woodford

(2002). Rather than optimizing over some parametric family of policy rules, we consider

the design of a rule in order to bring about the optimal equilibrium pattern of responses

to disturbances — more precisely, to determine an equilibrium that is optimal from the

“timeless perspective” explained in our previous paper. In addition to requiring the rule

to be consistent with this optimal equilibrium, we ask that the rule imply that rational

expectations equilibrium should be determinate, so that commitment to the rule can be

relied upon to bring about the desired equilibrium rather than some other, less desirable

one. We also construct rules that can expressed purely in terms of the “target variables”

that the central bank seeks to stabilize, and that are optimal regardless of the nature of the

(additive) exogenous disturbances to which the economy is subject, and regardless of the

statistical properties of those disturbances. The requirement that our rule simultaneously

satisfy each of these desiderata allows us to narrow the class of optimal rules to a fairly small

set; among these, we give primary attention to those rules that are simplest in form. Even

so, we are typically left with more than one possible representation of optimal policy. In

particular, in most of the cases considered here, optimal policy can be represented either by

a generalized Taylor rule or by a history-dependent inflation target, and we discuss both of

these formulations.

1 Optimal Rules for a Simple Forward-Looking Model

We first illustrate our method of constructing robustly optimal policy rules in the context of

the basic optimizing model of the monetary transmission mechanism expounded in Woodford

(2002, chap. 4), and used as the basis for the discussion of the optimal responses to real

disturbances in Woodford (1999a) and Giannoni (2001). The model may be reduced to two
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structural equations

xt = Etxt+1 − σ(it − Etπt+1 − rn
t ) (1.1)

πt = κxt + βEtπt+1 + ut (1.2)

for the determination of the inflation rate πt and the output gap xt, given the central bank’s

control of its short-term nominal interest-rate instrument it, and the evolution of the com-

posite exogenous disturbances rn
t and ut. Here the output gap is defined relative to an

exogenously varying natural rate of output, chosen to correspond to the gap that belongs

among the target variables in the central bank’s loss function. The “cost-push shock” ut

then represents exogenous variation in the gap between the flexible-price equilibrium level

of output and this natural rate, due for example to time-varying distortions that alter the

degree of inefficiency of the flexible-price equilibrium.2 The microfoundations for this model

imply that σ, κ > 0, and that 0 < β < 1. The unconditional expectation of the natural rate

of interest process is given by E(rn) = r̄ ≡ − log β > 0, while the cost-push disturbance

is normalized to have an unconditional expectation E(u) = 0. Otherwise, our theoretical

assumptions place no a priori restrictions upon the statistical properties of the disturbance

processes, and we shall be interested in policy rules that are optimal in the case of a general

specification of the additive disturbance processes of the form discussed in Giannoni and

Woodford (2002, sec. 4).

The assumed objective of monetary policy is to minimize the expected value of a loss

criterion of the form

W = E0

{ ∞∑
t=0

βtLt

}
, (1.3)

where the discount factor β is the same as in (1.2), and the loss each period is given by

Lt = π2
t + λx(xt − x∗)2 + λi(it − i∗)2, (1.4)

for certain optimal levels x∗, i∗ ≥ 0 of the output gap and the nominal interest rate, and

certain weights λx, λi > 0. A welfare-theoretic justification is given for this form of loss

2See Woodford (2002, chap. 6) for discussion of the welfare-relevant output gap and of the nature of
“cost-push shocks”.
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function in Woodford (2002, chap. 6), where the parameters are related to those of the

model of the structural model. However, our conclusions below are presented in terms

of the parameters of the loss function (1.4), and are applicable in the case of any loss

function of this general form, whether the weights and target values are the ones that can

be justified on welfare-theoretic grounds or not. In the numerical results presented below,

the model parameters are calibrated as in Table 1 of Woodford (1999a). (For convenience,

the parameters are reported in Table 1 below.)

1.1 The Optimal Taylor Rule

Before turning to the question of fully optimal policy in this model, it may be of interest to

briefly consider the optimal choice of a rule within a restricted class that has been widely

discussed, which is to say, the class of “simple Taylor rules”,3

it = ı̄ + φπ(πt − π̄) + φx(xt − x̄)/4, (1.5)

involving only contemporaneous feedback from the inflation rate and the output gap, and no

direct responses to real disturbances.4 A rule of this form reflects the intuitive notion that

it may be desirable to adjust the bank’s instrument in response to deviations of its target

variables (other than the instrument itself) from certain desired levels. The conditions for

such a rule to imply a determinate equilibrium in this model have already been treated in

Woodford (2002, chap. 4).

A rule of the form (1.5) represents an example of a purely forward-looking rule, so if it

implies a determinate equilibrium, that equilibrium is one in which all three target variables

3In the rule proposed by Taylor (1993), the inflation variable is actually the most recent four-quarter
change in the GDP deflator, whereas we here consider rules that respond to the change from the previous
to the current quarter only. However, Taylor’s intention seems to have been to assume feedback from
contemporaneous measures of the Fed’s (implicit) target variables. We here assume that the central bank
seeks to stabilize the one-period inflation rate πt rather than some average of inflation over a longer time
span, because this is the objective that we have been able to justify on welfare-theoretic grounds, in Woodford
(2002, chap. 6). Our analysis is also simplest in this case, though similar methods could be used to analyze
optimal policy in the case of an alternative inflation-stabilization objective, that might reflect the true goal
of a particular central bank.

4The coefficient on the output gap is denoted φx/4 rather than φx, so that φx corresponds to Taylor’s
output-gap coefficient, writing the rule in terms of annualized data. Here we assume that “periods” of our
model correspond to quarters.
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will be functions solely of the current and expected future values of the real disturbances.

Hence the best pattern of responses to disturbances that could possibly be implemented by

a rule in this family is the one that we have called the optimal non-inertial plan in Woodford

(1999a). In general, even the optimal non-inertial plan can only be implemented by a rule

more complex than (1.5). One case in which a rule of this form suffices, however — at

least for an open set of possible parameter values — is that in which both the rn
t and ut

disturbances are Markovian (i.e., first-order autoregressive processes), as assumed in the

numerical examples presented in Woodford (1999a) and Giannoni (2001). In such a case,

the rule that implements the optimal non-inertial plan is clearly the optimal member of the

family, and this makes calculation of the optimal Taylor rule quite straightforward.

Thus we assume once again disturbances of the form

r̂n
t = ρrr̂

n
t−1 + εrt, (1.6)

ut = ρuut−1 + εut, (1.7)

where r̂n
t ≡ rn

t − r̄, εrt and εut are i.i.d. mean-zero exogenous shocks, and 0 ≤ ρr, ρu < 1. In

this case, the constraints upon the feasible evolution of the target variables {πt, xt, it} from

date t onward depend only upon the vector of current disturbances et ≡ [r̂n
t ut]

′, and the

optimal non-inertial plan is given by linear functions of the form

zt = z̄ + Fet, it = ı̄ + fiet,

where zt ≡ [πt xt]
′ is the vector of endogenous variables other than the policy instrument.

The long-run average values z̄, ı̄ and response coefficients F, fi are given in the Appendix

(section A.1).

In the (generic) case that the matrix F is invertible, an instrument rule consistent with

this pattern of responses to shocks is given by

it = ı̄ + fiF
−1(zt − z̄), (1.8)

which takes the form of a simple Taylor rule (1.5). Note that while we have here written the

rule in terms of deviations from implicit targets for each of the variables that correspond to
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the optimal long-run average values of these variables, the only thing that matters for the

constrained optimality of (1.8) is the value of the total intercept term

ı̄− fiF
−1z̄.

Of course, the above derivation guarantees only that the suggested rule is consistent with

the equilibrium responses to shocks that constitute the optimal non-inertial plan. In order

to implement the plan, we also need for the rule to imply a determinate equilibrium. The

conditions under which this will be true have been discussed in Woodford (2002, chap. 4).

The following result states conditions under which the coefficients of the rule just proposed

satisfy this additional requirement .

Proposition 4. Suppose the disturbances are of the form (1.6) – (1.7), with autocor-

relation coefficients satisfying the bounds

0 < (1− ρr)(1− βρr)− ρrκσ

≤ (1− ρu)(1− βρu)− ρuκσ <
κσ

λi

.

Then (1.8) defines a Taylor rule of the form (1.5) with coefficients φπ > 1, φx > 0. Fur-

thermore, commitment to this rule implies a determinate rational expectations equilibrium,

which implements the optimal non-inertial plan.

The proof is given in the Appendix. Note that the inequalities assumed in the proposition

may equivalently be written

ρ < ρu ≤ ρr < ρ̄,

where ρ < ρ̄ and the bounds are functions of the model parameters β, κ, σ and λi. Thus

there is an open set of values of ρr and ρu for which the conditions are satisfied, and these

are not obviously unreasonable; for example, the calibrated values reported in Table 1 below

satisfy these conditions.
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Under the conditions assumed in this last proposition, we thus obtain theoretical justi-

fication for crucial aspects of Taylor’s recommendation. In particular, we provide support

for his recommendation that the operating target for the federal funds rate should respond

positively to fluctuations in both the current inflation rate and the current output gap. The

rule proposed here also satisfies the “Taylor Principle”, according to which an increase in

inflation above the target rate results in an even greater increase in the nominal interest

rate.

The need for non-zero response coefficients for both target variables follows from a desire

to implement the optimal non-inertial responses to two distinct types of real disturbances

— disturbances to the natural rate rn
t and “cost-push shocks” ut — or more precisely, to

respond optimally to any of a range of real disturbances, which shift the model’s structural

equations in these two different ways to differing extents. If instead we assume that there

are no cost-push shocks — not that there are no “supply” disturbances, but that all real

disturbances shift the natural rate of output and the efficient rate of output to the same

extent — then the requirement that our rule implement the optimal non-inertial response

to disturbances to the natural rate of interest imposes only a single linear restriction upon

the coefficients φπ and φx,
5 and it is possible to find a rule that implements the optimal

non-inertial plan with φx = 0. On the other hand, adding the requirement that the rule also

implement the optimal non-inertial response to cost-push shocks, should they ever occur, has

no cost in terms of a less desirable response to disturbances to the natural rate of interest,6

and thus robustness concerns make it advisable that policy respond to variations in the

output gap as well. Interestingly the optimal degree of response to variations in the output

gap is independent of the assumed importance of cost-push shocks (i.e., the assumed variance

of the ut disturbance); all that matters for the recommendation (1.8) is the assumed degree

5This case is analyzed in Woodford (1999a).
6We assume here that there is no difficulty in measuring and hence responding to either of the target

variables, inflation and the output gap. In practice, measurement of the output gap is likely to be more
problematic, and for this reason implementation of the optimal non-inertial responses to variations in rn

t

through a rule that involves a large coefficient φx may result in some deterioration in the ability of policy to
successfully respond to those disturbances. The problem of the optimal conduct of policy when measurement
problems are taken into account is considered below in section 3.3.
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of serial correlation of such disturbances when they occur.

Our analysis also provides at least partial support for Taylor’s recommendation of what

we have called a direct policy rule: one that specifies adjustment of the instrument purely in

terms of feedback from the observed (or projected) behavior of the target variables. Of course

we have not shown that the rule (1.8) cannot be improved upon; but we have shown that it

is optimal within the class of purely forward-looking rules. This means that if we consider

only possible dependence of the central bank’s instrument upon various state variables that

are relevant to the determination of current of future values of the target variables, there

is no possible gain from introducing dependence upon variables other than those already

allowed for in (1.5).

In particular, our analysis justifies Taylor’s neglect of any response to projections of

future inflation or output gaps, as opposed to projections for the current quarter. If we were

to introduce additional terms representing feedback from Etπt+j or Etxt+k for some horizons

j, k > 0, the optimal rule within that broader family would achieve no better an outcome.

For such a rule would continue to be purely forward-looking, and so could at best implement

the optimal non-inertial plan, and this is already achieved by the optimal Taylor rule, under

the assumptions of Proposition 4.

Nor is it even entirely correct to say that a forecast-based rule would be an equally useful

way of achieving the same outcome. Under the assumption that the central bank has access

to perfectly accurate forecasts (so that a forecast-based rule can, in principle, involve exactly

the same equilibrium adjustment of interest rates as under a Taylor rule), then the optimal

response coefficients become larger the longer the horizon of the forecasts that are used to

implement policy. For example, suppose we consider forward-looking Taylor rules of the

form

it = ı̄ + φπ(Etπt+k − π̄) + φx(Etxt+k − x̄)/4, (1.9)

for a given forecast horizon k > 0, and for simplicity assume that ρr = ρu = ρ, for some

0 < ρ < 1.7 Then the unique rule within this family that is consistent with the optimal

7Note that in the case that either ρr or ρu is equal to zero, it will be impossible for a purely forecast-based
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non-inertial plan is given by

it = ı̄ + ρ−kfiF
−1(Etzt+k − z̄); (1.10)

both response coefficients must be multiplied by the factor ρ−k > 1, which may be quite

large in the case of a horizon several quarters in the future.8 But such an alternative rule

has the unpalatable feature that it involves a commitment to extremely strong responses to

something that, in practice, is likely to be estimated with considerable error.

Furthermore, even when highly accurate conditional forecasts are available, a commit-

ment to strong response to them by the central bank makes it likely that equilibrium will be

indeterminate.9 For the class of forward-looking rules just considered, we can establish the

following.

Proposition 5. For all forecast horizons k longer than some critical value, the rule of

the form (1.9) that is consistent with the optimal non-inertial plan implies indeterminacy of

rational-expectations equilibrium.

The proof is in the Appendix.10 Thus if the forecast horizon k is sufficiently long, it is

not possible to implement the optimal non-inertial plan using a rule of the form (1.9).11 It

follows that, at least when the parameters satisfy the conditions of Proposition 4, the best

rule in this family is not as desirable as the best simple Taylor rule.

rule such as (1.9) to implement the optimal non-inertial plan, because under that pattern of responses to
disturbances, the forecasts will not reveal information about the current value of the transitory disturbance.

8For example, if we assume a serial correlation coefficient of ρ = .35, as in the baseline calibration in
Woodford (1999a), and a forecast horizon k of 8 quarters, a fairly typical horizon for inflation-targeting
central banks, this factor is greater than 4000.

9Recall the discussion of this defect of forward-looking rules in Woodford (2002, chap. 4, sec. 2.2). The
possibility that too strong a response to forecasts can lead to indeterminacy was first shown by Bernanke
and Woodford (1997), while the possibility that too long a forecast horizon can lead to indeterminacy is
illustrated by Levin et al.(2001).

10In independent recent work, Batini and Pearlman (2002) establish a related result for a general family
of interest-rate feedback rules in which the current nominal interest rate operating target is a linear function
of an inflation forecast and a lagged nominal interest rate. Our result here, however, is not strictly implied
by the one that they state.

11For example, in the case of the calibrated parameter values given in Table 1 below, the rule (1.10) implies
indeterminacy for all k ≥ 1.
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In the case of the calibrated parameter values proposed in Table 1 below, including the

values ρr = ρu = .35 for the serial correlation of the disturbance processes, the optimal

Taylor rule is given by

iann
t = .03 + 1.72πann

t + .57xt, (1.11)

where we now (for comparability with Taylor’s prescription) report the rule in terms of an

annualized interest rate and inflation rate (iann
t = 4it, πann

t = 4πt).
12 These parameter values

are quite similar to those recommended by Taylor. Particularly worthy of note is the sub-

stantial response coefficient φx for variations in the output gap; thus the low assumed value

for λx (relative to ad hoc loss functions often assumed in the literature on monetary policy

evaluation) does not imply a low Taylor-rule response coefficient, relative to conventional

recommendations.13 If, instead, one believes that a proper weight on output-gap stabiliza-

tion as a policy goal requires that λx be much higher than the value assumed here, the

optimal value of φx should be correspondingly higher; see equation (1.12) below.

Probably the most important difference between this constrained-optimal rule and Tay-

lor’s is that the implicit target inflation rate here is near zero, whereas Taylor assumes a

target rate of 2 percent per year. It is important also to note that the value φx = .57 refers to

the optimal response to fluctuations in a theoretical concept of the output gap (xt ≡ Ŷt− Ŷ e
t )

that may not correspond too closely to conventional “output gap” measures, which are often

simply real GDP relative to some smooth trend.14 Instead, the microeconomic foundations

of our model imply that the efficient level of output Ŷ e
t should be affected by real distur-

12While the value of β reported in Table 1 is equal to .99, rounding to only two significant digits, and this
value would imply that ı̄ should equal approximately .01 per quarter, 4 percent per year, the estimates of
Rotemberg and Woodford (1997) actually imply a long-run average real federal funds rate closer to 3 per
cent per year, so this is the value reported for 4ı̄ here. Because the Rotemberg-Woodford estimates imply
an optimal inflation target only slightly above zero, the value of the constant term in this rule is essentially
the value of the annualized interest rate consistent with zero average inflation.

13In particular, this result shows that the reason for the extremely low optimal output-response coefficients
obtained in the study of Rotemberg and Woodford (1999) is not the low value of λx assumed in that analysis;
it is rather the fact that in their various families of simple policy rules, the coefficients in question indicate
response to a conventional output-gap measure rather than to the welfare-relevant gap, as discussed below.

14In the case of Taylor’s (1993) discussion of the degree to which his proposed rule could account for actual
US policy under Greenspan’s chairmanship of the Fed, the linearly detrended log of real GDP is used an
empirical proxy for xt.
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bances of all sorts (including some that would conventionally be classified as “demand”

disturbances), and these disturbances may include some high or medium-frequency compo-

nents. If one were instead to ask what the constrained-optimal rule would be within the

simple family (1.5), but with xt replaced by detrended output Ŷt, the optimal value of the

output coefficient may be quite different — it need not even be positive! For example, Gali

(2000) considers this question in the context of a calibrated model similar to our baseline

model, in which the real disturbances are technology shocks, and concludes that the optimal

output response coefficient is zero when detrended output is used in the Taylor rule instead

of the theoretically correct gap measure. Rotemberg and Woodford (1999) reach a similar

conclusion (an optimal output-gap coefficient of only 0.02) in the context of their related but

more complex model, with disturbance processes inferred from US time series. In the case

that there are substantial deviations of the efficient level of output from a smooth trend,

as both of these analyses imply, the conventional gap measure is not at all closely related

to variations in the welfare-relevant gap, and a substantial positive response to it — sta-

bilizing the conventional gap but thereby destabilizing the welfare-relevant gap, as well as

inflation — can have undesirable consequences from the point of view of the welfare-theoretic

stabilization goals assumed here.15

But even if the rule incorporates the correct implicit inflation target and is implemented

using a correct measure of the output gap, there remain disadvantages of the Taylor rule

as a policy prescription. For one, the constrained-optimality of the coefficients in (1.11) is

demonstrated only in the case of a particular specification of the real disturbance processes —

only two disturbances, each an AR(1) process with a serial correlation coefficient of exactly

.35. The optimal coefficients are in fact quite sensitive to the assumed degree of persistence

of the disturbances; for example, in the special case that ρr = ρu = ρ, they are given by

φπ =
κσ

λi[(1− ρ)(1− βρ)− ρκσ]
, φx =

4λxσ(1− βρ)

λi[(1− ρ)(1− βρ)− ρκσ]
. (1.12)

15See also McCallum (2001) and Woodford (2001) for related discussions, with additional evidence sug-
gesting that conventional and welfare-relevant gap measures may not be at all closely related in historical
time series for the US.
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In the case of our calibrated values for the other parameters, this implies that the optimal

coefficients take the values φπ = .96, φx = .41 if the common ρ is assumed to be as low

as .17, while they instead take unboundedly large values if it is assumed to be as high as

.68.16 Thus this constrained-optimal rule is not robustly optimal in the sense discussed in

Giannoni and Woodford (2002). This makes it an unappealing policy prescription, for in

practice policymakers are not simply likely to doubt whether the assumed values of ρr and

ρu correctly represent the typical degree of persistence of disturbances of the two types; they

are instead likely to deny that all such disturbances possess any single degree of persistence,

and thus to remain skeptical about the wisdom of commitment to a rule that is optimal only

if all disturbances are linear combinations of only two types.

Furthermore, even if it is literally true that only two types of disturbances ever occur and

they are correctly described by (1.6) – (1.7), the Taylor rule (1.11) is not a fully optimal rule.

In the best case, it implements the optimal non-inertial plan, but as is shown in Woodford

(1999a), this is not generally the optimal plan. It is possible to do better by committing

to a rule that incorporates an appropriate form of history-dependence. As we shall see,

introducing history-dependence of the right kind can eliminate both of these defects of the

simple Taylor rule.

1.2 A Robustly Optimal Instrument Rule

We turn now to the search for a rule that can instead implement the optimal pattern of

responses to real disturbances. As in Woodford (1999a), the state-contingent plan that

minimizes the objective (1.3) – (1.4) subject to the constraints (1.1) – (1.2) satisfies the

first-order conditions

πt − β−1σΞ1t−1 + Ξ2t − Ξ2t−1 = 0, (1.13)

16In the case of ρ < .17, the coefficients given by (1.12) cease to imply a determinate equilibrium, as the
“Taylor Principle” ceases to be satisfied. In the case of ρ > .68, the denominators of both expressions in
(1.12) become negative, implying φπ, φx < 0. While these are possible rules in our discrete-time model, and
even imply a determinate equilibrium as long as ρ < .79, the analysis for this range of parameter values takes
too literally the assumption that all economic decisions are made only at discrete (quarterly) intervals, and
so we choose not to emphasize the possibility of using a Taylor rule to implement the optimal non-inertial
plan in this case.
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λx(xt − x∗) + Ξ1t − β−1Ξ1t−1 − κΞ2t = 0, (1.14)

λi(it − i∗) + σΞ1t = 0, (1.15)

for each date t ≥ 0,17 together with the initial conditions

Ξ1,−1 = Ξ2,−1 = 0. (1.16)

(Here Ξ1t and Ξ2t are the Lagrange multipliers associated with constraints (1.1) and (1.2)

respectively.) In the case that a bounded optimal plan exists, it can be described by equations

for πt, xt, it, Ξ1t and Ξ2t as linear functions of Ξ1,t−1 and Ξ2,t−1 together with the current and

expected future values of the exogenous disturbances; these linear equations with constant

coefficients apply in all periods t ≥ 0, starting from the initial conditions (1.16).

It follows from these first-order conditions that in the case of an optimal commitment

that has been in force since at least period t − 2, it is possible to infer the values of Ξ1,t−1

and Ξ2,t−1 from the values that have been observed for xt−1, it−1, and it−2. Specifically, one

can infer the value of Ξ1,t−1 from the value of it−1 using (1.15), and similarly the value of

Ξ1,t−2 from the value of it−2. Then substituting these values into (1.14) for period t− 1, one

can also infer the value of Ξ2,t−1 from the value of xt−1. One can, of course, similarly solve

for the period t Lagrange multipliers as functions of xt, it, and it−1. Using these expressions

to substitute out the Lagrange multipliers in (1.13), one obtains a linear relation among the

endogenous variables πt, xt, xt−1, it, it−1 and it−2 that must hold in any period t ≥ 2. This

thus provides a candidate policy rule that is consistent with the optimal state-contingent

plan.

Because the relation in question involves a non-zero coefficient on it, it can be expressed

as an implicit instrument rule of the form

it = (1− ρ1)i
∗ + ρ1it−1 + ρ2∆it−1 + φππt + φx∆xt/4, (1.17)

where

ρ1 = 1 +
κσ

β
> 1, ρ2 = β−1 > 1, (1.18)

17In terms of the notation of Giannoni and Woodford (2002, sec. 5), we here assume that t0 = 0.
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φπ =
κσ

λi

> 0, φx =
4σλx

λi

> 0. (1.19)

We can furthermore show (see Appendix for proof) that commitment to this rule implies a

determinate equilibrium.

Proposition 6. Suppose that a bounded optimal state-contingent plan exists. Then in

the case of any parameter values σ, κ, λx, λi > 0 and 0 < β < 1, a commitment to the rule

described by (1.17) – (1.19) implies a determinate rational-expectations equilibrium.

The equilibrium determined by commitment to this rule from date t = 0 onward corresponds

to the unique bounded solution to equations (1.13) – (1.15) when the initial conditions (1.16)

are replaced by the values of Ξ1,−1 and Ξ2,−1 that would be inferred from the historical values

of x−1, i−1, and i−2 under the reasoning described above.

It follows that the equilibrium determined by commitment to the time-invariant instru-

ment rule (1.17) involves the same responses to random shocks in periods t ≥ 0 as under the

optimal commitment. This is thus an example of an instrument rule that is optimal from

a timeless perspective, in the sense defined in Giannoni and Woodford (2002, sec. 3). Note

that we could instead implement precisely the optimal once-and-for-all commitment from

date t = 0 onward (the bounded solution to (1.13) – (1.15) with initial conditions (1.16)) by

committing to (1.17) in all periods t ≥ 2, but to a modified version of the rule in periods

t = 0 and 1. But this would be a non-time-invariant rule (policy would depend upon the date

relative to the date at which the commitment had been made), and the preferability of this

alternative equilibrium, from the standpoint of expected welfare looking forward from date

t = 0, would result from the alternative policy’s optimal exploitation of prior expectations

that are already given in that period. Choice of a rule that is optimal from a timeless per-

spective requires us to instead commit to set the interest rate according to the time-invariant

rule (1.17) in all periods.

The rule (1.17) has the additional advantage of being robustly optimal, in the sense

defined in Giannoni and Woodford (2002, sec. 4). We note that our derivation of the optimal
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rule has required no hypotheses about the nature of the disturbance processes {rn
t , ut}, except

that they are exogenously given and that they are bounded. In fact, the rule is optimal

regardless of their nature; commitment to this rule implies the optimal impulse responses

displayed in Woodford (1999a) in the case of the particular disturbance processes assumed

in the numerical illustrations there, but it equally implies optimal responses in the case of

any other types of disturbances to the natural rate of interest and/or “cost-push shocks” —

disturbances that may be anticipated some quarters in advance, disturbances the effects of

which do not die out monotonically with time, and so on.18 Indeed, one may assume that

both of the disturbances rn
t and ut in equations (1.1) – (1.2) are composite disturbances of

the general form discussed in Giannoni and Woodford (2002, sec. 4), and (1.17) remains an

optimal rule. This robustness of the rule is a strong advantage from the point of view of its

adoption as a practical guide to the conduct of monetary policy.

It is important to note that (1.17) is not a uniquely optimal instrument rule; it is not

even the only rule that is robustly optimal in the sense just discussed. For example, other

rules that are equally consistent with the optimal responses to disturbances, regardless of

the nature of the disturbance processes, may be obtained by substituting for variables in

(1.17) using one or the other of the structural equations (1.1) – (1.2).19 However, alternative

optimal rules derived in this way will not be direct rules, insofar as they will involve feedback

from past, current, or expected future real disturbances as well as from the paths of the

target variables. (One might arrange for the disturbance terms to cancel, under a particular

hypothesis about the statistical properties of the disturbances, but the version of the rule

18This is a substantial advantage of this instrument rule over the one proposed in Woodford (1999a),
which expresses the federal funds rate as a function of the lagged funds rate, the lagged rate of increase in
the funds rate, the current inflation rate, and the previous quarter’s inflation rate. That rule would also be
consistent with optimal responses to real disturbances, but only if (as assumed in the earlier calculation) all
disturbances perturb the natural rate of interest in a way that can be described by an AR(1) process (1.6)
with a single specified coefficient of serial correlation, and have no effect on the natural rate of output that
is different than the effect on the efficient rate of output (i.e., there are no cost-push shocks). In this special
case, however, the rule discussed earlier has the advantage that its implementation requires no information
on the part of the central bank other than an accurate measure of inflation (including an accurate projection
of period t inflation at the time that the period t funds rate is set).

19A specific example: one might use (1.2) to substitute for πt in (1.17), and obtain a rule for setting it as
a function of it−1, it−2, xt, xt−1, Etπt+1, and ut.
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that omitted reference to the disturbances would not be robustly optimal.)

A robustly optimal direct rule must be an implication of the first-order conditions (1.13)

– (1.15) only, in order for it not to refer to the structural disturbances; and in order for it not

to refer to the Lagrange multipliers, either, it must in fact be an implication of (1.17). This

still does not make (1.17) the unique such rule. For example, if (1.17) holds in all periods,

it follows that

it = (1− ρ1)(1− ρ3)i
∗ + [ρ1(1− ρ3) + ρ3]it−1 + (ρ2 + ρ1ρ3)∆it−1

− ρ2ρ3∆it−2 + qt − ρ3qt−1 (1.20)

must also hold in all periods, where

qt ≡ φππt + (φx/4)∆xt (1.21)

and ρ3 is an arbitrary coefficient. (This relation is obtained from (1.17) by adding to the

right-hand side ρ3 times it−1 minus the right-hand side at date t− 1.) Condition (1.20) can

also be interpreted as a direct implicit instrument rule, and it too is consistent with the

optimal responses to all real disturbances, regardless of the statistical properties of those

disturbances. Since we know that the rule implies a determinate equilibrium when ρ3 = 0,

it follows by continuity that it will also imply a determinate equilibrium for all small enough

ρ3 6= 0. Hence there exist rules of this form that are also robustly optimal direct instrument

rules. But the additional history-dependence introduced into (1.20) is unnecessary; (1.17)

is unambiguously a simpler rule. The same objection may be raised against the rules with

additional lead terms that can be derived from (1.17) by substituting for some terms using

the conditional expectation at date t of both sides of (1.17) at some future date.

Another relation implied by (1.17) that does not involve a larger number of terms is

it = (ρ1 + ρ2)
−1[(ρ1 − 1)i∗ + Etit+1 + ρ2it−1 − Etqt+1]. (1.22)

(This relation is equivalent to the statement that (1.17) holds at date t+1 only in expectation

conditional upon public information at date t.) This too might conceivably be interpreted as
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an implicit instrument rule for setting it at date t, though in this case a forecast-based rule.

However, while this relation is consistent with the optimal responses to disturbances, impo-

sition of (1.22) as a monetary policy rule does not determine a unique rational-expectations

equilibrium.20 Thus (1.22) — which is implied by but does not imply (1.17) — does not rep-

resent a completely specified monetary policy rule under the criterion proposed in Giannoni

and Woodford (2002, sec. 2), for it does not imply a determinate state-contingent path for

the central bank’s policy instrument. The same is true a fortiori of the relation that would

be obtained from the conditional expectation at t of (1.17) at t + 2. Thus we conclude that

(1.17) is of unique interest as the simplest possible robustly optimal direct instrument rule,

in the case of our basic neo-Wicksellian model.

The optimal rule (1.17) has a number of important similarities to the Taylor rule. Like

the Taylor rule, (1.17) is an example of a direct, implicit instrument rule. The rule is also

similar to Taylor’s recommendation in that the contemporaneous effect of an increase in

either inflation or the output gap upon the federal funds rate operating target is positive

(φπ, φx > 0); and the rule satisfies the “Taylor principle,” given that φπ > 0 and ρ1 > 1.21

However, this optimal rule involves additional history-dependence, owing to the non-zero

weights on the lagged funds rate, the lagged rate of increase in the funds rate, and the lagged

output gap. And the optimal degree of history-dependence is non-trivial: the optimal values

of ρ1 and ρ2 are both necessarily greater than one, while the optimal coefficient on xt−1 is

as large (in absolute value) as the coefficient on xt. It is particularly worth noting that the

optimal rule implies not only intrinsic inertia in the dynamics of the funds rate — a transitory

deviation of the inflation rate from its average value increases the funds rate not only in the

current quarter, but in subsequent quarters as well — but is actually super-inertial: the

20We can easily see this by noting that (1.22) makes it a function of no predetermined state variables
other than it−1. Hence if this rule did imply a determinate equilibrium, in that equilibrium, πt, xt and it
would all be linear functions of it−1 and the exogenous states that suffice to forecast the real disturbances
from period t onward. Yet we know that the optimal responses to shocks generally involve more complex
dependence upon history than can be summarized by a single predetermined variable such as it−1; for one
cannot generally infer the values of both Ξ1,t−1 and Ξ2,t−1 from the value of it−1 alone. We thus show by
contradiction that (1.22) cannot imply a determinate equilibrium.

21See the discussion in Woodford (2002, chap. 4, sec. 2.2) of the generalization of this principle to the
case of policy rules with interest-rate inertia.
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implied dynamics for the funds rate are explosive,22 if the initial overshooting of the long-

run average inflation rate is not offset by a subsequent undershooting (as actually always

happens, in equilibrium). In this respect this optimal rule is similar to those found to be

optimal in the numerical analysis by Rotemberg and Woodford (1999) of a more complicated

empirical version of the model.

In the case of the calibrated parameter values in Table 1 below, the coefficients of the

optimal instrument rule are given by ρ1 = 1.15, ρ2 = 1.01, φπ = .64, and φx = .33. These

may be compared with the coefficients of the Fed reaction function of similar form estimated

by Judd and Rudebusch (1998) for the Greenspan period: ρ1 = .73, ρ2 = .43, φπ = .42, and

φx = .30, except in this empirical reaction function φx represents the reaction to the current

quarter’s level of the output gap, rather than its first difference.23 (Interestingly, they find

that an equation with feedback from the first difference of the output gap, rather than its

level, fits best during an earlier period of Fed policy, under Paul Volcker’s chairmanship.)

The signs of the coefficients of the optimal rule agree with those characterizing actual policy;

in particular, the estimated reaction function includes substantial positive coefficients ρ1

and ρ2, though these are still not as large as the optimal values. Thus the way in which

actual Fed policy is more complex than adherence to a simple Taylor rule can largely be

justified as movement in the direction of optimal policy, according to the simple model of

the transmission mechanism assumed here.

We find that in the case of this simple model at least, it is not necessary for the central

bank’s operating target for the overnight interest rate to respond to forecasts of the future

evolution of inflation or of the output gap in order for policy to be fully optimal — and not

just optimal in the case of particular assumed stochastic processes for the disturbances, but

22Technically, this corresponds to the observation that in the equivalent representation (1.23) of the policy
rule given below, there exists a root λ2 > 1. A sufficient condition for this is that ρ1 > 1, in which case
exactly one of the roots is greater than 1.

23It should also be noted that the output gap measure used in Judd and Rudebusch’s empirical analysis,
while a plausible measure of what the Fed is likely to have responded to, may not correspond to the welfare-
relevant output gap indicated by the variable xt in the optimal rule (1.17). In addition, φπ indicates response
to the most recent four-quarter growth in the GDP deflator, rather than an annualized inflation rate over
the past quarter alone.
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robustly optimal. Thus the mere fact that the central bank may sometimes have information

about future disturbances, that are not in any way disturbing demand or supply conditions

yet, is not a reason for feedback from current and past values of the target variables to be

insufficient as a basis for optimal policy. This does not mean that it may not be desirable

for monetary policy to restrain spending and/or price increases even before the anticipated

real disturbances actually take effect. But in the context of a forward-looking model of

private-sector behavior, a commitment to respond to fluctuations in the target variables

only contemporaneously and later does not preclude effective pre-emptive constraint of that

kind. First of all, such a policy may well mean that the central bank does adjust its policy

instrument immediately in response to the news, insofar as forward-looking private-sector

behavior may result in an immediate effect of the news upon current inflation and output.24

And more importantly, in the presence of forward-looking private-sector behavior, the central

bank mainly affects the economy through changes in expectations about the future path

of its instrument in any event; a predictable adjustment of interest rates later, once the

disturbances substantially affect inflation and output, should be just as effective in restraining

private-sector spending and pricing decisions as a preemptive increase in overnight interest

rates immediately.

At the same time, it is important to note that the optimal rule (1.17), while not “forecast-

based” in the sense in which this term is usually understood, does depend upon projections

of inflation and output in the same quarter as the one for which the operating target is being

set. Thus the rule is not an explicit instrument rule in the sense of Svensson and Woodford

(1999). And this implicit character (a feature that it shares with the Taylor rule) is crucial

to the optimality of the rule, at least if we wish to find an optimal rule that is also a direct

rule (specifying feedback only from the target variables). For optimal policy must generally

involve an immediate adjustment of the short-term nominal interest rate in response to

shocks, as shown in Woodford (1999a);25 and so unless the rule is to be specified in terms of

24This is obviously not the case if, as more realistic models often assume, there are delays in the effect
of any new information on prices and spending. But in this case, it is probably not desirable for overnight
interest rates to respond immediately to news, either; see section 3.2 below.
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the central bank’s response to particular shocks, it will have to specify a contemporaneous

response to fluctuations in the target variables, and not simply a lagged response. Thus

implementation of such a rule will involve judgment of some sophistication about current

conditions; it cannot be implemented mechanically on the basis of a small number of publicly

available statistics.

1.3 A Robustly Optimal Targeting Rule

We have just seen that policy need not be forecast-based in order to be optimal, and even

robustly optimal. At the same time, this does not mean that a forecast-based decision

procedure cannot have equally desirable properties. In fact, the policy rule just discussed

is equivalent, in a certain sense, to a forecast-based rule. This alternative representation

of optimal policy is also of interest as an example of a robustly optimal policy rule that

takes the form of a (pure) targeting rule, rather than as an expression that presents, even

implicitly, a formula for the bank’s interest-rate operating target.26

We can write the implicit instrument rule (1.17) in the form

(1− λ1L)(1− λ2L)̂ıt = q̂t, (1.23)

where ı̂t ≡ it − ı̄, and q̂t similarly denotes the deviation of qt (the function of the target

variables to which the central bank responds, defined in (1.21)) from its long-run average

value, φππ̄. Because the optimal coefficients (1.18) are such that ρ1 > 1, ρ2 > 0, the roots

in the factorization (1.23) necessarily satisfy 0 < λ1 < 1 < λ2. It then follows that relation

25This is not true if there are delays in the effects of shocks upon inflation and output, as discussed in
section 3.2 below. But in that case, even the delayed effect upon the central bank’s instrument that is
required by optimal policy cannot be implemented on the basis only of lagged observations of the target
variables, because of the delay with which shocks affect these variables.

26Svensson (1999) uses the concept of a “targeting rule” somewhat more broadly, to include the possibility
of target criteria which may or may not depend on interest rates. Hence there is no sharp distinction
between targeting rules and implicit instrument rules of the kind discussed in the previous section. We find
it of interest, however, that optimal policy admits of alternative representations in this case, in only one
of which the rule can be written as an implicit instrument rule; in the case that no such interpretation is
possible, we refer to a pure targeting rule. The two alternative representations of optimal policy can also be
distinguished in terms of the degree of forward integration of the target criterion.
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(1.17) is equivalent to the relation

(1− λ1L)̂ıt−1 = −λ−1
2 Et[(1− λ−1

2 L−1)−1q̂t], (1.24)

in the following sense.

Proposition 7. Two bounded stochastic processes {ı̂t, q̂t} satisfy (1.23) for all t ≥ 0 if

and only if they satisfy (1.24) for all t ≥ 0.

(See proof in the Appendix.)

Thus there is no difference between the way in which a central bank must adjust its

interest-rate instrument to ensure that (1.17) holds in all periods and the way that it would

adjust it to ensure that (1.24) holds in all periods, for the two conditions imply one another.

(This does not mean that arranging for (1.24) to hold in a single period t is equivalent to

arranging for (1.17) to hold in that single period, regardless of how policy is expected to be

conducted thereafter; but a permanent commitment to either rule from some date t0 onward

has identical consequences.) This equivalence does not apply only in the case of processes

that are possible equilibria of the model consisting of structural equations (1.1) – (1.2);

thus the rules are equivalent regardless of whether that model is correctly specified, and

regardless of whether the central bank expects the economy to actually evolve according to

a rational-expectations equilibrium of that model or not (for example, regardless of whether

the private sector is believed to correctly understand the bank’s policy rule or not).

It follows from this equivalence that a commitment to ensure that (1.24) holds in all

periods from some date onward represents a coherent complete specification of a monetary

policy rule, at least in the context of the model described by equations (1.1) – (1.2). Hence

this represents a well-defined targeting rule, even though the criterion (1.22) cannot be solved

by itself to yield even an implicit expression for the period t instrument setting: the left-hand

side involves only lagged interest rates, while the right-hand side refers only to the evolution

of inflation and the output gap. A model of the monetary transmission mechanism must be

used in order to determine the instrument setting that is consistent with a projection that
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satisfies the target criterion.27

The target criterion (1.24) can be expressed in the form

Ft(π) +
φx

4
Ft(x) =

θx

4
xt−1 − θi(it−1 − i∗)− θ∆∆it−1, (1.25)

where for each of the variables z = π, x we use the notation Ft(z) for a conditional forecast

Ft(z) ≡
∞∑

j=0

αz,jEtzt+j,

involving weights {αz,j} that sum to one. Thus the criterion specifies a time-varying target

value for a weighted average of an inflation forecast and an output-gap forecast, where each

of these forecasts is in fact a weighted average of forecasts at various horizons, rather than

a projection for a specific future date. The rule represents a variant of what Svensson

(1999) calls “flexible inflation targeting,” though this rule differs from simple versions that

Svensson discusses in the history-dependence of the inflation-forecast target (indicated by

the non-constant terms on the right-hand side).

In representation (1.25) of this policy rule, there is no constant term, indicating an

inflation-forecast target of zero except insofar as this is corrected in response to deviations

(past or projected) of the output gap and/or the nominal interest rate from their target

values.28 The optimal coefficients indicating the degree to which the inflation-forecast target

is adjusted are given by

φx = θx = 4(1− λ−1
2 )

λx

κ
> 0,

θi = λ2(1− λ1)(1− λ−1
2 )

λi

κσ
> 0,

θ∆ = λ1λ2(1− λ−1
2 )

λi

κσ
> 0,

27Note, however, that the situation is not really different in the case of a commitment to ensure that (1.17)
is satisfied: a model is still needed to determine the instrument setting that should result in current period
inflation and output that imply that the implicit instrument rule is satisfied.

28Note, however, that this does not mean that the rule sets the inflation forecast equal to zero on average.
This is because the target interest rate i∗ is in general not consistent with an average inflation rate of zero.
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while the optimal weights in the conditional forecasts are

απ,j = αx,j = (1− λ−1
2 )λ−j

2 .

Thus the optimal conditional forecast is one that places positive weight on the projection for

each future period, beginning with the current period, with weights that decline exponentially

as the horizon increases. The mean distance in the future of the projections that are relevant

to the target criterion is equal to

∞∑
j=0

αz,jj = (λ2 − 1)−1

for both the inflation and output-gap forecasts.

In the case of the calibrated parameter values reported in Table 1, the rate at which these

weights decay per quarter is λ−1
2 = .68, so that the mean forecast horizon in the optimal

target criterion is 2.1 quarters. Thus while our optimal example of a pure targeting rule

can be expressed in terms of a target for inflation and output-gap forecasts, the forecast

horizon involved is short compared to those typically considered in the recent literature, or

those typical of the actual practice of inflation forecast-targeting central banks. For these

same parameter values, the optimal relative weight on the output-gap forecast is φx = .15,

indicating that the target criterion is essentially an inflation-forecast target, albeit a modified

one. The direction of modification is the one suggested by Svensson (1997, 1999): a forecast

of a lower output gap than normal should cause the central bank to tolerate a higher than

average inflation forecast. Finally, the remaining optimal coefficients are θx = .15, θi = .24,

and θ∆ = .51, indicating a substantial degree of history-dependence of the optimal modified

inflation-forecast target. The fact that θx = φx indicates that it is really the forecasted

increase in the output gap relative to the previous quarter’s level, rather than the absolute

level of the gap, that should modify the inflation-forecast target. The signs of θi and θ∆

imply that policy will be made tighter (in the sense of demanding a lower modified inflation

forecast) when interest rates have been high and/or increasing in the recent past; this is

another way of committing to interest-rate inertia of the kind discussed above.
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The equivalence expressed in Proposition 7 implies that commitment to a history-dependent

modified inflation-forecast target of this kind is a robustly optimal policy rule in exactly the

same sense as the instrument rule (1.17). Thus commitment to a pure targeting rule can be a

sound approach to policy. This alternative, forward-integrated representation of optimal pol-

icy has the possible advantage (from the point of view of successfully steering private-sector

expectations) of emphasizing the way in which the outlook for inflation and the output gap

are adjusted at each point in time (at least as far as the intentions of the central bank are

concerned) in response to variations in the recent evolution of the target variables. While this

is implied by a commitment to implement the instrument rule (1.17) from now on, it might

not be clear to the private sector — for example, because the central bank’s commitment

to continue to implement the instrument rule in the future might not be clear. Hence com-

munication with the public about current policy decisions in terms of their implications for

inflation and output-gap forecasts might be a superior way of conveying the central bank’s

commitments with regard to subsequent developments.

The representation of optimal policy in terms of a pure targeting rule also has the ad-

vantage of continuing to be possible even in the limiting case that λi = 0, i.e., even when

reducing the variability of interest rates is not an independent concern.29 In that limit, the

weights φπ and φx in (1.17) become unboundedly large, so that a representation of optimal

policy in terms of a direct instrument rule ceases to be possible. Instead, the coefficients of

(1.25) remain well-defined: θi and θ∆ become equal to zero, while φx, θx, and the weights

{αz,j} continue to take well-defined positive values. Thus in this limiting case, the optimal

targeting rule is one in which the inflation-forecast target must be modified in proportion to

the projected change in the output gap, but it is no longer also dependent on lagged interest

rates.

29Svensson and Woodford (1999) consider a model closely related to this one, but assume a stabilization
objective in which λi = 0. It is for this reason that they find that it is possible to formulate a robustly
optimal targeting rule, a forward-looking variant of (1.26) below, but not a robustly optimal instrument
rule.
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In fact, the optimal target criterion in this case can be written more simply as

πt +
φx

4
∆xt = 0, (1.26)

or even in terms of a flexible price-level target

log Pt = log P ∗ − φx

4
xt,

where P ∗ is a target price level.30 Thus optimal policy in this can be implemented by com-

mitment to a target of the sort proposed by Hall (1984), though the optimal weight φx

implied by our theory is considerably smaller (for any plausible calibration of the model’s

parameters) than the values suggested by Hall. Furthermore, such a policy may be imple-

mented through a forecast-targeting procedure of the kind practiced by inflation-targeting

central banks, rather than necessarily requiring institution of the sort of automatic mecha-

nism proposed by Hall.

2 Optimal Rules for a Model with Inflation Inertia

The basic model considered above is often criticized as being excessively forward-looking,

particularly in its neglect of any sources of intrinsic inertia in the dynamics of inflation. It

might be suspected that this feature of the model is responsible for our strong conclusion

above, according to which a robustly optimal policy rule need involve no dependence upon

forecasts of the target variables beyond the current period. In Svensson’s (1997) classic

argument for the optimality of inflation-forecast targeting, it is the existence of lags in

the effect of monetary policy on inflation that causes the optimal rule to involve a target

criterion for a forecast, with the optimal forecast horizon coinciding with the length of the

policy transmission lag. It might reasonably be suspected that forecasts are not necessary

in our analysis above because our simple model includes no lags in the effects of policy.

30See Woodford (1999b) for further discussion. Even when λi > 0, “Wicksellian” rules, in which the
nominal interest rate is adjusted in response to deviations of the price level from a deterministic target
path, rather than to deviations of inflation from a target rate as in the Taylor rule, maybe be desirable by
comparison with other equally simple rules, as shown by Giannoni (2001).
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Here we take up this question by extending our analysis to the case of the model of

inflation inertia developed in Woodford (2002, chap. 3). In this extension of our basic

model, prices are not held constant between the dates at which they are re-optimized, but

instead are automatically adjusted on the basis of the most recent quarter’s increase in the

aggregate price index, by a percentage that is a fraction γ of the percentage increase in the

index.31 The aggregate supply relation (1.2) then takes the more general form

πt − γπt−1 = κxt + βEt(πt+1 − γπt) + ut, (2.1)

where the coefficient κ and the disturbance ut are defined as before. For γ substantially

greater than zero, this makes past inflation an important determinant of current inflation,

along with current and expected future output gaps and cost-push shocks; if γ is close enough

to one, even a monetary disturbance that has only a transitory effect on real activity can

have a much longer-lasting effect on inflation.

The aggregate-demand side of our model remains as before, and our model can accord-

ingly be summarized by the two structural equations (1.1) and (2.1), together with exogenous

stochastic processes for the disturbances {rn
t , ut}. As shown in Woodford (2002, chap. 6),

the change in our assumptions about pricing behavior implies a corresponding change in the

appropriate welfare-theoretic stabilization objective for monetary policy. This is once again

a discounted criterion of the form (1.3), but the period loss function becomes

Lt = (πt − γπt−1)
2 + λx(xt − x∗)2 + λi(it − i∗)2. (2.2)

We wish to consider policies that minimize the criterion defined by (1.3) and (2.2), subject

to the constraints imposed by the structural equations (1.1) and (2.1), for arbitrary values

of the indexation parameter 0 ≤ γ ≤ 1.32

31Indexation of this kind was first proposed by Christiano et al. (2001), and has since been incorporated
into estimated models of wage and price dynamics by Altig et al. (2002), Smets and Wouters (2002), and
Sbordone (2002b).

32An alternative way of modeling inflation inertia would be to assume the existence of backward-looking
“rule of thumb” price-setters, as in Gali and Gertler (1999). This leads to a modification of the aggregate
supply relation that is similar, though not quite identical, to (2.1). Steinsson (2000) and Amato and Laubach
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2.1 Robustly Optimal Instrument Rules

In the case of this generalization of our policy problem, the first-order condition (1.13)

becomes instead

πqd
t − βγEtπ

qd
t+1 − β−1σΞ1t−1 − βγEtΞ2,t+1 + (1 + βγ)Ξ2t − Ξ2t−1 = 0, (2.3)

where

πqd
t ≡ πt − γπt−1 (2.4)

is the quasi-differenced inflation rate that appears in both the aggregate supply relation

(2.1) and the loss function (2.2). Conditions (1.14) – (1.15) remain as before, and this

system of three equations, together with initial conditions (1.16) and an initial condition for

π−1, continues to define the optimal once-and-for-all commitment to apply from date t = 0

onward.

As above, we can use conditions (1.14) – (1.15) to substitute for Ξ1t and Ξ2t in (2.3),

obtaining an Euler equation of the form

Et[A(L)(it+1 − i∗)] = −ft (2.5)

for the optimal evolution of the target variables. Here A(L) is a cubic lag polynomial

A(L) ≡ βγ − (1 + γ + βγ)L + (1 + γ + β−1(1 + κσ))L2 − β−1L3, (2.6)

while the term ft is a function of the observed and expected future paths of the target

variables, defined by

ft ≡ q̃t − βγEtq̃t+1, (2.7)

q̃t ≡ κσ

λi

[
πqd

t +
λx

κ
∆xt

]
. (2.8)

(Note that the above definition generalizes the earlier (1.21), and that in the limit where

γ = 0, ft is equal to q̃t, which equals qt.)

(2001b) derive welfare-theoretic loss functions for this model, and find that the loss each period is a quadratic
function of both πt and πt−1 that is similar, though again not identical, to our loss function (2.2). Hence
we conjecture that similar conclusions as to the degree to which optimal policy is forward-looking would be
obtained using the Gali-Gertler model, though we do not take this up here.
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By an argument directly analogous to the proof of Proposition 6, we can show that if

a bounded optimal state-contingent plan exists, the system obtained by adjoining (2.5) to

the structural equations (1.1) and (2.1) implies a determinate rational-expectations equilib-

rium, in which the responses to exogenous disturbances are the same as under the optimal

commitment. (The only difference between this equilibrium and the optimal once-and-for-all

commitment just defined relates to the initial conditions, as in our earlier discussion, and

once again this difference is irrelevant to the design of a policy rule that is optimal from

a timeless perspective.) Hence we could regard (2.5) as implicitly defining a policy rule,

and the rule would once again be robustly optimal. In the limiting case that γ = 0, (2.5)

ceases to involve any dependence upon Etit+1, and the proposed rule would coincide with

the optimal instrument rule (1.17) discussed above.

However, (2.5) is an even less explicit expression for the central bank’s interest-rate

policy than the implicit instrument rules considered earlier, for (when γ > 0) it defines it

only as a function of Etit+1. This means that the central bank defines the way in which it is

committed to set its instrument only as a function of the way that it expects to act further

in the future. This failure to express the rule in “closed form” is especially undesirable from

the point of view of our question about the optimal forecast horizon for a monetary policy

rule. Expression (2.5) involves no conditional expectations for variables at dates more than

one period in the future. However, this does not really mean that the central bank’s forecasts

for later dates are irrelevant when setting it. For this “rule” directs the bank to set it as a

function of its forecast of it+1, and (if the same rule is expected to be used to set it+1) the

bank’s forecast at t of it+1 should involve its forecast at t of q̃t+2. It should also involve its

forecast of it+2, and hence (by similar reasoning) its forecast of q̃t+3, and so on. Hence it is

more revealing to describe the proposed policy rule in a form that eliminates any reference to

the future path of interest rates themselves, and instead refers only to the bank’s projections

of the future paths of inflation and the output gap.33

33A rule expressed in this way will also conform better to the evident preference of central bank’s to
justify their monetary policy decisions to the public in terms of their projections for the future paths of
inflation and output, rather than in terms of their assumptions about the future path of interest rates.
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To obtain an equivalent policy rule of the desired form, we need to partially “solve

forward” equation (2.5). This requires factorization of the lag polynomial as

A(L) ≡ βγ(1− λ1L)(1− λ2L)(1− λ3L). (2.9)

We note the following properties of the roots of the associated characteristic equation.

Proposition 8. Suppose that σ, κ > 0, 0 < β < 1, and 0 < γ ≤ 1. Then in the

factorization (2.9) of the polynomial defined in (2.6), there is necessarily one real root 0 <

λ1 < 1, and two roots outside the unit circle. The latter two roots are either two real roots

λ3 ≥ λ2 > 1, or a complex pair λ2, λ3 of roots with real part greater than 1. Three real roots

necessarily exist for all small enough γ > 0, while a complex pair necessarily exists for all γ

close enough to 1.

(See proof in the Appendix.) We use the conventions in the statement of this proposition in

referring to the distinct roots in what follows. It is also useful to rewrite (2.5) as

Et[A(L)̂ıt+1] = −f̂t, (2.10)

where once again hats denote the deviations of the original variables from the long-run

average values implied by the policy rule (2.5), or equivalently, by the optimal commitment.

In the case that three real roots exist, the existence of two distinct roots greater than

one allows us two distinct ways of “solving forward”, resulting in two alternative relations,

(1− λ1L)(1− λ2L)̂ıt = (βγλ3)
−1Et[(1− λ−1

3 L−1)−1f̂t], (2.11)

Public communications such as the Bank of England’s Inflation Report put projections for both inflation
and output at center stage, while being careful not to express any opinion whatsoever about the likely path
of interest rates over the period under discussion. The forecast-based rules proposed below still refer to
forecast paths conditional upon intended policy, rather than upon “constant-interest-rate” forecasts, and
so it will not be possible to implement these rules without taking a stand (at least for internal purposes)
on the likely future path of interest rates. But the rules make it possible to discuss the way in which the
current instrument setting is required by the bank’s inflation and output projections, without also discussing
the interest-rate path that is implicit in those projections, and to this extent they require a less radical
modification of current procedures.
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or

(1− λ1L)(1− λ3L)̂ıt = (βγλ2)
−1Et[(1− λ−1

2 L−1)−1f̂t]. (2.12)

We can also derive other relations of the same form by taking linear combinations of these

ones. Of special interest is the relation

(1− λ1L)

(
1− λ2 + λ3

2
L

)
ı̂t =

1

2
(βγλ3)

−1Et[(1− λ−1
3 L−1)−1f̂t]

+
1

2
(βγλ2)

−1Et[(1− λ−1
2 L−1)−1f̂t]. (2.13)

Here relations (2.11) and (2.12) are defined (with real-valued coefficients) only in the case

that three real roots exist, while relation (2.13) can also be derived (and has real coefficients

on all leads and lags) in the case that λ2, λ3 are a complex pair. Because |λ2|, |λ3| > 1,

the right-hand side of each of these expressions is well-defined, and describes a bounded

stochastic process in the case of any bounded process {f̂t}. (In what follows, we shall refer

to the three possible expressions for an optimal instrument rule presented in (2.11) – (2.13)

as Rule I, Rule II, and Rule III respectively.)

Each of the relations (2.11) – (2.13) can be solved for ı̂t as a function of two of its own

lags and expectations at date t regarding current and future values of f̂t. These can thus be

interpreted as implicit instrument rules, each of which now avoids any direct reference to

the planned future path of the central bank’s instrument (though assumptions about future

monetary policy will be implicit in the inflation and output-gap forecasts). Each of these

policy rules is equivalent to (2.5), and they are accordingly equivalent to one another, in the

following sense.

Proposition 9. Under the assumptions of Proposition 8, and in the case that the

factorization (2.9) involves three real roots, a pair of bounded processes {ı̂t, f̂t} satisfy any

of the equations (2.11), (2.12) or (2.13) at all dates t ≥ t0 if and only if they satisfy (2.10)

at all of those same dates. In the case that a complex pair exists, (2.13) is again equivalent

to (2.10), in the same sense.
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(See proof in Appendix.) Each of the rules thus represents a feasible specification of mone-

tary policy in the case that its coefficients are real-valued, and when this is true it implies

equilibrium responses to real disturbances that are those associated with an optimal com-

mitment. Accordingly, each represents an optimal policy rule from a timeless perspective.

(Note that although the coefficients differ, these are not really different policies. Proposi-

tion 9 implies that they involve identical actions, if the bank expects to follow one of them

indefinitely, regardless of the model of the economy used to form the conditional forecasts.)

In the case that three real roots exist, we have a choice of representations of optimal

policy in terms of an instrument rule, and this time we cannot choose among them on

grounds of simplicity. But rule I seems particularly appealing in this case. This is the

rule (among our three possibilities, or any other linear combinations of these) that puts the

least weight on forecasts far in the future. It is proper to ask at what rate the weights on

forecasts shrink with the forecast horizon, under the assumption that these shrink as fast as

possible consistent with robust optimality of the policy rule, if we wish to determine how

much forecast-dependence is necessary for robust optimality. This choice is also uniquely

desirable in the sense that it remains well-defined in the limit as γ approaches zero. In this

limit, rule I reduces to

(1− λ1L)(1− λ2L)̂ıt = f̂t,

which is the optimal instrument rule (1.23) derived earlier.34 Instead, in the case of any

of the other rules, the coefficients on lagged interest rates become unboundedly large as γ

approaches zero. Thus rule I is clearly the preferable specification of policy in the case of

small γ. The desire for a rule that varies continuously with γ, so that uncertainty about the

precise value of γ will not imply any great uncertainty about how to proceed, then make

rule I an appealing choice over the entire range of γ for which it is defined.

One might think that the same continuity argument could instead be used to argue for

34Note that as γ → 0, λ3 → +∞, while γλ3 → β−1. Recall also that in this limiting case, f̂t = q̂t. One
can show furthermore that the two smaller roots λ1, λ2 in the factorization (2.9) approach the two roots in
the factorization (1.23) of our earlier quadratic lag polynomial.
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the choice of rule III in all cases, since this is the only one of our optimal instrument rules

that continues to be defined for high values of γ. Yet the instruction to follow rule I if three

real roots exist, but rule III if there is a complex pair, is also a specification that makes

all coefficients of the policy rule continuous functions of γ. The reason is that as γ passes

through a critical value γ̄ at which the real roots of the characteristic equation bifurcate, the

two larger real roots, λ2 and λ3, come to exactly equal one another. When γ̄ is approached

from the other direction, the imaginary parts of the complex roots λ2 and λ3 approach zero;

at the bifurcation point their common real value is the repeated real root obtained as the

common limit of the two real roots from the other direction. Hence when γ = γ̄, rules I, II,

and III are all identical. There is thus no ambiguity about whether rule I or rule III should

be applied in this case, and no discontinuity in the coefficients of the recommended rule as

γ approaches γ̄ from either direction. At the same time, this proposal results in a rule that

remains well-defined as γ approaches zero, and for small γ > 0 results in a rule that is very

close to the one previously recommended for an economy with no inflation inertia.

Each of rules I, II, and III can be written in the form

it = (1− ρ1)i
∗ + ρ1it−1 + ρ2∆it−1 + φπFt(π) +

φx

4
Ft(x)− θππt−1 − θx

4
xt−1, (2.14)

where here we have added the constant terms again to indicate the desired level of interest

rates (and not just the interest rate relative to its long-run average level), and where Ft(z)

again denotes a linear combination of forecasts of the variable z at various future horizons,

with weights normalized to sum to one. This form of rule generalizes the specification (1.17)

that suffices in the case γ = 0 in two respects: the interest-rate operating target it now

depends upon lagged inflation in addition to the lagged variables that mattered before, and

it now depends upon forecasts of inflation and the output gap in future periods, and not

simply upon the projections of those variables for the current period.

Except in these respects, the coefficients are qualitatively similar to those in (1.17), as

indicated by the following proposition.

Proposition 10. Under the assumptions of Proposition 8, and a loss function with
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Table 1: Calibrated parameter values for the basic neo-Wicksellian model.

Structural parameters
β 0.99

σ−1 0.16
κ .024

Shock processes
ρ(r̂n), ρ(u) 0.35

Loss function
λx .048
λi .236

λx, λi > 0, each of rules I, II, and III has a representation of the form (2.14) for all values of

γ for which the rule is well-defined, and in this representation,

ρ1 > 1, ρ2 > 0,

0 < θπ ≤ φπ,

and

0 < θx = φx.

Furthermore, for given values of the other parameters, as γ → 0 (for rule I) the coefficient

θπ approaches zero, though φπ approaches a positive limit; while as γ → 1 (for rule III) the

coefficients θπ and φπ approach the same positive limit.

(The proof is again in the Appendix.) It is especially noteworthy that once again the optimal

instrument rule is superinertial. We also note that once again what should matter is the

projected output gap relative to the previous quarter’s output gap, rather than the absolute

level of the projected gap; and once again interest rates should be increased if the gap is

projected to rise. Once again a higher projected inflation rate implies that the interest rate

should be increased; but now the degree to which this is true is lower if recent inflation has

been high, and in the extreme case γ = 1, it is only the projected inflation rate relative to

the previous quarter’s rate that should matter.
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Figure 1: Coefficients of the optimal instrument rule (2.14) as functions of γ.
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Figure 2: Relative weights on forecasts at different horizons in the optimal rule (2.14).

The numerical values of these coefficients are plotted, for alternative values of γ ranging

between zero and one, in the various panels of Figure 1, where the assumed values for the

other parameters are as in Table 1. For all values γ < γ̄ = .35, there are three real roots, and

for each value of γ the three values corresponding to rules I, II, and III are each plotted; for

γ > γ̄, only rule III is defined. An interesting feature of these plots, is that if one considers

the coefficients associated with rule I for γ ≤ γ̄ and rule III for γ ≥ γ̄, one observes that the

magnitude of each of the coefficients remains roughly the same, regardless of the assumed

value of γ. (The exception is θπ, which approaches zero for small γ, but becomes a substantial

positive coefficient for large γ, as indicated by Proposition 10.)

The panels of Figure 2 similarly plot the relative weights αz,j/αz,0 for different horizons

j of the inflation and output-gap forecasts to which the optimal instrument rule refers,35 for

35Here we plot the relative weights, rather than the absolute weights, because this makes visual comparison
between the degree of forecast-dependence of optimal policy in the different cases easier. The absolute weights
can be recovered by integrating the plots shown here, since the relative weights in each case must sum to
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each of several different possible values of γ. (The weights associated with rule I are plotted

in the case of values γ < γ̄, and those associated with rule III in the case of values γ > γ̄.)

Here we observe that in this case the forecasts Ft(z) are not actually weighted averages of

forecasts at different horizons, because the weights are not all non-negative. Thus while

in the presence of inflation inertia, the optimal instrument rule is to some extent forecast-

based, the optimal responses to forecasts of future inflation and output gaps are not of the

sort generally assumed in forward-looking variants of the Taylor rule. In the case of high γ, a

higher forecasted inflation rate (or output gap) in any of the next several quarters implies, for

given past and projected current conditions, that a lower current interest rate is appropriate.

According to the optimal rule, a higher current inflation rate should be tolerated in the case

that high inflation is forecast for the next several quarters. This is because (in an economy

with γ near one) it is sudden changes in the inflation rate that creates the greatest distortions

in the economy, by making automatic adjustment of prices in response to lagged inflation a

poor rule of thumb.

In addition to this difference from the conventional wisdom with respect to the sign with

which forecasts should affect policy, one notes that under the optimal rule it is only forecasts

regarding the near future that matter much at all. Even if we consider only the weights put

on forecasts for j ≥ 1 quarters in the future, the mean future horizon of these forecasts,

defined by
∑
j≥1

αz,jj/
∑
j≥1

αz,j,

is equal to only 2.2 quarters in the case of our calibrated example with γ = 1. Thus forecasts

other than for the first year following the current quarter matter little under the optimal

policy. Even more notably, none of the projections beyond the current quarter should receive

too great a weight; in our example, the sum of the relative weights on all future quarters,

∑
j>0

|αz,j|/αz,0,

is equal to only 0.39 even in the extreme case γ = 1, while this fraction falls to zero for

1/αz,0.
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small γ. Thus while a robustly optimal direct instrument rule does have to be forecast-based

in the presence of inflation inertia, the degree to which forecasts matter under the optimal

policy rule is still relatively small. Instead, a strong response to projections of inflation and

the output gap for the current period, as called for by the Taylor rule, continues to be the

crucial element of optimal policy.

2.2 A Robustly Optimal Targeting Rule

The presence of two roots outside the unit circle in the factorization (2.9) suggests that we

ought to solve both of them forward, rather than only one. (This would eliminate the ambi-

guity about which one to solve forward, that required us to choose between representations

(2.11) and (2.12) of optimal policy. Solving both roots forward, we obtain instead a relation

of the form

(1− λ1L)̂ıt−1 = −(βγλ2λ3)
−1Et[(1− λ−1

2 L−1)−1(1− λ−1
3 L−1)−1f̂t]. (2.15)

Once again, this relation can be shown to be equivalent to the Euler equation (2.5).

Proposition 11. Under the assumptions of Proposition 8, a pair of bounded processes

{ı̂t, f̂t} satisfy (2.15) at all dates t ≥ t0 if and only if they satisfy (2.10) at all of those same

dates.

(See proof in the Appendix.) And an advantage of solving both roots forward is that this

relation, unlike either (2.11) or (2.12), has real coefficients for all leads and lags, whether or

not there are complex roots.

However, this relation differs from any of the relations (2.11) – (2.13) in that it does not

involve ı̂t. Thus it represents a pure targeting rule, one that cannot be interpreted as an

instrument rule. However, it follows from Proposition 8 that a commitment to adjust the

short-term nominal interest rate so as to achieve a situation in which the bank’s projections

satisfy (2.15) represents a well-defined policy rule, and one that is furthermore equivalent

to any of the three instrument rules discussed in the previous section (if these are defined).
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Hence this provides a relatively simple example of a robustly optimal pure targeting rule,

for the case of an economy with inflation inertia.

The optimal target criterion (2.15) can be written in the form

Ft(π) +
φx

4
Ft(x) = θππt−1 +

θx

4
xt−1 − θi(it−1 − i∗)− θ∆∆it−1, (2.16)

generalizing (1.25). Note that the only difference as to the general form of this targeting rule

is the presence of the term indicating dependence of the modified inflation-forecast target

on lagged inflation πt−1. One can also establish the following properties of the optimal

coefficients, generalizing our previous results.

Proposition 12. Under the assumptions of Proposition 10, the optimal targeting cri-

terion has a representation (2.16) in which

φx = θx > 0,

0 < θπ ≤ 1,

and

θi, θ∆ > 0.

Furthermore, for fixed values of the other parameters, as γ → 0, θπ approaches zero and the

other parameters approach the non-zero values associated with the target criterion (1.25).

Instead, as γ → 1, θπ approaches 1.

(Again, the proof is in the Appendix.)

Once again, the optimal inflation-forecast target must be modified in response to vari-

ations in the output-gap projection; a higher inflation-forecast target is appropriate if the

output gap is projected to fall relative to its recent past level. And once again the optimal

inflation-forecast target must be history-dependent, not only because the output-gap mod-

ification just mentioned depends upon the relation between the output-gap projections for
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Figure 3: Coefficients of the optimal targeting rule (2.16) as functions of γ.

current and future periods relative to a past level, but because the appropriate inflation-

forecast target is lower if nominal interest rates have been high and/or increasing in the

recent past.

The additional presence of a coefficient θπ > 0 when γ > 0 indicates that the modified

inflation-forecast target should be higher when recent inflation has been higher; this makes

sense given that the distortions associated with inflation variations are greater the greater

the departure of the current inflation rate from the rate of automatic price adjustment in

response to lagged inflation. In the extreme case γ = 1, the inflation-forecast target is

adjusted one hundred percent in response to variations in the recent rate of inflation, since

in this case it is actually the rate of change in inflation that one wants to stabilize.

Each of the coefficients in (2.16) is plotted as a function of γ in Figure 3, assuming the
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Figure 4: Relative weights on forecasts at different horizons in the optimal rule (2.16).

same calibrated values for the other parameters as before. (There are this time no separate

plots for θx and φx, as these coefficients are necessarily identical.) An interesting feature of

these results is that each of the coefficients indicating history-dependence (θπ, θx, θi, and θ∆)

increases with γ. Thus if there is substantial inflation inertia, it is even more important for

the inflation-forecast target to vary with changes in recent economic conditions. It is also

worth noting that the degree to which the inflation-forecast target should be modified in

response to changes in the output-gap projection (indicated by the coefficient φx) increases

with γ. While our conclusion for the baseline model (an optimal targeting rule with φx = .15)

might have suggested that this sort of modification of the inflation-forecast target is not too

important, we find that a substantially larger response is justified if γ is large (the optimal

φx approaches the value 0.51 for γ = 1).

The panels of Figure 4 correspondingly show the relative weights αz,j/αz,0 on the forecasts

at different horizons in the optimal target criterion (2.16), for each of several alternative
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values of γ. As before, this representation of optimal policy is more forward-looking than

is the optimal instrument rule; we now find, at least for high enough values of γ, that the

optimal target criterion places non-negligible weight on forecasts more than a year in the

future. But it is not necessarily true that a greater degree of inflation inertia justifies a target

criterion that with a longer forecast horizon. Increases in γ increase the optimal weights on

the current-quarter projections of both inflation and the output gap (normalizing the weights

to sum to one), and instead make the weights on the projections for quarters more than two

quarters in the future less positive. At least for low values of γ (in which case the weights

are all non-negative), this makes the optimal target criterion less forward-looking. For high

values of γ, increases in γ do increase the absolute value of the weights on forecasts for dates

one to two years in the future (these become more negative). But even in this case, the

existence of inflation inertia does not justify the kind of response to longer-horizon forecasts

that is typical of inflation-forecast targeting central banks. An increase in the forecast level of

inflation and/or the output gap during the second year of a bank’s current projection should

justify a loosening of current policy, in the sense of a policy intended to raise projected

inflation and/or the output gap in the next few quarters.

The considerations that might lead one to choose the pure targeting rule as opposed to

the optimal instrument rule as a policy commitment remain as in our earlier discussion. We

note once again that the targeting rule (2.16) has the advantage of remaining well-defined

in the limit of a stabilization objective with λi = 0. In this limit, (2.15) reduces to the form

Et[(1− λ−1
2 L−1)−1(1− λ−1

3 L−1)−1(1− βγL−1)q̂t] = 0,

which corresponds once again to a target criterion of the form (2.16), but with θi = θ∆ = 0.

This relation, however, is satisfied if and only if q̃t = 0,36 and so a simpler expression for the

36Here it is worth noting that the only reason that we were not similarly able to reduce (2.15) to an
equivalent target criterion that involves no dependence upon forecasts was the presence of the non-zero terms
involving ı̂t−1 and ı̂t−2. Thus there is an important connection between the irreducible forecast-dependence
of the optimal target criterion (2.16) and the need for a more complex kind of history-dependence of optimal
policy in the case that λi > 0.
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optimal targeting rule in this limit is simply

πt +
λx

κ
xt = γπt−1 +

λx

κ
xt−1. (2.17)

In this simple case, we observe that the optimal targeting rule need not be forward-looking

at all, regardless of the degree of inflation inertia.

In the special case that γ = 1, (2.17) can be further simplified: an equivalent targeting

rule is simply

πt +
λx

κ
xt = π̄, (2.18)

where π̄ is an arbitrary constant.37 In this case, the target for the current quarter’s inflation

projection must be modified in response to variations in the current output-gap projection,

but neither lagged values nor projections farther in the future need be taken account of.

This might seem to contradict our earlier remarks about the necessary history-dependence

of optimal policy. However, one should note that in the case that λi = 0 and γ = 1, the only

target variables are ∆πt and xt (not πt!), and the only constraint upon the feasible evolution

of these variables is provided by the aggregate-supply relation (2.1), which is purely forward-

looking in terms of these variables. The only state variables that matter for defining the

feasible paths for the target variables from date t onward are the exogenous states needed

to identify ut and the conditional expectations Etut+j for all future horizons. Thus, in terms

of our previous definition, a “purely forward-looking” target criterion would be one that

refers only to projections for ∆πt and xt in current and future quarters, and possibly to the

exogenous states just mentioned. The target criterion (2.18) is not purely forward-looking

in this sense; for it makes the target for current inflation acceleration ∆πt dependent upon

past inflation, even though that variable is irrelevant to both the policymaker’s loss function

and to the constraints upon the future evolution of the relevant target variables.38

37If the central bank commits to enforcement of the target criterion (2.17) from some date t0 onward,
then the constant is determined by the initial conditions at the time that the rule is adopted: π̄ = πt0−1 +
(λx/κ)xt0−1.

38In supposing that it is possible for the absolute level of the inflation rate to be irrelevant for the possible
future evolution of the rate of change of inflation, we are obviously ignoring the consequences of the zero
lower bound on nominal interest rates. However, the choice of a loss function with λi = 0 is only appropriate

42



3 Further Extensions

Here we consider, more briefly, some extensions of the method introduced above to more

complex (but more realistic) settings. As we shall see, not only can similar methods be

employed in a broader range of cases, but certain important conclusions obtained in the

above examples regarding the character of an optimal policy rule continue to apply in more

general settings.

3.1 Sticky Wages and Prices

As discussed in Woodford (2002, chap. 3), a more realistic model will allow for sticky wages

as well as prices. Here we consider how the form of an optimal policy rule changes in the case

that wages and prices are both sticky to a similar extent. We assume a structural model with

monopolistic competition among the suppliers of differentiated types of labor and Calvo-style

staggering of wage adjustment, as in Woodford (2002, chap. 3, sec. 4.1), and utility-based

stabilization objectives in accordance with the derivation in Woodford (2002, chap. 6). For

the sake of brevity, we proceed directly to the case of a model in which both wages and

prices are partially indexed to lagged inflation; the model of Erceg et al. (2000), in which

there is no such indexation, can be treated as a limiting case of this model.

As in Woodford (2002, chap. 3), the structural equations of our model are39

πt − γpπt−1 = κp(xt + ut) + ξp(ŵt − ŵn
t ) + βEt[πt+1 − γpπt], (3.1)

πw
t − γwπt−1 = κw(xt + ut) + ξw(ŵn

t − ŵt) + βEt[π
w
t+1 − γwπt], (3.2)

together with the intertemporal IS relation (1.1). Here πw
t represents nominal wage inflation,

ŵt is the deviation of the log real wage from its steady-state level, ŵn
t represents the log

deviation of the “natural real wage” — i.e., the equilibrium real wage in the case of complete

wage and price flexibility — from its stead-state level, and the coefficients ξp, ξw, κp, κw are

if one judges that in practice this constraint does not bind, so that the optimal policy problem can be
considered as if there were no such constraint.

39Here we have rewritten log Yt − log Y n
t as xt + ut, where as in our basic model, xt is the gap between

actual and efficient output, and ut represents inefficient variation in the natural rate of output.
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all positive. The coefficients 0 ≤ γp, γw ≤ 1 indicate the degree of indexation of prices and

wages respectively to the lagged price index, analogous to the indexation of prices in the

model of section 2. (The model of Erceg et al. corresponds to the special case in which

γw = γp = 0.)

Under the microeconomic foundations for these relations discussed in Woodford (2002,

chap. 3), the appropriate welfare-theoretic stabilization objective is a discounted criterion

of the form (1.3), with a period loss function of the form40

Lt = λp(πt − γpπt−1)
2 + λw(πwt − γwπt−1)

2 + λx(xt − x∗)2 + λi(it − i∗)2. (3.3)

We wish to consider policies that minimize the criterion defined by (1.3) and (3.3), subject

to the constraints imposed by the structural equations (1.1) and (3.1) – (3.2).

Using the same Lagrangian method as before to characterize optimal policy, we obtain a

set of first-order conditions

λp[(πt−γpπt−1)−βγpEt(πt+1−γpπt)]−λwβγwEt(πw,t+1−γwπt)+β−1σΞ1,t−1

+βγpEt(Ξ2,t+1 − Ξ2t)− (Ξ2t − Ξ2,t−1) + βγwEt(Ξ3,t+1 − Ξ3t)− Ξ4t = 0, (3.4)

λw(πwt − γwπt−1)− (Ξ3t − Ξ3,t−1) + Ξ4t = 0, (3.5)

λx(xt − x∗)− Ξ1t + β−1Ξ1,t−1 + κpΞ2t + κwΞ3t = 0, (3.6)

λi(it − i∗)− σΞ1t = 0, (3.7)

ξpΞ2t − ξwΞ3t − Ξ4t + βEtΞ4,t+1 = 0, (3.8)

where Ξ1t, Ξ2t, Ξ3t are the Lagrange multipliers associated with constraints (1.1), (3.1) and

(3.2) respectively, and Ξ4t is the multiplier associated with the constraint

ŵt = ŵt−1 + πwt − πt.

40The welfare-theoretic loss function for this model when γw = γp = 0 and there is no penalty for interest-
rate variability is derived in Woodford (2001b, chap. 6, sec. 4.4). When γw, γp > 0, the relation of wage and
price dispersion to wage and price inflation changes in the way discussed in Woodford (2002, chap. 6, sec.
2.2), resulting in the modification indicated here of the first two terms of the loss function. The justification
for the final term is the same as in the flexible-wage model above.
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A case in which these equations are especially easy to interpret is the special case discussed

earlier, in which κw = κp = κ (so that wages and prices are sticky to a similar degree) and

γw = γp = γ (so that wages and prices are indexed to lagged inflation to the same degree).

In this case, we can add (3.4) to (3.5), use (3.6) to substitute for Ξ2t + Ξ3t and (3.7) to

substitute for Ξ1t, and finally obtain

(λpπt+λwπwt−γπt−1)−βγEt(λpπt+1+λwπw,t+1−γπt) =
λi

κσ
(∆it−β−1∆it−1)

−βγEt

[
λi

κσ
(∆it+1 − β−1∆it)

]
− λi

β
(it−1 − i∗)− λx

κ
(∆xt − βγEt∆xt+1).

This is again an Euler equation of the form (2.5), where again A(L) is defined by (2.6) and

ft is defined by (2.7) – (2.8); the only difference is that is in the last of these equations, πqd
t

is now defined as

πqd
t ≡ λpπt + λwπwt − γπt−1. (3.9)

rather than as in (2.4). It follows that optimal policy rules are of essentially the same form

as for the model with only sticky prices, except that terms that previously involved only

price inflation will now involve both wage and price inflation.

In the case that γ = 0 (the model of Erceg et al., 2000), we obtain an especially simple

result. The optimal instrument rule is again of the form (1.17), except that instead of

responding to current and lagged price inflation πt, the rule prescribes a response (with the

same coefficients as before) to a weighted average of wage and price inflation,

π̄t ≡ λpπt + λwπwt.

For the calibrated parameter values suggested in Table 2 below, this index involves equal

weights on wage and price inflation. Similarly, the optimal pure targeting rule is again of

the form (1.25), except that the inflation projection Ft(π) is replaced by a projection Ft(π̄)

of the average of wage and price inflation just defined, with the same weights on various

future horizons as before. Once again, wage inflation should receive a similar weight as

price inflation in the inflation forecast that is used in the central bank’s forecast-targeting

procedure.
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It is worth noting that we obtain different coefficients here for the optimal policy rule

than in section 2 only because the welfare-theoretic loss function is different in the case that

wages as well as prices are sticky. If instead of (3.3) we were to assume a loss function of the

form (1.4) with arbitrary weights — a common assumption in non-welfare-theoretic analyses

of monetary policy rules — we would again have obtained precisely the same optimal policy

rules as in section 2. (This can be seen from the fact that (3.9) reduces to (2.4) if λw = 0.)

Thus sticky wages need not imply any difference in the nature of the tradeoff between

inflation and output-gap stabilization available to the central bank; the main significance of

wage stickiness is that it makes wage stabilization an appropriate objective for policy, with

consequences for the form of inflation index that belongs in an optimal policy rule.

In the case of indexation to lagged inflation, the roots of the lag polynomial A(L) are the

same as in the previous section, yielding the same forms as before for alternative optimal

policy rules. (The three optimal instrument rules are each defined for the same values of γ

as above; the unique optimal pure targeting rule is again defined for all γ.) Each of the three

optimal instrument rules can be written in the form

it = (1−ρ1)i
∗+ρ1it−1 +ρ2∆it−1 +φpFt(π)+φwFt(πw)+

φx

4
Ft(x)− θππt−1− θx

4
xt−1, (3.10)

where the coefficients ρ1, ρ2, φx, θπ, and θx and the coefficients {αx
j } are all the same functions

of the model parameters as in (2.14), for each of the three rules. The coefficients multiplying

the price and wage inflation forecasts satisfy

φp + φw = φπ,

and

φpα
p
j + φwαw

j = φπαπ
j

for each j ≥ 0, where φπ and the {απ
j } are the coefficients multiplying the inflation forecasts

in (2.14). Thus if wages and prices are forecasted to increase at the same rate, the effect of

these inflation forecasts on the desired interest-rate setting is the same as before. However,

if the wage and price inflation forecasts differ, optimal policy now depends on the wage

inflation forecast as well.
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Table 2: Parameter values in a calibrated model with sticky wages and prices.

Structural parameters
αw 0.66
αp 0.62
β 0.99

σ−1 0.16
ωw 0.28
ωp 0.43

θwφ−1, θp 7.88
ξw, ξp .055
κw, κp .024

Loss function
λw, λp 0.50

λx .048
λi .236

When γ > 0, the optimal rule no longer involves only projections of a single weighted

average of wage and price inflation; this is because both wages and prices are (by assumption)

indexed only to lagged price inflation, and not to lagged wage inflation. The difference in the

optimal responses to wage inflation as opposed to price inflation is illustrated in Figures 5 and

6 for a calibrated example, with parameter values displayed in Table 2. Here we assume that

ξw = ξp, κw = κp, and θwφ−1 = θp. The values assumed for β, σ, θp, and κp are taken from

the estimates of the IS equation and price inflation equation by Rotemberg and Woodford

(1997);41 the value of ξp is instead taken from the inflation equation estimated by Sbordone

(2002a), which relates inflation to real marginal cost rather than to the output gap.42 The

values of αw, αp, ωw and ωp implied by these estimates are also shown in the table,43 as are

the implied coefficients λw, λp and λx of the welfare-theoretic loss function. Note that wage

41Note that if κw = κp, as assumed here, then the real wage is unaffected by monetary policy, as discussed
in Woodford (2002, chap. 3, sec. 4.2). In this case the Rotemberg-Woodford inflation equation is correctly
specified even when wages are sticky (though their welfare analysis would not be correct), and their parameter
“κ” corresponds to κp here.

42Note that Sbordone’s inflation equation is equally valid regardless of whether wages are sticky or not.
43Even though our parameter values have been taken from two different studies using different data sets,

the implied values of these parameters are reasonable, and not too different from the estimates of Amato
and Laubach (2001a); see, for example, Table 4.2 of Woodford (2002).
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Figure 5: Coefficients of the optimal targeting rule (3.10) as functions of γ. Coefficients not
shown are the same as in Figure 1.

inflation and price inflation receive equal weight, and that the relative weight on output-

gap stabilization is the same as in Table 1. We also assume the same relative weight λi on

interest-rate stabilization as in the calibration above of the flexible-wage model.44

Figure 5 shows the value of the coefficients φp and φw in the optimal instrument rule

(3.10), for alternative values of γ ranging between zero and one. (Again the values are

shown for each of rules I, II and III in the cases where these exist; the minimally inertial

rule corresponds to rule I for low values of γ, and rule III for high values.) Similarly, Figure

6 shows the relative weights on the inflation and output-gap forecasts at different horizons

in the optimal rule.

We note that for moderate positive values of γ, it continues to be the case that the

coefficients on the price-inflation forecasts are quite similar to those on the wage-inflation

forecasts; essentially, the coefficient φπ shown in Figure 1 is split roughly equally between the

coefficients φp and φw, while the relative weights on forecasts at different horizons remain

similar to those shown in Figure 2. Thus it is not too bad an approximation to optimal

policy to choose the same rule as the one described in section 2, but to respond to forecasts

44If λi resulted solely from the existence of transactions frictions, as discussed in Woodford (2002, chap.
6, sec. 4.1), the same calibrated value would be appropriate regardless of the assumed degree of wage
stickiness. In the case that λi is chosen to reflect the advantages of lower interest-rate variability as a result
of the zero bound, as in Woodford (1999a), then the appropriate value would depend on the assumed variance
of disturbances. In this case, the appropriate value is not independent of whether we assume wages to be
sticky, because the other stabilization objectives are not the same in this case; but we do not here consider
the degree to which the appropriate value of λi should change.
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Figure 6: Relative weights on forecasts at different horizons in the optimal rule (3.10).

of an index that is a (roughly equally-weighted) average of wage and price inflation. For

larger values of γ, however, the optimal responses to forecasts of wage and price inflation are

substantially different. The optimal value of φp remains positive, and similar in magnitude

to the previous coefficient φπ, while the optimal value of φw falls to zero as γ approaches one.

This does not mean that it ceases to be optimal to respond to forecasts of wage inflation,

only that the sum of the weights at different horizons is zero;45 that is, when γ = 1 the

rule prescribes a response only to the forecasted rate of acceleration of wage inflation, rather

than the rate of wage inflation itself (given the expected rate of price inflation). Specifically,

the optimal rule prescribes a negative response to expected deceleration of wage inflation

over the next three quarters relative to the current rate of wage inflation; it also prescribes

45This explains why we plot relative weights rather than the weights αw,j in Figure 6. If we normalize
the αw,j to sum to one, then the weights are undefined in the limiting case γ = 1. Nonetheless, the relative
weights have well-defined limiting values, shown in the figure. The coefficients multiplying any given forecast
of wage inflation — i.e., the products φwαw,j — also remain well-defined, so there is a well-defined optimal
policy rule in this case.
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a (weaker) positive response to expected acceleration of wage inflation farther in the future.

Despite these complications, we note that it continues to be the case that optimal policy

depends very little on inflation forecasts (either for wages or prices) farther in the future than

the coming year, even in the case that there is substantial inflation inertia in both wages

and prices. And even with regard to forecasts for the coming year, current interest rates

should respond most strongly (and in particular, most positively) to projected wage and price

inflation in the current quarter, rather than to forecasted inflation later in the year. Thus

there is once again little support for the kinds of forward-looking rules sometimes offered as

descriptions of the behavior of current inflation-targeting central banks.

3.2 Delays in the Effects of Monetary Policy

Empirical models such as those of Rotemberg and Woodford (1997), Amato and Laubach

(2001a), Christiano et al. (2001), Altig et al. (2002), or Boivin and Giannoni (2002) differ

from the simple models discussed above in that both output and inflation are predetermined,

so that neither is immediately affected by an unexpected change in policy. Here we consider

the consequences for optimal policy of allowing for such delays in the effect of policy, modeled

in the way described in Woodford (2002, chap. 4, sec. 4).

Let us consider a model with flexible wages, but sticky prices indexed to lagged inflation,

as in section 2, but now assuming that both price changes and aggregate private demand are

predetermined d periods in advance, for some d ≥ 0. For simplicity, let us suppose that the

efficient level of output is also known d periods in advance, so that the output gap is also a

predetermined variable.46 In this case, the structural equations of our model are

xt = Et−dxt+1 − σEt−d(it − πt+1 − rn
t ), (3.11)

πt − γπt−1 = κEt−dxt + βEt−d(πt+1 − γπt) + Et−dut. (3.12)

46Alternatively, in equations (3.11) – (3.12) we may interpret xt to mean Ŷt − Et−dŶ
e
t . In this case, the

loss function (1.3) – (2.2) is still correct, up to terms (involving the component of Ŷ e
t that is not forecastable

d periods in advance) that are independent of policy.
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The welfare-theoretic loss function continues to be given by (1.3) and (2.2). The Lagrangian

associated with our policy problem is then of the form

L = E0

∞∑
t=0

βt

{
1

2
(πqd

t )2 +
λx

2
(xt − x∗)2 +

λi

2
(it − i∗)2+

Ξ1,t−d[xt − Et−dxt+1 + σEt−d(it − πt+1 − rn
t )] + Ξ2,t−d[π

qd
t − κEt−dπ

qd
t+1 − Et−dut]

}
,

where πqd
t again denotes the quasi-differenced inflation rate (2.4). Here we write Ξ1,t−d, Ξ2,t−d

for the multipliers associated with constraints (3.11) and (3.12) respectively, to indicate that

each multiplier is determined at date t− d, given that there is one such constraint for each

possible state of the world at date t− d.

Using the law of iterated expectations, the Lagrangian can equivalently be written as

L = E0

∞∑

t=d

βt

{
1

2
(πqd

t )2 +
λx

2
(xt − x∗)2 +

λi

2
(it − i∗)2+

Ξ1,t−d[xt − xt+1 + σ(it − πt+1)] + Ξ2,t−d[π
qd
t − κπqd

t+1]
}

+
λi

2
E0

d−1∑
t=0

βt(it − i∗)2, (3.13)

dropping terms that are independent of policy. The first-order conditions that characterize

an optimal once-and-for-all commitment as of date zero are given by

πqd
t − βγEt−dπ

qd
t+1 − β−1σΞ1,t−d−1 − βγEt−dΞ2,t−d+1 + (1 + βγ)Ξ2,t−d − Ξ2,t−d−1 = 0, (3.14)

together with conditions (1.14) – (1.15), but with Ξi,t−d substituted for Ξit (for i = 1, 2) in

the latter equations. Each of the first-order conditions just listed holds for each t ≥ d. In

addition, πd−1 is given as an initial condition, the initial lagged Lagrange multipliers satisfy

(1.16), and one has additional first-order conditions

it = i∗

for the interest rate in periods t = 0, . . . , d − 1. Note, however, that these last conditions,

that relate only to the first few periods following the adoption of the optimal commitment,

are irrelevant to the characterization of optimal policy from a timeless perspective.
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As above, we can use conditions (1.14) – (1.15) to substitute for Ξ1,t−d and Ξ2,t−d in

(3.14), obtaining an Euler equation of the form

A1(L)(it − i∗) + βγEt−d(it+1 − i∗) = −Et−dft, (3.15)

where A1(L) is the quadratic lag polynomial such that

A(L) = βγ + LA1(L)

is the polynomial defined in (2.6), and ft is again defined in (2.7) – (2.8). It follows from

this that under a policy that is optimal from a timeless perspective, it depends solely on

public information at date t−d. Hence in the case of structural equations of this kind, there

would be no change in the character of optimal policy were one to impose the constraint

that the interest-rate operating target must be chosen in advance, as proposed for example

by McCallum and Nelson (1999).

Taking the expectation of (3.15) conditional upon information at date t− d, one obtains

Et−d[A(L)(it+1 − i∗)] = −Et−dft,

which is identical to (2.5) except for the conditioning information set. The same manipu-

lations as before can then be used to derive the same form of representations for optimal

policy, with the change in the conditioning information set for expectations. There are once

again the three possible forms for an optimal instrument rule discussed in section 2 above,

and each exists for the same values of γ as before. Each of the three rules is of the form

it = (1− ρ1)i
∗ + ρ1it−1 + ρ2∆it−1 + φπEt−dFt(π) +

φx

4
Et−dFt(x)− θππt−1 − θx

4
xt−1, (3.16)

where the coefficients are exactly the same functions of the model parameters as in (2.14).

Similarly, optimal policy can again be represented by a pure targeting rule with a target

criterion of the form

Et−dFt(π) +
φx

4
Et−dFt(x) = θππt−1 +

θx

4
xt−1 − θi(it−1 − i∗)− θ∆∆it−1, (3.17)
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where the coefficients are exactly the same functions of the model parameters as in (2.16).

Thus the optimal policy rules are of exactly the same form as before, except that now the

period t interest rate should be chosen in period t− d, and on the basis of the inflation and

output-gap projections that are available at that earlier date. The projections, however,

should be for the same time periods as before.

In the case that γ = 0 (our baseline model, with a standard “New Keynesian Phillips

curve”, except for the d−period delays), the projections in (3.16) again are only for inflation

and the output gap in period t. Since both of these variables are known at date t − d,

according to our model, the optimal instrument rule is once again of the form (1.17), with

coefficients (1.18) – (1.19). Thus in this case there is no change at all in the optimal policy

rule. It remains true that the delays imply that it is optimal for nominal interest rates to

be perfectly forecastable d periods in advance. However, this principle does not imply that

a rule that prescribes a response to contemporaneous inflation and output-gap variations,

as under the Taylor rule, is therefore suboptimal. For under our assumptions, inflation and

the output gap are themselves completely forecastable d periods in advance. This example

shows that an optimal policy rule need not be at all forward-looking, even in the case that

the effects of monetary policy are entirely delayed.

Of course, even if there are no effects of a change in monetary policy until d periods later,

it need not follow that inflation and the output gap are completely predetermined. Only the

components of these variables that are affected by monetary policy need be predetermined. In

a more complex model, we may assume that the forecastable components of inflation and the

output gap, Et−dπt and Et−dxt, satisfy equations (3.11) – (3.12), while the observed variables

are equal to these forecastable components plus exogenous disturbance terms.47 In this case,

both equations (3.11) – (3.12) should include additional unforecastable disturbance terms,

as in the model discussed in Svensson and Woodford (1999). In this case, the Lagrangian

47An IS relation of this form is presented in Woodford (2002, chap. 4, sec. 4.1), where the additional
disturbance results from the unforecastable components of government purchases and/or the efficient level
of output. In the case of inflation, one might suppose that wholesale prices are determined d periods in
advance, and satisfy (3.12), while the retail price of each good is equal to the wholesale price plus an
exogenous markup, which markup need not be forecastable in advance.
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(3.13) is still correct, up to terms that are independent of policy, and the same first-order

conditions continue to apply. The optimal policy rules just derived continue to be correct,

except that the central bank should respond only to variation in the forecastable components

of inflation and the output gap. For example, the optimal instrument rule takes the form

it = (1− ρ1)i
∗ + ρ1it−1 + ρ2∆it−1 + φπEt−dFt(π) +

φx

4
Et−dFt(x)− θπEt−d−1πt−1− θx

4
Et−dxt−1

instead of (3.16), and even when γ = 0 the central bank should respond to forecasts of

inflation and output d periods in advance, rather than to current inflation and output.

We find that our previous conclusions about the character of optimal policy remain largely

intact, even when we allow for delays in the effect of monetary policy. An optimal instrument

rule still involves interest-rate inertia to exactly the same degree as was determined earlier;

in particular, the optimal rule is super-inertial for all possible values of the parameters. We

also find once again that optimal policy is only modestly forward-looking. If the components

of inflation and the output gap that are affected by monetary policy are determined d periods

in advance, it follows that policy should respond only to forecasts of inflation and the output

gap d or more periods in the future. However, the interest rate in any given period should

be set (d periods earlier) on the basis of the projected inflation rate and output gap for

the period in which the interest rate applies and periods immediately thereafter; and even

when the degree of inflation inertia is substantial, interest rates should be based mainly on

projections for that period and a few months farther in the future. There continues to be

little support for the idea that primary emphasis should be placed on inflation forecasts for

a period one to two years later than the period for which the interest rate is set.

3.3 Imperfect Information about the State of the Economy

Our analysis thus far has assumed that the central bank has complete information about the

current state of the economy, and thus can bring about an optimal state-contingent path for

its instrument, regardless of how that may require its operating target to vary in response

to disturbances. In reality, central-bank information about current conditions is imperfect.

54



At the time that the operating target is chosen, the current quarter’s inflation rate and level

of real GDP — both required to implement a rule such as (1.17) — are not yet known,

and must be forecasted based on a variety of indicators. The estimates available “in real

time” differ substantially from the values that are eventually determined to have been correct

(Orphanides, 1998). Still less does a central bank know the current quarter’s efficient level

of output in real time; estimates of “potential output” can be revised by several percentage

points after some years of additional data become available. A proper analysis of optimal

policy needs to take account of such constraints upon the central bank’s information.

The Lagrangian method used above to characterize the optimal state-contingent plan can

be adapted to a situation in which the central bank has imperfect information, as shown by

Svensson and Woodford (2001). One obtains similar first-order conditions, but with changes

in the information sets with respect to which certain expectations are conditioned. As a

simple example, consider again our basic neo-Wicksellian model, as described in section 1,

but suppose now that the central bank has less information than the private sector each

period. The first-order conditions (1.13) – (1.14) for the optimal state-contingent plan still

apply, but (1.15) must now be replaced by

λi(it − i∗) + σΞ1t|t = 0, (3.18)

where we use the notation zt|t for the expectation of any variable zt conditional upon the

central bank’s information set at the time that the period t instrument setting is chosen. This

last condition is modified in the way indicated because the central bank must choose a single

instrument setting for each of the possible states at date t that it is unable to distinguish

on the basis of its information, though Ξ1t (the shadow value to the bank of relaxing the

constraint associated with the IS equation) may differ across those states.

In this case, we can no longer use (3.18) to eliminate Ξ1t from the other two first-order

conditions, and so we can no longer obtain an instrument rule that refers only to the evolution

of the interest rate, the inflation rate and the output gap. However, we can still define a
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variable

ı̄t ≡ i∗ − σ

λi

Ξ1t, (3.19)

indicating an ideal instrument setting that would be optimal if the central bank had the

information required to implement it. Then condition (3.19) can be used with (1.13) –

(1.14) as before to show that this variable evolves according to a law of motion

ı̄t = (1− ρ1)i
∗ + ρ1ı̄t−1 + ρ2∆ı̄t−1 + φππt + φx∆xt/4, (3.20)

where the coefficients are again defined in (1.18) – (1.19). (We can assign arbitrary initial

conditions to begin this recursion, and still obtain a policy rule that is optimal from a timeless

perspective.) First-order condition (3.18) then can be written simply as

it = ı̄t|t. (3.21)

This states that the central bank chooses an operating target for each period that equals the

expected value of the ideal instrument setting conditional upon the bank’s information set

at the time that it must choose.

Under imperfect information, then, optimal policy can be described by the rule (3.21),

where the ideal instrument setting referred to in this rule is defined by (3.20). In practice,

estimation of the conditional expectation referred to in this rule will require the use of a

Kalman filter, the coefficients of which depend on the law of motion of the ideal instrument

setting (3.20). The coefficients of the Kalman filter also depend on the equilibrium co-

movement of the endogenous indicator variables with inflation and the output gap, which

in turn depend on the coefficients of the Kalman filter (insofar as the central bank’s policy

is based on it). This fixed-point problem is discussed further in Svensson and Woodford

(2001).

Svensson and Woodford show that certain equations that describe the optimal instrument

setting continue to hold in the case of imperfect information, except that variables not

observed by the central bank are replaced by their expectations conditional upon the bank’s

information set. Thus this kind of linear-quadratic policy problem possesses a certainty

56



equivalence property. Nonetheless, it is important to realize that one cannot naively apply

this principle to any rule that describes optimal policy in the case of full information. For

example, it would not be correct to set interest rates using (1.17), simply replacing each

term on the right-hand side by the central bank’s estimate of the term at the time that it

sets it. This application of certainty equivalence would suggest a rule of the form

it = (1− ρ1)i
∗ + ρ1it−1 + ρ2∆it−1 + φππt|t +

φx

4
(xt|t − xt−1|t),

since it−1 and it−2 must be part of the central bank’s information set. But this is not an

optimal rule in the case of imperfect information; instead of it−1 and it−2, the optimal rule

responds to ı̄t−1|t and ı̄t−2|t. These are not the same, since in general the central bank will

have additional information by the time that it sets it about what the correct values of ı̄t−1

and ı̄t−2 were, relative to its estimates at the time of its earlier interest-rate decisions. Hence

the notion of “certainty equivalence” must be applied with care.

Nonetheless, optimal policy under imperfect information is in many ways similar to op-

timal policy under full information. For example, it is no more forward-looking than our

previous results indicated; in the present example, the optimal interest-rate operating target

for period t depends on the projections πt|t and xt|t, but not on projections of inflation or

the output gap for any dates farther in the future. And once again, optimal policy will

imply substantial persistence in interest-rate fluctuations. Taking the expectation of (3.20)

conditional upon the central bank’s information set at date t− 2, one obtains

it|t−2 = (1− ρ1)i
∗ + (ρ1 + ρ2)it−1|t−2 − ρ2it−2 + φππt|t−2 +

φx

4
(xt|t−2 − xt−1|t−2).

This in turn implies that

ρk+2(i) = (ρ1 + ρ2)ρk+1(i)− ρ2ρk(i) + φπβk+2(π, i) +
φx

4
(βk+2(x, i)− βk+1(x, i)), (3.22)

for each k ≥ 0, where we use the notation

ρk(z) ≡ corr(zt+k, zt), βk(y, z) ≡ cov(yt+k, zt)/var(zt).
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Equation (3.22) is not enough by itself to allow one to solve for the autocorrelation function

of the equilibrium interest rate process {ρk(i)}; this depends on the regression coefficients

{βk(π, i)} and {βk(x, i)}, which cannot be determined from the form of the monetary policy

rule alone. But (3.22) is the same restriction on the autocorrelation function as is implied

by (1.17) in the full-information case; thus the fact that ρ1, ρ2 > 1 in (3.20) makes a high

degree of serial correlation of interest rates likely in the case of imperfect information as well.

4 Conclusions

We have shown that robustly optimal policy rules can be constructed for each of a variety

of simple forward-looking models of the monetary transmission mechanism. We have seen

that these rules may take the form either of an implicit instrument rule — an interest-rate

feedback rule that generalizes the one proposed by Taylor (1993) — or of a pure targeting

rule — a history-dependent inflation target that generalizes the “flexible inflation targeting”

rule proposed by Svensson (1999). In the cases where both representations of optimal policy

are possible, these are actually equivalent policy rules, at least as far as their implications for

rational-expectations equilibrium are concerned, though the policy commitment is described

in apparently different ways.

Our examples offer insights into several questions posed in the introduction. First, we

have seen that, at least in the case of the simple models considered here,48 optimal policy

rules can be expressed in terms of a commitment to bring about a certain (time-invariant)

linear relationship between the paths of the short-term nominal interest-rate instrument of

the central bank, an inflation measure, and a measure of the output gap, as proposed by

both Taylor and Svensson. And this is not only a possible representation of optimal policy

in these cases, but one with uniquely desirable properties, discussed in detail in Giannoni

48While the models are simple, it is perhaps worth recalling that they do represent log-linearizations of
completely specified intertemporal general-equilibrium models of the monetary transmission mechanism, and
at least those considered in section 3 are already sophisticated enough to match a number of salient features
of the econometric evidence on the effects of monetary policy shocks, as discussed in Woodford (2002, chaps.
3-4).
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and Woodford (2002). Of course, in more complex (but more realistic) models, optimal

rules are likely to involve additional state variables besides these three; we have already

seen an illustration of this in section 3.1, where, in general, the presence of wage as well as

price stickiness implies that an optimal rule will involve responses to more than one inflation

measure (wage as well as price inflation). Nonetheless, the general form of rules that have

been widely discussed in the recent literature are not found to be fundamentally misguided;

there is no reason why an optimal rule must pay attention to monetary aggregates, for

example, or why it must explicitly respond in different ways to different types of disturbances.

An issue that is much debated by monetary economists is whether it is desirable for

monetary policy to respond to a measure of the output gap, as is prescribed both by the

“Taylor rule” and by common examples of “flexible inflation targeting” rules. Here we have

found that our optimal policy rules all prescribe interest-rate adjustments or modification of

the inflation target in response to changes in the projected path of the (correctly defined)

output gap, and thus our results provide some justification for the common emphasis upon

this variable. While it might also be possible to formulate policy rules consistent with an

optimal equilibrium that would not involve explicit reference to this variable, such alternative

representations of optimal policy would either not be robustly optimal like the rules derived

here — the coefficients of the optimal rule would depend upon precise details of the assumed

statistical character of the disturbances49 — or they would not be direct rules — they

would involve explicit reference to variables other than the target variables, such as specific

exogenous disturbances.50 Hence, insofar as a robustly optimal, direct rule is desirable, there

49For example, Woodford (1999a) derives an optimal policy rule for the model of section 1 that involves
only the short-term nominal interest rate and an inflation measure, and argues that this representation of
optimal policy is desirable because it can be implemented without requiring the central bank to measure
the output gap. However, the rule discussed there is optimal only under a very specific assumption about
the disturbances: there are no cost-push shocks, and the natural rate of interest is an AR(1) process, with
innovations that are revealed in the same period that they affect the natural rate. Furthermore, the numerical
coefficients of the optimal rule depend on the coefficient of serial correlation of the natural-rate disturbances.
Instead, the rules discussed in section 1 are equally optimal under this specification of the disturbances and
a vast number of other possibilities.

50For example, an optimal policy rule could be constructed for the model of section 1, under a particular
specification of the statistical properties of the disturbances, by solving for the optimal state-contingent
paths {ı̄t, π̄t} of the nominal interest rate and inflation, and then choosing a policy rule of the form it =
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is an important advantage to expressing the central bank’s policy commitment in terms of

a rule that involves the bank’s estimate of (or projection of) the path of the output gap.

There are certainly substantial difficulties involved in accurate measurement of the output

gap in practice. But many of these can be well-represented by additive measurement error of

the kind considered by Svensson and Woodford (2001), so that certainty-equivalence applies,

as discussed in section 3.3. In this case, it is still optimal to commit to a policy rule with the

same coefficient on the central bank’s estimate of the output gap as would be optimal under

full information; the measurement error affects only the way in which it is optimal for the

central bank to form its estimate of current and past output gaps. For example, an optimal

estimate of the output gap will generally make use of information about wages and prices,

and not simply available quantity measures. But this does not mean that it is not useful for

the central bank to describe its policy commitment in terms of a relationship between the

output gap and other variables. For this description of policy will be much more robust than

an explicit description of the way that the central bank should respond to specific indicator

variables, which will depend on the bank’s current beliefs about the statistical properties of

the various disturbances (including the ones responsible for the measurement problems).

It is also worth noting that the errors that have been observed historically in real-time

estimates of the output gap (documented by Orphanides, 2000) have been much greater in

the case of estimates of the absolute level of the output gap than in the case of estimates of

the quarter-to-quarter changes in the gap.51 (Errors in the recognition of shifts in the trend

rate of growth of potential output until years later have caused substantial, highly persistent

ı̄t + φ(πt − π̄t), where φ > 1 in conformity with the “Taylor Principle”. It follows from Proposition xx of
Woodford (2002, chap. 4) that a rule of this kind implies a determinate rational-expectations equilibrium,
and it is obvious that the rule is consistent with the optimal paths of the variables. However, such a rule
involves explicit reference to the state of the world as defined by the history of exogenous disturbances, and
the way in which the terms ı̄t and π̄t vary with the history of disturbances also depends on the details of
the assumed statistical properties of the disturbances.

51This assumes, as does Orphanides, that current conventional estimates of past levels of potential output
are in fact correct. Of course, the conception of potential output upon which such estimates are based may
not be the same one as in the “output gap” to which an optimal policy rule would respond, as suggested by
Woodford (2001). But this sort of error is not an inevitable one, resulting from data limitations, but rather
one that can be eliminated through clarification of the optimal rule.
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mis-estimates of the absolute gap; but this particular source of measurement error has little

effect on the higher-frequency components of the output gap estimate.) But the optimal

rules exhibited above all involve only the projected path of quarter-to-quarter changes in

the output gap, and are independent of the absolute level of the gap, even though it is the

absolute size of the gap that one wishes to stabilize. Because of this, it is less obvious that

output-gap mismeasurement should be a serious problem in the case of the optimal rules

derived here than under common proposals that would make policy depend on the absolute

level of the current or projected future output gap.

Our analysis also offers insights into the question of which inflation measure policy should

respond to or target. The answer given here is the particular measure or measures that

appear as target variables in the welfare-theoretic loss function derived according to the

principles set out in Woodford (2002, chap. 6), which is to say, the inflation measures that

are directly related to measures of the relative-price distortions that result from imperfect

synchronization of wage and price changes. The inflation measure that is correct will thus

depend on the nature of the nominal rigidities associated with wage and price-setting, which

is ultimately an empirical question. In our baseline model, with flexible wages and the

same degree of stickiness of all goods prices, the relevant inflation rate is the change in

a uniformly weighted index of goods prices, which conforms fairly closely to the kind of

price index actually targeted by the central banks with inflation targets. But under other

assumptions, the correct inflation measure will differ. For example, we have shown in section

3.1 that if wages as well as prices are sticky, the optimal rule must involve wage inflation as

well as price inflation. Similarly, if some goods prices are sticky while others are not, the

correct inflation measure will be an index of “core inflation,” — an index of the changes in

the prices only of the sticky-price goods, as discussed in Woodford (2002, chap. 6, sec. 4.3).

We also obtain some tentative conclusions about the degree of history-dependence of

optimal policy rules. Even in our baseline model, which posits an extremely simple dynamic

structure, our optimal policy rules involve substantial history-dependence of a kind not

present in proposals such as those of Taylor (1993) and Svensson (1997, 1999). In addition
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to the fact that policy should respond to the projected change in the output gap rather than

its level, which makes the recent past level of the output gap relevant for current policy, we

find that past nominal interest rates should affect the current policy setting. Specifically,

both our optimal instrument rule (1.17) and our optimal pure targeting rule (1.25) have

the feature that, for any given inflation and output-gap projections, interest rates should

be higher than they otherwise would be if (i) interest rates have recently been higher than

average, or (ii) interest rates have recently been rising.52 Thus the optimal rules incorporate

both the interest-rate persistence (a positive effect of it−1 on the choice of it) and interest-

rate momentum (a positive effect of ∆it−1 on the choice of ∆it) that characterize the actual

Fed reaction functions estimated by Judd and Rudebusch (1998).

Finally, we have also explored the degree to which optimal rules should make policy a

function of projections of inflation and/or output many quarters in the future. In our baseline

model, it is possible to formulate a robustly optimal policy rule (the implicit instrument

rule (1.17) that involves no projections farther in the future than the period for which the

nominal interest-rate operating target is being set. Perhaps surprisingly, this rule is optimal

regardless of what we may assume about the availability of advance information about future

disturbances. Of course, this strong result depends on the purely forward-looking character

of that simple model of inflation and output determination. But even when we allow for a

high degree of inflation inertia, in section 2, we find that an optimal policy rule depends much

more on the projected inflation rate and output gap in the quarter for which policy is being

set that on the projections for any later horizons. And while projections for later quarters do

matter to some extent if the degree of inflation inertia is sufficiently great, projections farther

than a year in the future matter little even in this case. Thus we find little justification for

a policy that gives primary attention to the inflation forecast at a horizon two years in

the future, as is true of the inflation-forecast targeting currently practiced at the Bank of

England.

52In the case of (1.25), one observes that either a high value of it−1 or a high value of ∆it−1 require a
lower value for the output-gap-adjusted inflation forecast — that is, these conditions require policy to be
tightened, though the rule itself does not specify the interest-rate setting that this involves.
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It is important nonetheless to stress that our results do not justify a purely backward-

looking approach to the conduct of policy. In all of the cases considered, our optimal rules

are implicit rules, which is to say that they specify a criterion that must be satisfied by the

central bank’s projections of inflation and output given its policy. The criterion in question

involves variables the values of which depend on the current policy action that is chosen;

hence they must be projected using a model of the monetary transmission mechanism, rather

than simply being measured. It is true that optimal policy could also be described by an

explicit (purely backward-looking) instrument rule, specifying the instrument setting as a

function of current exogenous disturbances and past (or at any rate predetermined) state

variables, that need simply be measured. But such a representation of optimal policy would

not be robust to changes in the assumed character of the disturbance processes, unlike the

implicit rules derived here. Hence we would argue that the use of a quantitative model,

that can be used to project the effects of prospective policy settings, is essential to the

optimal conduct of monetary policy. And in a model that takes account of forward-looking

private sector behavior, projections for the current quarter cannot generally be made without

forecasting the economy’s subsequent evolution as well.

Furthermore, in the case that spending and pricing decisions are predetermined d periods

in advance, as assumed in many empirical models, the optimal policy is one under which the

central bank’s interest-rate operating target is also chosen d periods in advance, on the basis

of projections of inflation and output for the period for which the interest rate is being chosen

(if not projections farther in the future as well). In this case, policy decisions necessarily

will depend crucially on projections of conditions at least d periods in the future. However,

the lag d by which spending or pricing decisions are predetermined is not plausibly longer

than one or two quarters. And even in this case, no justification is provided for basing the

interest-rate operating target for a given period on forecasts regarding points in time that

are much more distant than the period for which the interest-rate decision is being made.

Hence our results provide little support for the desirability of basing interest-rate decisions

primarily on forecasts of conditions as long as two years in the future.
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A Proofs of Propositions

A.1 The Optimal Non-Inertial Plan

In the case that the disturbances are of the form (1.6) – (1.7), the optimal non-inertial plan

is given by

zt = z̄ + Fet, it = ı̄ + fiet

where zt ≡ [πt, xt]
′, et ≡ [r̂n

t , ut]
′ . The long-run average values z̄, ı̄, and the response coeffi-

cients are given by

z̄ =

[
(1−β)κ−1λxx∗+λi(i

∗−r̄)

1+(1−β)2κ−2λx+λi

1−β
κ

(1−β)κ−1λxx∗+λi(i
∗−r̄)

1+(1−β)2κ−2λx+λi

]

ı̄ =
(1− β) κ−1λxx

∗ + λi (i
∗ − r̄)

1 + (1− β)2 κ−2λx + λi

+ r̄

and

F =

[
πr πu

xr xu

]
, fi =

[
ir iu

]

where the coefficients

πr =
λiσ

−1 (γr − ρrκσ) κ

hr

, πu =
λiσ

−2 (γu − ρuκσ) (1− ρu) + ξu

hu

xr =
λiσ

−1 (γr − ρrκσ) (1− βρr)

hr

, xu =
ρuλiσ

−1 (γu − ρuκσ)− κ

hu

ir =
ξr (1− βρr) + κ2

hr

> 0, iu =
σ−1κ (1− ρu) + ξuρu

hu

> 0,

and

γj ≡ (
1− ρj

) (
1− βρj

)
> 0

hj ≡ λiσ
−2

(
γj − ρjκσ

)2
+ λx

(
1− βρj

)2
+ κ2 > 0

ξj ≡ λx

(
1− βρj

)
> 0,

for j ∈ {r, u} .
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A.2 Proposition 4

Proposition 4. Let κ, σ, λi, λx > 0, 0 < β < 1, 0 ≤ ρr < 1, and 0 ≤ ρu < 1. Suppose

the disturbances are of the form (1.6) – (1.7), with autocorrelation coefficients satisfying the

bounds

0 < (1− ρr) (1− βρr)− ρrκσ (A.1)

≤ (1− ρu) (1− βρu)− ρuκσ <
κσ

λi

. (A.2)

Then (1.8) defines a Taylor rule of the form (1.5) with coefficients φπ > 1, φx > 0. Fur-

thermore, commitment to this rule implies a determinate rational expectations equilibrium,

which implements the optimal non-inertial plan.

Proof: The instrument rule (1.8) is of the form of the Taylor rule (1.5), where

[
φπ φx/4

]
= fiF

−1 =
[

iuxr−irxu

πuxr−πrxu

irπu−iuπr

πuxr−πrxu

]
. (A.3)

Under the assumption of the proposition, we have πr > 0, πu > 0, xr > 0, xu < 0, ir > 0,

and iu > 0. It follows that

πuxr − πrxu > 0. (A.4)

Furthermore,

irπu − iuπr =
(λiσ

−2 (γu − ρuκσ) (1− ρu) + ξu) (ξr (1− βρr) + κ2)

hrhu

−λiσ
−1 (γr − ρrκσ) κ (σ−1κ (1− ρu) + ρuξu)

hrhu

=
(
χ1 + λiσ

−2χ2

)
(hrhu)

−1

where

χ1 ≡ λiσ
−2κ2 (γu − γr + (ρr − ρu) κσ) (1− ρu) + ξu

(
ξr (1− βρr) + κ2

)

χ2 ≡ ξr (γu − ρuκσ) (1− ρu) (1− βρr)− ξu (γr − ρrκσ) ρuκσ
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and

γj ≡ (
1− ρj

) (
1− βρj

)
> 0

hj ≡ λiσ
−2

(
γj − ρjκσ

)2
+ λx

(
1− βρj

)2
+ κ2 > 0

ξj ≡ λx

(
1− βρj

)
> 0,

for j ∈ {r, u} . Note that (A.1) and (A.2) imply ρr ≥ ρu, γu ≥ γr, so that χ1 > 0. Moreover,

given that (1− ρu) (1− βρr)− ρuκσ > 0, we have

χ2 = ξr (γu (1− ρu) (1− βρr)− ρuκσ (1− ρu) (1− βρr))− ξu (γr − ρrκσ) ρuσκ

≥ ξr (γuγr − ρuκσγu)− ξu (γr − ρrκσ) ρuσκ

≥ ξrγu (γr − ρrκσ)− ξu (γr − ρrκσ) ρuσκ

= ξu ((1− βρr) (1− ρu)− ρuσκ) (γr − ρrκσ)

≥ ξu (γr − ρrσκ) (γr − ρrκσ)

= ξu (γr − ρrσκ)2 > 0.

It follows that φx > 0.

We now show that φπ > 1. Using (A.3), we have

φπ − 1 =
Nπ

hrhu (πuxr − πrxu)
,

where

Nπ =
(
σ−1κ (1− ρu) + ξuρu

) (
λiσ

−1 (γr − ρrκσ) (1− βρr)
)

− (
ξr (1− βρr) + κ2

) (
ρuλiσ

−1 (γu − ρuκσ)− κ
)− λiσ

−1 (γr − ρrκσ)

× (
λiσ

−2 (γu − ρuκσ) ((1− ρu) (1− βρr)− ρuκσ) + ξu (1− βρr) + κ2
)
.

The numerator Nπ can be viewed as the quadratic polynomial

Nπ (λi) ≡ n2λ
2
i + n1λi + n0,

70



where

n2 = −σ−3 (γr − ρrκσ) (γu − ρuκσ) ((1− ρu) (1− βρr)− ρuκσ) < 0

n1 = σ−1
((

σ−1κ− ξu

)
(1− βρr) (1− ρu)− κ2

)
(γr − ρrκσ)

−ρuσ
−1

(
ξr (1− βρr) + κ2

)
(γu − ρuκσ)

n0 =
(
ξr (1− βρr) + κ2

)
κ > 0.

Since Nπ (λi) is concave in λi, and satisfies Nπ (0) > 0, Nπ (+∞) = −∞, we know that

Nπ (λi) is positive for λi > 0 small enough, and negative for any λi larger than a certain

critical value. Furthermore,

Nπ

(
κσ

γu − ρuκσ

)
= κ3 (1− ρu)

(
1− γr − ρrκσ

γu − ρuκσ

)

+
κξr (1− ρu)

γu − ρuκσ
((1− βρr) (1− βρu) + κσ) (ρr − ρu)

≥ 0.

Thus Nπ (λi) > 0 for any λi satisfying 0 < λi < κσ
γu−ρuκσ

, or equivalently for any λi > 0

satisfying (A.2). It follows that φπ > 1 under the conditions of the proposition.

We finally show that commitment to the rule (1.8) implies a determinate rational ex-

pectations equilibrium, which implements the optimal non-inertial plan. First note that the

system of equations given by the structural equation (1.1), (1.2), and the policy rule (1.5)

can be written in matrix form as

Ī




Zt+1

Etzt+1

Etit+1


 =

[
0
−φ̄

]
+ Ā




Zt

zt

it


 + C̄ st, (A.5)

where zt ≡ [πt, xt]
′ , st ≡ [rn

t , ut]
′ , and

Ī =




σ 1 0
β 0 0
0 0 0


 , Ā =




0 1 σ
1 −κ 0
φπ φx/4 −1


 .

As discussed in Giannoni and Woodford (2002, sec. 2), the equilibrium is determinate if the
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characteristic polynomial

p (µ) ≡ det
[
Ā− µĪ

]

= µ2β −
(

1 + β + κσ + βσ
φx

4

)
µ + 1 + σ

φx

4
+ κσφπ

has exactly nZ = 0 roots |µ| < 1, or equivalently, if it has both roots outside the unit circle.

Next, since the policy rule (1.8) is of the form of (1.5) with φπ > 1, φx > 0, a commitment

to the rule (1.8) implies that the characteristic polynomial p (µ) has the following properties

p (0) = 1 + σ
φx

4
+ φπσκ > 1

p (−1) =

(
2 +

φx

4
σ

)
(1 + β) + (1 + φπ) κσ > 0

p (1) = σκ (φπ − 1) + σ
φx

4
(1− β) > 0

Using Proposition 1 of Woodford (2002, chap. 4), we know that p (µ) has both roots outside

the unit circle if

p (0) > 1, p (−1) > 0, and p (1) > 0.

Since these inequalities are satisfied under a commitment to the policy rule (1.8), p (µ) has

both roots outside the unit circle. It follows that a commitment to the rule (1.8) implies

a determinate rational expectations equilibrium, which implements the optimal non-inertial

plan.

A.3 Proposition 5

Proposition 5. Suppose that κ, σ, λi, λx > 0, 0 < β < 1, and 0 < ρ < 1. Then for

all forecast horizons k longer than some critical value, the rule of the form (1.9) that is

consistent with the optimal non-inertial plan implies indeterminacy of rational-expectations

equilibrium.

Proof: The structural equations (1.1) and (1.2) can be written in matrix form as

following

ÎEtzt+1 = Azt + Bit + Cst (A.6)
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where zt ≡ [πt, xt]
′ , st ≡ [rn

t , ut]
′ , and

Î ≡
[

σ 1
β 0

]
, A ≡

[
0 1
1 −κ

]
, B ≡

[
σ
0

]
, C ≡

[ −σ 0
0 −1

]
.

The policy rule (1.9) can also be written as

it = φ′zEtzt+k + (̄ı− φ′z z̄) . (A.7)

where φ
′
z ≡

[
φπ φx/4

]
. Combining (A.6) and (A.7), we obtain

−Bφ′zEtzt+k + ÎEtzt+1 = Azt + Cst + B (̄ı− φ′z z̄)

or, in matrix form,

ĪEt




Et+1zt+k
...

Et+1zt+2

zt+1


 = Ā




Etzt+k−1
...

Etzt+1

zt


 + C̄st +

[
B (̄ı− φ′z z̄)

0

]
(A.8)

where Ī and Ā are 2k × 2k matrices, and C̄ is a 2k × 2 matrix satisfying

Ī ≡




−Bφ′z 0 · · · 0 Î
0 I2 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 I2




, Ā ≡




0 · · · · · · 0 A
I2 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 I2 0




C̄ ≡




C
0
...
...
0




.

Since all variables entering the vector
[
Etz

′
t+k−1, ..., z

′
t

]′
are non-predetermined, the dynamic

system (A.8) admits a unique bounded solution if and only if all of the 2k roots µ of the

characteristic equation

det
[
Ī − µĀ

]
= 0

are inside the unit circle.

Characteristic polynomial. First note that the characteristic polynomial in our model

is given by

det
[
Ī − µĀ

]
=

∣∣∣∣∣∣∣∣∣∣∣

−Bφ′z 0 · · · 0 Î − µA
−µI2 I2 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 −µI2 I2

∣∣∣∣∣∣∣∣∣∣∣

.
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Since the determinant of any matrix remains unchanged if a multiple of one column is added

to another column, we multiply each of the final block of two columns by µ and add it to

the next-to-last block, to obtain

det
[
Ī − µĀ

]
=

∣∣∣∣∣∣∣∣∣∣∣∣

−Bφ′z 0 · · · µ
(
Î − µA

)
Î − µA

−µI2 I2 0 · · · 0

0
. . . . . . . . .

...
...

. . . −µI2
. . . 0

0 · · · 0 0 I2

∣∣∣∣∣∣∣∣∣∣∣∣

We then multiply each of the block of this next-to-last block by µ, and add it to the previous

block, and so on, to get finally

det
[
Ī − µĀ

]
=

∣∣∣∣
D11 D12

D21 D22

∣∣∣∣

where

D11 ≡ µk−1
(
Î − µA

)
−Bφ′z, D12 ≡

[
µk−2

(
Î − µA

)
· · · µ

(
Î − µA

)
Î − µA

]
,

D21 ≡ 02(k−1)×2, D22 ≡ I2(k−1).

Given that |D22| 6= 0, we have

det
[
Ī − µĀ

]
= |D22| ·

∣∣D11 −D12D
−1
22 D21

∣∣

= |D11|
= −µk−1p (µ) ,

where

p (µ) ≡ µk+1 − (1 + β + κσ) µk + βµk−1 + (κφπ + φx/4) σµ− φxβσ/4. (A.9)

The characteristic polynomial det
[
Ī − µĀ

]
has k−1 roots µk+2 = µk+3 = ... = µ2k = 0. The

system (A.8) has a unique bounded solution if and only if the k + 1 roots of p (µ) , denoted

µ1, µ2, ..., µk+1, also lie inside the unit circle. Note that for any polynomial of the form (A.9),

the product of its roots satisfies ∣∣∣∣∣
k+1∏
j=1

µk

∣∣∣∣∣ =

∣∣∣∣
φxβσ

4

∣∣∣∣ .
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Thus a necessary condition for the system (A.8) to have a unique bounded solution is

|φxβσ/4| < 1. (A.10)

Alternatively, if (A.10) is violated for some k, then p (µ) must have at least one root outside

the unit circle, so that the dynamic system (A.8) implies indeterminacy of the REE.

Optimal non-inertial plan. As indicated in the text, the unique rule that is consistent

with the optimal non-inertial plan (in the case that ρr = ρu = ρ ∈ [0, 1]), is given by (1.10),

where fiF
−1 is independent of k. It follows that

φ′z = [φπ, φx/4] = ρ−kfiF
−1.

We now consider three possible cases.

Case 1: optimal coefficient φx 6= 0. Suppose first that fiF
−1 [0, 1]′ 6= 0. It follows

that the optimal coefficient φx/4 = ρ−kfiF
−1 [0, 1]′ 6= 0 for all k, and that |φxβσ/4| is an

increasing function in k. Hence there exists a k̄ ≥ 1 such that for any k ≥ k̄, the condition

(A.10) is violated, and thus implies indeterminacy of the REE.

Case 2: optimal coefficients φπ 6= 0, φx = 0. Suppose instead that in the optimal

non-inertial plan, fiF
−1 [0, 1]′ = 0. In this case, the optimal coefficient φx = 0 for all k, and

the characteristic polynomial det
[
Ī − µĀ

]
reduces to

det
[
Ī − µĀ

]
= −µkp̃ (µ)

where

p̃ (µ) ≡ µk − (1 + β + κσ) µk−1 + βµk−2 + φπκσ

As before, the system (A.8) has a unique bounded solution if and only if the k roots of p̃ (µ) ,

denoted µ1, µ2, ..., µk, lie inside the unit circle. A necessary condition for the system (A.8)

to have a unique bounded solution is
∣∣∣∣∣

k∏
j=1

µk

∣∣∣∣∣ = |φπκσ| < 1. (A.11)
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Suppose that fiF
−1 [1, 0]′ 6= 0. It follows that the optimal coefficient φπ = ρ−kfiF

−1 [1, 0]′ 6= 0

for all k, and that |φπκσ| is an increasing function in k. Hence there exists a k̄ ≥ 1 such that

for any k ≥ k̄, the condition (A.11) is violated, and thus implies indeterminacy of the REE.

Case 3: optimal coefficients φπ = φx = 0. Suppose finally that in the optimal non-

inertial plan, fiF
−1 = [0, 0] . In this case, the optimal coefficient φπ = φx = 0 for all k, and

the characteristic polynomial det
[
Ī − µĀ

]
reduces to

det
[
Ī − µĀ

]
= −µ2k−2p̂ (µ) ,

where

p̂ (µ) ≡ µ2 − (1 + β + κσ) µ + β.

Since p̂ (0) = β > 0, p̂ (1) = −κσ < 0, and p̂ (+∞) = +∞, the polynomial p̂ (µ) admits one

root inside and one root outside the unit circle. This implies indeterminacy of the REE.

A.4 Proposition 6

Proposition 6. Suppose that a bounded optimal state-contingent plan exists. Then in

the case of any parameter values σ, κ, λx, λi > 0 and 0 < β < 1, a commitment to the rule

described by (1.17) – (1.19) implies a determinate rational-expectations equilibrium.

Proof: The system of equations given by the structural equations (1.1), (1.2) and the

policy rule (1.17) – (1.19) can be written in matrix form as in (A.5), where zt ≡ [πt, xt]
′ ,

Zt ≡ [xt−1, it−1, it−2]
′ , st ≡ [rn

t , ut]
′ , and

Ī =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 σ 1 0
0 0 0 β 0 0
0 0 0 0 0 0




, Ā =




0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 σ
0 0 0 1 −κ 0
−σλx

λi
1 + κσ

β
+ β−1 −β−1 κσ

λi

σλx

λi
−1




.

As discussed in the subsection 2.1, the equilibrium is determinate if the characteristic poly-

nomial det
[
Ā− µĪ

]
has exactly nZ = 3 roots such that |µ| < 1. Recall that if there are
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fewer such roots, there is no bounded solution at all. Since the rule (1.17) – (1.19) is derived

from the first-order conditions (1.13) – (1.15), it must be consistent with the optimal state-

contingent plan. Because we assume that a bounded optimal state-contingent plan exists, it

must be the case that det
[
Ā− µĪ

]
admits at least 3 roots inside the unit circle.

Note that we can rewrite the characteristic polynomial as

det
[
Ā− µĪ

]
= −p (µ) βµ (A.12)

where

p (µ) ≡ µ4 − aµ3 + bµ2 − aβ−1µ + β−2 (A.13)

and

a = 2
1 + β + σκ

β
+

σ2λx

λi

b =
1 + 2κβσ + 2σκ + σ2κ2 + 4β + β2

β2 + σ2 (1 + β) λx + κ2

βλi

.

We can furthermore express p (µ) as

p (µ) = (µ− µ1) (µ− µ2) (µ− µ3) (µ− µ4) ,

where, because of the symmetry in (A.13), the four roots µi satisfy

µ1 = (βµ2)
−1 , and µ3 = (βµ4)

−1 . (A.14)

Because det
[
Ā− µĪ

]
admits at least 3 roots inside the unit circle, (A.12) and (A.13) imply

that p (µ) admits either two, three, or four roots inside the unit circle. Let us consider each

case in turn:

• Let us suppose first, as a way of contradiction, that all four roots of p (µ) are inside

the unit circle. Then |µ1| < 1 by assumption. However (A.14) implies |βµ2| > 1, and

thus |µ2| > 1, which contradicts the assumption that all four roots are inside the unit

circle.
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• Let us suppose next that p (µ) has three roots inside the unit circle. If |µ1| < 1, then

(A.14) implies again |µ2| > 1. It follows that the remaining two roots µ3 and µ4 must

be inside the unit circle. But this is impossible, as |µ3| < 1 implies |µ4| > 1. Inversely,

if |µ1| > 1, then the three remaining roots must be inside the unit circle. Again, this

is impossible as |µ3| < 1 implies |µ4| > 1.

It follows that p (µ) must have exactly 2 roots inside the unit circle, and thus that the

equilibrium is determinate.

A.5 Proposition 7

Proposition 7. Assuming 0 < λ1 < 1 < λ2, two bounded stochastic processes {ı̂t, q̂t}
satisfy

(1− λ1L) (1− λ2L) ı̂t = q̂t (A.15)

for all t ≥ 0 if and only if they satisfy

(1− λ1L) ı̂t−1 = −λ−1
2 Et

[(
1− λ−1

2 L−1
)−1

q̂t

]
(A.16)

for all t ≥ 0.

Proof: First, we show that (A.15) implies (A.16). Expanding the left-hand side of

(A.15), we obtain

(1− λ1L) ı̂t − λ2 (1− λ1L) ı̂t−1 = q̂t,

or equivalently

(1− λ1L) ı̂t−1 = −λ−1
2 [q̂t − (1− λ1L) ı̂t]

= −λ−1
2 Et [q̂t − (1− λ1L) ı̂t] .

Substituting recursively for (1− λ1L) ı̂t+j on the right hand side, we obtain

(1− λ1L) ı̂t−1 = −λ−1
2 Et

[ ∞∑
j=0

λ−j
2 q̂t+j

]

= −λ−1
2 Et

[(
1− λ−1

2 L−1
)−1

q̂t

]
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where the last equality holds since 0 < λ−1
2 < 1. Thus (A.15) implies (A.16).

Second, we show that (A.16) implies (A.15). Since (A.16) holds for all t ≥ 0, it implies

that

(1− λ1L) ı̂t = −λ−1
2 Et+1

[(
1− λ−1

2 L−1
)−1

q̂t+1

]
.

Multiplying both sides by (1− λ2L) and taking conditional expectations at date t, we obtain

(1− λ1L) (1− λ2L) ı̂t = Et

[(
1− λ−1

2 L−1
)−1 (

L− λ−1
2

)
q̂t+1

]

= Et

[(
1− λ−1

2 L−1
)−1 (

1− λ−1
2 L−1

)
Lq̂t+1

]

= Et [Lq̂t+1]

= q̂t.

Thus (A.16) also implies (A.15).

A.6 Proposition 8

Proposition 8. Suppose that σ, κ > 0, 0 < β < 1, and 0 < γ ≤ 1. Then in the factorization

A (L) = βγ (1− λ1L) (1− λ2L) (1− λ3L) (A.17)

of the polynomial

A (L) ≡ βγ − (1 + γ + βγ) L +
(
1 + γ + β−1 (1 + κσ)

)
L2 − β−1L3, (A.18)

there is necessarily one real root 0 < λ1 < 1, and two roots outside the unit circle. The

latter two roots are either two real roots λ3 ≥ λ2 > 1, or a complex pair λ2, λ3 with real part

greater than 1. Three real roots necessarily exist for all small enough γ > 0, while a complex

pair necessarily exists for all γ close enough to 1.

Proof: Consider the following properties of the polynomial (A.18):

A (z) > 0,∀z ≤ 0 A′ (z) < 0,∀z ≤ 0
A (β) = βκσ > 0 A′ (β) = (1− β) (1− γ) + 2κσ > 0
A (1) = β−1κσ > 0
A (+∞) = −∞
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From this, we know that for all z ≤ 0, A (z) is positive and decreasing. As z is raised

from 0 to β, A (z) continues to decrease, reaches a minimum (where A (z) may be positive

or negative), and starts increasing as z approaches β. The polynomial A (z) is positive for

z = 1, but decreases again and tends to −∞, as z becomes larger and larger. It follows that

A (z), admits one real root z1 > 1 and either two real roots 0 < z3 ≤ z2 < 1, or a pair of

complex roots z2, z3.

Thus A (L) can be written as

A (L) = β−1 (z1 − L) (z2 − L) (z3 − L)

= β−1λ−1
1 λ−1

2 λ−1
3 (1− λ1L) (1− λ2L) (1− λ3L)

=
1

βλ1λ2λ3

− λ1 + λ2 + λ3

βλ1λ2λ3

L +
λ1λ2 + (λ1 + λ2) λ3

βλ1λ2λ3

L2 − β−1L3 (A.19)

where λj ≡ z−1
j for j = 1, 2, 3. Comparing the first terms of (A.19) and (A.18), we note that

(βλ1λ2λ3)
−1 = βγ, (A.20)

so that the polynomial A (L) can be factorized as in (A.17), where 0 < λ1 < 1 and λ2, λ3 are

either two real roots satisfying 1 < λ2 ≤ λ3, or a pair of complex roots.

We now show that in the case that λ2, λ3 form a pair of complex roots, their common

real part is greater than 1. Comparing the second term of (A.19) with the corresponding

term in (A.18), and using (A.20), we note that

βγ (λ1 + λ2 + λ3) = 1 + γ + βγ. (A.21)

Furthermore, as βγλ1 < 1, we have

βγλ1 = 1 + γ − βγ (λ2 + λ3 − 1) < 1.

This implies

−βγ (λ2 + λ3 − 1) < −γ,

and thus

λ2 + λ3 > 1 + β−1 > 2.
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Therefore

Re λ2 = Re λ3 =
λ2 + λ3

2
> 1.

It follows that the moduli |λ2| = |λ3| > 1.

We now show that three real roots λ1, λ2, λ3 necessarily exist for all small enough γ > 0,

while a complex pair λ2, λ3 necessarily exists for all γ close enough to 1. First note that each

λj, for j = 1, 2, 3, is real if and only if the solution zj ≡ λ−1
j of the equation

A (z) ≡ A0 + A1z + A2z
2 + A3z

3 = 0

is real, where

A0 = βγ

A1 = − (1 + γ + βγ)

A2 = 1 + γ + β−1 (1 + κσ)

A3 = −β−1.

Furthermore, since

A (z) = A3

(
B0 + B1ζ + ζ3

)

where

ζ = z +
A2

3A3

,

and

B0 =
27A0A

2
3 + 2A3

2 − 9A3A2A1

27A3
3

B1 =
3A3A1 − A2

2

3A2
3

are real coefficients, each λj is real if and only if the corresponding solution ζj of the equation

B0 + B1ζ + ζ3 = 0

is real (see Lemma 1 below). From Cardano’s formulas for the roots of a cubic equation, we

know that this equation admits:
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• three different real roots if ∆ ≡ 27B2
0 + 4B3

1 < 0,

• three real roots, at least two of which are equal, if ∆ = 0,

• one real root and two complex roots if ∆ > 0.

Expressing ∆ as a function of γ, we have:

∆ (γ) = 27B2
0 + 4B3

1 = A−4
3

(
27A2

0A
2
3 + 4A0A

3
2 − 18A0A3A2A1 − A2

2A
2
1 + 4A3A

3
1

)

= −β4 (1− β)2 γ4 − 2β3
((

1 + β2 − 4β
)
κσ − (1 + β) (1− β)2) γ3

−β2
(
κ2σ2

(
1− 10β + β2

)
+ 2κσ (1 + β)

(
1 + β + β2

)
+

(
1 + 4β + β2

)
(1− β)2) γ2

+β2
(
4κ3σ3 + 10 (1 + β) κ2σ2 + 4

(
2 + 2β2 − β

)
κσ + 2 (1 + β) (1− β)2) γ

−β2
(
2βκσ + κ2σ2 + 2κσ + (1− β)2) ,

which is a fourth-order polynomial in γ. Note that ∆ (γ) is a continuous function of γ that

admits at most four real roots, and has the following properties:

∆ (−∞) = −∞
∆ (0) = −β2

(
2βκσ + κ2σ2 + 2κσ + (1− β)2) < 0

∆ (1) = β2κσ
(
4κ2σ2 +

(
8 + 20β − β2

)
κσ + 4 (1− β)3) > 0

∆ (+∞) = −∞.

It follows that ∆ (γ) admits either one or three roots between 0 and 1. Furthermore, ∆ < 0

for γ > 0 small enough, and ∆ > 0 for all γ close enough to 1. Thus three real roots

necessarily exist for all small enough γ > 0, while a complex pair necessarily exists for all γ

close enough to 1.

A.7 Proposition 9

Proposition 9. Under the assumptions of Proposition 8, and in the case that the factor-

ization (2.9) involves three real roots, a pair of bounded processes
{

ı̂t, f̂t

}
satisfy any of the

equations

(1− λ1L) (1− λ2L) ı̂t = (βγλ3)
−1 Et

[(
1− λ−1

3 L−1
)−1

f̂t

]
(A.22)

(1− λ1L) (1− λ3L) ı̂t = (βγλ2)
−1 Et

[(
1− λ−1

2 L−1
)−1

f̂t

]
(A.23)

82



or

(1− λ1L)

(
1− λ2 + λ3

2
L

)
ı̂t =

1

2
(βγλ3)

−1 Et

[(
1− λ−1

3 L−1
)−1

f̂t

]

+
1

2
(βγλ2)

−1 Et

[(
1− λ−1

2 L−1
)−1

f̂t

]
(A.24)

at all dates t ≥ t0 if and only if they satisfy

Et [A (L) ı̂t+1] = −f̂t (A.25)

at all of those same dates. In the case that a complex pair exists, (A.24) is again equivalent

to (A.25) in the same sense.

Proof: Proposition 8 guarantees that the roots λ1, λ2, λ3 in the factorization (2.9) are

either real and satisfy 0 < λ1 < 1 < λ2 ≤ λ3, or 0 < λ1 < 1, and λ2, λ3 are complex

conjugates that lie outside the unit circle. Consider first the case in which λ1, λ2, λ3 are real.

Rule I.

We first show that (A.25) implies (A.22). Using (2.9) to substitute for A (L) , and ex-

panding the left-hand side of (A.25), we obtain

βγEt [(1− λ1L) (1− λ2L) ı̂t+1 − (1− λ1L) (1− λ2L) λ3ı̂t] = −f̂t,

or

(1− λ1L) (1− λ2L) ı̂t = (βγλ3)
−1 f̂t + λ−1

3 Et [(1− λ1L) (1− λ2L) ı̂t+1] .

Substituting recursively for (1− λ1L) (1− λ2L) ı̂t+j on the right hand side, we obtain

(1− λ1L) (1− λ2L) ı̂t = (βγλ3)
−1 Et

[ ∞∑
j=0

λ−j
3 f̂t+j

]

= (βγλ3)
−1 Et

[(
1− λ−1

3 L−1
)−1

f̂t

]
,

which corresponds to (A.22).

We next show that (A.22) implies (A.25). Since (A.22) holds for all t ≥ t0, it implies

that

(1− λ1L) (1− λ2L) ı̂t+1 = (βγλ3)
−1 Et+1

[(
1− λ−1

3 L−1
)−1

f̂t+1

]
.
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Multiplying both sides by βγ (1− λ3L) , taking conditional expectations at date t, and using

(2.9), we obtain

Et [A (L) ı̂t+1] = λ−1
3 Et

[
(1− λ3L)

(
1− λ−1

3 L−1
)−1

f̂t+1

]

= Et

[(
1− λ−1

3 L−1
) (

1− λ−1
3 L−1

)−1
Lf̂t+1

]

= −Et

[
Lf̂t+1

]

= −f̂t.

which corresponds to (A.25).

Rule II.

To show that a pair of bounded processes
{

ı̂t, f̂t

}
satisfy (A.23) at all dates if and only if

they satisfy (A.25) at all dates, we simply need to repeat the above steps, replacing λ2 with

λ3 and vice versa.

Rule III.

Let us now allow λ2, λ3 to be either real values, or complex conjugates, lying outside the

unit circle. Since (A.25) implies both (A.22) and (A.23), we know that (A.25) implies

(1− λ1L)

[
(1− λ2L) + (1− λ3L)

2

]
ı̂t =

1

2
(βγλ3)

−1 Et

[(
1− λ−1

3 L−1
)−1

f̂t

]

+
1

2
(βγλ2)

−1 Et

[(
1− λ−1

2 L−1
)−1

f̂t

]
,

which is obtained by summing (A.22) and (A.23) on both sides and dividing by 2. Thus

(A.25) implies (A.24).

We next show that (A.24) implies (A.25). Since (A.24) holds for all t ≥ t0, it implies

that

(1− λ1L)

(
1− λ2 + λ3

2
L

)
ı̂t+2 = (2βγλ3)

−1 Et+2

[(
1− λ−1

3 L−1
)−1

f̂t+2

]

+ (2βγλ2)
−1 Et+2

[(
1− λ−1

2 L−1
)−1

f̂t+2

]
.

Multiplying both sides by βγ (1− λ2L) (1− λ3L) , taking conditional expectations at date
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t, and using (2.9), we obtain

Et

[
A (L)

(
1− λ2 + λ3

2
L

)
ı̂t+2

]
=

1

2λ3

Et

[
(1− λ2L) (1− λ3L)

(
1− λ−1

3 L−1
)−1

f̂t+2

]

+
1

2λ2

Et

[
(1− λ2L) (1− λ3L)

(
1− λ−1

2 L−1
)−1

f̂t+2

]

= −1

2
Et

[
(1− λ2L) f̂t+1

]
− 1

2
Et

[
(1− λ3L) f̂t+1

]

= −Et

[(
1− λ2 + λ3

2
L

)
f̂t+1

]
.

It follows that

−Et

[
A (L)

(
1− 2

λ2 + λ3

L−1

)
Lı̂t+2

]
= Et

[(
1− 2

λ2 + λ3

L−1

)
Lf̂t+1

]
,

and hence that

Et

[
A (L)

(
1− αL−1

)
ı̂t+1

]
= vt,

where 0 ≤ α ≡ 2
λ2+λ3

< 1, and vt ≡ −Et

[
(1− αL−1) f̂t

]
. This implies furthermore

Et [A (L) ı̂t+1] = αEt [A (L) ı̂t+2] + vt

= Et

[ ∞∑
j=0

αjvt+j

]

= Et

[(
1− αL−1

)−1
vt

]

= −f̂t,

which corresponds to (A.25).

A.8 Proposition 10

Proposition 10. Under the assumptions of Proposition 8, and a loss function with λx, λi >

0, each of the rules I, II, and III has a representation of the form

it = (1− ρ1) i∗ + ρ1it−1 + ρ2∆it−1 + φπFt (π) +
φx

4
Ft (x)− θππt−1 − θx

4
xt−1 (A.26)
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for all values of γ for which the rule is well-defined, and in this representation

ρ1 > 1, ρ2 > 0

0 < θπ ≤ φπ

0 < θx = φx.

Furthermore, for given values of the other parameters, as γ → 0 (for rule I) the coefficient

θπ approaches zero, though φπ approaches a positive limit; while as γ → 1 (for rule III) the

coefficients θπ and φπ approach the same limit.

Proof: Proposition 8 guarantees that the roots λ1, λ2, λ3 in the factorization (2.9) are

either real and satisfy 0 < λ1 < 1 < λ2 ≤ λ3, or 0 < λ1 < 1, and λ2, λ3 are complex

conjugates that lie outside the unit circle. Consider first the case in which λ1, λ2, λ3 are real,

so that both rule I and rule II are well-defined.

Rule I:

First note that the rule I, i.e., (2.11) can be rewritten as

ı̂t = ρ1ı̂t−1 + ρ2∆ı̂t−1 + (βγλ3)
−1 vt (A.27)

where

ρ1 = 1 + (λ2 − 1) (1− λ1) > 1

ρ2 = λ1λ2 > 0

and

vt ≡ Et

[(
1− λ−1

3 L−1
)−1

f̂t

]

= Et

[ ∞∑
j=0

λ−j
3 f̂t+j

]
.
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Since Etf̂t+j is given by

Etf̂t+j =
κσ

λi

Et (q̂t+j − βγq̂t+j+1)

=
κσ

λi

Et

[−γπ̂t+j−1 +
(
1 + βγ2

)
π̂t+j − βγπ̂t+j+1

]

+
λxσ

λi

Et [−x̂t+j−1 + (1 + βγ) x̂t+j − βγx̂t+j+1] ,

we have

vt =
κσ

λi

Et

[ ∞∑
j=0

λ−j
3

(−γπ̂t+j−1 +
(
1 + βγ2

)
π̂t+j − βγπ̂t+j+1

)
]

+
λxσ

λi

Et

[ ∞∑
j=0

λ−j
3 (−x̂t+j−1 + (1 + βγ) x̂t+j − βγx̂t+j+1)

]

=
κσ

λi

∞∑
j=−1

α̃π,jEtπ̂t+j +
λxσ

λi

∞∑
j=−1

αx,jEtx̂t+j,

where

α̃π,−1 = −γ (A.28)

α̃π,0 = 1 + βγ2 − λ−1
3 γ (A.29)

α̃π,j = −λ−j+1
3 βγ + λ−j

3

(
1 + βγ2

)− λ−j−1
3 γ, ∀j ≥ 1 (A.30)

and

αx,−1 = −1 (A.31)

αx,0 = 1 + βγ − λ−1
3 (A.32)

αx,j = −λ−j+1
3 βγ + λ−j

3 (1 + βγ)− λ−j−1
3 , ∀j ≥ 1. (A.33)

The variable vt can furthermore be written as

vt =
κσ

λi

Sπ

∞∑
j=0

απ,jEtπ̂t+j +
λxσ

λi

∞∑
j=0

αx,jEtx̂t+j − κσγ

λi

π̂t−1 − λxσ

λi

x̂t−1. (A.34)
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where

Sπ =
∞∑

j=0

α̃π,j

= − (
0 + λ−0

3 + λ−1
3 + λ−2

3 + ...
)
βγ +

(
λ−0

3 + λ−1
3 + λ−2

3 + ...
) (

1 + βγ2
)

− (
λ−1

3 + λ−2
3 + ...

)
γ

=
(
1− λ−1

3

)−1 (
1 + βγ2 − βγ − λ−1

3 γ
)
,

and

απ,j =
α̃π,j

Sπ

, ∀j ≥ 0.

Note that the coefficients απ,j satisfy

∞∑
j=0

απ,j = S−1
π

∞∑
j=0

α̃π,j = 1

and the coefficients αx,j satisfy

∞∑
j=0

αx,j = − (
0 + λ−0

3 + λ−1
3 + λ−2

3 + ...
)
βγ +

(
λ−0

3 + λ−1
3 + λ−2

3 + ...
)
(1 + βγ)

− (
λ−1

3 + λ−2
3 + ...

)

=
(
1− λ−1

3

)−1 (
1− λ−1

3

)

= 1.

Combining (A.27) and (A.34), we can rewrite the rule I as

ı̂t = ρ1ı̂t−1 + ρ2∆ı̂t−1 + φπFt (π̂) +
φx

4
Ft (x̂)− θππ̂t−1 − θx

4
x̂t−1 (A.35)

where

φπ = (βγλ3)
−1 κσ

λi

Sπ =
κσ

λiβ

1 + βγ2 − βγ − λ−1
3 γ

λ3γ
(
1− λ−1

3

)

θπ = (βγλ3)
−1 κσγ

λi

=
κσ

λiβλ3

> 0

φx = θx =
4λxσ

λiβγλ3

> 0.
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Note furthermore that

φπ = θπ
λ3 + βγ2λ3 − βγλ3 − γ

γ (λ3 − 1)
= θπ

(
1 +

(1− γ) (1− βγ)

γ
(
1− λ−1

3

)
)
≥ θπ. (A.36)

Recalling that ẑt ≡ zt − z̄ for any variable z, and that φx = θx, we can rewrite (A.35) as

it = (1− ρ1) ı̄−(φπ − θπ) π̄+ρ1it−1+ρ2∆it−1+φπFt (π)+
φx

4
Ft (x)−θππt−1− θx

4
xt−1. (A.37)

We know from Proposition 9 that (2.10) holds, and thus that (2.5) holds. In the steady

state, equation (2.5) reduces to

A (L) (̄ı− i∗) = −f̄

where

f̄ =
κσ

λi

(1− βγ) q̄ =
κσ

λi

(1− βγ) (1− γ) π̄.

It follows from (2.9) that

(1− λ1) (1− λ2) i∗ = (1− λ1) (1− λ2) ı̄ +
κσ

λi

(1− γ) (1− βγ)

βγ (1− λ3)
π̄. (A.38)

Given that

(1− λ1) (1− λ2) = 1− ρ1,

and given that (A.36) implies

κσ

λi

(1− γ) (1− βγ)

βγ (1− λ3)
= − (φπ − θπ) ,

we can rewrite (A.38) as

(1− ρ1) i∗ = (1− ρ1) ı̄− (φπ − θπ) π̄.

Combining this with (A.37) yields (A.26).

As γ approaches 0, we have λ−1
3 → 0 and λ3γ → β−1. It follows that

lim
γ→0

φπ = lim
γ→0

κσ

λiβ

1 + βγ2 − βγ − λ−1
3 γ

λ3γ
(
1− λ−1

3

) =
κσ

λi

> 0

lim
γ→0

θπ = lim
γ→0

κσ

λiβ
λ−1

3 = 0

lim
γ→0

φx = lim
γ→0

θx = lim
γ→0

4λxσ

λiβγλ3

=
4λxσ

λi

> 0.
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Rule II

Following the same development as for rule I, but replacing λ2 with λ3 and vice versa,

we can show that (2.12) can also be written as in (A.26), but where

ρ1 = 1 + (λ3 − 1) (1− λ1) > 1

ρ2 = λ1λ3 > 0

θπ =
κσ

λiβλ2

> 0

φπ = θπ

(
1 +

(1− γ) (1− βγ)

γ
(
1− λ−1

2

)
)
≥ θπ

φx = θx =
4λxσ

λiβγλ2

> 0.

Rule III

We now allow the roots λ2 and λ3 to be either real or complex. Recall from the proof of

Proposition 8 that (λ2 + λ3) /2 is real and is greater than 1. Using this, rule III (2.13) can

be rewritten, for all values of γ ∈ (0, 1], as

ı̂t = ρ1ı̂t−1 + ρ2∆ı̂t−1 +
1

2
(βγλ3)

−1 vI
t +

1

2
(βγλ2)

−1 vII
t (A.39)

where ρ1 and ρ2 are now given by

ρ1 = λ1 +
λ2 + λ3

2
− λ1

λ2 + λ3

2
= 1 +

(
λ2 + λ3

2
− 1

)
(1− λ1) > 1 (A.40)

ρ2 = λ1
λ2 + λ3

2
> 0, (A.41)

and

vI
t ≡ Et

[(
1− λ−1

3 L−1
)−1

f̂t

]
=

κσ

λi

∞∑
j=−1

α̃I
π,jEtπ̂t+j +

λxσ

λi

∞∑
j=−1

αI
x,jEtx̂t+j (A.42)

vII
t ≡ Et

[(
1− λ−1

2 L−1
)−1

f̂t

]
=

κσ

λi

∞∑
j=−1

α̃II
π,jEtπ̂t+j +

λxσ

λi

∞∑
j=−1

αII
x,jEtx̂t+j, (A.43)

and where α̃I
π,j, αI

x,j are defined in (A.28) - (A.33) for all j ≥ 1, α̃II
π,j, αII

x,j are defined in the

same way except that λ3 is replaced with λ2. Using (A.42) and (A.43), equation (A.39) can

90



furthermore be written as

ı̂t = ρ1ı̂t−1 + ρ2∆ı̂t−1 +
κσ

λiβγ

Sπ

2

∞∑
j=0

απ,jEtπ̂t+j +
λxσ

λiβγ

Sx

2

∞∑
j=0

αx,jEtx̂t+j

− κσ

λiβ

λ−1
2 + λ−1

3

2
π̂t−1 − λxσ

λiβγ

λ−1
2 + λ−1

3

2
x̂t−1 (A.44)

where

Sπ =
∞∑

j=0

(
λ−1

3 α̃I
π,j + λ−1

2 α̃II
π,j

)

Sx =
∞∑

j=0

(
λ−1

3 αI
x,j + λ−1

2 αII
x,j

)
= λ−1

2 + λ−1
3

απ,j = S−1
π

(
λ−1

3 α̃I
π,j + λ−1

2 α̃II
π,j

)

αx,j = S−1
x

(
λ−1

3 αI
x,j + λ−1

2 αII
x,j

)
,

and where
∞∑

j=0

απ,j =
∞∑

j=0

αx,j = 1.

Equation (A.44) is of the form (A.35), where ρ1 and ρ2 are defined in (A.40), (A.41), and

φπ =
κσ

λiβγ

Sπ

2
(A.45)

θπ =
κσ

λiβ

λ−1
2 + λ−1

3

2
> 0 (A.46)

φx = θx =
4λxσ

λiβγ

λ−1
2 + λ−1

3

2
> 0. (A.47)

(Note that if λ2 and λ3 are complex conjugates, then λ−1
2 + λ−1

3 = λ2+λ3

λ2λ3
is real.) Note

furthermore that for all γ ∈ (0, 1], the coefficient φπ satisfies

φπ =
κσ

λiβ

(
λ−1

3

2

1 + βγ2 − βγ − λ−1
3 γ

γ
(
1− λ−1

3

) +
λ−1

2

2

1 + βγ2 − βγ − λ−1
2 γ

γ
(
1− λ−1

2

)
)

=
κσ

λiβ

(
λ−1

3

2

(
1 +

(1− γ) (1− βγ)

γ
(
1− λ−1

3

)
)

+
λ−1

2

2

(
1 +

(1− γ) (1− βγ)

γ
(
1− λ−1

2

)
))

= θπ − κσ

λiβγ

(1− γ) (1− βγ)

(1− λ2) (1− λ3)

(
1− λ2 + λ3

2

)
(A.48)

≥ θπ.
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As for rule I, we can rewrite (A.35) as in (A.37), but where the coefficients are given in

(A.40), (A.41), and (A.45) – (A.47). Again, we know from Proposition 9 that (2.5) holds,

and thus that (A.38) holds. Multiplying (A.38) on both sides by (1− λ2)
−1 (

1− λ2+λ3

2

)
, we

obtain

(1− λ1)

(
1− λ2 + λ3

2

)
i∗ = (1− λ1)

(
1− λ2 + λ3

2

)
ı̄

+
κσ

λi

(1− γ) (1− βγ)

βγ (1− λ2) (1− λ3)

(
1− λ2 + λ3

2

)
π̄. (A.49)

Since (A.40) and (A.48) imply

(1− λ1)

(
1− λ2 + λ3

2

)
= 1− ρ1

κσ

λiβγ

(1− γ) (1− βγ)

(1− λ2) (1− λ3)

(
1− λ2 + λ3

2

)
= − (φπ − θπ) ,

we can rewrite (A.49) as

(1− ρ1) i∗ = (1− ρ1) ı̄− (φπ − θπ) π̄.

Combining this with (A.37) yields (A.26).

Finally, in the limit, as γ = 1, we have

φπ =
κσ

λiβ

λ−1
2 + λ−1

3

2
= θπ.

A.9 Proposition 11

Proposition 11. Under the assumptions of Proposition 8, a pair of bounded processes{
ı̂t, f̂t

}
satisfy

(1− λ1L) ı̂t−1 = − (βγλ2λ3)
−1 Et

[(
1− λ−1

2 L−1
)−1 (

1− λ−1
3 L−1

)−1
f̂t

]
(A.50)

at all dates t ≥ t0 if and only if they satisfy

Et [A (L) ı̂t+1] = −f̂t (A.51)

at all of those same dates.

92



Proof: Proposition 8 guarantees that 0 < λ1 < 1, and that λ2, λ3 are either real values,

or complex conjugates, that lie outside the unit circle.

First we show that (A.51) implies (A.50). Using (2.9) to substitute for A (L) , and

expanding the left-hand side of (A.51), we obtain

βγλ2λ3Et

[
(1− λ1L)

(
λ−1

2 L−1 − 1
) (

λ−1
3 L−1 − 1

)
L2ı̂t+1

]
= −f̂t,

or

Et

[
D (L)

(
1− λ−1

3 L−1
)
ı̂t−1

]
= vt,

where

D (L) = (1− λ1L)
(
1− λ−1

2 L−1
)

vt ≡ − (βγλ2λ3)
−1 f̂t.

It follows that

Et [D (L) ı̂t−1] = λ−1
3 Et [D (L) ı̂t] + vt

= Et

[ ∞∑
j=0

λ−j
3 vt+j

]

= Et

[(
1− λ−1

3 L−1
)−1

vt

]
.

This can furthermore be rewritten as

Et

[
(1− λ1L)

(
1− λ−1

2 L−1
)
ı̂t−1

]
= ṽt,

where

ṽt ≡ − (βγλ2λ3)
−1 Et

[(
1− λ−1

3 L−1
)−1

f̂t

]
.

It follows that

Et [(1− λ1L) ı̂t−1] = λ−1
2 Et [(1− λ1L) ı̂t] + ṽt

= Et

[ ∞∑
j=0

λ−j
2 ṽt+j

]

= Et

[(
1− λ−1

2 L−1
)−1

ṽt

]

= − (βγλ2λ3)
−1 Et

[(
1− λ−1

2 L−1
)−1 (

1− λ−1
3 L−1

)−1
f̂t

]
,
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which corresponds to (A.50).

We next show that (A.50) implies (A.51). Since (A.50) holds for all t ≥ t0, it implies

that

(1− λ1L) ı̂t+1 = − (βγλ2λ3)
−1 Et+2

[(
1− λ−1

2 L−1
)−1 (

1− λ−1
3 L−1

)−1
f̂t+2

]
.

Multiplying on both sides by βγ (1− λ2L) (1− λ3L) , taking conditional expectations at date

t, and using (2.9), we obtain

Et [A (L) ı̂t+1] = −λ−1
2 λ−1

3 Et

[
(1− λ2L) (1− λ3L)

(
1− λ−1

2 L−1
)−1 (

1− λ−1
3 L−1

)−1
f̂t+2

]

= −Et

[
L2f̂t+2

]

= −f̂t.

which corresponds to (A.51).

A.10 Proposition 12

Proposition 12. Under the assumptions of Proposition 10, the optimal target criterion

(1− λ1L) ı̂t−1 = − (βγλ2λ3)
−1 Et

[(
1− λ−1

2 L−1
)−1 (

1− λ−1
3 L−1

)−1
f̂t

]
(A.52)

has a representation

Ft (π) +
φx

4
Ft (x) = θππt−1 +

θx

4
xt−1 − θi (it−1 − i∗)− θ∆∆it−1 (A.53)

in which

φx = θx > 0,

0 < θπ ≤ 1,

and

θi, θ∆ > 0.

Furthermore, for fixed values of the other parameters, as γ → 0, θπ approaches zero and the

other parameters approach the non-zero values associated with the target criterion (1.25).

Instead, as γ → 1, θπ approaches 1.
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Proof: The optimal target criterion (A.52) can be written as

ı̂t−1 − λ1ı̂t−2 = − (βγλ2λ3)
−1 vt (A.54)

where

vt ≡ Et

[(
1− λ−1

2 L−1
)−1 (

1− λ−1
3 L−1

)−1
f̂t

]

and where |λ2| , |λ3| > 1. We note that in the case that λ2 6= λ3,

(
1− λ−1

2 L−1
)−1 (

1− λ−1
3 L−1

)−1
= c2

(
1− λ−1

2 L−1
)−1 − c3

(
1− λ−1

3 L−1
)−1

where c2 ≡ λ3/ (λ3 − λ2) and c3 ≡ λ2/ (λ3 − λ2) . The variable vt can therefore be rewritten

as

vt = Et

{[
c2

(
1− λ−1

2 L−1
)−1 − c3

(
1− λ−1

3 L−1
)−1

]
f̂t

}

= Et

[ ∞∑
j=0

(
c2λ

−j
2 − c3λ

−j
3

)
f̂t+j

]
.

Substituting for f̂t+j as in the proof of Proposition 10, we obtain

vt =
κσ

λi

Et

[ ∞∑
j=0

(
c2λ

−j
2 − c3λ

−j
3

) (−γπ̂t+j−1 +
(
1 + βγ2

)
π̂t+j − βγπ̂t+j+1

)
]

+
λxσ

λi

Et

[ ∞∑
j=0

(
c2λ

−j
2 − c3λ

−j
3

)
(−x̂t+j−1 + (1 + βγ) x̂t+j − βγx̂t+j+1)

]

=
κσ

λi

∞∑
j=−1

α̃π,jEtπ̂t+j +
λxσ

λi

∞∑
j=−1

αx,jEtx̂t+j,

where

α̃π,−1 = −γ

α̃π,0 = 1 + βγ2 − (
c2λ

−1
2 − c3λ

−1
3

)
γ

α̃π,j = − (
c2λ

−j+1
2 − c3λ

−j+1
3

)
βγ +

(
c2λ

−j
2 − c3λ

−j
3

) (
1 + βγ2

)− (
c2λ

−j−1
2 − c3λ

−j−1
3

)
γ,

∀j ≥ 1, and

αx,−1 = −1

αx,0 = 1 + βγ − (
c2λ

−1
2 − c3λ

−1
3

)

αx,j = − (
c2λ

−j+1
2 − c3λ

−j+1
3

)
βγ +

(
c2λ

−j
2 − c3λ

−j
3

)
(1 + βγ)− (

c2λ
−j−1
2 − c3λ

−j−1
3

)
,
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∀j ≥ 1. We can furthermore write the variable vt as

vt =
κσ

λi

Sπ

∞∑
j=0

απ,jEtπ̂t+j +
λxσ

λi

∞∑
j=0

αx,jEtx̂t+j − κσγ

λi

π̂t−1 − λxσ

λi

x̂t−1. (A.55)

where

Sπ =
∞∑

j=0

α̃π,j =
λ3

(
1 + βγ2 − βγ − λ−1

2 γ
)

(λ3 − λ2)
(
1− λ−1

2

) − λ2

(
1 + βγ2 − βγ − λ−1

3 γ
)

(λ3 − λ2)
(
1− λ−1

3

)

= γ +
(1− γ) (1− βγ)(

1− λ−1
2

) (
1− λ−1

3

) (A.56)

≥ γ

and

απ,j =
α̃π,j

Sπ

, ∀j ≥ 0.

Note that the coefficients απ,j and αx,j satisfy
∞∑

j=0

απ,j =
∞∑

j=0

αx,j = 1.

Combining (A.54) and (A.55), we can rewrite the optimal target criterion as

κσ

λi

SπFt (π̂) +
λxσ

λi

Ft (x̂)− κσγ

λi

π̂t−1 − λxσ

λi

x̂t−1 = −βγλ2λ3 (̂ıt−1 − λ1ı̂t−2) .

Recalling that ẑt ≡ zt − z̄ for any variable z, we have

κσ

λi

Sπ (Ft (π)− π̄) +
λxσ

λi

Ft (x) =
κσγ

λi

(πt−1 − π̄) +
λxσ

λi

xt−1

−βγλ2λ3 ((1− λ1) (it−1 − ı̄)− λ1∆it−2) ,

or an equation of the form

Ft (π) +
φx

4
Ft (x) = θiı̄ + (1− θπ) π̄ + θππt−1 +

θx

4
xt−1 − θiit−1 − θ∆∆it−1 (A.57)

where

φx = θx =
4λx

κSπ

> 0

θπ =
γ

Sπ

> 0

θi =
λiβγ (1− λ1) λ2λ3

κσSπ

> 0

θ∆ =
λiβγλ1λ2λ3

κσSπ

> 0.

96



We know from Proposition 9 that (2.10) holds, and thus that (2.5) holds. In the steady

state, equation (2.5) reduces to

A (L) (̄ı− i∗) = −f̄

where

f̄ =
κσ

λi

(1− βγ) q̄ =
κσ

λi

(1− βγ) (1− γ) π̄.

Using (2.9), we have furthermore

θii
∗ = θiı̄ +

θi

A (1)

κσ

λi

(1− βγ) (1− γ) π̄

= θiı̄ +

λiβγ(1−λ1)λ2λ3

κσSπ

βγ (1− λ1) (1− λ2) (1− λ3)

κσ

λi

(1− βγ) (1− γ) π̄

= θiı̄ +
(1− βγ) (1− γ)(

1− λ−1
2

) (
1− λ−1

3

) 1

Sπ

π̄

= θiı̄ + (Sπ − γ)
1

Sπ

π̄

= θiı̄ + (1− θπ) π̄.

Combining this with (A.57) yields (A.53).

As γ approaches 0, it follows from Lemma 2 below that λ−1
3 → 0, λ3γ → β−1, Sπ →

(
1− λ−1

2

)−1
> 0, and thus

φx = θx → 4
(
1− λ−1

2

) λx

κ
> 0

θπ → 0

θi → λ2 (1− λ1)
(
1− λ−1

2

) λi

κσ
> 0

θ∆ → λ1λ2

(
1− λ−1

2

) λi

κσ
> 0.

Furthermore, c2 = λ−1
2 /

(
λ−1

2 − λ−1
3

) → 1, c3 = λ−1
3 /

(
λ−1

2 − λ−1
3

) → 0, and α̃π,j → λ−j
2 , for

all j ≥ 0, so that

απ,j → (
1− λ−1

2

)
λ−j

2

αx,j → (
1− λ−1

2

)
λ−j

2 ,
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for all j ≥ 0. Instead, as γ = 1, we have Sπ → 1, and

θπ → 1.

So far, we have considered the case in which λ2 6= λ3. Now suppose, alternatively, that

λ2 = λ3. In that case, since

(
1− λ−1

2 L−1
)−1 (

1− λ−1
3 L−1

)−1
=

(
1− λ−1

2 L−1
)−2

=
∞∑

j=0

(1 + j) λ−j
2 L−j

we can write vt as

vt = Et

[ ∞∑
j=0

(1 + j) λ−j
2 f̂t+j

]
.

Substituting for f̂t+j as in the proof of Proposition 10, we obtain

vt =
κσ

λi

Et

[ ∞∑
j=0

(1 + j) λ−j
2

(−γπ̂t+j−1 +
(
1 + βγ2

)
π̂t+j − βγπ̂t+j+1

)
]

+
λxσ

λi

Et

[ ∞∑
j=0

(1 + j) λ−j
2 (−x̂t+j−1 + (1 + βγ) x̂t+j − βγx̂t+j+1)

]

=
κσ

λi

∞∑
j=−1

α̃π,jEtπ̂t+j +
λxσ

λi

∞∑
j=−1

αx,jEtx̂t+j,

where

α̃π,−1 = −γ

α̃π,0 = 1 + βγ2 − 2λ−1
2 γ

α̃π,j = −jλ−j+1
2 βγ + (1 + j) λ−j

2

(
1 + βγ2

)− (2 + j) λ−j−1
2 γ, ∀j ≥ 1

and

αx,−1 = −1

αx,0 = 1 + βγ − 2λ−1
2

αx,j = −jλ−j+1
2 βγ + (1 + j) λ−j

2 (1 + βγ)− (2 + j) λ−j−1
2 , ∀j ≥ 1
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The variable vt can again be written as in (A.55), where as before απ,j =
α̃π,j

Sπ
,∀j ≥ 0, and

Sπ =
∞∑

j=0

α̃π,j = − (
1λ−0

2 + 2λ−1
2 + 3λ−2

2 + ...
)
βγ +

(
1λ−0

2 + 2λ−1
2 + 3λ−2

2 + ...
) (

1 + βγ2
)

− (
2λ−1

2 + 3λ−2
2 + ...

)
γ

=
(
1− λ−1

2

)−2 (−βγ + 1 + βγ2 − γ
)

+ γ

= γ +
(1− γ) (1− βγ)(

1− λ−1
2

)2 .

Note that Sπ is equal to the value obtained in (A.56), when λ2 = λ3. In addition, the

coefficients απ,j and αx,j satisfy again
∑∞

j=0 απ,j =
∑∞

j=0 αx,j = 1. It follows that the optimal

target criterion can again be expressed as in (A.53) where the coefficients are defined as

before.

A.11 Technical Lemmas

Lemma 1. For any real coefficients A0, A1, A2, A3, we have

A3z
3 + A2z

2 + A1z + A0 = A3

(
B0 + B1ζ + ζ3

)
,

where

ζ = z +
A2

3A3

B0 =
27A0A

2
3 + 2A3

2 − 9A3A2A1

27A3
3

B1 =
3A3A1 − A2

2

3A2
3

.

Proof: A3

(
B0 + B1ζ + ζ3

)

= A3

(
ζ3 + 1

3

3A3A1−A2
2

A2
3

ζ + 1
27

27A0A2
3+2A3

2−9A3A2A1

A3
3

)

= A3

((
z + 1

3
A2

A3

)3

+ 1
3

3A3A1−A2
2

A2
3

(
z + 1

3
A2

A3

)
+ 1

27

27A0A2
3+2A3

2−9A3A2A1

A3
3

)

= A3z
3 + A2z

2 +
(

1
3

A2
2

A3
+ 1

3

3A3A1−A2
2

A3

)
z + 1

27

A3
2

A2
3

+ 1
27

27A0A2
3+2A3

2−9A3A2A1

A2
3

+ 1
9

3A3A1−A2
2

A2
3

A2

= A3z
3 + A2z

2 + A1z + A0. ¥
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Lemma 2. In the limit, as γ approaches 0, λ3 → +∞, and γλ3 → β−1.

Proof: In the limit, as γ tends to 0, the polynomial A (L) reduces to

A (L) = β−1
(
β − (1 + β + κσ) L + L2

)
(−L) ,

and can again be factorized as

A (L) = β−1 (z1 − L) (z2 − L) (z3 − L) ,

where z3 = 0, and z1, z2 are the two roots of the second-order polynomial

Ã (L) = β − (1 + β + κσ) L + L2.

Note that since Ã (0) = β > 0, and Ã (1) = −κσ < 0, the two roots of Ã (L) are real and

satisfy 0 < z2 < 1 < z1. It follows that

0 < λ1 < 1 < λ2 < λ3 = +∞

where λj ≡ z−1
j , for j = 1, 2, 3.

Furthermore, as (A.21) holds for all γ, we have

λ3γ = β−1 + γ
(
1 + β−1 − λ1 − λ2

)
.

Taking the limit as γ → 0 on both sides and noting that λ1 and λ2 are bounded, we obtain

lim
γ→0

λ3γ = β−1.

¥
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