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Abstract

This paper investigates the �nite sample properties of estimators for spatial

dynamic panel models in the presence of several endogenous variables. So far,

none of the available estimators in spatial econometrics allows considering spatial

dynamic models with one or more endogenous variables. We propose to apply

system-GMM, since it can correct for the endogeneity of the dependent variable,

the spatial lag as well as other potentially endogenous variables using internal

and/or external instruments. The Monte-Carlo investigation compares the per-

formance of spatial MLE, spatial dynamic MLE (Elhorst (2005)), spatial dynamic

QMLE (Yu et al. (2008)), LSDV, di¤erence-GMM (Arellano & Bond (1991)), as

well as extended-GMM (Arellano & Bover (1995), Blundell & Bover (1998)) in

terms of bias, root mean squared error and standard-error accuracy. The results

suggest that, in order to account for the endogeneity of several covariates, spatial

dynamic panel models should be estimated using extended GMM. On a practical

ground, this is also important, because system-GMM avoids the inversion of high

dimension spatial weights matrices, which can be computationally unfeasible for

large N and/or T .

Keywords: Spatial Econometrics, Dynamic Panel Model, System GMM,
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1 Introduction

Although the econometric analysis of dynamic panel models (Arellano and Bond (1998),

Blundell and Bover (1998), Baltagi and Kao (2000)) has drawn a lot of attention in the

last decade, econometric analysis of spatial and dynamic panel models is almost inex-

istent (Elhorst (2005), Kapoor, Kelejian and Prucha (2007), Lee and Yu (2007), Yu et

al. (2007) and Beenstock and Felsenstein (2007)). So far, none of the available estima-

tors allows to consider a dynamic spatial lag panel model with one or more endogenous

variables (besides the time and spatial lag) as explanatory variables. From an applied

econometric point of view, this is an important issue because several reasons can explain

the presence of endogeneity (measurement errors, variables omission, simultaneous re-

lationship between the dependent and the explanatory variable). Empirically, there are

numerous examples where the presence of a dynamic process, spatial dependence and

endogeneity might occur.

This is the case with the analysis of the determinants of Foreign Direct Investment

(FDI). In particular, complex FDI is characterized by a multinational �rm from home

country i which owns not only a production plant in host country j but also one in

third country k, in order to exploit the comparative advantages of various locations

(Baltagi, Egger and Pfa¤ermayr (2007)). This type of FDI can thus feature comple-

mentary/substitutive spatial dependence with respect to FDI to other host countries.

The presence of complex FDI can be tested empirically by estimating a spatial lag model

(as proposed by Blonigen, Davies, Waddell and Naughton (2007)), which can also in-

clude a lagged dependent variable to account for the fact that FDI decisions are part of

a dynamic process, i.e. more FDI in a host country seems to attract more FDI in this

same host country (Kukenova and Monteiro (2008)). This persistence e¤ect is partly due

to the fact that FDI is often accompanied by physical investments that are irreversible

in the short run. Since the inclusion of the time lagged depend variable in the equation

might lead to inconsistent estimates, dynamic spatial lag panel models are usually esti-

mated using the system generalized method of moments (GMM) estimator, developed

by Arellano and Bover (1995) and Blundell and Bond (1998). The main argument of

applying the extended GMM in a spatial context is that it corrects for the endogeneity

of the spatial lagged dependent variable and other potentially endogenous explanatory

variables. Going beyond this intuitive motivation, this paper wants to determine if it is
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suitable to instrument the spatial lag variable using the instruments proposed by system

GMM, i.e. lagged spatial lag values. This is done by comparing the results obtained

by extended GMM with spatial dynamic estimators (Spatial MLE (SMLE), Spatial Dy-

namic MLE (SDMLE) and Spatial Dynamic QMLE (SDQMLE)) which assume only

exogenous covariates.

The outline of the paper is as follows. The dynamic spatial lag model is de�ned and

interpreted in section 2. The Monte Carlo investigation is described and performed in

section 3. Finally, section 4 concludes.

2 Spatial Dynamic Panel Model

The development of empirical spatial models is intimately linked to the recent progress

in spatial econometrics. The basic spatial model was suggested by Cli¤ and Ord (1981),

but it did not receive important theoretical extensions until the middle of the 1990s.

Anselin (2001) and Elhorst (2003b) provide thorough surveys of the di¤erent spatial

models and suggest econometric strategies to estimate them. More generally, spatial

data is characterized by the spatial arrangement of the observations. Following Tobler�s

First Law of Geography, everything is related to everything else, but near things are

more related than distant things, the spatial linkages of the observations i = 1; :::; N are

measured by de�ning a spatial weight matrix, denoted by Wt for any year t = 1; :::; T :

Wt =

0BBBBB@
0 wt(dk;j) � � � wt(dk;l)

wt(dj;k) 0 � � � wt(dj;l)
...

...
. . .

...

wt(dl;k) wt(dl;j) � � � 0

1CCCCCA
where wt(dj;k) de�nes the functional form of the weights between any two pair of lo-

cation j and k. In the construction of the weights themselves, the theoretical foundation

for wt(dj;k) is quite general and the particular functional form of any single element in

Wt is, therefore, not prescribed. In fact, the determination of the proper speci�cation

of Wt is one of the most di¢ cult and controversial methodological issues in spatial data

analysis. As is standard in spatial econometrics, for ease of interpretation, the weighting

matrix Wt is row standardized so that each row in Wt sums to one.
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As distances are time-invariant, it will generally be the case that Wt = Wt+1. How-

ever, when dealing with unbalanced panel data, this is no longer true (Egger et al

(2005)). Stacking the data �rst by time and then by cross-section, the full weighting

matrix, W , is given by:

W =

0BB@
W1 0 0

0
. . . 0

0 0 WT

1CCA

2.1 Dynamic Spatial Lag Model

A general spatial dynamic panel model can be described as follows:

Yt = �Yt�1 + �W1tYt + EXt� + ENt + "t (1)

"t = � + �W2t"t + vt; t = 1; :::; T

where Yt is a N � 1 vector, W1t and W2t are N � N spatial weight matrices which

are non-stochastic and exogenous to the model, � is the vector of country e¤ect, EXt is

a N � p matrix of p exogenous explanatory variables (p � 0) and ENt is a N � q matrix
of q endogenous explanatory variables with respect to Yt (q � 0). Finally, vt is assumed
to be normally distributed (N (0;
)). By adding some restrictions to the parameters,

two popular spatial model speci�cations can be derived from this general spatial model,

namely the dynamic spatial lag model (� = 0) and the dynamic spatial error model

(� = 0)1.

The spatial lag model accounts directly for relationships between dependent vari-

ables that are believed to be related in some spatial way. Somewhat analogous to

a lagged dependent variable in time series analysis, the estimated �spatial lag� coef-

�cient2 characterizes the contemporaneous correlation between one cross-section and

other geographically-proximate cross-sections. The following equation gives the basic

1The analysis of the spatial error panel model is beyond the scope of this paper. For further details,
see Elhorst (2005) and Kapoor et al. (2007).

2The spatial autoregressive term is also referred as endogenous interation e¤ects in social economics
or as interdependence process in political science.
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spatial dynamic panel speci�cation, also known as the "time-space simultaneous" model

(Anselin (1988, 2001))3:

Yt = �Yt�1 + �WtYt + EXt� + ENt + � + vt (2)

The spatial autoregressive coe¢ cient (�) associated with WtYt represents the e¤ect

of the weighted average (wt (dij) being the weights) of the neighborhood, i.e. [WtYt]i =P
j=1::Nt

wt (dij) �Yjt. The spatial lag term allows to determine if the dependent variable
Yt is (positively/negatively) a¤ected by the Yt from other close locations weighted by a

given criterion (usually distance or contiguity). In other words, the spatial lag coe¢ cient

captures the impact of Yt from neighborhood locations. Let !min and !max be the

smallest and highest characteristic root of the spatial matrixW , then this spatial e¤ect

is assumed to lie between 1
!min

and 1
!max

. Most of the spatial econometrics literature

constrains the spatial lag to lie between -1 and +1. However, this might be restrictive,

because if the spatial matrix is row-normalized, then the highest characteristic root is

equal to unity (!max = 1), but the smallest eigenvalue can be bigger than -1, which

would lead the lower bound to be smaller than -1.

Given that expression (2) is a combination of a time and spatial autoregressive

models, we need to ensure that the resulting process is stationary. The stationarity

restrictions in this model are stronger than the individual restrictions imposed on the

coe¢ cients of a spatial or dynamic model4. The process is covariance stationary if��(IN � �Wt)
�1 �

�� < 1, or, equivalently, if
j�j < 1� �!max if � � 0
j�j < 1� �!min if � < 0

3Beside the "time-space simulatenous" model, Anselin distinguishes three other distinct spatial lag
panel models: the "pure space recursive" model which only includes a lagged spatial lag coe¢ cient;
the "time-space recursive" speci�cation which considers a lagged dependent variable as well as a lagged
spatial lag (see Korniotis (2007)); and the "time-space dynamic" model, which includes a time lag, a
spatial lag and a lagged spatial lag.

4In time series, the autoregressive coe¢ cient must satisfy: � 2 (�1; 1), while in the spatial econo-
metrics the spatial lag coe¢ cient must lie � 2

�
1

!min
; 1
!max

�
.
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From an econometric viewpoint, equation (2) faces simultaneity and endogeneity

problems, which in turn means that OLS estimation will be biased and inconsistent

(Anselin (1988)). To see this point more formally, note that the reduced form of equation

(2) takes the following form:

Yt = (IN � �Wt)
�1 (�Yt�1 + EXt� + ENt + � + vt)

Each element of Yt is a linear combination of all of the error terms. Moreover, as

pointed out by Anselin (2003), assuming j�j < 1 and each element of Wt is smaller than

one imply that (IN � �Wt)
�1 can be reformulated as a Leontief expansion (IN � �Wt)

�1 =

I + �Wt + �2W 2
t + :::: Accordingly, the spatial lag model features two types of global

spillovers e¤ects: a multiplier e¤ect for the predictor variables as well as a di¤usion

e¤ect for the error process. Since the spatial lag termWtYt is correlated with the distur-

bances, even if vt are independently and identically distributed, it must be treated as an

endogenous variable and proper estimation method must account for this endogeneity.

Despite the fact that dynamic panel models have been the object of recent important

developments (see survey by Baltagi and Kao (2000) or Phillips and Moon (2000)),

econometric analysis of spatial dynamic panel models is almost inexistent. In fact,

there is only a limited number of available estimators that deal with spatial and time

dependence in a panel setting. Table 1 sums up the di¤erent estimators proposed in the

literature:

In the absence of spatial dependence, there are three types of estimators available to

estimate a dynamic panel model. The �rst type of estimators consists of estimating an

unconditional likelihood function (Hsiao et al. (2002)). The second type of procedure

corrects the bias associated with the least square dummy variables (LSDV) estimator

(Bun and Carree (2005)). The last type, which is the most popular, relies on GMM

estimators, like di¤erence GMM (Arellano and Bond (1992)) or system GMM (Arellano

and Bover (1995), Blundell and Bond (1998)).
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Assuming all explanatory variables are exogenous beside the spatial autoregressive

term, the spatial lag panel model without any time dynamic is usually estimated using

spatial maximum likelihood (spatial ML) (Elhorst (2003b)) or spatial two-stage least

squares methods (S2SLS) (Anselin (1988) (2001)). The ML approach consists of esti-

mating the spatial coe¢ cient by maximizing the non-linear reduced form of the spatial

lag model. The spatial 2SLS uses the exogenous variables and their spatially weighted

averages (EXt, Wt �EXt) as instruments5. When the number of cross-sections is larger

than the period sample, Anselin (1988) suggests to estimate the model using MLE, 2SLS

or 3SLS in a spatial seemingly unrelated regression (SUR) framework. More recently,

Dall�erba and Le Gallo (2007) suggest to estimate a spatial lag panel model, which in-

cludes several endogenous variables but no time dynamic, by applying spatial 2SLS with

lower orders of the spatially weighted sum of the exogenous variables as instrument for

the spatial autoregressive term6.

In a dynamic context, the estimation of spatial lag panel models is usually based on

a ML function. Elhorst (2003a, 2005) proposes to estimate the unconditional loglikeli-

hood function of the reduced form of the model in �rst-di¤erence. While the absence

of explanatory variables besides the time and spatial lags leads to an exact likelihood

function, this is no longer the case when additional regressors are included. Moreover,

when the sample size T is relatively small the initial observations contribute greatly to

the overall likelihood. That is why the pre-sample values of the explanatory variables

and likelihood function are approximated using the Bhargava and Sargan approxima-

tion or the Nerlove and Balestra approximation. More recently, Yu et al. (2008) provide

a theoretical analysis on the asymptotic properties of the quasi-maximum likelihood

(Spatial Dynamic QML), which relies on the maximization of the concentrated likeli-

hood function of the demeaned model. They show that the limit distribution is not

centered around zero and propose a bias-corrected estimator7. The main di¤erence

5In a cross-section setting, Kelejian and Prucha (1998) propose also additional instruments (W 2
t EXt,

W 3
t EXt, ...). Lee (2003) shows that the estimator proposed by Kelejian and Prucha is not an asymp-

totically optimal estimator and suggests a three-steps procedure with an alternative instrument for

the spatial autoregressive coe¢ cient in the last step (Wt �
�
IN � eb�Wt

��1
� EXteb�, where eb� and eb� are

estimates obtained using the S2SLS proposed by Kelejian and Prucha (1998)).
6Recently, Fingleton and Le Gallo (2008) propose an extended feasible generalized spatial two-stage

least squares estimator for spatial lag models with several endogenous variables and spatial error term
in a cross-section framework.

7In two other related working papers, Lee and Yu (2007) and Yu et al.(2007) investigate the presence
of non-stationarity and time �xed e¤ects, respectively.
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between Elhorst�s and Yu et al.�s ML estimators lies in the asymptotic structure. El-

horst considers �xed T and large N (N !1), while Yu et al. assume large N and

T (N !1; T !1). Consequently, the way the individual e¤ects are taken out dif-
fers: Elhorst considers �rst-di¤erence variables, while Yu et al. demean the variables.

Assuming large T avoids the problem associated with initial values and the use of ap-

proximation procedures. Finally Yu et al�s approach allows to recover the estimated

individual e¤ects, which is not the case with the estimator proposed by Elhorst. In

his most recent work, Elhorst (2008) analyzes the �nite sample performance of several

estimators for a spatial dynamic panel model with only exogenous variables. The esti-

mators considered are the Spatial MLE, Spatial Dynamic MLE and GMM. His Monte

Carlo study shows that Spatial Dynamic MLE has the better overall performance in

terms of bias reduction and root mean squared errors (RMSE), although the Spatial

MLE presents the smallest bias for the spatial autoregressive coe¢ cient. Based on these

results, Elhorst proposes two mixed estimators, where the spatial lag dependent vari-

able is based on the spatial ML estimator and the remaining parameters are estimated

using either GMM or Spatial Dynamic ML conditional on the spatial ML�s estimate

of the spatial autoregressive coe¢ cient. These two mixed estimators outperform the

original estimators. The mixed Spatial MLE/Spatial Dynamic MLE estimator shows

superior performance in terms of bias reduction and RMSE in comparison with mixed

Spatial MLE/GMM. However, the latter can be justi�ed on a practical ground if the

number of cross-sections in the panel is large, since the time needed to compute Spatial

MLE/Spatial Dynamic MLE is substantial. In a spatial vector autoregression (VAR)

setting, Beenstock and Felsenstein (2007) suggest a two-step procedure. The �rst step

consists of applying LSDV to the model without the spatial lag and computing the �tted

values (bYt). Then, in the second step, the full model is also estimated using LSDV, but
with Wt

bYt as instrument for WtYt. Finally, the authors suggest to correct the bias of

the lagged dependent variable by using the asymptotic bias de�ned by Hsiao (1986).

If one is willing to consider some explanatory variables as potentially endogenous in

a dynamic spatial panel setting, then no estimator is currently available. From an ap-

plied econometric point of view, this is an important issue because several grounds can

lead to the presence of endogeneity including measurement errors, variables omission or

the presence of simultaneous relationship(s) between the dependent and the explana-

tory variable(s). The main drawback of applying SMLE, SDMLE or SDQMLE is that,
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while the spatial autoregressive coe¢ cient is considered endogenous, no instrumental

treatment is applied to other potential endogenous variables. This can lead to biased

estimates, which would invalidate empirical results.

2.2 System GMM

Empirical papers dealing with a dynamic spatial panel model with several endogenous

variables usually apply system-GMM8. Haining (1978) already proposed to instrument

a �rst order spatial autoregressive model using lagged dependent variables. While this

method is not e¢ cient in a cross-section setting, because it does not use e¢ ciently all

the available information (Anselin (1988)), this is no longer necessarily the case in a

panel framework. The bias-corrected LSDV-IV estimator proposed by Korniotis (2007)

is in line with this approach and considers lagged spatial lag and dependent variable as

instruments. Accordingly, the use of system GMM might be justi�ed in this trade-o¤

situation, since the spatial lag would be instrumented by lagged values of the dependent

variable and the spatial autoregressive variable.9. In particular, extended GMM can

correct for the endogeneity of the spatial lag and lagged dependent variable as well as

other potentially endogenous explanatory variables. It also allows to take into consid-

eration some econometrics problems such as measurement error and weak instruments.

Moreover it also controls for time-invariant individual-speci�c e¤ects such as distance,

culture and political structure. On a practical ground, it also avoids the inversion of high

dimension spatial weights matrixW and the computation of its eigenvalues10, which can

be sometimes computationally unfeasible to estimate model with large N and/or T .

For simplicity, equation (2) is reformulated for a given cross-section i (i = 1; ::; N)

at time t (t = 1; ::; T ):

Yit = �Yit�1 + � [WtYt]i + EXit� + ENit + �i + vit (3)

8See for example, Madriaga and Poncet (2007), Foucault, Madies and Paty (2008), or Hong, Sun
and Li (2008).

9Badinger et al. (2004) recommend to apply system GMM, once the data has been spatially �ltered.
This approach can only be consider when spatial depence is viewed as a nuisance parameter.
10Kelejian and Prucha (1999) notice that the calculation of roots for moderate 400�400 nonsymmetric

matrix involves accuracy problems.
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According to the GMM procedure, one has to get rid of the individual e¤ects (�i)

correlated with the covariates and the lagged dependent variable, by rewriting equation

(3) in �rst order di¤erence for individual i at time t:

4Yit = �4Yit�1 + �4 [WtYt]i +4EXit� +4ENit +4vit (4)

Even if the �xed e¤ects (within) estimator cancels the country individual �xed (�i),

the lagged endogenous variable (4Yit�1) is still correlated with the idiosyncratic error
terms (vit). Nickell (1981) as well as Anderson and Hsiao (1981) showed that the within

estimator has a bias measured by O( 1
T
) and is only consistent for large T . Given that this

condition is usually not satis�ed, the GMM estimator is also biased and inconsistent.

Arellano and Bond (1991) propose the following moment conditions associated with

equation (4):

E (Yi;t��4vit) = 0; for t = 3; :::; T and 2 � � � t� 1 (5)

But the estimation based only on these moment conditions (5) is insu¢ cient, if

the strict exogeneity assumption of the covariates (EXit) has not been veri�ed. The

explicative variables constitute valid instruments to improve the estimator�s e¢ ciency,

only when the strict exogeneity assumption is satis�ed:

E (EXi�4vit) = 0; for t = 3; :::; T and 1 � � � T (6)

However, the GMM estimator based on the moment conditions (5) and (6) can still

be inconsistent when � < 2 and in presence of inverse causality, i.e. E(EXitvit) 6= 0. In
order to overcome this problem, one can assume that the covariates are weakly exogenous

for � < t, which means that the moment condition (6) can be rewritten as:

E (EXi;t��4vit) = 0; for t = 3; :::; T and 1 � � � t� 1 (7)
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For the di¤erent endogenous variables, the valid moment conditions are

E (ENi;t��4vit) = 0; for t = 3:::T and 2 � � � t� 1 (8)

E ([Wt��Yt�� ]i4vit) = 0; for t = 3:::T and 2 � � � t� 1 (9)

For small samples, this estimator can still yield biased coe¢ cients. Blundell and

Bond (1998) showed that the imprecision of this estimator is bigger as the individual

e¤ects are important and as the variables are persistent over time. To overcome this

limits, the authors propose the system GMM, which estimate simultaneously equation

(3) and equation (4). The extra moment conditions for the extended GMM are thus:

E (4Yi;t�1vit) = 0; for t = 3; :::; T (10)

E (4EXitvit) = 0; for t = 2; :::; T (11)

E (4ENit�1vit) = 0; for t = 3; :::; T (12)

E (4 [Wt�1Yt�1]i vit) = 0; for t = 3; :::; T (13)

The consistency of the SYS-GMM estimator relies on the validity of these moment

conditions, which depends on the assumption of absence of serially correlation of the

level residuals and the exogeneity of the explanatory variables. Therefore, it is neces-

sary to apply speci�cation tests to ensure that these assumptions are justi�ed. More

generally, one should keep in mind that the estimation of the spatial autoregressive coef-

�cient although "potentially" consistent is usually not the most e¢ cient one. E¢ ciency

relies on the "proper" choice of instruments, which is not an easy task to determine.

Arellano and Bond suggest two speci�cation tests in order to verify the consistency of

the GMM estimator. First, the overall validity of the moment conditions is checked

by the Sargan/Hansen test. The null hypothesis is that instruments are not correlated

with the residuals. Aware that too many instrument variables tend to validated invalid

results through the Hansen J test for joint validity of those instruments, as well as the

di¤erence-in-Sargan/Hansen tests for subsets of instruments, it is advised to restrict

the number of instruments by de�ning a maximum number of lags or by collapsing the

instruments (see Roodman (2006)). Second, the Arellano-Bond test examines the serial

correlation property of the level residuals. In order to check �rst-correlation in levels,

we rely on the Arellano bond test for second order autocorrelation (m2).
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3 A Monte-Carlo Study

In this section, we investigate the �nite sample properties of several estimators including

Spatial MLE, Spatial Dynamic MLE and Spatial Dynamic QMLE, LSDV, di¤erence

GMM and extended GMM to account for the endogeneity of the spatial lag as well as an

additional regressor in a dynamic panel data context using Monte-Carlo simulations11.

Simulation studies already showed that bias associated with the spatial lag is rather

small (Franzese and Hays (2007), Elhorst (2008)), but none analyze the consequences of

an additional endogenous explanatory variable in a spatial dynamic context. The data

generating process (DGP) is de�ned as follows:

Yit = �Yi;t�1 + � [WYt]i + �EXit + ENit + �i + vit (14)

EXit = �EXi;t�1 + uit (15)

ENit = �ENi;t�1 +  �i + �vit + eit (16)

with �i � N
�
0; �2�

�
; vit � N (0; �2v) ; uit � N (0; �2u) ; eit � N (0; �2e).

In order to avoid results being in�uenced by initial observations, the covariates Yi0,

EXi0 and ENi0are set to 0 for all i and each variable is generated (100 + T ) times

according to their respective DGP. The �rst 100 observations are then discarded. Note

that the the dependent variable is generated accodring to the reduced form of equation

(14):

Yit = (1� � [W ]i)
�1 [�Yi;t�1 + �EXit + ENit + �i + vit]

In order to check the consistency of the spatial autoregressive estimator, we consider

the following di¤erent designs with di¤erent sample and cross-country sizes:

T 2 f10; 20; 30; 40g ;

N 2 f20; 30; 50; 70g ;

� = 1; � = 0:65;  = 0:5; � = 0:45;  = 0:25; � = 0:6;

�2u = 0:05; �
2
v = 0:05; �

2
e = 0:05; �

2
� = 0:05

11Simulations are performed using Matlab R2008b.

13



The parameter � and � are randomly generated within the interval (0:1; 0:9) In order

to ensure stationarity, only design which respect the restrictions j�j < 1��!max if � � 0
or j�j < 1� �!min if � < 0 are considered. For each of these designs, we performed 1000
trials. Note that for each design, the initial conditions and spatial weight matrices are

generated once.

Following Kapoor et al. (2007) and Kelejian and Prucha (1999), we consider di¤erent

types of spatial weight matrix. In each case, the matrices are row-standardized so that

all non zero elements in each row sum to one. The �rst three matrices rely on a perfect

"idealized" circular world, while the last ones consider a real-word weighting scheme.

The three "theoretical" spatial matrices, referred as "1 ahead and 1 behind", "3 ahead

and 3 behind" and "5 ahead and 5 behind", respectively, are characterized by di¤erent

degree of sparseness. Each are such that each location is related to the one/three/�ve

locations immediately before and after it, so that each nonzero elements are equal to

0:5/0:3/0:1, respectively. The last two spatial weighting schemes are based on real

distance data. We consider the distance between capitals among OECD countries and

among non OECD countries12, respectively. In order to avoid giving some positive

weight to very remote countries (with weaker cultural, political and economic ties),

we consider the negative exponential weighting scheme. This is done by dividing the

distance between locations j and k by the minimum distance within the region r (where

location j lies within region r): w (dj;k) = exp (�dj;k=MINr;j) if j 6= k.

As a measure of consistency, we consider the root mean square error (RMSE). The-

oretically, RMSE is de�ned as the square root of the weighted average of the mean and

the variance. We not only consider this de�nition but also the approximation given in

Kelejian and Prucha (1999) and Kapoor et al. (2007), which converges to the standard

RMSE under a normal distribution:

RMSE =

s
bias2 +

�
IQ2

1:35

�2
where the bias is the di¤erence between the true value of the coe¢ cient and the

median of the estimated coe¢ cients; and IQ is the di¤erence between the 75% and 25%

quantile. This de�nition has the advantage of being more robust to outliers that may

be generated by the Monte-Carlo simulations.
12The data is taken from CEPII database.
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Since the results are qualitatively similar with respect to di¤erent spatial weight

schemes, for sake of brievty we only present the results for "3 ahead and 3 behind" W .

The full results are given in table 5.B. in appendix.

The Monte Carlo investigation highlights several important facts. First the use of

di¤erent structure of instruments in system-GMM only a¤ect marginally the unbiasness

and e¢ ciency of the estimates. Therefore, the extended-GMM results presented here

are based on instrumenting each endogenous variables (Yt�1, WYt; ENt) with their 2th

and 3rd lags values (using the collapse option13) and the exogenous variables Xt and

WXt.

.4
.2

0
.4

.2
0

20 40 60 80 20 40 60 80

T = 10 T = 20

T = 30 T = 40

gamma Bias SMLE gamma Bias SDMLE

gamma Bias SDQMLE gamma Bias LSDV

gamma Bias DIFGMM gamma Bias SYSGMM

N

Figure 1: Endogenous variable  Bias

13Instead of generating one column for each time period and lag available the instruments are col-
lapsed. See Roodman (2006) for further details.
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Monte Carlo results are reported in the appendix.In terms of unbiasness, there are

di¤erences according to the parameter considered. But overall, system-GMM is charac-

terized by greater unbiasness than the other estimators. Moreover, extended-GMM is

characterized by a faster rate of consistency than the other estimators. While system-

GMM tends to overestimate the time lag coe¢ cient to a smaller extent, the remaining

estimators underestimate it. The same is true for the coe¢ cient of the exogenous and

endogenous. The latter shows how important it is to correct for the endogeneity. In fact,

when endogeneity is not accounted for, the bias can represent more than 60% of the true

value of the parameter, which is unacceptable (see Figure1). Moreover, the magnitude

of the bias for the endogenous covariate does not seem to depend on the value of � and �

and the sample dimension (N and T ). On the contrary, independently of the estimator

chosen except LSDV, the simultaneity bias associated with the spatial autoregressive

is usually relatively small, especially when the spatial dependence is low. This result

is in line with Franzese and Hays (2007), Yu et al. (2008) and Elhorst (2008). Beside

extended-GMM, Spatial Dynamic QMLE is the estimator which displays lower bias for

all coe¢ cients,except for the endogenous variable, where LSDV performs better.

In terms of e¢ ciency, summary of the results of RMSE and approximated RMSE,

which are qualitatively similar, are less simpler. Despite the fact that spatial dynamic

QMLE and MLE yield more bias but are more e¢ cient than GMM for the spatial lag

and exogenous variable, this is not the case for the time lag and endogenous variable.

The estimate of the endogenous covariate is clearly more e¢ cient with extended GMM

than any other maximum likelihood estimators. Moreover, the rate of decrease of RMSE

is almost null for the QMLE and MLE. In other words, increasing the dimension sample

cannot improve e¢ ciency of the estimate of the endogenous variable.

Finally, it is interesting to look at the accuracy of the estimators. This is measures

as the ratio of the average of the reported standard-errors of each coe¢ cient and the

actual standard deviation of the estimated coe¢ cient for each design. As it could be

expected, GMM�s results tend to be overcon�dent, which will result in the overrejection

of the null hypothesis. However, the probability to obtain an estimation of the spatial

autoregressive term which fails to respect the stationarity conditions is null in all designs

for 1000 trials. Moreover, the results presented here for GMM are not based on robust

standard errors. This could explain the discrepancy.
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4 Conclusion

In the presence of endogenous covariates, our spatial dynamic panel simulations demon-

strate that while the simultaneity bias of the spatial lag remains relatively low, the

bias of the endogenous is large if it is not corrected. Proper correction leads to favour

extended GMM. In fact, system-GMM emerges clearly dominant by an unbiasedness

criterion for most variables, including the endogenous variable. Its RMSE decays at a

faster rate as N or T increases and its standard error accuracy is acceptable. Moreover

from a viewpoint purely practical, extended GMM avoids the inversion of a large spatial

weight matrix, is easier to implement and its computation time is de�nitively lower (less

than one minute) than any maximum likelihood estimators. Until a new estimator that

allows to account for the endogeneity of the lagged dependent variable, spatial lag and

other potentially endogenous variables is found, applied researchers can apply extended

GMM to estimate "time-space simultaneous" models.
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5 Appendices
5.A Spatial Estimators
This appendix section presents the procedure associated with the di¤erent spatial es-
timators. For further details, the reader is referred to Anselin (1988), Elhorst (2003a,
2005, 2008) and Yu et al. (2008). Let Y , Y�1, WY , U be N � T column vectors,
EX,is a N � T � p matrix and EN is a N � T � q matrix. Note that the data is �rst
sorted by time T and then by cross-section N . Thus, Y = (Y1; Y2; :::; YT )

0, where
Yt = (Y1t; Y2t; :::; YNt)

0. The same structure is applied to the remaining vectors and
matrices. These estimators can be implemented in Matlab.

5.A.1 Spatial MLE

The classical spatial maximum likelihood estimator relies on the concentrated likelihood
in the spatial lag parameter, which is conditional upon the others�coe¢ cient values.
Operationally, "standard" spatial maximum estimation can be achieved in �ve steps:

1. Demean all variables, denoted by ~.

2. Carry out the following OLS regressions:eY = heY�1;gEX;gENi b0 + U0

W eY = heY�1;gEX;gENi bL + UL:

3. Compute the associated residuals bU0 and bUL.
4. Given bU0 and bUL, �nd � that maximizes the following concentrated likelihood
lnL (�) = �NT

2
ln 2��NT

2
ln�2+T ln jIN � �W j�NT

2
ln

��bU0 � �bUL�0 �bU0 � �bUL�� :
5. Given the estimate b�, the remaining coe¢ cient estimates are computed as follows:" b�b�b

#
= b0 � b�bL and b�2 = 1

NT

�bU0 � b�bUL�0 �bU0 � b�bUL� :
As mentioned in Elhorst (2008), this spatial MLE is inconsistent, because of the

presence of the lag dependent variable.

5.A.2 Spatial Dynamic MLE

The unconditional MLE, proposed by Elhorst (2005, 2008), involves a two-steps iterative
procedure once the data has been �rst-di¤erenced. Note that the initial observations are
approximated using Bhargava and Sargan approach (1983). Estimation should proceed
according to the following steps:

1. Take the �rst-di¤erence of all variables;

2. De�ne some initial values for the parameters �; � and �, where � = �2�=�
2 and �2�

is the variance associated with the approximation of the initial observations.
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3. The two-steps iterative procedure begins here with the computation of the coef-
�cients �i associated with the initial observations�s approximation as well as the
parameters of the exogenous and endogenous covariates, and the variance �2 :2666664
b�1b�2
...b�Tb�b

3777775 =
�
�X 0H�1

V ��X
��1

�X 0H�1
V ��Y and b�2 = �bU 0H�1

V ��
bU

NT

where �X =

264 {N �X1 � � � �XT 0
0 0 � � � 0 �X2
...

... � � � ...
...

0 0 � � � 0 �XT

375 ;

�Y =

264
(IN � �W )�Y1

(IN � �W )�Y2 � ��Y1
...

(IN � �W )�YT � ��YT�1

375 ;

HV �

26666664

V� �IN 0 � � � 0 0

�IN 2 � IN �IN
. . . 0 0

0 �IN 2 � IN
. . . 0 0

...
. . . . . . . . .

...
...

0 0 0 � � � 2 � IN �IN
0 0 0 � � � �IN 2 � IN

37777775 ;

V� = �IN + IN + (�S � IN) (IN � �2SS 0)
�1
(�S � IN)

0

� (�S � IN) (�S)
m�1 (IN � �2SS 0)

�1
(�S)m�1 (�S � IN)

0

� (�2SS 0)m�1 ;
S = (IN � �W )�1 ;

�bU = �Y ��X �
�b�1; :::; b�T ; b�0; b0� ;

The parameter m, which represents the number of periods since the process
started,should be de�ned in advance. It must be such that the eigenvalues of
the matrix �S lie inside the unit circle, because otherwise the matrix (�S)m�1

would become in�nite and yield a corner solution. Elhorst (2008) proposes to
include a third step procedure to estimate m. Beside increasing the computation
time, this additional step a¤ects minorily the results.

4. Given the set of parameters obtained in step 3, maximize the unconditional like-
lihood function as follows:

lnL (�; �; �) = �NT
2
ln 2�� NT

2
ln�2+T ln jIN � �W j� 1

2
ln jHV �j� 1

2�2
�bU 0H�1

V ��
bU

w.r.t. j�j < 1� �!max and j�j < 1� �!min

5. Repeat step 3, with the estimates obtained in step 4 and so on.., until convergence
is met.

Note that to reduce the computation time the jacobian term, ln jIN � �W j, in the
loglikelihood function is approximation by

PN
i=1 ln (1� �!i), where !i is the eigenvalue

of the matrix W . The inverse of matrix HV � is also estimated using summation opera-
tions instead of matrix calculus.
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5.A.3 Spatial Dynamic QMLE

The QMLE, presented by Yu et al. (2008), requires �rst the maximization of the
concentrated likelihood and then a bias correction. The estimation process involves the
following steps:

1. Demean all variables, denoted by ~.

2. Maximize the following concentrated likelihood function in order to estimate b�,b�, b�, b and b�2
lnL (�; �; �; ; �2) = �NT

2
ln 2� � NT

2
ln�2 + T ln jIN � �W j � 1

2�2

TP
t=1

~U 0t ~Ut

w.r.t.
TP
t=1

eY 0
�1
~Ut = 0

TP
t=1

�
W eY 0

�1

�0
~Ut = tr

�
W (IN � �W )�1

�
TP
t=1

gEX 0 ~Ut = 0

TP
t=1

gEN 0 ~Ut = 0

TP
t=1

~U 0t ~Ut = N�2

where ~Ut = (IN � �W ) eYt � heY�1;gEX;gENi [�; �0; 0]0
3. The bias-corrected estimator is then given by:26664

b�cb�cb�cbcb�2c

37775 =
26664
b�b�b�bb�2
37775� 1

T

�
�b��1b�

where b��1 can be approximated by the empirical Hessian matrix of the concen-
trated log likelihood function (an analytical expression for the matrix � can also
be found in Yu et al.) and the column matrix b is given by:

b =

26664
1
N
tr
��
IN � b� (IN � b�W )�1� (IN � b�W )�1�b�

N
tr
�
W (IN � b�W )�1 �IN � b� (IN � b�W )�1� (IN � b�W )�1�+ 1

N
tr
�
W (IN � b�W )�1�

0
0
1
2b�2

37775
4. Finally, the individual e¤ects are recovered as follows:

b� = 1
T

TP
t=1

(IN � b�cW )Yt � [Y�1;EX;EN ] hb�c; b�c0; bc0i0
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5.B Monte Carlo Results: Bias

Time lag variable �: Bias
T N SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0:042 0:035 0:031 0:053 0:036 0:002
20 20 0:030 0:024 0:027 0:041 0:008 0:000
30 20 0:027 0:024 0:032 0:036 0:009 0:005
40 20 0:026 0:023 0:032 0:040 0:011 0:002
10 30 0:044 0:031 0:030 0:020 0:022 0:004
20 30 0:029 0:024 0:029 0:039 0:012 �0:004
30 30 0:031 0:026 0:030 �0:002 0:010 0:004
40 30 0:024 0:022 0:027 0:024 0:000 0:001
10 50 0:044 0:029 0:034 0:056 0:018 0:000
20 50 0:033 0:027 0:033 0:036 0:010 0:003
30 50 0:027 0:023 0:033 0:041 0:004 �0:001
40 50 0:031 0:029 0:034 0:041 0:006 0:001
10 70 0:040 0:027 0:025 0:061 0:010 �0:003
20 70 0:029 0:021 0:024 0:046 0:002 �0:003
30 70 0:045 0:040 0:041 0:052 0:004 0:000
40 70 0:030 0:026 0:030 0:041 0:002 0:001

Spatial lag variable �: Bias
T N SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0:013 0:025 0:011 �0:063 �0:007 �0:012
20 20 0:015 0:018 0:017 �0:005 �0:012 �0:005
30 20 0:015 0:018 0:014 �0:029 �0:001 �0:001
40 20 0:011 0:013 0:007 �0:029 �0:009 �0:008
10 30 0:017 0:031 0:020 �0:001 �0:009 �0:029
20 30 0:018 0:022 0:021 �0:031 0:001 0:004
30 30 0:014 0:016 0:015 �0:030 �0:002 �0:003
40 30 0:012 0:014 0:012 �0:030 �0:002 �0:004
10 50 0:016 0:024 0:021 �0:040 �0:003 �0:003
20 50 0:012 0:017 0:014 �0:027 �0:004 �0:002
30 50 0:016 0:019 0:018 �0:032 �0:008 �0:007
40 50 0:014 0:015 0:015 �0:026 �0:004 �0:006
10 70 0:012 0:021 0:018 �0:045 �0:003 �0:002
20 70 0:012 0:016 0:015 �0:027 �0:004 �0:008
30 70 0:028 0:031 0:030 �0:025 �0:004 �0:001
40 70 0:016 0:017 0:017 �0:020 �0:004 �0:002

Exogenous lag variable �: Bias
T N SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 �0:046 �0:050 �0:033 0:040 0:014 0:030
20 20 �0:048 �0:050 �0:035 �0:027 �0:001 0:036
30 20 �0:037 �0:038 �0:020 0:014 0:007 0:014
40 20 �0:043 �0:040 �0:033 �0:009 0:000 0:013
10 30 �0:039 �0:041 �0:030 0:006 0:013 0:046
20 30 �0:037 �0:035 �0:028 0:005 0:017 0:006
30 30 �0:045 �0:044 �0:037 0:040 0:008 �0:003
40 30 �0:041 �0:040 �0:034 0:020 �0:003 0:009
10 50 �0:048 �0:052 �0:035 0:006 �0:006 0:008
20 50 �0:041 �0:041 �0:032 �0:003 0:002 0:012
30 50 �0:048 �0:046 �0:043 0:002 0:001 0:006
40 50 �0:047 �0:046 �0:041 �0:012 0:007 0:008
10 70 �0:037 �0:035 �0:026 0:021 0:017 0:013
20 70 �0:051 �0:049 �0:042 �0:024 0:009 0:021
30 70 �0:064 �0:062 �0:060 �0:020 0:004 0:001
40 70 �0:046 �0:044 �0:042 �0:014 0:002 0:008
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Endogenous lag variable : Bias
T N SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 �0:369 �0:375 �0:363 �0:336 �0:124 �0:106
20 20 �0:345 �0:346 �0:339 �0:345 �0:031 �0:018
30 20 �0:349 �0:349 �0:342 �0:334 �0:012 �0:017
40 20 �0:338 �0:338 �0:332 �0:324 �0:035 �0:032
10 30 �0:357 �0:362 �0:349 �0:376 �0:062 �0:067
20 30 �0:346 �0:346 �0:342 �0:336 �0:023 �0:026
30 30 �0:343 �0:343 �0:337 �0:357 �0:025 �0:013
40 30 �0:332 �0:332 �0:326 �0:329 �0:004 �0:010
10 50 �0:367 �0:370 �0:359 �0:340 �0:052 �0:045
20 50 �0:343 �0:342 �0:338 �0:335 �0:007 0:003
30 50 �0:344 �0:343 �0:339 �0:327 �0:017 �0:014
40 50 �0:347 �0:346 �0:341 �0:332 �0:010 �0:003
10 70 �0:359 �0:357 �0:354 �0:332 �0:021 �0:012
20 70 �0:341 �0:342 �0:339 �0:328 �0:004 �0:002
30 70 �0:350 �0:349 �0:347 �0:331 �0:009 �0:010
40 70 �0:338 �0:338 �0:336 �0:328 �0:011 �0:007
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5.C Monte Carlo Results: RMSE
Time lag variable �: RMSE

T N SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0:003 0:026 0:002 0:004 0:010 0:011
20 20 0:002 0:021 0:001 0:002 0:003 0:005
30 20 0:002 0:011 0:002 0:002 0:002 0:002
40 20 0:001 0:011 0:001 0:002 0:001 0:002
10 30 0:003 0:002 0:002 0:002 0:006 0:006
20 30 0:002 0:012 0:001 0:002 0:002 0:002
30 30 0:001 0:001 0:001 0:001 0:001 0:002
40 30 0:001 0:011 0:001 0:001 0:001 0:001
10 50 0:003 0:019 0:002 0:004 0:003 0:004
20 50 0:002 0:029 0:001 0:002 0:001 0:002
30 50 0:001 0:012 0:001 0:002 0:001 0:001
40 50 0:002 0:020 0:002 0:002 0:001 0:001
10 70 0:003 0:034 0:001 0:004 0:002 0:003
20 70 0:001 0:001 0:001 0:002 0:001 0:001
30 70 0:002 0:005 0:002 0:003 0:000 0:001
40 70 0:001 0:001 0:001 0:002 0:000 0:001

Spatial lag variable �: RMSE
T N SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0:002 0:008 0:002 0:006 0:015 0:013
20 20 0:001 0:008 0:001 0:002 0:003 0:008
30 20 0:001 0:003 0:001 0:003 0:003 0:002
40 20 0:001 0:001 0:001 0:002 0:002 0:002
10 30 0:001 0:002 0:002 0:004 0:011 0:009
20 30 0:001 0:004 0:001 0:002 0:003 0:002
30 30 0:001 0:001 0:001 0:002 0:002 0:002
40 30 0:001 0:003 0:001 0:002 0:001 0:001
10 50 0:001 0:007 0:001 0:003 0:005 0:005
20 50 0:001 0:013 0:001 0:001 0:002 0:002
30 50 0:001 0:003 0:001 0:002 0:001 0:002
40 50 0:001 0:001 0:001 0:001 0:001 0:001
10 70 0:001 0:013 0:001 0:003 0:004 0:004
20 70 0:000 0:001 0:001 0:001 0:001 0:001
30 70 0:001 0:002 0:001 0:003 0:001 0:001
40 70 0:001 0:001 0:001 0:001 0:001 0:001

Exogenous lag variable �: RMSE
T N SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0:006 0:006 0:006 0:008 0:016 0:032
20 20 0:004 0:004 0:004 0:004 0:006 0:020
30 20 0:003 0:003 0:003 0:003 0:004 0:006
40 20 0:003 0:008 0:003 0:002 0:003 0:006
10 30 0:005 0:005 0:005 0:005 0:011 0:019
20 30 0:003 0:003 0:003 0:002 0:004 0:007
30 30 0:003 0:003 0:003 0:004 0:003 0:007
40 30 0:003 0:003 0:003 0:002 0:002 0:003
10 50 0:004 0:006 0:004 0:003 0:007 0:010
20 50 0:003 0:003 0:003 0:002 0:002 0:005
30 50 0:003 0:003 0:003 0:001 0:002 0:004
40 50 0:003 0:020 0:003 0:002 0:001 0:002
10 70 0:003 0:003 0:003 0:002 0:004 0:007
20 70 0:003 0:003 0:003 0:001 0:002 0:004
30 70 0:004 0:004 0:004 0:003 0:001 0:002
40 70 0:003 0:003 0:002 0:001 0:001 0:002
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Endogenous lag variable : RMSE
T N SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0:143 0:145 0:137 0:120 0:085 0:088
20 20 0:121 0:121 0:116 0:121 0:029 0:034
30 20 0:121 0:121 0:114 0:115 0:015 0:019
40 20 0:118 0:122 0:111 0:107 0:010 0:011
10 30 0:129 0:131 0:124 0:146 0:042 0:045
20 30 0:123 0:123 0:118 0:113 0:017 0:023
30 30 0:119 0:118 0:114 0:127 0:009 0:012
40 30 0:114 0:113 0:107 0:109 0:006 0:008
10 50 0:135 0:139 0:129 0:118 0:026 0:030
20 50 0:119 0:118 0:113 0:113 0:008 0:010
30 50 0:119 0:118 0:113 0:108 0:006 0:008
40 50 0:118 0:125 0:113 0:110 0:004 0:006
10 70 0:129 0:129 0:126 0:111 0:016 0:014
20 70 0:118 0:117 0:114 0:108 0:007 0:009
30 70 0:123 0:122 0:120 0:109 0:004 0:006
40 70 0:115 0:115 0:112 0:108 0:004 0:005
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5.D Monte Carlo Results: SE accuracy
Time lag variable �: SE accuracy

T N SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0:125 0:095 0:138 0:156 0:479 0:445
20 20 0:086 0:067 0:093 0:102 0:305 0:281
30 20 0:059 0:057 0:060 0:072 0:202 0:192
40 20 0:050 0:048 0:052 0:061 0:169 0:161
10 30 0:106 0:113 0:121 0:117 0:399 0:397
20 30 0:062 0:058 0:069 0:076 0:227 0:216
30 30 0:048 0:054 0:053 0:059 0:168 0:158
40 30 0:044 0:042 0:047 0:055 0:145 0:142
10 50 0:081 0:065 0:093 0:097 0:287 0:288
20 50 0:046 0:035 0:051 0:055 0:170 0:171
30 50 0:041 0:038 0:043 0:048 0:139 0:139
40 50 0:037 0:031 0:039 0:044 0:128 0:118
10 70 0:067 0:047 0:083 0:085 0:276 0:270
20 70 0:038 0:044 0:046 0:049 0:152 0:151
30 70 0:059 0:054 0:063 0:066 0:173 0:170
40 70 0:032 0:035 0:036 0:037 0:106 0:105

Spatial lag variable �: SE accuracy
T N SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0:116 0:090 0:119 0:120 0:353 0:388
20 20 0:083 0:069 0:079 0:079 0:258 0:247
30 20 0:063 0:054 0:055 0:063 0:189 0:184
40 20 0:052 0:044 0:045 0:052 0:157 0:159
10 30 0:107 0:088 0:116 0:120 0:364 0:356
20 30 0:072 0:061 0:069 0:075 0:210 0:219
30 30 0:056 0:048 0:053 0:064 0:172 0:172
40 30 0:042 0:036 0:038 0:045 0:123 0:123
10 50 0:076 0:063 0:086 0:080 0:250 0:259
20 50 0:052 0:044 0:051 0:057 0:170 0:176
30 50 0:044 0:038 0:041 0:046 0:137 0:134
40 50 0:038 0:033 0:035 0:040 0:116 0:117
10 70 0:084 0:068 0:102 0:091 0:267 0:292
20 70 0:067 0:057 0:068 0:067 0:201 0:208
30 70 0:051 0:045 0:051 0:049 0:153 0:153
40 70 0:034 0:031 0:034 0:035 0:102 0:104

Exogenous lag variable �: SE accuracy
T N SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0:857 35:026 0:778 0:807 0:952 0:705
20 20 0:805 13:777 0:648 0:661 1:062 0:553
30 20 0:790 8:734 0:504 0:592 0:943 0:752
40 20 0:735 2:839 0:451 0:652 0:986 0:694
10 30 0:835 21:602 0:767 0:780 0:946 0:767
20 30 0:740 8:765 0:582 0:697 1:030 0:783
30 30 0:661 4:865 0:494 0:541 0:980 0:596
40 30 0:705 3:876 0:420 0:515 1:049 0:734
10 50 0:765 9:543 0:678 0:714 0:888 0:806
20 50 0:657 4:673 0:465 0:633 1:137 0:688
30 50 0:660 2:954 0:425 0:561 0:970 0:607
40 50 0:548 0:416 0:356 0:470 1:120 0:769
10 70 0:752 8:827 0:735 0:728 1:022 0:783
20 70 0:553 2:743 0:489 0:639 1:055 0:689
30 70 0:646 2:030 0:534 0:356 0:977 0:692
40 70 0:622 1:434 0:463 0:518 1:071 0:707
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Endogenous lag variable : SE accuracy
T N SMLE SDMLE SDQMLE LSDV DIF-GMM SYS-GMM
10 20 0:801 21:269 0:737 0:758 0:881 0:887
20 20 0:792 9:052 0:684 0:792 0:879 0:787
30 20 0:876 6:540 0:613 0:680 0:985 0:862
40 20 0:827 2:529 0:540 0:713 1:092 0:962
10 30 0:894 14:899 0:894 0:807 0:880 0:894
20 30 0:794 6:101 0:669 0:794 0:932 0:816
30 30 0:787 3:800 0:615 0:703 1:045 0:921
40 30 0:751 2:694 0:518 0:674 1:098 0:935
10 50 0:840 5:838 0:816 0:796 0:904 0:883
20 50 0:807 3:657 0:599 0:779 1:052 0:948
30 50 0:820 2:394 0:539 0:636 1:007 0:885
40 50 0:730 0:525 0:478 0:658 0:993 0:855
10 70 0:812 5:820 0:831 0:889 0:939 1:018
20 70 0:885 2:806 0:728 0:917 0:943 0:855
30 70 0:718 1:501 0:629 0:546 1:017 0:883
40 70 0:738 1:150 0:603 0:635 0:946 0:825
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