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Abstract

I show that if an agent is risk neutral over a set of alternatives contained in a

Euclidean space, then her utility function decreases linearly in the city block distance

to her ideal point. Given a set of alternatives which is not contained in a Euclidean

space, I find simple necessary and sufficient conditions on preferences such that, for any

p ≥ 1, there exists a mapping of the set of alternatives into a Euclidean space where
the utility of the agent is a decreasing function of the lp distance to her ideal point.

City block and quadratic Euclidean utilities are the special cases p = 1 and p = 2.

For these cases I extend the result to a society with multiple agents, finding additional

conditions such that a common space exists in which the preferences of every agent are

representable by city block utilities, or by quadratic Euclidean utilities.

JEL Classification: D81, D72.

Keywords: Utility representation, spatial models, multidimensional preferences,

spatial representation, lp norms, city block preferences.

In decision theory, game theory or social choice, a multidimensional spatial model

is used to represent preferences and choices over objects that have multiple attributes or

dimensions and values within each attribute have a natural order so that objects can be

ordered according to their values in any given attribute. Political competition over multiple

∗Macartan Humphreys provided crucial ideas that are key steps to the main results of this paper, and I

am accordingly grateful to him. I also thank Miguel Ángel Ballester, Salvador Barberà, Federico Echenique,

Michael Laver and Jordi Massó for their valuable comments and suggestions. I wrote a first draft while

visiting the Department of Economics at Universitat Autònoma de Barcelona, where I enjoyed an ideal

research environment.
†eguia@nyu.edu 19 West 4th, 2nd floor. Dept. of Politics, NYU. New York, NY 10012, US.

1



policy issues is one application of spatial models. Each policy issue corresponds to a given

dimension on a multidimensional vector space. A standard assumption on preferences is

that each agent has an ideal policy bundle, represented by a most preferred point in a

multidimensional policy space, and that preferences over policy bundles are representable

by a utility function defined over the vector space that is decreasing in the Euclidean distance

to the ideal policy bundle, either linearly, or in quadratic or exponential form. If preferences

are Euclidean or more generally smooth, for a generic distribution of ideal points the core

of simple majority is generically empty and there exists no stable policy outcome under

simple majority voting rule, as shown by Plott [19]. On the other hand, if preferences are

linearly decreasing in the l1 or city block distance to an ideal policy bundle instead of in

the Euclidean distance, then under general conditions, the majority rule core is not empty

and there exists a stable policy outcome, as shown by Rae and Taylor [21], Wendell and

Thorson [26], McKelvey and Wendell [15] and, more recently, Humphreys and Laver [8].

In this paper, I provide theoretical foundations for the assumption of city block prefer-

ences, and hence, indirectly, for the existence of core outcomes in multidimensional political

competition under majority voting.

Empirical work by Grynaviski and Corrigan [7] finds that a model based on the city

block or l1 metric outperforms a model based on the Euclidean or l2 metric in explaining

the choices of US voters. Using data from Norway, Westholm [27] obtained similar results

in favor of the city block metric over a model based on the square of the Euclidean distance.

A city block metric calculates the distance between two points in a multidimensional space

by calculating the absolute value of the difference of the two vectors on each dimension, and

then aggregating across all dimensions by simple addition or by a weighted sum. Research

on artificial intelligence and cognitive sciences such as the work of Shepard [23] and other

psychology papers reviewed by Arabie [1] argues that given objects with multiple attributes

such that agents perceive attributes to be separable, agents measure distance on these

separable attributes by aggregating the distance in each attribute. Therefore, if attributes

are separable, geometric models should use the city block or l1 metric rather than the

Euclidean or l2 metric.

I make a direct theoretical argument in favor of the city block metric, irrespective of

how agents cognitively perceive and measure distance. I provide an axiomatic foundation

for utility functions that depend on the city block metric, finding conditions on preferences
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over policy bundles such that the utility function that represents these preferences must be

a function of the city block metric. First I consider a set of alternatives that is a subset

of a Euclidean space. Then I take a step back toward more remote primitives, studying

preferences over a more abstract set of alternatives that is not a subset of a Euclidean space.

Given a set of alternatives that is a subset of a Euclidean space, I show that if the

preferences of an agent are representable by a utility function and the agent is risk neutral in

the given Euclidean space, then the utility function that represents the preferences is linearly

decreasing in the city block distance to the ideal policy bundle. Risk neutrality is a strong

and intuitively problematic assumption in an economic environment in which the dimensions

corresponds to different goods that the agent can consume. Diminishing marginal utility

of consumption is then an argument to assume that the agent is risk averse. However, as

noted by Osborne [18], preferences over ideological issues are conceptually different than

preferences over consumption of goods, and the evidence of risk aversion over consumption

is not relevant to the question of risk attitudes over ideological issues. For instance, it is

highly unclear that enjoying a second unit of civil liberties provides less extra utility than

enjoying a first one. It depends not only on the attitude toward risk of the agent, but also on

the chosen representation of units of civil liberty in a space. Using data from the American

National Election Studies, Berinsky and Lewis [4] find that US voters are risk neutral. They

reach this finding using data on the self-placement of the citizen on a seven-point ideology

scale, the location of the candidates as perceived by the voter, the uncertainty about this

perception, and the candidate preferred by the voter.

If agents are risk neutral given a set of alternatives defined as a subset of a Euclidean

space, the utility function that represents the preferences of the agent is linearly decreasing

in the l1 distance to the ideal policy bundle of the agent. It follows that theoretical models

ought to discard the Euclidean distance and use the city block distance instead as the stan-

dard to construct specific utility functions in any application where the findings of Berinsky

and Lewis are robust and agents are risk neutral in the chosen spatial representation of

alternatives.

In many applications, there is no natural spatial representation of the policy alternatives.

Rather, the spatial representation is an abstract construction. Alternatives have multiple

attributes and each attribute is endowed with a natural order, but the exact location of

each alternative in a Euclidean space and the distance between alternatives is an object of
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choice for the theorist who arbitrarily chooses to endow the set of alternatives with a spatial

representation by mapping alternatives into a Euclidean space. For instance, Freedom House

classifies countries according to the civil rights they allow, dividing them into seven tiers,

more freedom corresponding to a lower tier. While we may accept the partial order of

countries given by these tiers, the one-to-seven scale is arbitrary and it is difficult to accept

that the distance in rights from tier one to tier two is equal to the distance from tier two

to tier three in any objective sense.

In the second part of the paper I consider abstract alternatives that have multiple

attributes. In the political economy application, an alternative is a policy bundle, and

each attribute corresponds to a given political issue. Although policies on a given issue

are endowed with a natural order, there is no exogenously given spatial representation of

policies. Instead, I take as a primitive a preference relation on the abstract set of policy

bundles and I assume that this preference is representable by a utility function. I seek

conditions on preferences such that there exists a mapping of the set of policy bundles

into a Euclidean space such that each dimension in this space corresponds to an issue, the

location of policies along each dimension in the space is monotonic in the exogenous order

of policies within each issue, and the preferences over points in the Euclidean space are

representable by a utility function that is linearly decreasing in the city block distance to

the ideal point of the agent.

I find that the necessary and sufficient conditions on primitives for there to be a spatial

representation such that in this space, preferences can be represented by a utility function

that is decreasing in the p power of the lp distance to an ideal point are the same for any of

Minkowski’s [17] family of lp norms, lp(x) =
µP

k

|xk|p
¶1/p

. Linear city block preferences or

quadratic Euclidean preferences are only specific cases of this general result. The preferences

over the original set of policy bundles must be multi-attribute single peaked and modular.

Multi-attribute single peakedness is an extension of the standard notion of single peakedness,

so that preferences are single peaked on any given dimension. Modularity is a separability

condition consistent with the arguments of the psychology literature I mentioned above, such

as Shepard [23] and Arabie [1]. Preferences are modular if an agent evaluates attributes or

policies independently of each other, so that her preference over one policy is invariant with

changes in other policies.

To my knowledge, the directly related literature is scant. Kannai [9] and Richter and
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Wong [22] find conditions such that preferences in a given space can be represented by a

concave utility function, but they do not consider a mapping into a new space in which the

utility function could be concave. The closest reference is by Bogomolnaia and Laslier [6],

who seek to find how many dimensions must be used to represent any ordinal preference

profile over a finite number of alternatives using Euclidean preferences. They do not require

that the spatial representation of alternatives respect a natural order within each attribute,

and they are interested only in a finite number of alternatives, disregarding, for instance,

lotteries. Hence, for a single individual, their problem is trivial. Any preference can be

represented in just one dimension by assigning alternatives to natural numbers according to

the preference order of the agent. By contrast, I consider an infinite number of alternatives

by studying lotteries over alternatives, and I seek to find a spatial representation in K

dimensions that is consistent in each dimension with the natural order of values within

each of exogenously given K attributes. Since the problem I address has more restrictions,

not every preference relation is representable in any space using the city block distance

or Euclidean distances, even if there is a single agent. I find axiomatic conditions on the

preference relation under which, in some space, it is representable by a utility function that

depends on any desired lp norm.

For a society with multiple agents I find further necessary and sufficient conditions to

guarantee that there exists a common space that satisfies the restriction on the number of

dimensions and the monotonicity with respect to the natural order of values within each

attribute, and is such that preferences over points in this common space can be represented

by means of utility functions that are linearly decreasing in the city block distance to

the ideal point of each agent. I also find a different set of conditions such that there

exists a space in which preferences can be represented by a utility function that is linearly

decreasing in the square of the Euclidean distance. As noted above, the result on city

block preferences has very important implications for political competition over multiple

dimensions: If preferences can be represented by the city block distance, for open sets of

distributions of ideal policies there exists a policy bundle in the core of the majority voting

rule so that it is a stable outcome, which contrasts sharply with the generic inexistence of

stable policies in the majority rule core if preferences are smooth.

The main contribution of this paper is to provide theoretical foundations for the assump-

tion of utility functions that are decreasing in the city block distance to an ideal policy in a
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multidimensional policy space, parting from abstract primitives in which alternatives have

multiple attributes and are endowed with a natural order within each attribute.

An Exogenous Spatial Representation

Let X ⊂ RK be a convex set of alternatives with a non empty interior. Let ∆X be the

set of all simple lotteries defined over X. For any given lottery p ∈ ∆X, let p(x) denote

the probability that p assigns to x ∈ X. For any p ∈ ∆X, the support of p is the set

{x : p(x) > 0}. Slightly abusing notation, let x, y, z, w ∈ X denote as well degenerate

lotteries, so they belong to ∆X. Let xk denote the k − th coordinate of x and let x−k

denote the vector of K − 1 dimensions that contains all the coordinates of x except xk.
Then we can write x as x = (xk, x−k).

Let % be a complete and transitive binary relation on ∆X representing the weak pref-

erences of agent i over lotteries on X. Let x Â y denote (x % y, not y % x) and let x ∼ y

denote (x % y, y % x). Let % satisfy the independence and archimedean axioms due to Von
Neumann and Morgenstern [25].

Axiom 1 (Archimedean): If p, q, r ∈ ∆X such that p Â q Â r, then there is an α ∈ (0, 1)
such that αp+ (1− α)r ∼ q.

Axiom 2 (Independence): For all p, q, r ∈ ∆X and any α ∈ (0, 1), then p % q if and only

if αp+ (1− α)r % αq + (1− α)r.

Then the preferences over lotteries can be represented by a utility function u : X −→ R

such that for any p, q ∈ ∆X, p % q if and only if
P

X p(x)u(x) ≥
P

X q(x)u(x). This is part

of the celebrated expected utility theorem by Von Neumann and Morgenstern.

Assume that % has a unique maximal element x∗ ∈ X such that x∗ Â p for any p ∈ ∆X,

p 6= x∗. The degenerate lottery x∗ is the most preferred alternative of the agent. For

convenience, relocate the origin of coordinates so that x∗ = (0, ..., 0). The set X is divided

into 2K orthants. Each orthant is one of the subsets composed of the points that do not

contain both points that are strictly positive and points that are strictly negative in any

given dimension; the analog of a quadrant on R2 or an octant on R3. Let Oj denote an

arbitrary one of them, for j ∈ {1, 2, 3, ..., 2K}
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An agent is risk neutral if for any p ∈ ∆X , p ∼
X
x∈X

p(x)x. Note that
X
x∈X

p(x)x ∈ X is

the expectation value of lottery p. A risk neutral agent is indifferent between a lottery, or the

expected value of the lottery. This is the standard condition in economics, with non satiated

agents who always want more good to consume. However, with ideological preferences, that

are satiated at x∗, this condition is violated by all agents: For any p ∈ ∆X such thatX
x∈X

p(x)x = x∗ and p(x∗) < 1, the agent prefers her ideal point for sure over the lottery.

This preference is not really indicative of an attitude towards risk, but rather, of a preference

for attaining the best outcome for certain, over variance over outcomes that are either too

much or too little with respect to the optimum.

A weaker risk neutrality condition is appropriate. I call it orthant risk aversion. The in-

tuition simply tries to pin back the notion of risk in an environment with satiated preferences

to the standard definition of risk with monotonic preferences. Consider the orthant that is

non positive in all dimensions. Within that orthant, the agent wants more of everything.

This is the standard economic environment. Hence the standard risk neutrality concept ap-

plies, within this orthant. A risk neutral agent is indifferent between a lottery that assigns

positive probability to outcomes in this orthant and its expected value. I impose the same

condition within any other orthant: A risk neutral agent is indifferent between any lottery

that assigns positive probability to outcomes in only one orthant and the expected value of

this lottery.

Axiom 3 (Orthant risk neutrality) p ∼
X
x∈X

p(x)x for any p whose support is contained in

a single orthant.

Similarly, % is orthant risk averse if
X
x∈X

p(x)x Â p for any p whose support is contained

in a single orthant and contains x, y such that x Â y. That is, the preferences of the agent

are orthant risk averse if given any lottery that introduces uncertainty about the desirability

of the outcome, but the outcome is sure to be within an orthant, the agent strictly prefers

the expected value of the lottery for sure over the lottery.

I show that if preferences over lotteries satisfy orthant risk neutrality, along with com-

pleteness, transitivity, independence and the archimedean axiom, then the preferences over

sure outcomes can be represented by a utility function that is linear in the distance mea-

sured by a generalization of the l1 or city bloc norm. To state the result formally, I first

need to define the generalized weighted city block norm.
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Definition 1 For any λ ∈ R2K+ , let k·kλ be the generalized weighted city block norm:

k·kλ =
KX
k=1

λk(xk)|xk|, with λk(xk) =

⎧⎨⎩ λk+ > 0 if xk > 0

λk− > 0 if xk < 0

⎫⎬⎭, k ∈ {1, ...,K}.
Let (X, k·kλ) be the metric space with set of elements X and distance d(x, y) = kx− ykλ .

The standard l1 norm, which I denote k·k1 has equal weights in every dimension, and
on each side of the origin, that is, λk+ = λk− = λj+ = λj− for any j, k ∈ {1, ...,K}.
A standard weighted city block norm has different weights for each dimension, but equal

weights along each dimension, λk+ = λk− for any k ∈ {1, ...,K}. It corresponds to the
intuition of computing time of driving in Manhattan, were driving north-south along an

avenue is faster than driving east-west along a street. The generalized weighted city bloc

norm allows for weights to be different to each side of the origin along the same dimension.

For an intuition, this captures the time of driving where not only north-south avenues are

faster, but the east and west sides of the city have different qualities of pavement on the

streets, so that it is easier to transit in some quarters than others, even while moving in the

same direction.

Now I state the first result of this paper.

Theorem 1 Let % be orthant risk neutral, have a unique maximal element x∗ and be rep-

resentable by the expected utility of a function u : X −→ R. Then ∃λ ∈ R2K+ such that u is

linearly decreasing in distance to x∗ in the space (X, k·kλ).

Proof. Recall x∗ = {0}K and Oj denotes an arbitrary orthant j, for any j ∈ {1, ..., 2K}.
Let int(X) be the interior of X, let N(x, ε) be the neighborhood of radius ε around x,

and let O1 be the non negative orthant. Let Y ⊆ RK be the smallest Cartesian product

Y = Y1 × Y2... × YK such that Yk ⊆ R for each k ∈ {1, ...,K} and X ⊆ Y. For notational

simplicity, let u(x∗) = 0.

Since int(X) 6= ∅, ∃j ∈ {1, ..., 2K} such that ∃x ∈ int(X)∩Oj with xk 6= 0 for every k ∈
{1, ...,K}.Without loss of generality, assume j = 1 and choose a point x ∈ int(X)∩O1, such
that xk > 0 for every k ∈ {1, ...,K}. For each dimension k ∈ {1, ...,K} and a sufficiently
small ε such that N(x, ε) ∈ O1, choose an xk ∈ N(x, ε) such that xk = αkx + (1 − αk)y

k

for some αk ∈ [0, 1) and some yk such that ykk > 0 and yki = 0 for all i 6= k, i ∈ {1, ...,K}.
That is, each xk is a convex combination of x and a point in the non negative orthant

that differs from x∗ only on coordinate k. I construct an extended preference relation %S
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that is orthant risk neutral in Y and is such that for any x, y ∈ X, x %S y ⇐⇒ x % y.

I also extend the domain of u from X to Y. In order to satisfy orthant risk neutrality in

Y, u(xk) = αku(x) + (1 − αk)u(y
k), or u(yk) = u(xk)−αu(x)

(1−α) . By orthant risk neutrality, for

any δ ≥ 0, u(δyk) = δu(yk). Let (yk, 0) denote an arbitrary point y that assigns value yk to

coordinate k and value 0 to any other coordinate. For any γ < 0, and any k ∈ {1, ...,K}, let
yk,γ denote the point (yk,γk , 0) ∈ Y such that u(yk,γ) = γ, if such point exists. Arbitrarily

fix λ1+ = 1. For any k ∈ {2, ...,K}, and γ < 0 close enough to zero such that yk,γk exists for

every k, let λk+ =
y1,γ1
yk,γk

. For this γ, let Z = {x ∈ O1 ∩X : x =
KP
k=1

pky
k,γ with pk ≥ 0 for all

k and
KP
k=1

pk = 1}. That is, Z is the set of points in the non negative orthant and in X that

can be constructed as a linear combination of points in the axis of Y that generate utility

γ. By orthant risk neutrality, u(z) = γ for any z ∈ Z.

Any x ∈ O1 ∩ X can be expressed as a linear transformation αz for some α ≥ 0 and
some z ∈ Z, or, rather, there exists a function z(x) : O1∩X −→ Z, in particular, z(x) = x

α .

By orthant risk neutrality, u(x) = αγ. The distance to x∗ from such x in the space (X, ||·||λ)
is

KX
k=1

λk+xk =
KX
k=1

λk+αzk =
KX
k=1

λk+αpky
k,γ
k =

KX
k=1

y1,γ1

yk,γk

αpky
k,γ
k = αy1,γ1 .

The first equality holds because x is a transformation of z. The second holds because z is

a linear combination of {y1,γ , ..., yK,γ}. The third equality simply expands the formula of
λk+ and the last is algebra. Distance ||·||λ is linearly increasing in α and utility is linearly

decreasing in α. So utility is linearly decreasing in distance ||·||λ, within the non negative
orthant.

The non negative orthant was arbitrarily chosen; the same result holds in any other

orthant. Specifically, for each dimension k, repeating the above procedure on orthant j, we

find weights λjk that correspond to the weight on dimension k found in the proof constructed

for orthant j. Consider any two orthants O1 and O2 that differ on the sign on dimension k

but coincide on the sign on all other dimensions, and the sign in at least one dimension is

positive. Take x ∈ O1 ∩O2 such that xi > 0 and xj = 0 for all j 6= i. That is, take a point

that is positive in only one dimension and belongs to both O1 and O2. Since x belongs to

the same indifferent curve when measured as a point in orthant O1 or orthant O2, if λ1i and

λ2i respectively denote the weight of dimension i in the norm used in orthants O
1 and O2, it

must be λ1i = λ2i . Orthants O
1 and O2 were arbitrarily chosen among the class of orthants
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that are positive on dimension i and differ on the sign only on dimension k. So for any two

orthants that are positive on dimension i and differ on only one dimension, the weight on

dimension i is the same. By induction, it follows that the weight on dimension i is the same

for all orthants that are positive on dimension i. But i positive was arbitrary, so it follows

that for any i ∈ {1, ...,K}, the weight on dimension i in the metric used on all orthants

that are positive in dimension i is a common parameter λi+, and, similarly, the weight on

dimension i is λi− for all orthants that are negative on dimension i.

The presence of a maximal element captures the satiated preferences typical in a space

of ideological issues. The theorem then says that if the agent is risk neutral in each orthant,

then only a generalization of the city block distance represents preferences.

A common assumption in spatial models is that preferences are symmetric on each

dimension, taking the maximal element as the origin of coordinates.

Axiom 4 (Spatial symmetry) For any x ∈ X and any k ∈ {1, 2, ...,K}, if (−xk, x−k) ∈ X

then (xk, x−k) ∼ (−xk, x−k).

I call this property spatial symmetry to distinguish it from the unrelated definition of

symmetry of binary relations.

Corollary 1 Let % be orthant risk neutral, spatially symmetric, contain a degenerate max-
imal element x∗ and be representable by the expected utility of a function u : X −→ R.

Then ∃(λ1, λ2, ..., λK) ∈ RK
+ such that u is linearly decreasing in distance to x∗ in the

space (X, k·kλ), where k·kλ is a weighted city block metric so that λk+ = λk− for all

k ∈ {1, 2, ...,K}.

If preferences are spatially symmetric, along each dimension utility loses are equal in

each direction away from the origin, so the generalized weighted city block metric reduces

to a standard weighted city block metric where the weights correspond to the importance

of each dimension, without distinctions between each of the two half-spaces along each

dimension.

Utility functions that depend on the Euclidean distance do not represent risk neutral

agents. It is well known that concave utility functions represent risk averse individuals.

It is perhaps less obvious that utility functions that are linear on Euclidean distance are

neither orthant risk neutral, nor orthant risk averse. Linear Euclidean preferences are not
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separable once we consider lotteries over alternatives and the risk attitude of the agent varies

depending on the lottery under consideration. An agent with linear Euclidean preferences

is risk neutral about lotteries that involve outcomes that all lay in a ray away from the ideal

point, but she is risk averse about any other lotteries. For instance, an agent with ideal

policy (0, 0) and linear Euclidean preferences is indifferent between (1, 0) for sure or an even

lottery between (0, 0) and (2, 0). However, if we change the value of the second dimension,

and make the same comparison, the agent prefers (1, y) to an even lottery between (0, y)

and (2, y) for any y 6= 0.
A practical implication is that the preferences of agents that are risk neutral, or risk

averse, should not be represented by a utility function that is linear on Euclidean distance,

choosing instead a utility representation that is concave in some distance if the agents are

risk averse, or linear on the city block metric if the agents are risk neutral. Risk aversion

is a more frequent assumption, but, as noted by Osborne [18], risk aversion over economic

decisions does not imply risk aversion over ideological issues and “in the absence of any

convincing empirical evidence, it is not clear which of the assumptions [concavity, linearity,

or convexity] is more appropriate.” However, recent empirical work by Berinsky and Lewis

[4] finds an application where US voters are risk neutral.

In summary, recent empirical work has found applications in which agents are risk

neutral on their preferences defined over the spatial representation of the policy space used

in these applications. If these findings are robust, theoretical models of political competition

in these applications should assume that utility is linear in the city block distance.

An Endogenous Spatial Representation

Theorem 1 shows that if agents have risk neutral preferences over points in a multidimen-

sional space that are representable by a utility function, then this utility function is linear

in distance to the ideal point, where distance is measured according to a generalization of

the l1 norm. It is important to note that the multidimensional space is itself an abstract

representation of the set of policy alternatives. The units of measurement of the ideological

dimensions and the mapping from specific policies to their location on the spatial repre-

sentation may be objects of design. In some applications, the spatial representation of

alternatives may be exogenously given by the available data, as it is, for instance, in the
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empirical work on US voters by Berinsky and Lewis [4], where voters identify the point

where they subjectively locate the candidates. In other applications, there may not be a

clear way to represent alternatives on a Euclidean space, and the theorist may choose among

competing mappings of the set of alternatives into the Euclidean space. In this environment,

risk neutrality is an assumption on risk attitudes given the chosen spatial representation,

or alternatively, we can interpret the assumption of risk neutrality as a joint assumption on

the mapping of the set of alternatives to the space and the risk attitude of the agent. A

now consider a more abstract model that take as primitive an ordinal preference relation

over a set of policies with multiple attributes, without any spatial representation.

Let the set of attributes, denoted A, be of size K. For each attribute k ∈ A = {1, ...,K},
let Xk be the set of possible values on attribute k. This set can be finite, countable or

uncountable. Let the elements of Xk be ordered by a linear order ≥k and let this order
have a unique maximal and minimal element. Given the possible policies on each issue, let

the set of alternatives be the Cartesian product X = X1 ×X2 × ... ×XK and let ∆X be

the set of simple lotteries on X. In a political economy application, each attribute k ∈ A is

a policy issue and X is the set of alternative policy bundles.

The primitive on preferences is a complete and transitive binary relation % on ∆X

that satisfies the archimedean and independence axiom, so that % is representable by the

expected utility of a utility function defined over X.

A spatial representation of X is a vector valued function f = (f1, f2, ..., fK) such that

fk : Xk −→ R is strictly increasing in ≥k for each k ∈ A and f(x) ∈ RK represents

alternative x ∈ X. The motivating question is under what conditions on % there exists

a spatial representation f such that the preferences over f(X) ⊆ RK are risk neutral.

Under these conditions, the preferences % over the abstract set X can be represented by a

utility function that is linearly decreasing in a generalized l1 distance to an ideal point in

a Euclidean space. Let L(x, y) be a lottery that assigns equal probability to x and y. Let

x ∨ y = (max{x1, y1}, ...,max{xK , yK} and x ∨ y = (min{x1, y1}, ...,min{xK , yK} be the
join and the meet of x and y

Axiom 5 (Modularity) For all x, y ∈ X, L(x, y) ∼ L(x ∨ y, x ∧ y).

Modular preferences are such that the agent evaluates changes in one attribute in the

same manner, regardless of the values in other attributes. For added intuition, consider
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an example with two issues and let x, y lie in the non positive quadrant with respect to

the ideal policy, so that among all four options in the lotteries, x ∨ y is the best outcome
in both issues, x ∧ y is the worst outcome in both issues, and x and y are each good in

one issue and bad in the other. If the outcome is determined by two lotteries, one on each

issue, and these lotteries assign equal probability to the good and bad outcome on their

respective issue, an agent with modular preferences is indifferent about the correlation of

the two lotteries. Birkhoff [5] calls a function f satisfying f(x)+ f(y) = f(x∨ y)+ f(x∧ y)
a valuation. See Kreps [10], Milgrom and Shannon [16] and Topkis [24] for related ordinal

and cardinal definitions of modularity.

Axiom 6 (Multi-attribute single peakedness) ∃!x∗ ∈ X such that for each k ∈ {1, 2, ...,K},
and any x1k, x

2
k, x

3
k, x

4
k ∈ Xk :

x1k ≤k x2k ≤k x∗k ≤k x3k ≤k x4k =⇒ (x2k, x
∗
−k) Â (x1k, x∗−k) and (x3k, x∗−k) Â (x4k, x∗−k).

A multi-attribute single peaked preference relation has a best policy such that, mov-

ing away from the peak on any given attribute, preferences decrease, as in a unidimen-

sional single peaked relation. This condition of single-peakedness is weaker than the multi-

dimensional single peakedness used by Barberà, Gul and Stacchetti [2], but together with

modularity, it suffices to guarantee that their stricter restriction is also satisfied, and that

alternatives and preferences can be represented in a vector space such that the utility of

the agent is a decreasing function of any desired lp norm. Let ||·||p =
µ

KP
k=1

|fk(xk)|p
¶ 1

p

be

the lp norm.

Theorem 2 Suppose % is representable by the expected utility of u : X −→ R. For any

p ∈ [1,∞), a spatial representation fp = (fp1 , ..., f
p
K) such that

i) fpk : Xk −→ R is strictly increasing in ≥k for each k ∈ {1, ...,K}, and

ii) u(x) = −(kfp(x)kp)p,

exists if and only if % is multi-attribute single peaked and modular.

Proof. (only if). Suppose preference % is not multi-attribute single peaked. Then, there

exists k ∈ {1, ...,K} and x1, x2 such that either x1k ≤ x2k ≤ x∗k or x
∗
k ≤ x2k ≤ x1k, and

x1 = (x1k, x
∗
−k) Â (x2k, x

∗
−k) = x2, so u((x1k, x

∗
−k)) > u((x2k, x

∗
−k)). Note that for any f,

13



¯̄¯̄
f(x1)

¯̄¯̄
1
−
¯̄¯̄
f(x2)

¯̄¯̄
1
= fk(x

1
k)− fk(x

2
k) and ||f(x∗)||1−

¯̄¯̄
f(x2)

¯̄¯̄
1
= fk(x

∗
k)− fk(x

2
k). Since

fk is strictly increasing in ≥k, min{fk(x∗k), fk(x1k)} < fk(x
2
k) < max{fk(x∗k), fk(x1k)}. But

u(x2) < min{u(x1), u(x∗)}. Hence u(x) is not decreasing in ||f(x)||1 . Suppose (absurd)
u(x) = −(kfp(x)kp)p for some p > 1 and some fp. Then

u(x) = −

⎛⎝Ã KX
k=1

¯̄
fpk (xk)

¯̄p! 1
p

⎞⎠p

= −
KX
k=1

¯̄
fpk (xk)

¯̄p
.

For each k, let gk(xk) be such that |gk(xk)| =
¯̄
fpk (xk)

¯̄p and gk(xk) ≥ 0 ⇐⇒ fpk (xk) ≥

0. Note that under the spatial representation g = (g1, ..., gK), u(x) = −
KP
k=1

|gk(xk)| =

− kg(x)k1 . But u(x) is not decreasing in ||f(x)||1 for any f, hence this is a contradiction.
Suppose % is not modular. Then ∃x, y ∈ X s.t. L(x, y) ¿ L(x∨ y, x∧ y), which implies

u(x)+u(y) 6= u(x∨y)+u(x∧y). However, ||f(x)||1+ ||f(y)||1 = ||f(x ∨ y)||1+ ||f(x ∧ y)||1 .
So u(x) is not linearly decreasing in ||f(x)||1 . The same transformation as in the previous
paragraph extends this proof to any p.

(if). Suppose % is modular and multi-attribute single peaked. Let (x∗k, x∗−k) denote x∗.
For each k ∈ {1, 2, ...,K}, construct f1k : Xk −→ R as follows: f1k (x∗k) = 0; for any xjk ∈ Xk

such that xjk ≤k x∗k, f
1
k (x

j
k) = u(xjk, x

∗
−k) − u(x∗k, x

∗
−k); and for any xjk ∈ Xk such that

xjk ≥k x∗k, f
1
k (x

j
k) = u(x∗k, x

∗
−k) − u(xjk, x

∗
−k). By multi-attribute single peakedness, these

functions f1k are strictly increasing in ≥k . By construction, u(x) is linearly decreasing in

distance to f1(x∗) in the space (f1(X), ||·||1) for any x such that xk = x∗k for any k ∈ AK−1,

where Ak−1 ⊂ A and |Ak−1| = K − 1.
Suppose (proof by induction) that u(x) is linearly decreasing in distance to f1(x∗) in

the space (f1(X), ||·||1) for any x such that xk = x∗k for any k ∈ Am, where Am ⊂ A. I want

to show that u(z) is also linearly decreasing in distance for any z ∈ X be such that zk = z∗k

for any k ∈ Am−1, where Am−1 ⊂ Am and |Am−1| = |Am| − 1. Let i be a dimension such
that zi = xi 6= x∗i . Let j be the dimension such that zj 6= xj = x∗j . Let w ∈ X be such that

wi = x∗i ;wj = x∗j and wk = zk for k /∈ {i, j}. Let y ∈ X be such that yi = x∗i and yk = zk

for k 6= i. Then {w, y, x, z} is a lattice, where w % x, y % z. By the inductive hypothesis,

u(w) is linearly decreasing in distance to f1(x∗) in the space (f1(X), ||·||1),

u(w) = −
KX
k=1

|f1k (wk)− f1k (x
∗
k)| = −

X
k/∈{i,j}

|f1k (wk)− f1k (x
∗
k)|

where the second equality follows from wk = x∗k for k ∈ {i, j}. Since, again by the inductive
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hypothesis, u(x) and u(y) are also linearly decreasing in distance, u(x) = u(w)− |f1i (xi)−
f1i (x

∗
i )| and u(y) = u(w)− |f1j (yj)− f1j (x

∗
j )|.

By modularity,

u(z) = u(y) + u(x)− u(w) = u(w)− |f1i (xi)− f1i (x
∗
i )|− |f1j (yj)− f1j (x

∗
j )|

= u(w)− |f1i (zi)− f1i (x
∗
i )|− |f1j (zj)− f1j (x

∗
j )|

= −
X

k/∈{i,j}
|f1k (wk)− f1k (x

∗
k)|−

X
k∈{i,j}

|f1k (zk)− f1k (x
∗
k)|

= −
KX
k=1

|f1k (zk)− f1k (x
∗
k)|.

Since the inductive hypothesis is true, as shown, for |Am| ≥ K − 1, it is true by the
inductive argument for any size of Am, and therefore, for any z ∈ X, u(z) is linearly

decreasing in distance to f1(x∗) in the space (f1(X), ||·||1). For any p > 1, let fpk be such

that
¯̄
fpk (xk)

¯̄
=
¯̄
f1k (xk)

¯̄1/p and fpk (xk) ≥ 0 ⇐⇒ f1k (xk) ≥ 0. Then

u(x) = −
¯̄¯̄
f1(x)

¯̄¯̄
1
= −

KX
k=1

¯̄
f1k (xk)

¯̄
= −

KX
k=1

¯̄
fpk (xk)

¯̄p
= −

³
kfp(x)kp

´p
.

In particular, and most relevant in applications, theorem 2 says that if preferences are

modular and multi-attribute single peaked, we can represent alternatives and preferences

in a specific vector space using a utility function that is linear in the l1 norm, or we can

represent them in a different space using a utility function that is quadratic in the l2 norm.

What we cannot do is represent them in any space using a utility function that is linear

in the l2 norm, or a utility function that exponential in the l2 norm, such as the one used

in the celebrated D-NOMINATE method to estimate the location of the ideal policy in

two dimensions of US legislators devised by Poole and Rosenthal [20]. Euclidean utility

functions that are not quadratic in the Euclidean distance are inconsistent with preferences

satisfying the modularity assumption. Modularity is a separability assumption that requires

agents to treat issues independently, assessing their preferences over policies on one issue (or

over lotteries over policies on one issue) in the same manner regardless of the policies in any

other issue. Whether preferences are separable across issues is an empirical question. Lacy

[11] searches for evidence of non separability across pairs of issues that seem to be related,

such as taxes and spending, pollution regulation and cleaning up of the environment, or the
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status of English as an official language and immigration laws. He finds mixed evidence:

Many respondents to surveys report non separable preferences in some pairs of related

issues, such as income tax and anti-crime spending, but almost no respondents report non

separable preferences in other pairs of close issues, such as English and immigration laws.

While outside his study, I conjecture that most agents have separable preferences across

issues that do not seem to be related, such as the status of English as an official language

and environmental protection.

Many issues, such as abortion, gay rights, civil rights or environmental policy among

others, do not have a natural mapping from policy alternatives to the real line, so the set

of alternative policy bundles is not endowed with a spatial representation as a primitive

and any spatial representation is only one of many possible representations. Theorem 1

showed that using the city block metric to represent preferences implies assuming that

the agent is risk neutral in a given spatial representation. To the extent that the spatial

representation is an object of choice for theorists and not a primitive object, any assumption

over preferences on the space is difficult to interpret. It is preferable to make assumptions

on the primitives of the choice problem: on the original set of alternatives, which is not

exogenously endowed with any spatial representation, and the preferences over this set.

Theorem 2 makes explicit the restriction on primitives implied by the use of the city block

or quadratic Euclidean utilities. Interestingly, the implicit restriction is the same for these

two commonly used utility functions: Preferences over the primitive set of alternatives must

satisfy separability in the sense of modularity, and single peakedness.

To my knowledge, there is no parallel characterization of the set of preference profiles

over the primitive set of alternatives that are consistent with a utility function that is

linear or exponential in the Euclidean distance. Bogomolnaia and Laslier [6] show that any

preference relation can be represented by Euclidean preferences in a space with a sufficiently

large number of dimensions, but the assumption of linear Euclidean preferences in a given

space with a fixed, small number of dimensions, while ubiquitous in the literature, implies

unknown and possibly unwarranted restrictions on the admissible preferences defined over

the primitive set of alternatives.

It may seem surprising that the same preference relation can be represented using a

city block utility function, or using a quadratic Euclidean utility function, particularly in

light of the result by Plott [19] on generic inexistence of majority voting core outcomes if

16



preferences are Euclidean (or more generally, if they preferences are smooth), and the more

positive results on the existence of core outcomes under majority voting with city block

preferences by Rae and Taylor [21], Wendell and Thorson [26], McKelvey and Wendell [15]

and Humphreys and Laver [8]. The explanation of these divergent results on existence

of core outcomes depending on whether utility functions are smooth or city block, when

it is possible to map a spatial representation in which an agent has quadratic Euclidean

preferences into another space in which the agent has city block preferences is that the results

on existence of core outcomes rely on a common space for all agents in a society with at least

three agents. It does not suffice for each agent to have her own spatial representation of the

set of alternatives such that according to this subjective representation, her preferences are

city block. The need for a common spatial representation imposes further restrictions that

I detail in the next section.

A Common Spatial Representation for Multiple Agents

In the previous section, the primitive on preferences is a complete and transitive binary

relation % on ∆X that satisfies the archimedean and independence axiom, so that % is

representable by the expected utility of a utility function defined over X.

In a society N with n agents, the new primitive are n such binary relations defined on

∆X that satisfy the archimedean and independence axiom, so that %i is representable by

the expected utility of a utility function ui defined over X for any i ∈ N = {1, ..., n}. For
any p ∈ ∆X, let support of p be supp(p) = {x ∈ X : p(x) > 0}. This is the subset of
alternatives to which lottery p assigns positive probability.

In this section I extend theorem 2 to a society with multiple agents for the cases of

the l1 norm in theorem 3, and for the l2 norm in theorem 4. The additional necessary and

sufficient conditions to find a common spatial representation for all agents such that all their

utility functions are linear in the city block distance to their respective ideal points, while

heavy on notation, have a simple interpretation that I detail after the formal statement of

theorem 3. The conditions for representability by means of an l2 norm in a common space

are more complex.

Let (f(X), kf(x)k1) be the metric space given by the spatial representation f : X −→
RK and the metric based on the l1 norm, so that the distance between two points f(x),
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f(y) ∈ RK is kf(x)− f(y)k1 . Let F be the set of spatial representations f = (f1, ..., fK)

such that fk : Xk −→ R is strictly increasing in ≥k for each k ∈ A. For each attribute k, let

xmaxk and xmink be such that xmink ≤k xk ≤k xmaxk for any xk ∈ Xk. Given any two agents i, j

with preferred alternatives xi and xj , for each k, relabel the agents according to a function

σk : {i, j} −→ {h, l} such h is the agent with higher ideal value in attribute k, labeled xhk

and l is the agent with a lower ideal value xlk in attribute k. With this notation, I state the

result.

Theorem 3 Assume %i is multi-attribute single peaked and modular for every i ∈ N. A

spatial representation f ∈ F such that

ui(x) = −
°°f(x)− f(xi)

°°
1
for every i ∈ N

exists if and only if, for any i, j ∈ N, the following conditions hold.

1. For any k ∈ A, ∀x1k, x2k, x3k ∈ Xk such that x1k ≤k xlk ≤k x2k ≤k xhk ≤k x3k and

∀α ∈ [0, 1], given p1, p2, p3 ∈ ∆X such that p1(xmink , xl−k) = α, p1(xl) = 1 − α,

p2(xhk, x
l
−k) = α, p2(xl) = 1− α, p3(xmaxk , xl−k) = α and p3(xhk, x

l
−k) = 1− α,

pz ∼h (x
z
k, x

l
−k)⇐⇒ pz ∼l (x

z
k, x

l
−k) for any z ∈ {1, 2, 3}.

2. For any k ∈ A such that xik ≤k x
j
k and any x

1
k such that x

1
k ≤k xik, and for any k ∈ A

such that xik ≥k x
j
k and any x

1
k ≥k xik, ∃α ∈ (0, 1] and ∃δ > 0 such that:

• p ∼i q for p, q ∈ ∆X such that

⎧⎨⎩ p(x1k, x
i
−k) = δα

p(xi) = 1− δα

⎫⎬⎭ and

⎧⎨⎩ q(xjk, x
i
−k) = δ

q(xi) = 1− δ

⎫⎬⎭ ,

• and r ∼j x
i for r ∈ ∆X such that

⎧⎨⎩ r(x1k, x
i
−k) =

α
1+α

r(xjk, x
i
−k) =

1
1+α

⎫⎬⎭ .

Proof. (only if). Suppose (absurd) that ui(x) = −
°°f(x)− f(xi)

°°
1
for every i ∈ N,

but condition 1 fails for z = 1. Then, ∃x1k such that, for α such that p ∼l (x
1
k, x

l
−k),

p ¿h (x
1
k, x

l
−k). In utility terms, p ∼l (x

1
k, x

l
−k) implies

αul((x
min
k , xl−k)) + (1− α)ul((x

l
k, x

l
−k)) = ul((x

1
k, x

l
−k)),

which, since ul(x) is linearly decreasing in°°°f(x)− f(xl)
°°°
1
= |fk(xk)− fk(x

l
k)|+

X
m6=k

|fm(xm)− fm(x
l
m)|,
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implies

α|fk(xmink )− fk(x
l
k)| = |fk(x1k)− fk(x

l
k)|.

α(fk(x
l
k)− fk(x

min
k ) = fk(x

l
k)− fk(x

1
k).

In utility terms, p ¿j (x
1
k, x

l
−k) implies

α|fk(xmink )− fk(x
h
k)|+ (1− α)|fk(xlk)− fk(x

h
k)| 6= |fk(x1k)− fk(x

h
k)|

αfk(x
h
k)− αfk(x

min
k ) + (1− α)fk(x

h
k)− (1− α)fk(x

l
k) 6= fk(x

h
k)− fk(x

1
k)

α(fk(x
l
k)− fk(x

min
k )) 6= fk(x

l
k)− fk(x

1
k),

a contradiction. The cases for z = 2 and z = 3 follow an analogous argument.

Suppose (absurd) that condition 2 does not hold. Without loss of generality assume

that there exists k, x1k, α and δ such that x1k ≤k xik ≤k x
j
k and

δαui((x
1
k, x

i
−k)) + (1− δα)ui(x

i) = δui((x
j
k, x

i
−k)) + (1− δ)ui(x

i)

δα|fk(x1k)− fk(x
i
k)| = δ|fk(xjk)− fk(x

i
k)|

αfk(x
i
k)− αfk(x

1
k) = fk(x

j
k)− fk(x

i
k),

while

α

1 + α
uj((x

1
k, x

i
−k)) +

1

1 + α
uj((x

j
k, x

i
−k)) 6= uj(x

i)

α

1 + α
|fk(x1k)− fk(x

j
k)| 6= |fk(xik)− fk(x

j
k)|

αfk(x
j
k)− αfk(x

1
k) 6= (1 + α)(fk(x

j
k)− fk(x

i
k))

αfk(x
i
k)− αfk(x

1
k) 6= fk(x

j
k)− fk(x

i
k),

a contradiction.

(if). By theorem 2, %i can be represented by a utility function that is linearly decreasing

in the l1 norm in the space given by the spatial representation f. For any dimension k,

assume xjk ≥k xik (the x
i
k ≥k xjk case follows an analogous argument). If x

j
k 6= xmaxk , since

ui is rescalable, let fk(xmaxk )− fk(x
j
k) = 1. For any x

3
k ∈ [x

j
k, x

max
k ], find α3 such that p3 ∼i

(x3k, x
i
−k) for p

3 ∈ ∆X such that p3(xjk, x
i
−k) = 1 − α3 and p3(x3k, x

∗
−k) = α3, so fk(x

3
k) −

fk(x
j
k) = α3. By condition 1, case z = 3, p3 ∼j (x

3
k, x

i
−k), so, if we independently construct

the spatial representation f j under which %j is representable by uj linearly decreasing in

the l1 distance to xj , and we fix f jk(x
max
k ) − f jk(x

j
k) = 1, we find that fk(x3k) − fk(x

j
k) =
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f jk(x
3
k) − f jk(x

3
k). A symmetric argument applies to any x1k ≤k xik, and a very similar one

for any x2k ∈ (xik, x
j
k). With just condition 1, we can find a common spatial representation

such that, in each dimension, the utility of agents i and j is piecewise linearly decreasing in

the distance to their respective ideal points, with three different pieces corresponding to the

set of points with a higher value in the given dimension than both ideal points, lower than

both ideal points, and in between both ideal points. Condition 2 is necessary to guarantee

that utility is linear in distance across all three intervals. Take any x1k such that x
1
k ≤k xik

. Choose α and δ such that

αδui((x
1
k, x

i
−k)) + (1− αδ)ui(x

i) = δui((x
j
k, x

i
−k)) + (1− δ)ui(x

i)

αfk(x
i
k)− αfk(x

1
k) = fk(x

j
k)− fk(x

i
k).

By condition 2,

α

1 + α
uj((x

1
k, x

i
−k)) +

1

1 + α
uj((x

j
k, x

i
−k)) = uj(x

i)

αf jk(x
i
k)− αf jk(x

1
k) = f jk(x

j
k)− f jk(x

i
k),

where f j is the spatial representation such that uj is linearly decreasing in the l1 distance to

xj . Notice that f jk coincides with fk in evaluating the distance |f jk(xik)− f jk(x
1
k)| as exactly

(1/α)|f jk(x
j
k) − f jk(x

i
k)|. Then, both spatial representations coincide for any xk ≤k xjk.

An analogous argument for the symmetric case with xik ≤k xjk ≤k x3k shows that f
j
k also

coincides with fk for any xk ≥k xik completes the proof for n = 2. But j was arbitrary, so

every j ∈ N shares the common spatial representation f and has a utility representation

that is linearly decreasing in the l1 distance to the ideal point of the agent in the space

f(X).

Condition 1 has a very simple interpretation. Fixing the value of all attributes except k,

and evaluating lotteries that assign different values to attribute k, if i and j agree in their

ordinal preference among all the possible outcomes of the lotteries, then they agree on their

ranking of the lotteries as well. If i has a lower ideal value on attribute k than j, then i and

j share the same ranking among all lotteries on dimension k that assign positive probability

only to values that are no greater than the ideal value of i. Similarly, for lotteries that are

in any event above both ideal policies, agents agree that they want less of attribute k, and

by condition 1 they agree on their ranking of these lotteries. In the intermediate interval

between their two ideal policies, the agents have opposite rankings over sure outcomes: One
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agent wants less, the other one wants more. Condition 1 states that if agent i is indifferent

between a lottery in this interval and a sure outcome, agent j must be indifferent as well.

An intuition is that in this region the agents are in a zero-sum game: Whatever i gains, j

loses, so if i is indifferent between two lotteries, j must be indifferent as well.

Condition 2 is easier to interpret if X is convex. In this case it can be restated simply

as:

Given x1k ≤k xik ≤k x2k ≤k xjk such that (x
1
k, x

i
k) ∼i (x

2
k, x

j
k), and p ∈ ∆X such that

p(x1k, x
i
k) = p(x2k, x

i
k) =

1
2 , then xi ∼j p.

If agent i finds that lowering the value of attribute k from her ideal xik to x
1
k is as bad as

increasing it to x2k, then j considers that increasing it from x1k to x
i
k is as good as increasing

it from xik to x
2
k. Or, if agent i subjectively considers her ideal value the midpoint between

x1k to x
2
k, then j agrees and also considers xik to be the midpoint between x1k to x

2
k. If X is

not convex, we need the richer notation to express the same intuition: If agent i places her

ideal point at a fraction δ
1+δ of the way from x1k to x

j
k, then j also subjectively places xik at

a fraction δ
1+δ from x1k to x

j
k. Agents agree on the importance of a change in value in their

interval of agreement, relative to a change in value in their interval of disagreement. That

is, if agent i is willing to shift up to a certain amount of probability from value x1k in an

interval of agreement to a less preferred value x2k in order to change the outcome from x3k to

x4k in the region of disagreement, then agent j is willing to cede exactly the same amount

of probability to avoid this change from x3k to x
4
k.

Succinctly, and a bit informally, if agents agree on lotteries when they agree on sure

outcomes, if they have exactly opposite preferences over lotteries when they have exactly

opposite preferences over sure outcomes, and they concede the same importance to the

region of agreement vis a vis the region of disagreement, then their ordinal preferences over

multiatribute objects can be represented in a common space such that these preferences can

all be represented by utility functions that are linearly decreasing in the city block distance

to the respective ideal points.

Theorem 3 has very important consequences in political competition over policy bundles

with multiple policy dimensions: If agents have city block preferences over a common space,

then under certain conditions that are not non-generic, there exist policy bundles that are

in the majority voting rule core, so they cannot be defeated by any other policy, as shown by

Rae and Taylor [21], Wendell and Thorson [26], McKelvey and Wendell [15] and Humphreys
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and Laver [8].

With regards to representability by the l2 distance, Bogomolnaia and Laslier [6] show

that any profile of preference relations can be represented by Euclidean preferences in a

space with a sufficiently large number of dimensions. With a fixed number of dimensions,

the goal of representing preferences by means of a Euclidean utility function in a common

space becomes a much more difficult task, and the conditions on preferences become very

restrictive.

Theorem 4 Assume %i is multi-attribute single peaked and modular for every i ∈ N. A

spatial representation f ∈ F such that

ui(x) = −(
°°f(x)− f(xi)

°°
2
)2 for every i ∈ N

exists if and only if, for any i, j ∈ N, the following conditions hold.

3. For any k ∈ A and any x1k, x
2
k, x

3
k ∈ Xk such that x1k ≤k xlk ≤k x2k ≤k xhk ≤k x3k:

• Let γ > 0, δ ∈ (0, 1] and r, s ∈ ∆X with s(xmink , xl−k) = δ, s(xl) = 1 − δ,

r(xhk , x
l
−k) =

δ
γ2
and r(xl) = 1− δ

γ2
be such that s ∼l r. For any p, q ∈ ∆X such

that p(xmink , xl−k) = αl, p(x
l) = 1 − αl, q(x

min
k , xl−k) = αh, q(x

l) = 1 − αh, and

p ∼l (x
1
k, x

l
−k),

q ∼h (x
1
k, x

l
−k)⇐⇒ αh =

√
αl +

αl −
√
αl

1 + 2γ
.

• For any p, q ∈ ∆X such that p(xhk, x
l
−k) = αl, p(x

l) = 1 − αl, q(x
h
k , x

l
−k) =

αh, q(x
l) = 1− αh, and p ∼l (x

2
k, x

l
−k),

q ∼h (x
2
k, x

l
−k)⇐⇒ αh = 2

√
αl − αl;

• Let γ > 0 and r ∈ ∆X with r(xmaxk , xl−k) =
³

γ
1+γ

´2
and r(xlk, x

l
−k) = 1−

³
γ
1+γ

´2
be such that (xhk , x

l
−k) ∼l r. For any p, q ∈ ∆X such that p(xmaxk , xl−k) =

αl, p(x
h
k , x

l
−k) = 1 − αl, q(x

max
k , xl−k) = αh, q(x

h
k, x

l
−k) = 1 − αh, and p ∼l

(x3k, x
l
−k),

q ∼h (x
3
k, x

l
−k)⇐⇒ αh = 2γ

2 + 2γαl + αl − 2γ(γ2 + 2γαl + γ)1/2.

4. For any k ∈ A such that xik ≤k x
j
k and any x

1
k such that x

1
k ≤k xik, and for any k ∈ A

such that xik ≥k x
j
k and any x

1
k ≥k xik, ∃α ∈ (0, 1] and ∃δ > 0 such that:

22



• p ∼i q for p, q ∈ ∆X such that

⎧⎨⎩ p(x1k, x
i
−k) = δα

p(xi) = 1− δα

⎫⎬⎭ and

⎧⎨⎩ q(xjk, x
i
−k) = δ

q(xi) = 1− δ

⎫⎬⎭ ,

• and r ∼j x
i for r ∈ ∆X such that

⎧⎨⎩ r(x1k, x
i
−k) =

α
(1+

√
α)2

r(xjk, x
i
−k) =

1+2
√
α

(1+
√
α)2

⎫⎬⎭ .

Proof. (only if). Suppose that ui(x) = −(kf(x)− f(x∗)k2)2 for every i ∈ N. In the first

case of condition 3, in utility terms, p ∼l (x
1
k, x

l
−k) implies

αlul((x
min
k , xl−k)) + (1− αl)ul(x

l) = ul((x
1
k, x

l
−k)),

which, since ul(x) is linearly decreasing in (
°°f(x)− f(xl)

°°
2
)2 = (fk(xk) − fk(x

l
k))

2 +P
m6=k

(fm(xm)− fm(x
l
m))

2, implies

αl(fk(x
min
k )− fk(x

l
k))

2 = (fk(x
1
k)− fk(x

l
k))

2.

Arbitrarily rescale ul(x) so that (fk(xlk)− fk(x
min
k ) = 1. Then, fk(xlk)− fk(x

1
k) =

√
αl. Let

fk(x
h
k)− fk(x

l
k) = d.

We want to show that q ∼h (x
1
k, x

l
−k) ⇐⇒ αh =

√
αl +

αl−
√
αl

1+2γ . In utility terms, q ∼h

(x1k, x
l
−k) if and only if

αh(fk(x
min
k )− fk(x

h
k))

2 + (1− αh)(fk(x
l
k)− fk(x

h
k))

2 = (fk(x
1
k)− fk(x

h
k))

2

αh(d+ 1)
2 + (1− αh)d

2 = (d+
√
αl)

2

αh + 2dαh = αl + 2d
√
αl

αh =
αl + 2d

√
αl

1 + 2d
=
√
αl +

αl −
√
αl

1 + 2d

Note that if ul(x) = −(
°°f(x)− f(xl)

°°
2
)2, then s ∼l r if and only if d = γ. The expression

of αh as a function of αl in the third case of condition 3 is the same as solving for αl in

terms of αh in the first case of the condition. For the remaining second case, rescaling ul to

let f(xhk) − f(xlk) = 1, p ∼l (x
2
k, x

l
−k) implies that f(x

2
k) − f(xlk) =

√
αl, so q ∼h (x

1
k, x

l
−k)

if and only if

(1− αh) = (1−√αl)2

αh = 2
√
αl − αl.
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Suppose (absurd) that condition 4 does not hold. Without loss of generality assume

that there exists k, x1k, α and δ such that x1k ≤k xik ≤k x
j
k and

δαui((x
1
k, x

i
−k)) + (1− δα)ui(x

i) = δui((x
j
k, x

i
−k)) + (1− δ)ui(x

i)

α(fk(x
i
k)− fk(x

1
k))

2 = (fk(x
j
k)− fk(x

i
k))

2,

while
α

(1 +
√
α)2

uj((x
1
k, x

i
−k)) +

1 + 2
√
α

(1 +
√
α)2

uj((x
j
k, x

i
−k)) 6= uj(x

i).

Rescale ul such that fk(x
j
k)− fk(x

i
k) = 1, so fk(x

i
k)− fk(x

1
k) =

1√
α
. Then

α

(1 +
√
α)2

µ
1 +

1√
α

¶2
6= 1,

a contradiction.

(if). By theorem 2, %i can be represented by a utility function that is decreasing in

square of the l2 distance to xi in the space given by the spatial representation f. For any

dimension k, assume xik ≤k xjk (we only need to relabel the agents to do without this

assumption). If xik 6= xmink , since ui is rescalable, let fk(x
i
k) − fk(x

min
k ) = 1. For any

x1k ∈ [xmink , xik], find αi such that p1 ∼i (x
1
k, x

i
−k) for p

1 ∈ ∆X such that p1(xmink , xi−k) = α1

and p1(xi) = 1− α1, so fk(xik)− fk(x
1
k) =

√
α1. If we construct the spatial representation

f j under which %j is representable by uj decreasing in the square of the l2 distance to

xj , we fix f jk(x
i
k) − f jk(x

min
k ) = fk(x

j
k) − fk(x

i
k) = 1 and we let f jk(x

j
k) − f jk(x

i
k) = d and

fk(x
j
k)− fk(x

i
k) = γ, by taking x1k = xmink in condition 4, we find thatµ

α

(1 +
√
α)2

¶
(1 + d)2 = d2, where

δα = δγ2, so
γ2

(1 + γ)2
(1 + d)2 = d2;

γ = d.

For any x1k ≤k xik, find αj such that

αjuj(x
min
k , xi−k) + (1− αj)uj(x

i) = uj(x
1
k, x

i
k).

αj(1 + γ)2 + (1− αj) γ
2 = (γ + λ)2, where

λ = f jk(x
i
k)− f jk(x

1
k), so

αj + 2γαj = λ2 + 2γλ.
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By condition 3, αj =
2γ
√
αi+αi

1+2γ . Therefore,

2γ
√
αi + αi

1 + 2γ
(1 + 2γ) = λ2 + 2γλ

λ = −γ +
q
γ2 + 2γ

√
αi + αi =

√
αi.

Therefore, arbitrarily setting fk(xmink ) = f jk(x
min
k ) = 0, then f jk(x

1
k) = fk(xk) for any x1k ≤

xik.

For any x2k such that x
i
k ≤k x2k ≤k x

j
k, p ∈ ∆X such that p(xjk, x

i
−k) = αi, p(x

i) = 1−αi,
p ∼i (x

2
k, x

i
−k) implies

αi(fk(x
j
k)− fk(x

i
k))

2 = (fk(x
2
k)− fk(x

i
k))

2

fk(x
2
k)− fk(x

i
k) =

√
αiγ.

Similarly, q(xjk, x
i
−k) = αj , q(x

i) = 1− αj and q ∼h (x
2
k, x

l
−k) if and only if

(1− αj)(f
j
k(x

j
k)− f jk(x

i
k))

2 = (f jk(x
j
k)− f jk(x

2
k))

2

γ − f jk(x
2
k) + f jk(x

i
k) =

q
(1− αj)γ

f jk(x
2
k)− f jk(x

i
k) = γ

µ
1−

q
(1− αj)

¶
,

which, since αh = 2
√
αl − αl, leads to

f jk(x
2
k)− f jk(x

i
k) = γ

µ
1−

q
(1− 2√αi + αi)

¶
= γ(1− (1−√αi) =

√
αiγ.

Therefore, f jk(x
2
k) = fk(xk) for any x2k such that x

i
k ≤k x2k ≤k x

j
k. Finally, for any x3k ≥ xjk,

starting with f jk(x
3
k) such that uj is quadratic in the Euclidean distance in f i(X), the

construction of f ik = fk for which ui is quadratic Euclidean is a symmetric case to the

finding that f jk(x
1
k) = fk(x

1
k) for x

1
k ≤k xik. Altogether, f

j
k = fk. Since i and j were arbitrary,

the same representation f serves as a common space for all n agents.

While these conditions for representability using a quadratic Euclidean utility function

lack a transparent interpretation, it is useful to compare them to the simpler conditions 1

and 2 in theorem 3. Condition 1 in theorem 3 can be rewritten in terms that follow the

structure of condition 3, and then, condition 1 holds if qz ∼h (x
z
k, x

l
−k) ⇐⇒ αh = αl for

z ∈ {1, 2, 3}. Under condition 1, agents i and j evaluate the sure outcome (xzk, x
l
−k) in the

same way in terms of weights to the best and worst alternative in each of the three intervals

under consideration, so they are both indifferent between p, q and (x1k, x
l
−k) if and only if
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p = q, or equivalently, αh = αl. In order for preferences to satisfy condition 3, agents must

instead differ in their preferences over lotteries even in the interval where they agree on

their ordinal preferences over sure outcomes. The differences between conditions 1 and 3

can be related to notions of risk attitude in the population. Condition 1 can be interpreted

as risk neutrality by all agents, while condition 3 can be interpreted as a specific common

degree of risk aversion by all agents.

For the purpose of a clearer intuition, let X be convex and either restrict the number of

dimensions to one, or assume that xi−k = xj−k so that the ideal value of i and j is distinct

only on attribute k, where xik ≤k x
j
k. Since X is convex and preferences are continuous, we

can find a point between the ideal policy of i and j such that both agents are indifferent

between this point and a lottery that grants them their ideal point with probability α

and the ideal point of the other player with probability 1 − α. Formally, there exists a

point x2k ∈ (xik, x
j
k) such that if p(x

i) = α, p(xj) = 1 − α, q(xj) = α and q(xi) = 1 − α,

then (x2k, x
i
−k) ∼i p and (x2k, x

i
−k) ∼j q. A representation that locates x2k as the midpoint

between xik and xjk generates the same risk attitude for agents i and j. Condition 1 for

a representation by means of an l1 norm requires that α = 0.5, which I interpret as risk

neutrality, while condition 3 for a representation by means of an l2 norm requires α = 0.25,

which I interpret as risk aversion.

For lotteries over values below xik or values above x
j
k, condition 1 requires agents i and j

to agree on their preferences over such lotteries. Condition 3 is more cumbersome. Consider

the first case, x1k ≤k xik and set f(x
i
k) − f(xmink ) = 1. Then the parameter γ is such that

f(xjk) − f(xik) = γ in the spatial representation f such that %i can be represented by ui

quadratic Euclidean in f(X). From the perspective of agent i, xj is at a distance γ of xi

in the space where i has quadratic Euclidean preferences and the distance from xmink to xik
is chosen as the unit of measure. In order for %j to also be representable by a quadratic

Euclidean u2 in the same space, it must be that the preferences over lotteries of agent j

depend on the distance γ. If we take a sequence of preference relations of agent i such that

γ −→ 0, the preferences over lotteries of i and j must converge, so αh −→ αl. If instead

we consider a different sequence so that γ increases toward infinity, the preferences over

lotteries of i and j differ in such way that αj −→
√
αi. As %i changes so that γ increases

toward infinity, j must become closer to risk neutral on lotteries over values below xik in

order for her preferences to be quadratic Euclidean in the spatial representation dictated by
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the preferences of agent i.While this condition may appear unduly restrictive, it is implicit

in the formulation of any spatial model that uses the standard assumption of quadratic

Euclidean preferences.

Whether preferences over multi-attribute alternatives are such that α = 0.5, and αj = αi

in the lotteries discussed in the previous two paragraphs, or whether α < 0.5 or in fact

α = 0.25, and αj =
√
αi+

αi−
√
αi

1+2γ is a testable empirical question. Evidence that α ≈ 0.25,
and αj ≈

√
αi +

αi−
√
αi

1+2γ would support the assumption of quadratic Euclidean preferences.

On the other hand, evidence that α ≈ 0.5, and αj ≈ αi would suggest that, albeit standard,

the assumption of quadratic Euclidean preferences is unwarranted and it is appropriate

to assume instead linear city block preferences, with positive implications for existence of

majority core outcomes in multidimensional policy competition.

Discussion

It is a standard in spatial models of political competition to assume that utilities are de-

creasing —linearly, exponentially or in quadratic form- in the Euclidean distance from an

ideal point in the space of policies.

The first theoretical contribution of this paper is to prove that given a spatial represen-

tation of the set of alternatives, under standard assumptions, risk neutrality on this space

implies necessarily a utility representation that is linear in a generalized city block distance,

not the Euclidean distance.

In many applications, the primitive set of alternatives is not a subset of a vector space,

and any spatial representation is subjective, arbitrary, or made for convenience. Any as-

sumption on preferences over alternatives in a vector space is not an assumption on prim-

itives, such as preferences over alternatives; it is a joint assumption on preferences over

alternatives, and on the chosen spatial representation of the preferences. The second the-

oretical contribution of this paper is to find simple and intuitive necessary and sufficient

conditions on the preference relation over the primitive set of alternatives, such that for any

p ≥ 1, there exists a spatial representation of these alternatives under which preferences can
be represented by a utility function that is decreasing in the p power of the lp distance to

an ideal point in the space. This result includes representations by a utility function that is

linear in the city block distance or a utility function that is quadratic in the Euclidean dis-

27



tance as special cases. The conditions amount to separability across attributes, and single

peakedness within each attribute.

The third contribution of this paper extends the second result to a society with multiple

agents for the case of linear city block and quadratic Euclidean preferences, finding addi-

tional conditions under which there exists a spatial representation common to all agents

such that the preference profile of every agent is representable by a utility function that is

linearly decreasing in the l1 distance or quadratic decreasing in the l2 to the ideal point of

the agent in the common space. These conditions are simpler and more intuitive for the

case of city block preferences.

Recent empirical research by Berinsky and Lewis [4] finds that agents are risk neutral in

their political preferences given their subjective spatial representation of the policy space in

the US. In applications with a given spatial representation of the space of alternatives where

the results of Berinsky and Lewis [4] are robust and agents are risk neutral, political economy

theories of spatial competition on ideological issues should discard utility representations

that are a function of Euclidean distance, and accept instead as the benchmark a utility

function that is linear in the city block metric.

In any application without a given exogenous spatial representation, it is standard to

represent preferences over alternatives with multiple attributes as a linear, quadratic, or

exponential function of the Euclidean distance to an ideal point. I have shown that if pref-

erences are separable and single peaked, utility functions that are linear or exponential on

the Euclidean distance are untenable. Under these assumptions, individual preferences can

be represented by either a linear city block utility function or a quadratic Euclidean utility

function. While either utility representation requires stringent restrictions on preference

profiles in a society with multiple agents, I have shown that the conditions such that the

preferences of every agent can be represented in some space common to all agents by a city

block utility function are simpler and more intuitive than the analogous conditions for a

quadratic Euclidean utility function.

An implication of the results in this paper that some received wisdom that relies on

the Euclidean distance perhaps should be reevaluated. For instance, it is well known that

the conditions for existence of an equilibrium in multidimensional policy competition de-

tailed by Plott [19] and generalized by McKelvey and Schofield [14] hold non-generically

if agents have Euclidean preferences, but these conditions hold more generally if agents
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have city block preferences; if Plott´s conditions are not satisfied and agents have Euclid-

ean preferences, McKelvey [12] shows that majority preferences are intransitive under very

weak assumptions, but McKelvey [13] shows that this so-called “chaos result” holds only

under stronger assumptions for non-Euclidean preferences. At the same time, theoretical

contributions that work with the city block metric, such as results on the existence of core

outcomes by Rae and Taylor [21], Wendell and Thorson [26], McKelvey and Wendell [15]

and Humphreys and Laver [8], or that make assumptions on preferences consistent with

city block preferences, such as the results on the existence of strategy proof outcomes by

Barberà, Sonnenschein and Zhou [3], become more relevant.
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